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Nacional Apartado Postal 14-740, 07360 Ciudad de México, México

(Received 21 August 2023; accepted 7 November 2023; published 4 December 2023)

The τ− → π−ηντ decay is forbidden in the Standard Model in the limit of exact G-parity, it becomes a
rare decay due to isospin symmetry breaking and it is very sensitive to the effects of effective scalar
interactions. Since the parameters driving isospin breaking, ðmd −muÞ=ðms − m̄Þ and α, are of the same
order, one may expect their G-parity breaking effects in this decay can be of similar magnitudes. In this
work, we evaluate the effects of isospin-breaking amplitudes originated from a virtual photon at one-loop in
a resonance dominance model to describe photon-hadron interactions. We find that these effects can shift
the leading SM predictions for the decay rate based on the u − d quark mass difference by roughly
ð13.5þ4.9

−4.1 Þ%, and should be taken into consideration in a precision comparison of theory and experiment in
order to draw meaningful conclusions on new physics. The effects in the decay rate of the analo-
gousτ− → π−η0ντ decay can be larger, ð78� 38Þ%, within the approximations assumed in this model. The
uncertainty in the former channel is dominated by the input parameters of the resonance model, while the
uncertainty in the latter is due to the π0η0 mixing parameter.

DOI: 10.1103/PhysRevD.108.113001

I. INTRODUCTION

The study of rare and forbidden processes in the
Standard Model (SM) is important because they can be
sensitive to the effects of new particles or interactions. If
rare decays are suppressed beyond experimental sensitivity,
any positive signal would be due to new physics (NP); in
case they are at the reach of experimental searches, good
control of SM prediction is necessary in order to extract
meaningful information from the measured observables.
The latter is the case of the rare τ− → π−ηντ decay studied
in this paper. As shown in Ref. [1], because this decay is
forbidden byG-parity,1 it can be very sensitive to the effects
of dimension-six scalar interactions for low-energy semi-
leptonic processes in the framework of an effective field
theory.
In the SM of electroweak interactions, the strangeness-

conserving semileptonic decays of τ− leptons are mediated
by the ðV − AÞμ ¼ d̄γμð1 − γ5Þu weak charged current.

Owing to the G-parity properties of the vector (axial)
current2 [3], tau leptons can decay into final states that
conserve G-parity, like an even (odd) number of pions.
Therefore, in 1978 Leroy and Pestieau [4] have suggested
that the τ− → a−0 ð980Þντ; b1ð1235Þντ decays, with the
subsequent a0 → ηπ−; b1 → ωπ− would be good signals
of non-SM currents since the ηπ− (ωπ−) system has a
G-parity quantum number opposite to that of the vector
(axial) current.
The τ− lepton decay of our concern has been calculated

by many authors in the past four decades [4–19]. The
different predictions yield branching fractions in the
range BRðτ− → π−ηντÞ ∼Oð10−6–10−5Þ. The underlying
mechanism in those model-dependent calculations is
driven by the md −mu quark mass difference, either due
to a first-class current followed by the π0 − η mixing
(τ− → ρ−ð→ π−π0 → π−ηÞντÞ or induced by isospin break-
ing (IB) in the weak vertex (τ− → a−0 ð→ π−ηÞντ). Other
calculations assume that τ− → π−ηντ is mediated by NP in
the form of scalar interactions [6,20]. Given that G-parity
violating effects make this a rare decay process, the
contributions of NP may become competitive.
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1G≡ CeiI3 , where C is the charge conjugation operator and I3
the third component of the isospin operator [2]. 2The vector (axial) current of the V − A theory was assigned a

G ¼ þ1ð−1Þ parity and were named by Weinberg [3] as “first
class” currents, while the term “second class” was deserved to
scalar (S) and pseudotensor (PT) currents with opposite G-parity.
Although this terminology has become obsolete nowadays, in this
paper we will refer sometimes to the nonstandard S and PT
interactions as second-class currents.
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To the best of our knowledge, IB effects induced by
electromagnetic interactions have been considered only in
Ref. [21], which turned out to be a very small effect of
Oðα2Þ at the amplitude level. In this paper, we consider the
IB effects that are induced by electromagnetic interactions
at the one-loop level, which leads to an amplitude sup-
pressed only at OðαÞ. Since the π0 − η mixing parameter
ϵηπ, as well as the fine structure constant α turn out to be of
similar order (roughly 1%), one may expect a priori those
effects may contribute to the amplitude at the same level.
Regarding the experimental searches for this rare tau

decay, the first upper limits were reported in the nineties by
the CLEO [22] BRðτ− → π−ηντÞ < 1.4 × 10−4 (at 95%CL)
andALEPH [23] BRðτ−→π−ηντÞ<6.2×10−4 (at 95%CL)
collaborations. Those limits were improved later by the
Belle [24] and BABAR [25–27] experiments who reported
BRðτ− → π−ηντÞ < 7.3 × 10−5 (at 90% CL) and BRðτ− →
π−ηντÞ< 9.9× 10−5 (at 95%CL), respectively. An improve-
ment can be eventually established at Belle BRðτ− →
π−ηντÞ < 4.4 × 10−5 after analysing the full dataset, accord-
ing to [28]. In the future, the Belle II experiment, which
expects to produce a large dataset containing∼1010 tau pairs
[29], can be able to measure for the first time the branching
fraction of this decay channel. On the other hand, a stronger
upper limit on the analogous τ− → π−η0ντ decay has
been reported by the BABAR Collaboration [27], namely
BRðτ− → π−η0ντÞ < 4.0 × 10−6 (at 90% CL). To take ad-
vantage of these results in the search for NP, it is necessary
that improved predictions of the branching fraction and other
observables in τ− → π−ηντ decay are obtained in the SM.
This paper attempts to improve on this goal.

II. THE SEMILEPTONIC τ − → π − ηντ AMPLITUDE

It is well known that the semileptonic τ lepton decay
into two pseudoscalar mesons is mediated by the vector
current and described in terms of two form factors. For the
τ−ðpτÞ → π−ðpπÞηðpηÞντðpνÞ decay under consideration,
the lowest order amplitude can be written in a factorizable
form

M ¼ GFVudffiffiffi
2

p lμ ·Hμ; ð2:1Þ

where lμ ¼ ūðpνÞγμð1 − γ5ÞuðpτÞ is the leptonic weak
current and Vud is the element of the Cabibbo-Kobayashi-
Maskawa matrix. The hadronic matrix element Hμ can be
parametrized in terms of the form factors Fηπ

þ ðsÞ and Fηπ
0 ðsÞ,

namely

Hμ ¼ hηðpηÞπ−ðpπÞjd̄γμuj0i

¼ −
ffiffiffi
2

p h�
q0μ −

Δηπ

s
qμ
�
Fηπ
þ ðsÞ þ Δηπ

s
qμF

ηπ
0 ðsÞ

i
: ð2:2Þ

In the above expressions we have defined Δηπ ¼ q · q0 ¼
m2

η −m2
π, as the product of the two independent momenta

qμ ¼ ðpη þ pπÞμ and q0μ ¼ ðpη − pπÞμ. The form factors are
Lorentz-invariant functions of s ¼ q2, the square of the
invariant mass of the ηπ system. The subindices ðþ; 0Þ in the
form factors refer to the L ¼ 1 and L ¼ 0 angular momen-
tum configurations of the hadronic pair, and they are called
vector and scalar form factors, respectively.
The corresponding decay rate for this decay is the

following

Γðτ− → π−ηντÞ

¼ G2
FjVudj2SEW
8ð4πÞ3m3

τ

Z
m2

τ

ðmηþmπÞ2
ds

3λ1=2ðs;m2
η;m2

πÞðmτ − sÞ2
s3

× fð2sþm2
τÞλðs;m2

η;m2
πÞjFηπ

þ ðsÞj2 þ 3m2
τΔ2

ηπjFηπ
0 ðsÞj2g

ð2:3Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ xzþ yzÞ and
SEW ¼ 1.0201 is the universal short-distance electroweak
correction [30,31]. Note that: (1) the vector and scalar form
factors contributions do not interfere in the ηπ− mass
distribution3 and, (2) the contribution of the scalar form
factor can be important due to the (large) mass splitting of
π− and η mesons.
In the limit that G-parity is an exact symmetry, the

vector current cannot hadronize into the ηπ− state, thus
Fηπ
þ ðsÞ ¼ Fηπ

0 ðsÞ ¼ 0; consequently, this “second class” τ
decay would be forbidden. As explained before, nonzero
values of these form factors can be induced in the SM by
isospin breaking (IB) effects, or by NP interactions, for
instance, newly charged scalar or leptoquarks particles, etc.
In the former case, they become suppressed since isospin
breaking is expected to be at most a few percent compared
to allowed modes (τ− → ðπ; 2π; 3πÞ−ντÞ. In the presence of
NP, the amplitude can be suppressed by the scales asso-
ciated with heavy mediators. Since SM and NP contribu-
tions may be suppressed at the same level, searching the
τ− → π−ηντ decay can be sensitive to the latter effects.
Therefore, a good knowledge of the form factors is required
in order to extract meaningful information on NP from
future measurements of τ− → π−ηντ observables.
In the SM, isospin symmetry is broken by both the mass

difference of down and up quarks (md −mu) and by the
effects of electromagnetic (e.m.) interactions. Therefore,
the induced form factors contain two terms (hereafter, we
drop the superindex ηπ):

Fþ;0 ¼ Fd−u
þ;0 þ Fe:m:

þ;0 ð2:4Þ

Most of the previous works [4–19] have focused on the cal-
culation of the form factors induced mainly by themd −mu

3This is not true in the presence of photonic corrections because
the boxes in loop corrections introduce a dependence of form
factors upon an additional Mandelstam variable (see below).
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quark mass difference. The vector form factor is modeled
in a way similar to the one of π−π0 channel, which is
dominated by the ρð770Þ meson (including or not its
excited states), followed by the π0 → η conversion due
to π0η mixing [5–19]. On the other hand, the scalar form
factor is assumed to be dominated by the scalar a0ð980Þ
meson [5–7,10,11,13,15] or it can be calculated from the
coupled channel rescattering P1P2 → ηπ− in the J ¼ 0
configuration [16,17,19]. The results for the branching
ratio that stem from the separation into vector and scalar
terms, according to Eq. (2.3), are shown in Table I as
reported in the original references. The input data and
approximations assumed in the different models are
reflected in the spread of predictions for the branching
fractions. This wide range of predictions needs to be
tightened in order to draw a significant conclusion about
NP from a future measurement.
As is well known, the isovector part of the electromag-

netic quark current jI¼1
μ ¼ eðūγμu − d̄γμdÞ=2, violates

isospin (thus also G-) symmetry. To the best of our
knowledge, IB effects induced by electromagnetic inter-
actions have been considered only in Ref. [21], which
turned out to be very small, ofOðα2Þ at the amplitude level.
In the next section, we present the IB effects induced at
one-loop by virtual photons, which lead to an amplitude
suppressed only at OðαÞ. As already mentioned in the
introduction, because the π0 − η mixing4 and the fine
structure constant α turn out to be of the same order,
one may expect a priori that both effects contribute to the
amplitude with similar sizes. We attempt to test such a
hypothesis in this paper.

III. G-PARITY BREAKING INDUCED
BY QED LOOPS

Here we focus on the computation of the IB amplitudes
induced by virtual photons. QED radiative corrections
require that hadron and photon interactions involved in
loops are well known at all values of virtual momenta. In
practice one has to resort to scalar QED at low momenta
and a model that properly describes hadron-photon inter-
actions at higher energies. For the purposes of this paper,
we will use a resonance dominance model to describe the
hadron and photon interaction vertices. This model has
been used, for example, to compute the long-distance QED
radiative corrections to τ− → ðπ; KÞ−ντ decays in Ref. [32],
the radiative corrections to the ratio ϕ → KþK−=K0K0 [33]
or to study the observables of radiative τ− → π−π0ντγ [34]
and τ− → π−ηντγ decays [35]. Since in this model the
couplings of photons to hadrons are mediated by the
exchange of vector mesons (see end of this section),
the form factors of vertices involving photon-hadron
interactions behave as ∼1=q2 (q is the momentum carried
by virtual photons) at short-distances. This is in agreement
with the large q2 behavior expected in QCD according
to Refs. [36,37]. The large q2 behavior of form factors
also allows to make convergent the loop integrals which,
otherwise, will be divergent if the structureless QED inter-
actions approximation were used. Alternative calculations
of the radiative corrections to τ− → ðπ; KÞ−ντ decays in the
framework of the resonance chiral theory which imple-
ments the SD contraints [38,39], were found in good
agreement with those of Ref. [32], computed in the meson
dominance approach. This agreement occurs because both
models capture the main features of photon-hadron inter-
actions in the intermediate energy (resonance) region,
which is relevant for the evaluation of loop-effects for
finite integrals.

TABLE I. Some of the previous estimates of the BRðτ− → π−ηντÞ reported in the literature that stem from isospin
breaking in the d − u quark mass difference. The subscript S (V) denotes the contribution of the scalar (vector) form
factor to the total branching ratio (4th column). The spread of values between predictions can be traced to the
different inputs and approximations among the various hadronization models. In addition, predictions marked with
an asterisk use the narrow-width approximation for scalar and vector resonances.

Ref. BRS × 105 BRV × 105 BR × 105

* (1982) Tisserant, Truong [5] (ρ, a0 contributions) 1.60 0.26 1.86

* (1987) Bramon, Narison, Pich [6,7] (ρ, a0 contributions) 1.50 0.12 1.62

(1994) Neufeld, Rupertsberger [10] (NLO ChPT) 1.06 0.15 1.21

*(2008) Nussinov, Soffer [11] (q̄q model) 1.00 0.36 1.36

(2010) Paver, Riazuddin [13] (ρ, ρ0, a0, a00 VMD) [0.2,2.3] [0.2,0.6] [0.4,2.9]

*(2012) Volkov, Kostunin [15] (NJL model) 0.04 0.44 0.48

(2014) Descotes-Genon, Moussallam [16] (ChPTþ analyticity) 0.20 0.13 0.33

(2016) Escribano, Gonzalez, Roig [17] (RChT-3 coupled channels) 1.41� 0.09 0.26� 0.02 1.67� 0.09

4Strictly speaking, this π0 − η mixing parameter also contains
a very small contribution from virtual photons through π0 ↔
ðργ;ωγÞ ↔ η loops, although they are different from the ones
considered in this paper.
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At the leading order in photonic loops, the τ− → π−ηντ
decay can be induced in such a framework by the Feynman
diagrams shown in Fig. 1. The presence of the virtual
photon makes possible this decay at the one-loop level, in a
similar way that the emission of a real photon in τ− →
π−ηντγ avoids the G-parity constraint [35]. Also, in this
leading order, we include only the effects of the lowest
lying vector ðρð770Þ;ωð782ÞÞ and scalar [a0ð980Þ] reso-
nances. The effects of other excited states can play an
important role above 1.4 GeV according to Ref. [13], but
we do not include them in this approximation given the lack
of experimental information that would allow us to derive
meaningful values of the relevant coupling. Other very
small contributions are also neglected (for instance, the b1
meson in loops or the π− pole).
The evaluation of Feynman graphs shown in Fig. 1

requires the effective vertices for V1V2P, VPγ, VSγ,
and SP1P2 interactions, where V, P, and S denote
vector, pseudoscalar, and scalar mesons, respectively. As
in Ref. [35] (see also [40–42]), we use the following

Feynman rules for the interaction of mesons and photons
(as in Ref. [35], we assume that all the couplings are real
and positive)

Vμ
1ðq1Þ → Vν

2ðq2ÞPðq3Þ∶ igV1V2Pϵ
μναβq2αq3β ; ð3:1Þ

Vμðq1Þ → γνðq2ÞPðq3Þ∶ igVγPϵμναβq2αq3β ; ð3:2Þ

Vμðq1Þ → γνðq2ÞSðq3Þ∶ igVγSðq1 · q2gμν − qμ2q
ν
1Þ; ð3:3Þ

Sðq1Þ → P1ðq2ÞP2ðq3Þ∶ igSP1P2
: ð3:4Þ

The ρ− −W coupling is defined as hρ−ðϵ�Þjd̄γμuj0i ¼
fρϵ�μ. The values for the above couplings required by
our evaluation are obtained from other phenomenological
analyses and are given in Table II.
The electromagnetic vertex of the positively charged

pion is defined as usual [43]

hπþðp2ÞjJemμ ð0Þjπþðp1Þi ¼ eFV
π ðk2Þðp1 þ p2Þμ; ð3:5Þ

FIG. 1. Feynman diagrams of the τ−ðpτÞ → π−ðpπÞηðpηÞνðpνÞ decay induced by a virtual photon at one loop level. The black square
stands for the integration out of theW gauge boson, meanwhile, the circle represents the virtual photon interaction taking into account a
squared momentum transfer dependence of the form given by Eq. (3.11).
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where Jemμ ðxÞ is the electromagnetic current operator and e
the positron charge. The pion form factor FV

π ðk2Þ is a
function of the squared momentum transfer k2 (where
k ¼ p2 − p1) such that FV

π ð0Þ ¼ 1.
Similarly, we will use the following expression for the

electromagnetic matrix element of the ρþ meson [44,45]

hρþðp2; ϵ0ÞjJemμ jρþðp1; ϵÞi ¼ eϵ0β�ϵαΓαβμ; ð3:6Þ

where ϵ and ϵ0 denote the initial and final polarization
vectors, respectively. The tensor Γαβμ factor has the
following Lorentz structure [46,47]

Γαβμðk2Þ ¼ ðp1þp2Þμgαβαðk2Þþ ðgμβkα − gμαkβÞβðk2Þ
þ ðp1þp2Þμkαkβγðk2Þ−pα

1g
μβ −pβ

2g
μα: ð3:7Þ

The last two terms in the above equation do not
contribute to on-shell vector mesons but are necessary to
satisfy the Ward identities in the general case. The form
factors αðk2Þ, βðk2Þ, and γðk2Þ are related to the static
electromagnetic multipoles of the ρþð770Þ vector meson
[48], respectively, as follows: αð0Þ ¼ q ¼ 1, βð0Þ ¼ μ and
γð0Þ ¼ ð1 − μ −QÞ=2m2

ρ, where q is the electric charge in
units e, μ the magnetic dipole moment in units of e=2mρ

and Q the electric quadrupole in units of e=m2
ρ. In this

paper we will assume the canonical values [49] αð0Þ ¼
1; βð0Þ ¼ 2 and γð0Þ ¼ 0. We will comment later on the
momentum transfer dependence of the form factors.
It can be shown that, after some intermediate algebraic

steps (see Appendix A), all the one-loop amplitudes
corresponding to the diagrams in Fig. 1 can be set into
the following factorized generic form

MðiÞ ¼
GFVudffiffiffi

2
p CðiÞlμ ·

Z
ddk
ð2πÞd

hμðiÞ
DðiÞ

; ð3:8Þ

where the subindex i ¼ a; b;…; g label the contribution of
the diagrams in Fig. 1, and CðiÞ denote the product of

couplings constants and (in some cases) meson propagators
(see Appendix A).
It is interesting to note that after the loop integration, the

Lorentz structure of the amplitudes has an expression
similar to Eq. (2.2):

MðiÞ ¼
GFVudffiffiffi

2
p lμð−

ffiffiffi
2

p
Þ
��

q0μ −
Δηπ

s
qμ

�
Fe:m:
þðiÞðs; uÞ

þ Δηπ

s
qμFe:m:

0ðiÞ ðs; uÞ
�
: ð3:9Þ

Note that the form factors generated by photonic loops
are of order α and depend on an additional variable
u ¼ ðpτ − pπÞ2, where the latter originates from the box
diagrams of Fig. 1.5 The form factors for the total amplitude
induced by electromagnetic contributions are given by

Fe:m:
fþ;0g ¼

Xg
i¼a

Fe:m:
fþ;0gðiÞ: ð3:10Þ

Before presenting the numerical analysis, some relevant
comments on our computation are in order. We have found
that the triangular diagrams (b), (c), (e), and (f) in Fig. 1,
have divergent behavior in the limit where the photon-
hadron vertices in Eqs. (3.5) and (3.6) are fixed at their zero
momentum transfer values (k2 ¼ 0).6 In the vector meson
dominance model considered in this paper, the interactions
of the virtual photon with mesons are mediated by the
exchange of vector mesons. Therefore, we will attach a
factor (mρ is the mass of the ρð770Þ vector meson)

F iðk2Þ ¼
m2

ρ

m2
ρ − k2

ð3:11Þ

to the electromagnetic vertices of charged (ρ, π) particles
appearing in Figs. 1(b,c,f) to describe their k2 dependency.
This factor is justified on the basis of many phenomeno-
logical descriptions of data and renders finite the divergent
loop integrals (see for example [32]).
Similarly, for the diagram in Fig. 1(e), we assume that

the virtual photon coupling in the ρ−a−0 γ vertex occurs via
the exchange of an ωð782Þ meson, the vector meson with
suitable quantum numbers to couple to the a−0 ρ

− pair,
which introduces an additional form factor F ρa0γðk2Þ ¼
m2

ω=ðm2
ω − k2Þ in the electromagnetic coupling.

TABLE II. Strong and electromagnetic couplings of vector and
scalar mesons used in our analysis (see Ref. [35]).

Coupling Value

fρ 0.170� 0.004 GeV2

gρωπ 11.1� 0.5 GeV−1

egωηγ 0.136� 0.016 GeV−1

egρπγ 0.219� 0.012 GeV−1

egρa0γ 0.092� 0.016 GeV−2

gρρη 7.9� 0.3 GeV−1

gρρη0 6.6� 0.2 GeV−1

egωη0γ 0.13� 0.008 GeV−1

ga0πη 2.2� 0.9 GeV
ga0πη0 ≤0.22 GeV

5The explicit expressions for the CðiÞ, h
μ
ðiÞ, and DðiÞ factors are

reported in the Appendix A. Similarly, the expressions for the
Fe:m:
fþ;0gðiÞ factors in terms of the Passarino-Veltman functions are

provided in Appendix C.
6Diagram (d) is finite and well behaved even in this approxi-

mation. However, we consider, for consistency, the q2 depend-
ence of the pion vector form factor in the evaluation of our
estimation.
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IV. ELECTROMAGNETIC CONTRIBUTIONS
TO THE TOTAL RATE

In this section, we provide the results for the branching
fraction of the G-parity breaking contribution to τ− →
π−ηντ that arise from the isospin breaking effects induced
by the exchange of a virtual photon. We compare our
results with the contributions due to the md −mu quark
mass difference using the same model and approximations.
For completeness, we also provide an estimate of these
electromagnetic effects for the branching fraction of the
analogous τ− → π−η0ντ decay channel.
For later comparison, we first re-evaluate the branching

fraction that stems from themu −md quark mass difference
through the π0η parameter ϵπη. For this purpose, we also
work in the framework of the meson resonance dominance
model using the lowest-lying resonance states. Following
Refs. [13,14], the correctly normalized vector and scalar
form factors that include the lowest lying and first excited
resonances are the following:

Fu−dþ ðsÞ ¼ ϵπη ×
1

1þ βρ

��
m2

ρ

m2
ρ − s − imρΓρðsÞ

þ βρm2
ρ0

m2
ρ0 − s − imρ0Γρ0 ðsÞ

��
; ð4:1Þ

Fu−d
0 ðsÞ ¼ ϵπη ×

1

1þ βa0

��
m2

a0

m2
a0 − s − ima0Γa0ðsÞ

þ
βa0m

2
a0
0

m2
a0
0
− s − ima0

0
Γa0

0
ðsÞ

��
; ð4:2Þ

where βρ;a0 are, in general, complex parameters that des-
cribe the ratio of couplings of the excited/lightest mesons
to the weak charged current and to the π−π0 meson pair.
A similar expression, with ϵπη → ϵπη0 , holds for the form
factors of τ− → π−η0ντ decays.
In order to remain consistent with the approximation

used in the loop calculations, we will use a single resonance
to describe the form factors, namely we set βρ ¼ βa0 ¼ 0.
Therefore, the only energy-dependent widths required in
Eqs. (4.1) and (4.2) are the following:

ΓρðsÞ¼Γρ

�
m2

ρ

s

�
5=2� λðs;m2

π;m2
πÞ

λðm2
ρ;m2

π;m2
πÞ
�

3=2

θðs−4m2
πÞ; ð4:3Þ

Γa0ðsÞ ¼ Γa0

m2
a0

s

λ1=2ðs;m2
η; m2

πÞ
λ1=2ðm2

a0 ; m
2
η; m2

πÞ
θðs − ðmη þmπÞ2Þ;

ð4:4Þ
where θðxÞ is the Heaviside functions and Γρ;a0 the on-shell
widths. In our numerical evaluations, we use the masses
and widths reported by the Particle Data Group [50], except
for the scalar meson, wherewe assume Γa0 ¼ð75�25ÞMeV
to cover the range reported for this parameter in [50].
We also use the leading order expression for the π − η

mixing parameter ϵπη ¼ ð1.21� 0.23Þ× 10−2. This numeri-
cal result stems from thevalues of the quarkmass ratios given
in [50] mu=md ¼ 0.474� 0.74 and ms=md ¼ 19.5� 2.5.
The values of the branching fractions obtained for the

scalar and vector contributions owing to mu −md quark
mass difference are reported in the line denoted as ‘d-u’ in
Table III. The values in this table corresponding to Ref. [13],
differ slightly from the one reported in that reference because
we use the appropriated masses in the phase-space for the
energy-dependent width of the ρð770Þ → ππ decay.
The results shown in the upper part of Table III cor-

respond to the contributions of scalar (subindex S) and
vector (V) form factors in BRðτ− → π−ηντÞ, generated by
the diagrams of Fig. 1. We note that the sum of scalar and
vector contributions does not add up to the total branching
ratio in the case of Figs. 1(a) and (g) because there is a small
interference term between them that arises from the box
diagrams (the induced form factors depend upon ðs; uÞ
variables in this case). It is clear that the branching ratios of
scalar and vector contributions induced by the pure photon
loops are smaller by about two orders of magnitude with
respect to the corresponding contributions induced by the
d − u quark mass difference.
When we add the form factors generated by both sources

of isospin breaking at the amplitude level according to
Eq. (2.4), we get the branching ratios for τ− → π−ηντ shown
in the last row of Table III. The branching fraction can be
written in terms of the ηπ mixing parameter in the following
useful form:

BRd−uþe:m:ðπηÞ ¼ ϵ2πηAþ ϵπηBþ C; ð4:5Þ

where A ¼ 9.99818 × 10−2, B ¼ 1.45217 × 10−4 and C ¼
2.15587 × 10−7 depend upon the phase-space integrated
rates and on values of the resonance parameters (a similar
expression holds for the π−η0 channel with η → η0 and
ðA;B; CÞ → ðA0; B0; C0Þ).

TABLE III. Scalar (S) and vector (V) contributions to the
branching ratio (BR) of τ → π−ηντ from individual one-loop
diagrams in Fig. 1. The last three rows denote, the electromag-
netic (e.m.), d-u quark mass difference contributions to the
branching fraction and their sum (d-uþ e:m:); respectively.

Diagram BRðτ− → π−ηντÞS BRðτ− → π−ηντÞV BRðτ− → π−ηντÞ
(a) 5.15 × 10−9 6.15 × 10−9 9.22 × 10−9

(b) 0 3.83 × 10−8 3.83 × 10−8

(c) 9.98 × 10−9 1.78 × 10−8 2.79 × 10−8

(d) 0 5.99 × 10−10 5.99 × 10−10

(e) 2.35 × 10−8 0 2.35 × 10−8

(f) 1.48 × 10−8 1.83 × 10−8 3.31 × 10−8

(g) 5.81 × 10−9 1.11 × 10−8 1.46 × 10−8

e. m. 1.64 × 10−7 4.15 × 10−8 2.15 × 10−7

d-u 1.20 × 10−5 2.47 × 10−6 1.46 × 10−5

d-uþ e:m: 1.34 × 10−5 3.14 × 10−6 1.66 × 10−5
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The shift produced by the photon corrections in the total
rate becomes

ΔðπηÞ≡ jBRd−uþe:m:ðπηÞ − BRd−uðπηÞj
BRd−uðπηÞ

¼ ð13.5þ4.0
−3.0 � 2.8Þ%: ð4:6Þ

The first error bars originate mainly from the uncertainties
in the values of a0ργ and a0ηπ couplings appearing in
Table II and the range of values Γa0 ¼ 50–100 MeV quoted
in [50]. The second error stems from the dependence
upon the ϵπη parameter which can be easily evaluated
from Eq. (4.5). The same parametric dependence upon ϵπη,
Eq. (4.5), allows us to evaluate the branching fraction for a
different value this parameter. For example, using ϵπη ¼
ð9.8� 0.3Þ × 10−3 from Ref. [17] we obtain ΔðηπÞ ¼
ð17.2� 0.6Þ%, where the error bar displays only the
uncertainty associated to the mixing parameter.
Therefore, a measurement of the branching ratio of this

decay at Belle II or at a τ-charm factory with a ∼10%
uncertainty will require that all the effects of this order, in
particular the ones due to the virtual photon, are explicitly
taken into account in order to extract meaningful informa-
tion on NP contributions.
Just for completeness, we also include the evaluation

of the photon-loop contributions to the analogous τ− →
π−η0ντ decay. This decay is more suppressed than the π−η
channel due to the smaller phase space available and also
because the threshold for π−η0 production is above the
masses of light meson resonances. The relevant couplings
entering the analogous diagrams in Fig. 1 are shown in
Table II. We use ϵπη0 ¼ ð3� 1Þ × 10−3 [14] for the π0 − η0

isospin mixing parameter. Our results7 are displayed in
Table IV following the same convention as in Table III.
According to the results in Table IV, in the π−η0 channel

the effects of the one-loop photon contributions are more
important than in π−η relative to the one due to md −mu.
When we add the effects of both sources of isospin
breaking, the interference effects turn out to be larger than
in the π−η case:

Δðπη0Þ≡ jBRd−uþe:m:ðπη0Þ−BRd−uðπη0Þj
BRd−uðπη0Þ

¼ ð78þ2
−4 � 38Þ%:

ð4:7Þ
The uncertainties are estimated as explained below Eq. (IV).
The values of the coefficients in the right-hand-side of
Eq. (4.5) corresponding to the πη0 channel are A0 ¼
6.6439× 10−3, B0 ¼ 8.68784× 10−6, C0 ¼ 2.08877× 10−8.
Using a different value of the πη0 mixing, see for example
ϵπη0 ¼ ð2.5� 1.5Þ× 10−4 [17], leads toΔðπη0Þ ¼ ð55� 63Þ.

This result is very sensitive to the contribution of the u − d
quark mass difference given the strong suppression of the
π−η0 mixing parameter. Therefore, this channel may be very
sensitive to the electromagnetic one-loop effects. The result
for the π−η0 channel, however, should be taken with care
because the exclusion of excited resonances involves two
limitations: first, the π−η0 system can be produced resonantly
onlywith the inclusion of higher resonances and, second, the
current knowledge of the needed η0 couplings is still poor.
We end this section to comment on our approximations:

(1) we have included only the lowest lying resonances in the
calculation of the two sources of isospin breaking contribu-
tions; (2) we are taking isospin breaking in the π0 − η − η0
mixingparameters at the leadingorder. This allowsus to keep
the consistency of our approximations. The effects of excited
resonances and next-to-leading order in mixing parameters
can be important, as shown in Refs. [13,14]. More reliable
information on the values of masses, widths and relevant
branching ratios of excited resonances is necessary to
account for these effects. However, we expect that the size
of form factors induced by electromagnetic interactions
relative to the one due to u-d quark mass difference would
not be largely affected.
Finally, let us mention that an estimate of the uncertainties

related to the validity of the model used for hadron-photon
interactions at short-distances is, to the best of our knowl-
edge, beyond the reach of current theory. We note however
that the vertices in the VMD model satisfy the ∼1=q2
expected in QCD as short distances [36,37]. Thus, wewould
expect that the numerical results would not strongly depend
on the specific model that implements the short-distance
constraints, as it occurs in the case of τ → K=πντ decays.

V. CONCLUSIONS

The “second class” current τ− → π−ηντ decay, forbidden
in the limit of exact G-parity symmetry, can be a powerful
tool to constrain/observe the effects of NP that generate
effective scalar interactions at low energies [1]. To achieve
this goal, better estimates of the vector and scalar hadronic
form factors induced by isospin breaking are needed.

TABLE IV. Same as Table III but for the τ− → π−η0ντ channel.

Diagram BRðτ− → π−η0ντÞS BRðτ− → π−η0ντÞV BRðτ− → π−η0ντÞ
(a) 8.71 × 10−10 7.50 × 10−10 1.45 × 10−9

(b) 0 2.78 × 10−9 2.78 × 10−9

(c) 1.57 × 10−9 2.16 × 10−9 3.75 × 10−9

(d) 0 1.11 × 10−12 1.11 × 10−12

(e) 8.07 × 10−12 0 8.07 × 10−12

(f) 2.13 × 10−9 1.35 × 10−9 3.48 × 10−9

(g) 6.85 × 10−10 1.68 × 10−9 2.25 × 10−9

e. m. 1.73 × 10−8 2.92 × 10−9 2.08 × 10−8

d-u 5.76 × 10−8 2.15 × 10−9 5.97 × 10−8

d-uþ e:m: 9.70 × 10−8 8.63 × 10−9 1.06 × 10−7

7Here we take the same expressions given in Appendix C by
replacing the mass mη → mη0 and the values for the relevant
effective couplings.
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In this work we have evaluated for the first time the
photon-loop contributions to this second-class decay, using
a phenomenological resonance dominance model with the
lowest-lying vector and scalar resonances and keeping
isospin breaking at leading order. We find that those photon
contributions can be as large as 13% for the π−η channel
(78% for the π−η0 channel) of the total contribution for the
input parameters used in this paper. Thus, future measure-
ments of the branching fraction of the π−η channel within a
∼10% error would require the inclusion of the photon-loop
contributions calculated in this paper in order to draw
meaningful conclusions on possible NP contributions.
Our calculation can be improved by including improved

determinations of the scalar and excited resonances and
of the isospin π − η − η0 mixing parameters. Currently,
however, the lack of reliable information on some of the
relevant couplings needed for loop calculations prevents us
to include them in our calculations.
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APPENDIX A: CALCULATION OF THE FORM
FACTORS Fe:m:

� INDUCED BY A PHOTON-LOOP

In this Appendix we relate the form factors that
describe the hadronic matrix elements of τ−ðpτÞ →
π−ðpπÞηðpηÞντðpνÞ decay. As it will be shown below,
the amplitudes induced by photon loops can be written
in a factorized form similar to Eq. (2.1). We find it
convenient to introduce first a simpler parametrization of
the hadronic matrix element as follows

He:m:
μ ¼ −

ffiffiffi
2

p
fFe:m:þ ðs; uÞq0μ þ Fe:m:

− ðs; uÞqμg ðA1Þ

where q0 ¼ pη − pπ; q ¼ pη þ pπ . Given the contribution
of box diagrams, the form factors acquire a dependence
upon the variable u ¼ ðpτ − pπÞ2. This set of form factors
is related to the ones used in Eq. (2.2) by means of

Fe:m:
0 ¼ Fe:m:þ þ s

Δηπ
Fe:m:
− : ðA2Þ

In this appendix, we evaluate the form factors in the basis
provided by Eq. (A1) and then compute the scalar form
factor using Eq. (A2).

1. Contribution of diagrams (a), (e), and (g)

The amplitudes for these diagrams (i ¼ a, e, g) in Fig. 1
have the general form

MðiÞ ¼
GFVudffiffiffi

2
p CðiÞ

Z
ddk
ð2πÞd

lμν · h
μν
ðiÞ

DðiÞ
; ðA3Þ

where lμν ¼ ūðpνÞγμð1 − γ5Þ½ð=pτ þ =kÞ þmτ�γνuðpτÞ is
the leptonic tensor, and the OðαÞ coefficients Ci are the
product of coupling constants and resonance propagators
(see Appendix B). The hadronic tensors hμνðiÞ have the

following forms (see the definitions of the four-rank tensors
T and T̂ in Appendix B)

hμνðaÞ ¼ ϵμμ1μ2μ3ϵ
μ1ν

μ4μ5T
μ2μ4μ3μ5 ; ðA4Þ

hμνðeÞ ¼ ½k · ðqþ kÞgμν − kμðkþ qÞν�; ðA5Þ

hμνðgÞ ¼ ϵμμ1μ2μ3ϵ
μ1ν

μ4μ5 T̂
μ2μ4μ3μ5 : ðA6Þ

Using the Dirac equation and the Chisholm identity we
have the following identity.8

lμν ¼ lσ½2gμσðqþ pντÞν þ αμνλσkλ�; ðA7Þ

where αμνλσ ≡ gμλgνσ þ gλνgμσ − gμνgλσ þ iϵμνλσ . The inte-
gral in Eq. (A3) can be set as

Z
ddk
ð2πÞd

lμν · h
μν
ðiÞ

DðiÞ
¼ lσ

Z
ddk
ð2πÞd

hσðiÞ
DðiÞ

;

¼ lσ½fηπþðiÞq
0σ þ fηπ−ðiÞq

σ þ fντðiÞp
σ
ντ

þ ifϵðiÞϵμνλσq
0μqνpλ

ντ �: ðA8Þ

Notice that the third term in the above expression vanishes
owing to lσpσ

ντ ¼ 0. Moreover, the last term can be
rewritten as follows

ifϵðiÞl
σ · ϵμνλσq0μqνpλ

ντ ¼ fϵðiÞlσ½ðq0 · pνÞqσ − ðq · pνÞq0σ�:
ðA9Þ

Therefore, the contribution of diagrams (a), (e), and (g) in
Fig. 1 to the form factors Fe:m:

� ðs; uÞ are given by

Fe:m:
þðiÞ ¼ −

CðiÞ
16π2

ffiffiffi
2

p ½fηπþðiÞ þ fϵðiÞðq · pνÞ�;

Fe:m:
−ðiÞ ¼ −

CðiÞ
16π2

ffiffiffi
2

p ½fηπ−ðiÞ − fϵðiÞðq0 · pνÞ�: ðA10Þ

2. Contribution of diagrams (b), (c), (d), (f)

As it can be seen from a direct inspection, the amplitudes
for diagrams in Figs. 1(b, c, d, f) can be factorized as in
Eq. (2.1). The hadronic matrix elements He:m:

ðiÞμ , in this case,

8The Chisholm identity used here reads γμγλγνð1 − γ5Þ ¼
αμνλσγ

σð1 − γ5Þ.
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are proportional to the loop integrals in Eq. (3.8), namely
(for i ¼ b, c, d, f)

Z
ddk
ð2πÞd

hμðiÞ
DðiÞ

¼ fηπþðiÞq
0μ þ fηπ−ðiÞq

μ; ðA11Þ

where the factors fηπ�ðiÞ are given in terms of Passarino-

Veltman functions (see below). Then it is immediate to
identify that

Fe:m:
�ðiÞ ¼ −

CðiÞ
16π2

ffiffiffi
2

p fηπ�ðiÞ: ðA12Þ

APPENDIX B: ONE LOOP AMPLITUDES

In this appendix, we report the expressions of the factors
hðiÞ,DðiÞ, and CðiÞ in Eq. (3.8) that appear in the amplitudes
for the different diagrams in Fig. 1. First, the hadronic hμðiÞ
term in the integrand of Eq. (3.8) are given as follows

hμðaÞ ¼ ½2gμμ1ðqþ pνÞμ2 þ αμ1μ2μ3μkμ3 �ϵμ1μ4μ5μ6ϵμ4μ2μ7μ8Tμ5μ7μ6μ8 ; ðB1Þ

hμðbÞ ¼ 2ϵμμ1μ2μ3ϵμ1μ4μ5μ6qμ2

�
k −

qþ q0

2

�
μ3

�
q − q0

2

�
μ4
�
qþ q0

2

�
μ5
kμ6 ; ðB2Þ

hμðcÞ ¼
�
gμμ1 −

qμqμ1
m2

ρ

�
1þ imρΓρðsÞ

s

��
Γμ1μ3μ2ð0Þϵμ3μ4μ5μ6ϵμ4μ2μ7μ8Tμ5μ7μ6μ8 ; ðB3Þ

hμðdÞ ¼ ½ðk:qÞgμμ2 − kμqμ2 �ðkþ q − q0Þμ2 ; ðB4Þ

hμðeÞ ¼ ½2gμμ1ðqþ pνÞμ2 þ αμ1μ2μ3μkμ3 �½k:ðqþ kÞgμ1μ2 − kμ1ðqþ kÞμ2 �; ðB5Þ

hμðfÞ ¼
�
gμμ1 −

qμqμ1
m2

ρ

�
1þ imρΓρðsÞ

s

��
Γμ1μ3μ2ð0Þϵμ3μ4μ5μ6ϵμ4μ2μ7μ8 T̂μ5μ7μ6μ8 ; ðB6Þ

hμðgÞ ¼ ½2gμμ1ðqþ pνÞμ2 þ αμ1μ2μ3μkμ3 �ϵμ1μ4μ5μ6ϵμ4μ2μ7μ8 T̂μ5μ7μ6μ8 ; ðB7Þ

where we have defined the four-rank tensors

Tμ5μ7μ6μ8 ¼
�
q − q0

2

�
μ5
�
qþ q0

2

�
μ7
�
kþ qþ q0

2

�
μ6
kμ8 ðB8Þ

T̂μ5μ7μ6μ8 ¼
�
qþ q0

2

�
μ5
�
q − q0

2

�
μ7
�
kþ q − q0

2

�
μ6
kμ8 : ðB9Þ

The denominators that appear in the integrand of Eq. (3.8) are the following

DðaÞ ¼ k2Gðkþ qþ pν; mτÞGðkþ q;mρÞG
�
kþ qþ q0

2
; mω

�
; ðB10Þ

DðbÞ ¼ k2Gðk;mρÞG
�
kþ q − q0

2
; mπ

�
G

�
k −

qþ q0

2
; mω

�
; ðB11Þ

DðcÞ ¼ k2Gðk;mρÞGðkþ q;mρÞG
�
kþ qþ q0

2
; mω

�
; ðB12Þ

DðdÞ ¼ k2Gðk;mρÞGðkþ q;ma0ÞG
�
kþ q − q0

2
; mπ

�
; ðB13Þ

DðeÞ ¼ k2Gðk;mωÞGðqþ k;mρÞGðkþ qþ pν; mτÞ; ðB14Þ

DðfÞ ¼ k2Gðk;mρÞGðkþ q;mρÞG
�
kþ q − q0

2
; mρ

�
; ðB15Þ

DðgÞ ¼ k2Gðkþ qþ pν; mτÞGðkþ q;mρÞG
�
kþ q − q0

2
; mρ

�
; ðB16Þ
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where Gðk;mÞ≡ k2 −m2. Finally, the CðiÞ coefficients in
Eq. (3.8) are of Oðe2Þ as expected and are given by

CðaÞ ¼ −efρgρωπgωγη; ðB17Þ

CðbÞ ¼
m2

ρefρgρωπgωγη
s −m2

ρ þ imρΓρðsÞ
; ðB18Þ

CðcÞ ¼ −CðbÞ; ðB19Þ

CðdÞ ¼ −
m2

ρefρgρa0γga0ηπ
s −m2

ρ þ imρΓρðsÞ
; ðB20Þ

CðeÞ ¼ −
m2

ωefρgρa0γga0ηπ
s −m2

a0 þ ima0Γa0ðsÞ
; ðB21Þ

CðfÞ ¼ −
m2

ρefρgρρηgργπ
s −m2

ρ þ imρΓρðsÞ
; ðB22Þ

CðgÞ ¼ −efρgρρηgργπ; ðB23Þ

where fρ is defined one line below Eq. (3.4).

APPENDIX C: LOOP FUNCTIONS

We have used Package-X [51] to express our results. The
definition and decomposition of the Passarino-Veltman
functions reported here can be found in Appendix A of
reference [39]. Our results are reported as follows
Diagram (a):

fηπþðaÞ ¼ −
1

4
½sð5D001 þ 8D00Þ þ ðΔ2

ηπ − ξsÞðD112 þD113 þD122 þ 2D123 þD12

þD133 þD13Þ − 3ξD001 þ χð4D00 − ξðD113 þ 2D123 þ 2D133 þD13Þ
þ χð2D23 −D133 −D33ÞÞ − χ0ð4D00 − 4D003 þ χð2D23 þD33ÞÞ þ χ02D133

þ Δηπð2D001 þ 4D002 þ 4D003 þ χ0ðD113 þ 2ðD123 þD133Þ þD13ÞÞ
þ ðΔηπχ − χ0sÞð2D12 −D113 −D13 þ 2D2 þ 2D22 þ 3D23 þD33Þ�; ðC1Þ

fηπ−ðaÞ ¼ −
1

4
½ð3s − 5ξÞðD001 þ 2ðD002 þD003ÞÞ þ ðΔ2

ηπ − ξsÞðD112 þD113 þ 3D122

þ 6D123 þD12 þ 3D133 þD13 þ 2ðD222 þ 3D223 þD22 þ 3D233 þ 2ðD23 þD33ÞÞÞ
− χð4D003 − 4D00 þ χðD133 þ 2ðD233 þD33ÞÞÞ − 2ΔηπðD001 þ 4D00Þ þ χ0ð−4D00 þ χðD33 − 2D23ÞÞ
þ ðχ0Δηπ − χξÞðD113 þ 4D123 þ 2D12 þ 4D133 þD13 þ 4D223 þ 2D22 þ 8D233 þ 5D23 þ 2D2 þ 7D33Þ
þ ðsχ0 − ΔηπχÞðD113 þ 2D123 þ 2D133 þD13 þ 2D23 þ 2D33Þ þ χ02ðD133 þ 2ðD233 þD23Þ þ 3D33Þ�; ðC2Þ

fϵðaÞ ¼ −
−1
8

½24D003 þ sð4D133 þD13 þ 4D223 þ 8D233 þ 2D23 þ 6D33Þ
þ 2Δηπð2D133 þD13 þD23 þD33Þ þ 4ðsþ ΔηπÞD123 þ ξD13

þ ðsþ 2Δηπ þ ξÞD113 þ 2χð2D133 þ 4D233 þ 5D33Þ þ 2χ0ð2D133 þD33Þ�: ðC3Þ

Diagram (b):

fηπþðbÞ ¼ −2m2
ρsD̃00; ðC4Þ

fηπ−ðbÞ ¼ 2mρΔηπD̃00: ðC5Þ

Diagram (c):

fþðcÞ ¼
m2

ρ

2
½ðξs − Δ2ÞðD̂12 þ D̂122 þ D̂112Þ − 2ðΔþ 3sÞD̂00 − 4ΔD̂002 þ ð−2Δþ 3ξ − 5sÞD̂001�; ðC6Þ
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f−ðcÞ ¼
1

2
½ðm2

ρð6Δþ 5ξ − 3sÞ þ αð2Δ2 þ 3s2 − 5ξsÞÞD̂00 þ 2ðm2
ρð5ξ − 3sÞ

þ αð2Δ2 þ 3s2 − 5ξsÞÞD̂002 þ ðm2
ρð2Δþ 5ξ − 3sÞ þ αð2Δ2 − 3Δξþ 3s2 þ 3Δs − 5ξsÞÞD̂001

þ ðm2
ρ − αsÞðξs − Δ2Þð3D̂22 þ 2D̂222 þ D̂2Þ þ ðξs − Δ2Þðð2m2

ρ − αðΔþ 2sÞÞD̂12

þ ð3m2
ρ − αðΔþ 3sÞÞD̂122 þ ðm2

ρ − αðΔþ sÞÞD̂112Þ�: ðC7Þ

Diagram (d):

fηπþðdÞ ¼ m2
ρsD1ðs;m2

η; m2
π; 0;m2

π; s; 0; ma0 ; mπ; mρÞ;
f−ðdÞ ¼ −m2

ρΔηπD1ðs;m2
η; m2

π; 0;m2
π; s; 0; ma0 ; mπ; mρÞ: ðC8Þ

Diagram (e):

fþðeÞ ¼ 0;

f−ðeÞ ¼ m2
ω½−3m2

τD̄222 − ð2m2
τ þ sÞðD̄22 − 3D̄12 − 3D̄122Þ − ðm2

τ þ 2sÞ
× ðD̄11 − 3D̄112Þ − 3sD̄111 − 18ðD̄002 þ D̄001Þ þ ðs −m2

τÞD̄1�: ðC9Þ
Diagram (f):

fηπþðfÞ ¼ −fηπþðcÞðmπ ↔ mη; mω → mρÞ;
fηπ−ðfÞ ¼ fηπ−ðcÞðmπ ↔ mη; mω → mρÞ: ðC10Þ

Diagram (g):

fηπþðgÞ ¼ −fηπþðaÞðmπ ↔ mη; mω → mρ; u → tÞ;
fηπ−ðgÞ ¼ fηπ−ðaÞðmπ ↔ mη; mω → mρ; u → tÞ;
fϵ−ðgÞ ¼ −fϵ−ðaÞðmπ ↔ mη; mω → mρ; u → tÞ: ðC11Þ

In the above expressions we have defined t≡ ðpτ − pηÞ2 ¼ m2
η þm2

π þm2
τ − s − u, ξ≡ ðq0Þ2 ¼ 2ðm2

η þm2
π − sÞ,

χ ≡ pν · q ¼ ðm2
τ − sÞ=2, χ0 ≡ pν · q0 ¼ ð2m2

π þm2
τ − s − 2uÞ=2 and α≡ 1þ imρΓρ=s. Moreover, we use the following

notation to define the arguments of the Passarino-Veltman functions

Di ≡Diðm2
η; m2

π; 0; m2
τ ; s; u; 0; mω; mρ; mτÞ; ðC12Þ

D̃i ≡ D̃iðm2
π; s; m2

η; 0;m2
η; m2

π; 0; mπ; mω; mρÞ; ðC13Þ
D̂i ≡ D̂iðm2

η; m2
π; s; 0; s;m2

η; 0; mω; mρ; mρÞ; ðC14Þ
D̄i ≡ D̄iðs; 0; m2

τ ;m2
τ ; s; 0; mρ; mτ; mωÞ: ðC15Þ
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