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The quantum nature of neutrino oscillations would be reflected in the mismatch between the neutrino
survival probabilities with and without an intermediate observation. We propose this quantum mismatch as
a measure of quantumness in neutrino oscillations. For two neutrino flavors, it inevitably performs better
than the Leggett-Garg measure. For three flavors, we devise modified definitions of these two measures,
which would be applicable for experiments that measure neutrino survival probabilities with negligible
matter effects. The modified definitions can be used to probe deviations from expected classical behavior,
even for systems with an unknown number of states. For neutrino experiments like DUNE, MINOS, and
JUNO, we identify the energies where these modified measures can probe quantumness efficiently.
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I. INTRODUCTION

Tests of quantum mechanics (QM) provide insights into
the limits of local realism, which aligns with the classical
world view that all properties of physical objects have
values that exist independently of their measurements. For
example, the Bell’s inequality [1] tests for violations of
the classical upper bound on correlations between mea-
surements made on spatially separated systems. Violations
of this upper bound [2,3] clearly indicate the need for QM,
as they would be incompatible with the hypothesis of
hidden variables [4,5].
The Leggett-Garg (LG) measure [6,7] provides another

test of “quantumness” (more precisely, nonclassicality) of a
system through the correlations between its measurements
at different times. The Leggett-Garg inequality (LGI) tests
for the interference in QM, as opposed to entanglement,
which is tested by the Bell’s inequality. The simplest LG
measure K3 employs the observation of the system at an
intermediate time.
In the phenomenon of neutrino oscillations, neutrinos

change their flavor (νe, νμ, ντ) during propagation due to
the interference between different mass eigenstates [8,9].
This is a unique system where QM manifests itself over
hundreds and thousands of kilometers, which makes it a
prime candidate for tests of QM [10–25]. Violations of LGI

have been measured at neutrino oscillation experiments at
MINOS [26] and Daya-Bay [27]. New physics effects on
the LG measure have been discussed in [28,29].
Note that the LGI, as proposed in [6], tests for the

validity of the classical assumptions of macroscopic real-
ism and noninvasive measurements. However, in neutrino
oscillation experiments, the criteria of noninvasive mea-
surements cannot be fulfilled, as the measurement of the
flavor state destroys that particular neutrino. Neutrino
oscillation experiments looking for violation of LGI test
for thevalidityof the classical assumptions of (i)macroscopic
realism, (ii) time translation invariance, (iii) Markovian
dynamics, and (iv) the ability to produce a given state [7].
The latter three assumptions together are often simply termed
as “stationarity”. In this work, for the LG measure as well
as the quantum mismatch measure (to be introduced
below), nonclassicality implies a violation of the combined
assumption of macroscopic realism and stationarity.
A difference between observations with and without an

intermediate measurement would be a natural measure
of quantumness [30,31]. In this work, we introduce the
“quantum mismatch” measure, δP, for ascertaining the
quantum nature of neutrino oscillations. It is simply defined
as the difference between neutrino survival probabilities
with and without an intermediate measurement. Here,
we use measurements at different energies as proxies for
measurements at different times, which ensures that the
“intermediate” measurement is noninvasive.
In real-world neutrino experiments, it is not possible to

detect all neutrino flavors. This necessitates modification of
the measures K3 and δP in the full three-flavor scenario.
We identify the energies where the two modified measures

K̃3 and fδP would be efficient in experiments.
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The flow of the paper is as follows. In Sec. II we pro-
vide the definitions of the LG measure and the quantum
mismatch measure for neutrinos. In Sec. III we express
these two quantum measures in terms of quantum ampli-
tudes in the two-flavor limit. In Sec. IV we discuss how the
values of the quantum measures can be determined from
neutrino oscillation experiments, and compare them in the
two-flavor limit. In Sec. V, we extend the formalism to
more than two flavors and devise modified measures
that are applicable in practical scenarios. In Sec. VI, we
calculate the values of these modified measures for specific
neutrino oscillation experiments and identify the energies
where they can probe quantumness efficiently. We con-
clude with a brief discussion and overview in Sec. VII.

II. FORMALISM AND DEFINITIONS

In Fig. 1, we schematically represent the states of a
system with and without an intermediate measurement. At
time t0 ¼ 0, the whole system is in the νμ state (denoted by
A). Over time, the neutrino flavor can either survive as νμ or
change to νx. The state of the system can be measured at
later times t1 and t2. We denote the relevant quantum
amplitudes,

AAX ≡Aμμð0; t1Þ ¼ a1; AAY ≡Axμð0; t1Þ ¼ b1;

AXB ≡Aμμðt1; t2Þ ¼ a2; AYB ≡Aμxðt1; t2Þ ¼ b2; ð1Þ

where Aβαðti; tjÞ denotes the quantum amplitude for
ναðtiÞ → νβðtjÞ. The corresponding oscillation probabilities
are given by Pαβðti; tjÞ≡ jAβαðti; tjÞj2. Note that conser-
vation of probability implies jaij2 þ jbij2 ¼ 1.
In the classical limit, the muon neutrino survival prob-

ability PAB ≡ Pμμð0; t2Þ would be

PAB ¼ PAXPXB þ PAYPYB ¼ ja1a2j2 þ jb1b2j2: ð2Þ

In QM, in the absence of any intermediate observation, we
add the amplitudes over all possible paths, obtaining

PAB ≡ jAABj2 ¼ ja1a2 þ b1b2j2: ð3Þ

The simplest LG measure K3 is defined through a
dichotomic observable QðtiÞ, which can only have out-
comes�1. We defineQðtiÞ ¼ þ1 if the detected state is νμ,
and QðtiÞ ¼ −1 for any other state νx. The correlation
function is defined as

Cij ≡ hQðtiÞQðtjÞi: ð4Þ

The LG measure K3 is then

K3 ≡ C01 þ C12 − C02; ð5Þ

where the suffixes (0, 1, 2) correspond to the times
(0, t1, t2). In the classical scenario, −3 ≤ K3 ≤ 1 [6,7],
i.e., the LGI K3 ≤ 1 is satisfied. Any observation K3 > 1
would indicate the quantum nature of the system.
For the muon-neutrino survival probability, the quantum

mismatch parameter δP is

δPμμ ¼ PAB −
X

I¼X;Y;…

PAIPIB; ð6Þ

where I denotes the possible intermediate neutrino flavor
states (X;Y;…) at t1. In the classical scenario, the equality
δPμμ ¼ 0 holds. Any observation δPμμ ≠ 0 would indicate
the quantum nature of the system.

III. TWO-FLAVOR LIMIT

In the limit of two neutrino flavors (2ν limit), conserva-
tion of probability implies Pxμ ¼ Pμx. The correlation
function Cij then becomes

Cð2νÞ
ij ¼ 2Pμμðti; tjÞ − 1: ð7Þ

The LG measure K3 can be calculated as

Kð2νÞ
3 ¼ 2ðPAX þ PXB − PABÞ − 1

¼ 1 − 4jb1j2jb2j2 − 4Re½b⋆1 b⋆2 a1a2�: ð8Þ

Clearly, the quantity responsible for a possible violation of
the classical bound (K3 ≤ 1) is the interference term

I ð2νÞ ≡ Re½b⋆1 b⋆2 a1a2�: ð9Þ

The quantum mismatch measure δP in the 2ν limit is

δPð2νÞ
μμ ¼ PAB − ðPAXPXB þ PAYPYBÞ ¼ 2I ð2νÞ; ð10Þ

which is the same interference term. However, while

Kð2νÞ
3 > 1 is needed to indicate quantumness, δPð2νÞ

μμ ≠ 0

is enough to do the same. Note that Kð2νÞ
3 > 1 necessitates

FIG. 1. Schematic representation of the states starting with νμ at
t0 ¼ 0 without [left] and with [right] intermediate measurements.
Only two neutrino flavors, νμ and νx, are assumed.
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I ð2νÞ < −jb1j2jb2j2, whereas for all I ð2νÞ ≠ 0, we obtain

δPð2νÞ
μμ ≠ 0. Therefore, the δP measure always succeeds in

indicating quantumness whenever the LG measure does. A
similar 2ν condition, focusing on the conversion channel, is
obtained in [32] using the no-signaling-in-time argument.

IV. TWO-FLAVOR QUANTUM MEASURES AT
NEUTRINO OSCILLATION EXPERIMENTS

The quantum measures discussed above need measure-
ments of the system corresponding to three different time
intervals Δt10 ≡ t1 − t0, Δt21 ≡ t2 − t1, and Δt20 ≡ t2 − t0.
In a fixed-baseline neutrino experiment, measurements at
multiple time intervals are not possible. However, this
obstacle may be overcome through the following procedure.
One of the major characteristics of our procedure is that

we do not use the particular form of the Δt=E dependence
of the neutrino oscillation probabilities, which arises from
quantum mechanical arguments. We use only the special
theory of relativity, which naturally leads to a dependence
on the ratio Δt=E. The knowledge of the exact form of this
dependence is not needed for our procedure to work. This
will enable us to probe deviations from classicality using
fixed-baseline experiments.
Consider the evolution of a particle with mass m during

time interval Δτ in its rest frame. If this particle has an
energy E in the lab frame, the same evolution will be
observed for a time interval Δt ¼ ðΔτ=mÞE, by the special
theory of relativity. Thus, the evolution of a neutrino in the
lab frame depends only on the ratio Δt=E.

For neutrino oscillations, this dependence onΔt=E holds
in vacuum, or as long as matter effects [33,34] are
negligible. In this limit, the measurements of neutrinos
with the same energy at different times may be replaced by
measurements of neutrinos of different energies at the same
time intervals. That is, for some energy E0 and time interval
Δt0, if we find E10, E20, and E21 such that

�
Δt10
E0

;
Δt21
E0

;
Δt20
E0

�
¼

�
Δt0
E10

;
Δt0
E21

;
Δt0
E20

�
; ð11Þ

then the measurements at energies E10, E21, and E20 can act
as proxies for measurements with time intervals Δt10, Δt21,
and Δt20, respectively. Here, Δt0 should be taken as the
duration of neutrino propagation from the source to the
detector. Since the three time intervals are related to each
other as

Δt10 þ Δt21 ¼ Δt20; ð12Þ

the proxy energies need to satisfy the relation

1=E10 þ 1=E21 ¼ 1=E20: ð13Þ

In principle, for every value of E0, one has a different triplet
(E10, E21, E20), using which the quantum measures may be
defined.Usingmeasurements at different energiesmakes this
an effectively noninvasive measurement, which does not
disrupt the system in any way.

FIG. 2. Top Panel: the quantum measures K3 and δPμμ in the two-flavor limit, in the ðΔ20;Δ10Þ plane. We have taken the mixing angle
θ ¼ 45°. The upper-left solid gray triangles are unphysical regions. The black and white regions obey the classical limit. Colored regions
correspond to K3 > 1 and δPμμ ≠ 0, indicating quantumness. Bottom Panel: ranges of K3 and δPμμ as functions of Δ20, for all possible
Δ10. The dark gray (light green) regions obey (violate) classical limits.
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The neutrino survival probability in vacuum in the 2ν
limit is

Pμμðti; tjÞ ¼ 1 − sin2ð2θÞsin2Δ; ð14Þ

where θ is the mixing angle. The oscillation phase, as a
function of energy, is

ΔðEÞ ¼ 1.27 × ðΔm2 in eV2Þ × ðL in kmÞ
ðE inGeVÞ ; ð15Þ

where Δm2 is the mass-squared difference between the two
neutrinos, and L ¼ cðtj − tiÞ. Note that the dependence on
the ratio Δt=E is explicitly present above.
The top panels of Fig. 2 show the values of the quantum

measures K3 and δPμμ in the 2ν limit, in the ðΔ20;Δ10Þ
plane where Δij ≡ ΔðEijÞ. Since Δ20 corresponds to the
largest time interval, we needΔ20 > Δ10, making the upper-
left triangles in the contour plots unphysical. The figure
shows that the classical bound ofK3 ≤ 1wouldbeviolated in
certain colored ‘islands’ in the parameter space, whereas the
classical value of δPμμ ¼ 0wouldbeviolated formuch larger
regions of possible ðΔ20;Δ10Þ choices.
The bottom panels of Fig. 2 further illustrate that in the

2ν limit, the quantum mismatch measure δP would be a
more efficient probe of nonclassicality.

V. DEFINING THE THREE-FLAVOR
QUANTUM MEASURES

The above discussion implicitly assumes that there are
only two neutrino flavors. However, as neutrinos come in
three flavors ð3νÞ, these measures will have to be modified
accordingly.
Since a dichotomic observable QðtiÞ is needed for the

LG measure, we shall assign QðtiÞ ¼ −1 for all nonmuon
neutrinos, i.e., νe and ντ, as depicted in Fig. 3.
If we had the ability to detect all three neutrino flavors,

i.e., if independent measurements of neutrino flavor states
X, Y, and Z were possible, the correlation functionsC01 and
C02 would take the same form as before,

Cð3νÞ
01 ¼ 2PAX − 1; Cð3νÞ

02 ¼ 2PAB − 1: ð16Þ

The correlation function C12, however, would be

Cð3νÞ
12 ¼PAXðPXB−PXD−PXFÞ

−
X
I¼Y;Z

PAIðPIB−PID−PIFÞ

¼ 1þ2ðPAXPXB−PAYPYB−PAZPZBÞ−2PAX: ð17Þ

The LG measure K3 can then be calculated using Eq. (5).
In QM, in the absence of any intermediate observation,

PAB ¼ ja1a2 þ b1b2 þ c1c2j2: ð18Þ

The value of K3 would then be

Kð3νÞ
3 ¼ 1 − 4jb1j2jb2j2 − 4jc1j2jc2j2 − 4I ð3νÞ; ð19Þ

where we have defined the 3ν-interference term as

I ð3νÞ ≡ Re½a⋆1 a⋆2 b1b2� þ Re½b⋆1 b⋆2 c1c2� þ Re½c⋆1 c⋆2 a1a2�:
ð20Þ

Clearly, in the absence of the interference terms, the

classical bound of Kð3νÞ
3 ≤ 1 will be always satisfied.

For experiments where all neutrino flavors cannot be
detected, Kð3νÞ

3 as defined above cannot be measured.
However, a modified LG measure, observable at all experi-
ments which can measure the muon-neutrino survival
probability Pμμ, can be defined as

K̃3 ¼ C̃01 þ C̃12 − C̃02; ð21Þ

where C̃ij is defined as

C̃ij ¼ 2Pμμðti; tjÞ − 1: ð22Þ

This modified definition of LG measure makes it directly
applicable for those long-baseline neutrino experiments
where matter effects are negligible for Pμμ. We get

K̃3 ¼ 2ðPAX þ PXB − PABÞ − 1

¼ 1 − 4jb1j2jb2j2 − 4jc1j2jc2j2
− 2jb1j2jc2j2 − 2jb2j2jc1j2 − 4I ð3νÞ: ð23Þ

The 3ν-interference term allows the violation of the
classical bound K̃3 ≤ 1, albeit for a smaller region of

parameter space compared to Kð3νÞ
3 . Thus, K̃3 is a practical

LG measure in the three-flavor system of neutrinos. It is
indeed the one implicitly being used in [26,27].
Similarly, if we had the ability to detect all three neutrino

flavors, the quantum mismatch measure would be
FIG. 3. Schematic representation of the states of the system
with three neutrino flavors, starting with νμ at t0 ¼ 0.
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δPð3νÞ
μμ ≡ PAB − ðPAXPXB þ PAYPYB þ PAZPZBÞ

¼ 2I ð3νÞ: ð24Þ

Though this measure precisely extracts the interference
term that causes violations of classical bounds, it cannot be
calculated for real-world experiments. For experiments
which only observe Pμμ, we define the modified quantum
mismatch measure

fδPμμ ≡ PAB − ðPAXPXB þ ð1 − PAXÞð1 − PXBÞÞ
¼ 2I ð3νÞ − ðjb1j2jc2j2 þ jb2j2jc1j2Þ; ð25Þ

where we have used PXB þ PYB þ PZB ¼ 1, which is true
due to probability conservation. In the classical limit, i.e., in
absence of the 3ν-interference term, fδPμμ ≤ 0. Therefore,fδPμμ > 0 is a clear indicator of quantumness.
Note that the modified measure fδPμμ has a classical

upper bound as opposed to the δPð3νÞ
μμ which would have

had a fixed value of zero in the classical limit. This may
make fδPμμ appear to be a less-efficient counterpart of the

two-flavor quantum mismatch measure. However, fδPμμ is a
practical measure that can be determined at real-world
experiments. Moreover, it can be used to probe quantum-
ness for any n-state system, even when the number of states
n is not known.

VI. QUANTUM MEASURES AT NEUTRINO
OSCILLATION EXPERIMENTS

Although the phenomenon of neutrino oscillation is
inherently quantum, the observability of quantumness
depends on the quantum measure employed as well as
the parameters of the experiment. Here, we identify the
energies at which the quantum nature would be observable
through K̃3 and fδP at neutrino oscillation experiments.
Note that the procedure outlined in Secs. IVand V, which

uses only special relativity and not the explicit quantum
mechanical form neutrino oscillation probabilities, is strictly
valid only invacuum.While implementing this procedure for
long-baseline experiments, we shall use the survival channel
probability Pμμ which is not sensitive to matter effects on
neutrino oscillations.1

Note however, that the matter effects themselves are also
quantum in nature and would not appear in the classical
calculations. Therefore, deviations from the classical pre-
dictions due to matter effects would also be a sign of a
nonclassical phenomenon taking place.
In Fig. 4, we show the values of the modified quantum

measures K̃3 and fδP in terms of the energies ðE20; E10Þ.
The value of E21 can be obtained from Eq. (13). Since

1.1

1.2

1.3

1.4

0.1

0.2

0.3

0.4

FIG. 4. The modified quantum measures K̃3 [top] and fδP [bottom] at DUNE [left], MINOS [middle], and JUNO [right] in the
ðE20; E10Þ plane. The quasi-triangular regions enclosed by the green boundaries indicate the parameter regions where the experiment has
nonzero flux at E10, E20, and E21 [see Eq. (13)]. The solid gray regions outside these green boundaries do not give an allowed E21 value.
The quasitriangular regions enclosed by dashed/solid black boundaries denote energies where the flux is higher. The black and white
regions obey the classical limit. Colored regions correspond to K̃3 > 1 and fδP > 0, indicating quantumness. Neutrino parameters are
given in Eq. (26). The spotted features for JUNO are due to the coexistence of atmospheric and solar neutrino oscillations.

1For example, the difference between the survival probabilities
(Pμμ) at DUNE with and without matter effects is less than 0.006
at any energy.
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E20 < E10, and since all three energies must lie within the
energy range of the experiment, the solid gray regions in
lower-right corners of all panels are not relevant.
For the purpose of illustration, we choose the experiments

DUNEandMINOSwhichmeasurePμμ ≡ Pðνμ → νμÞ. This
is valid because Pμμ does not have any leading-order matter
contributions [35].We further analyze themodified quantum
measures through Pē ē ≡ Pðν̄e → ν̄eÞ for the reactor anti-
neutrino experiment JUNO, where matter effects are negli-
gible. We take neutrino mixing parameter values consistent
with the global fits [36–39],

Δm2
21¼ 7.5×10−5 eV2; Δm2

31¼ 2.5×10−3 eV2;

θ13¼ 8.5°; θ23¼ 45°; θ12¼ 33.5°; δCP¼−90°: ð26Þ

We observe that for DUNE [40], especially in the region
where we expect the maximum neutrino flux, the measurefδP is much better-suited for probing quantumness than K̃3.
The results obtained for T2K/T2HK [41,42] are also quite
similar to this.
For MINOS [43], the modified LG measure K̃3 is more

efficient. Note that the probe of quantum nature of neutrino
oscillations at MINOS [26] implicitly uses this modified
measure. We also perform the exercise for NOvA [44], and
find that neither of the measures would be efficient in
probing the quantum nature of neutrino oscillations at this
experiment.
For JUNO [45], fδP is a better measure in the energy

range with higher flux. The energy resolution of the
detector will play a crucial role in determining the observ-
ability of quantumness. Note that the fine pattern seen in
the JUNO plots is a result of the interference between
oscillations due to Δm2

21 and Δm2
31.

VII. CONCLUDING REMARKS

Tests of violations of classicality—codified by the
combined assumptions of (i) macroscopic realism, (ii) time
translation invariance, (iii) Markovian dynamics, and
(iv) the ability to produce a given state—are instrumental
in probing the fundamental nature of physical systems. In
this work, we introduce the quantum mismatch measure δP
for detecting quantumness in neutrino oscillations. In the
two-flavor limit, this measure precisely extracts the quan-
tum interference term.
We extend the definitions of the quantum mismatch

measure δP and the Leggett-Garg measure K3 to the full
three-flavor scenario. In the absence of experiments which
can detect all three neutrino flavors separately, we provide
modified practical definitions of both the measures, fδP and
K̃3, that employ only the neutrino survival probabilities. In
fact, the modified definitions enable us to also probe
systems with an unknown number of states. We further
identify the energies for which the quantum measures can
efficiently probe deviations from classicality, at neutrino
experiments like DUNE, MINOS, and JUNO.
The new quantum mismatch measure fδP is thus a robust,

practical and efficient measure, which would further
advance the quest of probing quantumness at macroscopic
length scales.
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