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In a recent paper [Phys. Rev. D 100, 024019 (2019)] the authors calculated the bending angle of light in
Schwarzschild-de Sitter (SdS) spacetime and also in the static and spherically symmetric vacuum solution
of Weyl’s conformal gravity, which is sometimes referred to as the Mannheim-Kazanas (MK) spacetime.
To do this they used the standard Weinberg analysis which is normally used to calculate the bending angle
of light in asymptotically flat spacetimes, but limited the integration to the position of the cosmological
horizon in these spacetimes. In this paper we make some comments about the bending angle formulas
obtained in these spacetimes. We point out that in the case of the MK spacetime this would still lead to an
unphysical term in their formula for the deflection angle, which also occurred in previous light bending
formulas for this spacetime based on similar analysis.
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I. INTRODUCTION

The subject of bending of light in nonasymptotically
flat spacetimes, particularly the effect of the background
spacetime on the bending angle has garnered a lot of
interest in the last decade. This mainly started with the issue
of whether the cosmological constant Λ contributes to the
bending of light in the Schwarzschild-de Sitter spacetime.
The fact that Λ drops out of the null geodesic equations
leads one to believe [1,2] that it should not contribute to the
deflection of light (apart from the dependence of the
angular diameter distances on Λ in the gravitational lensing
equation), but this was disproved for the first time by
Rindler and Ishak [3,4] who utilized a different method for
calculating the bending angle to show that this also contains
a contribution from Λ. This was followed by a mixed flurry
of studies [5–12] against and in favor of Rindler and Ishak’s
proposal and whether Λ contributes to lensing. This debate
seems to have settled down with the general consensus
being that the cosmological constant plays a role in
gravitational lensing, but its effect is too small to be
noticeable and can be ignored for practical purposes given
that it will always be smaller in magnitude when compared
with other lensing affects like aberration and uncertainties
in cosmological distances [13,14]. Another spacetime that
drew considerable interest as regards to light bending is the
static and spherically symmetric vacuum solution to con-
formal Weyl gravity which is more commonly know as the
Mannheim-Kazanas (MK) solution [15,16]. This solution
which contains a linear potential term γr in its lapse
function, has first been derived by Riegert [17] was later

shown to predict flat rotation curves of galaxies without
the need to assume the presence of the yet elusive dark
matter [18–22], although recent studies [23] have criticized
this claim. When calculating the deflection of light in this
spacetime, Edery and Paranjape [24] (see also [25,26])
showed that the linear term γr in the metric gives rise to a
negative contribution to the bending angle that increases
linearly with the impact parameter, rendering the spacetime
unphysical. Moreover this contribution required that the
constant γ should have the opposite sign used for the
prediction of flat galactic rotation curves. It turned out that
this paradoxical result arises from the fact that when using
the standard formula for bending of light given by
Weinberg, the authors incorrectly assumed that the MK
spacetime is asymptotically flat. So applying Rindler and
Ishak’s method to calculate the bending angle it was later
shown [27,28] that the contribution of linear term in the
MK metric is inversely proportional to the impact param-
eter and is practically insignificant for lensing purposes
considering the small magnitude of constant γ obtained
from the fitting of galactic rotational curves. However, the
issue of the bending of light in the Weyl gravity is far from
settled and recently this has been revisited several times
in the literature [29–38], and so far remains inconclusive.
The main disagreements arise from the different order of
approximations used to derive the bending angle formula,
the association of different combinations of parameters
in the MK-metric with the physical mass of the lens, and
the use of various alternative geometric techniques for
calculating the bending angle in nonasymptotically flat
spacetimes. In a recent paper Kaşikçi and Deliduman [33]
obtained the angle of deflection of light in the MK-
spacetime from first principles using Weinberg’s analysis
but limiting the integration to the position of the*joseph.sultana@um.edu.mt
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cosmological event horizon in this spacetime. In the next
section we make a few comments about this result.

II. LIGHT BENDING IN WEYL GRAVITY

The static and spherically symmetric vacuum solution in
conformal Weyl gravity describing the geometry outside a
spherical body is given, up to a conformal factor, by the
metric [15,17]

ds2 ¼ −BðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where

BðrÞ ¼ 1 −
βð2 − 3βγÞ

r
− 3βγ þ γr −

Λ
3
r2; ð2Þ

and β, γ, and Λ are integration constants. Special cases of
this solution include the Schwarzschild metric (γ ¼ Λ ¼ 0)
and the Schwarzschild-de Sitter (γ ¼ 0) metric; the latter
requiring the presence of a cosmological constant in
general relativity. The constant γ, whose magnitude and
nature remain uncertain, has dimensions of acceleration,
and so the solution provides a characteristic, constant
Rindler-like acceleration without the need to introduce
one at the Lagrangian (such as in the relativistic imple-
mentation of MOND with TeVeS [39]). The fitting of
galactic rotational curves suggests [15] that γ ≃ 1=RH,
where RH is the Hubble length, so that the effects of this
acceleration are comparable to those due to the Newtonian
potential term (with βγ ≪ 1) 2β=r≡ rs=r (rs is the
Schwarzschild radius), on length scales given by

rs=r2 ≃ γ ≃ 1=RH or r ≃ ðrsRHÞ1=2: ð3Þ

For example in the case of a galaxy of mass M ≃ 1011M⊙
with rs ≃ 1016 cm and RH ≃ 1028 cm, this scale is r∼
1022 cm, i.e., roughly the size of the galaxy. Moreover
Eq. (3) does not describe a particular length scale but a
continuum of sizes at which the contribution from the
linear term becomes significant, so that objects along this
sequence do not include only galaxies but, at larger scales
also galaxy clusters and at lower scales globular clusters,
which were also found to require the presence of dark
matter in order to account for the observed dynamics [40].
The MK solution can also be expressed in the form

BðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6mγ
p

−
2m
r

þ γr −
Λ
3
r2; ð4Þ

by using the reparametrization β ¼ 1−
ffiffiffiffiffiffiffiffiffiffi

1−6γm
p
3γ . The null

geodesic equation for the metric in Eq. (1) is given by [41]

du
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R2
− BðuÞu2

r

; ð5Þ

where u≡ 1=r and R≡ L=E is the impact parameter; E
and L being the constants of motion representing the total
energy and angular momentum, respectively. In an asymp-
totically flat spacetime, in which the observer is assumed to
be located at infinity (r ¼ ∞; u ¼ 0) the coordinate angle
difference to the point of closest approach r ¼ r0 (or
u ¼ u0) where

du
dϕ ju¼u0 ¼ 0 is given by

Δϕ ¼ ϕðu0Þ − ϕð0Þ ¼
Z

0

u0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R2 − BðuÞu2

q ; ð6Þ

such that if we assume that the source is also located at
infinity, the total bending angle will be

Δϕ ¼ 2jϕðu0Þ − ϕð0Þj − π: ð7Þ

Since the metric in Eq. (1) is not asymptotically flat the
authors in Ref. [33] extended the integration in (6) to the
position of the cosmological event horizon r ¼ rh (or
u ¼ uh) instead of u ¼ 0. This position is obtained by
finding the largest root of BðrÞ ¼ 0. The distance of closest
approach r ¼ r0 (or u ¼ u0) is obtained by finding the
largest root of dr=dϕ ¼ 0 (or equivalently du=dϕ ¼ 0).
Doing this, the authors used an asymptotic expansion of
the elliptic integral of the first kind in (6) to obtain the
following approximate expression for the bending angle of
light for the MK spacetime:

Δϕ ¼ m0

�

4 − 2

ffiffiffiffiffiffi

Λ0

3

r

− 2
Λ0

3

�

− 2

ffiffiffiffiffiffi

Λ0

3

r

þ γ0

ffiffiffiffiffiffi

Λ0

3

r

þm2
0

�

15π

4
− 4 − 3

ffiffiffiffiffiffi

Λ0

3

r

− 2
Λ0

3

�

þm0γ0

�

2þ Λ0

3

�

þm2
0γ0

�

15π

4
− 4 −

3

2

ffiffiffiffiffiffi

Λ0

3

r

�

þ � � � ; ð8Þ

where the dimensionless parameters are defined by m0 ¼
m=r0, γ0 ¼ γr0, and Λ0 ¼ Λr20. In the case of the
Schwarzschild-de Sitter metric, where γ ¼ 0 such that
BðrÞ ¼ 1–2m=r − Λr2=3, the above expression for the
bending angle written in terms of the parameters m and
Λ and the distance of closest approach r0 (where
1=r0 ∼ 1=Rþm=R2) reduces to

Δϕ ¼ −2
ffiffiffiffi

Λ
3

r

r0 þ
m
r0

�

4 − 2

ffiffiffiffi

Λ
3

r

r0 − 2
Λ
3
r20

�

þm2

r20

�

15

4
π − 4

�

−
m2

r20

�

3

ffiffiffiffi

Λ
3

r

r0 þ 2
Λ
3
r20

�

þ � � � :

ð9Þ
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This can be compared with the corresponding formula for
the bending angle obtained by Rindler and Ishak in Ref. [4]
which is expressed in terms of the impact parameter R
instead of the distance of closest approach r0, namely

Δϕ ¼ 4m
R

þ 15π

4

m2

R2
þ 305

12

m3

R3
−
ΛR3

6m
: ð10Þ

The first term in both expressions is the Schwarzschild
contribution, representing the majority of the bending, and
apart from the difference between R and r0 this takes the
same form in both cases as expected. The first order
contribution from the cosmological constant in both cases
is negative implying that Λ diminishes the bending (see
also Refs. [8,42]). However this term is different in the two
cases, and again this is expected considering the different
methods used to calculate the bending angle. As already
mentioned above, Kaşikçi and Deliduman based their
calculation on Weinberg’s method given by Eq. (6) by
restricting the upper limit of integration to the position of
the cosmological event horizon which in the case of the SdS
spacetime is given by uh ¼ 1=rh ∼

ffiffiffiffiffiffiffiffiffi

Λ=3
p

. On the other
hand Rindler and Ishak’s calculation is based on the
computation of the local angle ψ between the photon orbit
direction d and the radial direction δ (ϕ ¼ constant) as
shown in Fig. 1, such that

tanψ ¼ BðrÞ1=2r
jAðr;ϕÞj ; ð11Þ

where BðrÞ is the metric coefficient in Eq. (2) with γ ¼ 0

and Aðr;ϕÞ ¼ dr
dϕ. At any point along the trajectory the one

sided bending angle is ϵ ¼ ψ − ϕ. In their calculation
Rindler and Ishak assumed that the observer, lens and
source are collinear such that the total one-sided bending
angle is obtained when ϕ ¼ 0 which occurs at rϕ¼0 ¼
R2=2m such that ϵ ¼ ψ0. Then twice ψ0 gives the total
bending angle given in Eq. (10). In their analysis Rindler
and Ishak assumed that the null trajectory intersects the
optic axis (the line through the coaligned source, lens
and observer) at ϕ ¼ 0 within the cosmological horizon

i.e., R2=2m <
ffiffiffiffiffiffiffiffiffi

Λ=3
p

, otherwise it would connect causally
unconnected regions of spacetime. In fact, this was the
reason why Kaşikçi and Deliduman assumed that the entire
deflection of the null trajectory is achieved within the
cosmological horizon.
Considering the relatively small magnitude of the cos-

mological constant, one would expect that the effects of the
first-order terms in Λ in Eqs. (9) and (10) are much smaller
than the first-order Schwarzschild contribution Δϕsch ∼
4m=R such that the presence of the cosmological terms in
the bending angle formula do not effectively contribute to
gravitational lensing in a practical way [13,14]. However
obtaining the value of these cosmological contributions for
galaxies or cluster of galaxies (as was done in Table 1 of
Ref. [4]), one finds that this is not the case. So for example
if we take the case of the galaxy cluster Abell 2744 [43,44]
(see Table 1 in Ref. [4]) with Einstein radius RE ¼
96.4 Kpc, m ¼ 1.07 × 1013M⊙h−1, and cosmological con-
stantΛ¼1.1056×10−52m−2 (obtained usingH0 ¼ 67.66�
0.42 kms−1=Mpc, ΩΛ ¼ 0.6889� 0.0056 [45]), we find
that

4m
R

¼ 5.510 × 10−5;
15π

4

m2

R2
¼ 2.235 × 10−9;

ΛR3

6m
¼ 1.184 × 10−5; 2

ffiffiffiffi

Λ
3

r

r0 ¼ 3.612 × 10−5: ð12Þ

From the above numerical values it can be seen that the
first-order contributions from the cosmological constant to
the bending angle in Eqs. (9) and (10) are greater than the
second order term m2=R2 and are indeed of the same order
of magnitude as Δϕsch. This in no way contradicts the
conclusions reached in Refs. [13,14] about the insignificant
contribution from the cosmological constant in practical
gravitational lensing, considering that the SdS solution is
not a realistic model of a gravitational lens embedded in a
cosmological background. In a later paper Ishak et al. [4]
applied the same method that was used earlier to derive (9)
to obtain an improved formula for the light bending angle
for the case of a SdS vacuole matched to a Friedmann-
Robertson-Walker (FRW) background, where the source
and observer are assumed to be inside the SdS vacuole such
that the deflection of the light trajectory happens entirely
within the vacuole. In this case it was also assumed that the
source, lens and observer are coaligned and the derived
bending angle is given by

Δϕ ¼ 4m
R

þ 15π

4

m2

R2
þ 305

12

m3

R3
−
ΛRrb
3

; ð13Þ

where now the contribution from the cosmological term
is expressed in terms of the radial coordinate rb at the
boundary of the vacuole. This is obtained by applying the
appropriate matching conditions at r ¼ rb which yield

FIG. 1. The plane graph showing the deflected light trajectory
with the one-sided bending angle given by ϵ ¼ ψ − ϕ (adapted
from [3]).
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rbðSdSÞ ¼ aðtÞrbðFRWÞ ð14Þ

and

mSdS ¼
4π

3
r3bðSdSÞρm; ð15Þ

where aðtÞ is the scale factor in the FRW metric, and ρm is
the density of the universe at the moment when light passes
by the lens which is located at the centre of the SdS
vacuole. From these equations one notes that although the
size of the hole rbðFRWÞ is constant in comoving coordi-
nates, the physical size of the hole rbðSdSÞ increases in static
coordinates due to the expansion of the universe. So now
for the Abell 2744 galaxy cluster mentioned above
ΛRrb=3 ¼ 1.603 × 10−8, which is still larger than the
second order term m2=R2, but it’s now significantly smaller
than the Schwarzschild term Δϕsch. In a way this result is
expected considering that the effect of the cosmological
background on the bending of light depends on the position
of the source and observer with respect to the lens. So for
this particular example one finds that the three coordinate
radii satisfy the inequality rb < rϕ¼0 < rh. Therefore
although the exact de-Sitter spacetime, being conformally
flat does not contribute to bending of null trajectories, the
SdS being asymptotically conformally flat would still cause
a deflection of light even far away from the lens itself. One
should also mention the fact that the SdS vacuole matched
to FRW spacetime considered by Ishak et al. [4] is still far
from being a realistic model of gravitational lensing in a
cosmological background. In a recent paper Hu et al. [14]
(see also Ref. [13]) improved this model by assuming that
the source and observer are within the FRW background
and are therefore comoving with the expansion of the
universe. They have also considered the effect of the
change in the size of the SdS vacuole as light propagates
through it. They found that in this case the contribution
from the cosmological constant is even smaller than that
obtained by Ishak et al. [4] and can be almost entirely
attributed to the Λ dependence of the angular diameter
distances used in the lensing equation Δϕ ¼ DSθE=DLS,
where DS;DLS are the angular diameter distances of the
source from the observer and the source from the lens
respectively and θE is the Einstein angle related to the
Einstein radius by R ¼ θEDL; DL being the angular
diameter distance of the lens from the observer.
Turning back to the MK spacetime given by (2) or (4)

one can easily check that unlike the SdS vacuole embedded
in an FRW background, this spacetime provides a smooth
transition from a Schwarzschild-like metric near its source
to a general FRW metric in the background, and so it may
provide a more realistic example of a lens in a cosmological
background. So for large r when the β terms in (2) can be
ignored, the resulting spacetime is conformally related to
the FRW metric having an arbitrary scale factor aðtÞ and

spatial curvature κ ¼ −Λ=3 − γ2=4. This can be seen by
applying the coordinate transformation [15]

ρ ¼ 4r

2ð1þ γr − Λr2
3
Þ1=2 þ γrþ 2

and τ ¼
Z

aðtÞdt;

ð16Þ
such that the line element in (1) with β ¼ 0 reduces to

ds2 ¼ 1

a2ðτÞ
½1− ρ2ðγ2=16þΛ=12Þ�2
½ð1− γρ=4Þ2þΛρ2=12�2

×

�

−dτ2þ a2ðτÞ
½1− ρ2ðγ2=16þΛ=12Þ�2 ðdρ

2þ ρ2dΩÞ
�

:

ð17Þ
So choosing the static coordinates in (1), one is again
faced with the same issue mentioned above for SdS
spacetime about the position of the source and observer
with respect to the lensing object, considering that the final
result will depend on these positions. In Ref. [27] the
Rindler-Ishak method is used to obtain the bending angle
for the MK-metric given in (2) assuming a coaligned
source, lens and observer and using the formula in (11)
evaluated at ϕ ¼ 0 corresponding to the position
rϕ¼0 ¼ 2R2=ð2βð2 − 3βγÞ − γR2Þ, which in terms of the
parameter m introduced in (4) can be written as rϕ¼0 ¼
2R2=ð4m − R2γÞ. The resulting bending angle to first order
in γ and Λ is given by

Δϕ ¼ 4β

R
−
2β2γ

R
−
ΛR3

6β
: ð18Þ

The first and last term in the above formula correspond
to the Schwarzschild and cosmological contributions,
similar to those in the SdS spacetime as given in (10).
The contribution to the bending angle from the linear term
in the metric is inversely proportional to the impact
parameter and has a negative sign just like the cosmological
term, meaning that it suppresses the amount of bending.
Considering that the parameter γ is related to the
gravitational source [see Eq. (18) in Ref. [46] and also
Refs. [20–22] ], it has been argued [30] that this term
should be positive so that it enhances the bending angle, in
the same way that it provides an explanation to the flat
galactic rotational curves in the absence of dark matter.
This issue has been settled [47,48] when it was shown
that the sign of the linear term in the metric can be reversed
by a simple gauge transformation, thus leading to a
positive contribution from γ in the bending angle formula.
Considering the asymptotic form of the MK spacetime
given in (17) in which the spatial curvature of the FRW
background depends on γ one can also state that the γr term
in the metric has an effect on the cosmological background
even when β ¼ 0 (or m ¼ 0). So in a way the presence of
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the linear term in the MK solution facilitates the embedding
of gravitational source in a cosmological background. The
derivation of the bending angle in the MK spacetime using
Rindler and Ishak’s method obtained elsewhere (see for
example Refs. [28,30,31]) resulted in slightly different
formulas for the bending angle, with the main difference
arising from the order of the approximations taken, the
association of different parameters (m vs β) with the
geometric mass of the lens and the different points in
the calculations where higher powers of m=R; β=R, γ, and
Λ are discarded. However in all these formulas the first-
order contribution from γ to the bending angle is always
inversely proportional to the impact parameter R, meaning
that just like the Einstein contribution 4m=R, it diminishes
with distance from the lens, which is expected if γ is really
associated with the gravitational lens itself. In the bending
angle formula obtained by Kaşikçi and Deliduman [33]
given by (8) the first-order (and main) contribution from γ
is given by the term γ0

ffiffiffiffiffiffiffiffiffiffiffi

Λ0=3
p ¼ γr20

ffiffiffiffiffiffiffiffiffi

Λ=3
p

and therefore it
increases with the distance of closest approach r0 (which is
related to the impact parameter R). This is similar but
smaller in magnitude than the contribution −γr0 obtained
by Edery and Paranjape [see Eq. (21) in Ref. [24] ] which
has been termed as unphysical considering that increases
linearly with the closest approach distance r0 from the lens.

Although both Edery and Paranjape’s and Kaşikçi and
Deliduman’s derivations are based on Weinberg’s method,
the latter derivation takes into consideration the asymptotic
nonflatness of the MK spacetime and limits the integration
(and so the deflection of the null trajectory) to the position
of the cosmological event horizon r ¼ rh in this spacetime,
while in the former case the integration is extended to
infinity, thereby yielding a larger contribution. However,
one can easily check that the leading contribution from
γ in (8) is significantly higher than that in (18). So, if we
again take the example of Abell 2744 and the value
γ∼1=RH¼10−26m−1, we obtain γr20

ffiffiffiffiffiffiffiffiffi

Λ=3
p ¼5.37×10−10

and 2β2γ=R ¼ 1.128 × 10−14. Still these are both insig-
nificant for practical gravitational lensing when compared
to the Einstein bending angle. It’s also interesting to note
that in (8) the leading γ contribution to the bending angle is
coupled to the cosmological constant instead of the geo-
metric mass of the lens as in (18) and in the other similar
formulas obtained in Refs. [28,30,31]). This would lead us
to rethink the exact nature of the linear term in the MK
metric, i.e., whether this term is derived from the gravi-
tational source as previously claimed or whether it is
associated to the asymptotic region of the spacetime.
This is still an open issue.
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