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An analysis is given of the local phase space of gravity coupled to matter to second order in perturbation
theory. Working in local regions with boundaries at finite distance, we identify matter, Coulomb, and
additional boundary modes. The boundary modes take the role of reference frames for both diffeo-
morphisms and internal Lorentz rotations. Passing to the quantum level, we identify the constraints that link
the bulk and boundary modes. The constraints take the form of a multifingered Schrödinger equation,
which determines the relational evolution of the quantum states in the bulk with respect to the quantum
reference fields for the local gravitational symmetries at the boundary. Taking the boundary to infinity, we
obtain quantum reference frames for asymptotic symmetries.
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I. INTRODUCTION

To the best of our knowledge, all matter obeys quantum
mechanical laws. The equivalence principle speaks of
another such universality of nature. Gravity interacts with
all matter in the same universal way. In the linearized
regime with small perturbations around Minkowski space,
the equivalence principle is a consequence of local gauge
invariance and global momentum conservation [1].
Besides the particles of the standard model, there is
now the graviton propagating over a fixed background.
From this perspective, gravity behaves just like another
form of matter. Thus, it should have a quantum description
as well. The conceptually simplest approach towards such
a quantum theory of gravity is to keep the background
fixed and treat the perturbations as a quantum field on
Minkowski space. There are two major problems with this
viewpoint. The first problem is technical—the resulting
theory is perturbatively nonrenormalizable, that is, it fails
at high frequencies with respect to the fixed classical
background. The second problem is conceptual. The
perturbative quantization leaves the background fixed,
treating it as a classical arena on which the quantum
fields evolve. From the perspective of the full nonlinear

Einstein equations, this seems highly problematic. The
split gab ¼ ηab þ 2fab of the curved spacetime metric gab
into a classical background ηab, which has no quantum
properties at all, and a perturbation fab is completely
arbitrary. If quantum theory is truly universal, it will apply
to the gravitational field as a whole. The background
would have quantum properties as well. While this
possibility has been largely ignored in the perturbative
approaches, it is the basic raison d’etre of nonperturbative
approaches to quantum gravity.
In this article, we present a novel solution for this second

and more conceptual problem within the perturbative
regime. The key novelty is that we take into account the
quantum properties of the background metric and encode
them into a particular form of quantum reference frame at
the boundary of spacetime. In this way, our approach sits
halfway between perturbative gravity and nonperturbative
approaches. Moreover, it connects two converging areas of
research: the area of boundary modes, which studies the
state space of gauge theories in bounded regions of
spacetime, e.g. [2–14], and the field of quantum reference
frames, which has regained much interest in recent years in
the quantum foundations community, e.g., [15–22].
The basic idea is motivated by the following observation.

For any flat signature ð−þþþÞ metric ηab on a four-
dimensional spacetime manifold M ≃R4 there always
exist coordinate fields1 fXμ ¼ ðcT; X; Y; ZÞg that bring
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1That is, differentiable and invertible maps Xμ∶ M → R4,
whose inverse is also differentiable.
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the metric into the standard diagonal Minkowskian form:

ηab ¼ ημν∂aXμ
∂bXν

¼ −c2∂aT∂bT þ ∂aX∂bX þ ∂aY∂bY þ ∂aZ∂bZ: ð1Þ

Since the metric is flat, we can refer to the four scalar
fields Xμ as inertial frames of reference. More concretely,
Eq. (1) can be read in twoways. If we know ηab, wewill also
know Xμ modulo global symmetries (translations, boosts,
and rotations). If, on the other hand, we take the fields Xμ as
given, Eq. (1) defines a flat reference metric ηab with respect
to which the reference frame fXμg is inertial. Thus, the
metric ηab and the inertial reference fields fXμg contain the
same information. Combining the universality of quantum
theory with the observation that all reference frames are,
ultimately, instantiated by material objects, it is then natural
to consider the possibility that the reference frames them-
selves have a quantum description. This is the idea under-
lying the research on quantum reference frames. By the
above argument, the resulting quantum coordinates define a
flat Minkowskian quantum geometry η̂ab ¼ ημν∂aX̂

μ
∂bX̂

ν.
Finding a quantum description of the background geometry
and understanding quantum inertial frames are thus two
sides of the same coin.
From a general relativistic point of view, it seems odd at

first to place the focus on coordinates. After all, the
observables of the theory are coordinate invariant. General
nonlinear coordinate transformations are mere gauge
symmetries, mathematical redundancies that do not affect
physical predictions. However, this is no longer true when
we take into account the boundary conditions [23]. When
we consider finite subsystems, or spacetimes with asymp-
totic or inner boundaries such as a black hole horizon, we
need to impose boundary conditions to obtain definite
predictions. Only those diffeomorphisms that preserve the
then-fixed boundary conditions remain gauge transforma-
tions. The residual diffeomorphisms that change the
boundary conditions turn into actual symmetries, trans-
forming one physical state into an inequivalent configura-
tion. Gauge symmetries are thus broken at the boundary that
separates the system from its environment. At the boundary,
the coordinate fields Xμ regain physical meaning and the
value of physical observables will depend on them. As a
result, we obtain additional boundary degrees of freedom.
Since these boundary modes are fields intrinsic to a
codimension-two surface bounding a partial Cauchy surface,
they are often referred to as edge modes. Classically, these
edge modes can be interpreted as reference frames for the
symmetry groups of the theory [12–14]—an interpretation
that extends to the quantum level, where, as we will show,
the edge modes manifest themselves as a type of quantum
reference frame. The connection between the background
metric, edge modes, and quantum reference frames, which is
established in our work, is depicted in Fig. 1.

To access all possible gravitational boundary modes, we
consider a compact region of space on an initial hypersur-
face. While there is a large and growing literature character-
izing the phase space of such regions in general relativity
and the emergence of additional reference degrees of
freedom at the boundary [2–14,24] most of the analysis
is performed within the full nonperturbative framework. For
the present work, on the other hand, we utilize perturbative
methods. This viewpoint has two main advantages. First of
all, we obtain a clear physical interpretation of the bulk and
boundary modes. Second, we can take the analysis to the
quantum level without going into the mathematical diffi-
culties of the nonperturbative approaches. Starting at the
classical level, we consider the perturbative expansion of the
presymplectic two-form with respect to the gravitational
coupling constant, which is

ffiffiffiffiffiffiffiffiffi
8πG

p
. To understand the

effects of matter in a physically transparent model, we
consider N point particles contained within the region.
Upon expanding the metric to second order in the pertur-
bation, the presymplectic two-form splits into contributions
from particles, gravitational waves, Coulomb fields sourced
by both the particles and the gravitational waves themselves,
as well as additional reference fields at the boundary. The
reference frames take the form of coordinate fields and local
SOð1; 3Þ transformations at the boundary, which provide a
reference frame for internal boosts and rotations of the
tetrads. The conjugate variables find their interpretation as
boundary currents for energy, momentum, and spin. At the
quantum level, our analysis has three important implica-
tions. First of all, the partition of the phase space into matter,
radiative, and boundary modes, together with the resulting

FIG. 1. Basic themes of this paper. We consider linearized
quantum gravity in finite regions (local quantum geometry). At
the boundary, we obtain additional edge modes that carry a
representation of the boundary symmetry group (left corner).
Going to an asymptotic region, we recover asymptotic Bondi-
Metzner-Sachs symmetries. In the absence of radiation, the
boundary modes take the form of inertial coordinate frames,
which give rise to a notion of Minkowskian quantum background
geometry (upper corner). Finally, the boundary modes serve as
quantum reference frames for the relational evolution in the bulk
(right corner).
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Poisson commutation relations, informs us about the basic
constituents of the algebra of observables at the quantum
level. We will argue, in particular, that in any quantum
theory of gravity the boundary modes must admit a
quantum description as well, which leads immediately
to the notion of quantum reference frames. Second, as we
will see below, the field equations place constraints on
the relation between the bulk and boundary modes. The
then-necessary constraints are a remnant of the Wheeler–
DeWitt equation of the full nonperturbative theory and
describe the relational evolution of the wave function with
respect to the reference fields at the boundary. Finally, we
take the limit to an asymptotic boundary and show how
unitary representations between different asymptotic refer-
ence frames will carry a quantum representation of the
group of asymptotic Bondi-Metzner-Sachs (BMS) trans-
formations [25–28] at spatial infinity. Our results go
beyond the existing framework for quantum reference
frames, because they provide an extension to pointwise
transformations at the boundary and thereby establish the
connection to asymptotic symmetries, which are infinite
dimensional. At every point of the boundary, there sits a
physical frame of reference for Poincaré translations,
boosts, and rotations. Since any full theory of quantum
gravity should agree at least at low energies with the
linearized theory, the insights gained from our analysis are
expected to hold across different approaches.
As for the remainder of this article, we will start by

explaining in Sec. II the emergence of boundary modes in
gauge theory and gravity using the example of electromag-
netism. Section III contains the main technical part of the
paper. We review the perturbative expansion of the Einstein
equations in the tetrad formulation before applying our
analysis to linearized gravity in a bounded region. Readers
that are not interested in the technical derivation may skip
the first part of Sec. III and start with the summary at the end
of Sec. III B. After discussing the physical characterization
of the bulk degrees of freedom—matter and radiation—we
turn to the boundary modes in Sec. IV.We close our analysis
by summarizing and comparing our results to previous
works and provide a short outlook in Sec. V.

II. BOUNDARIES BREAK GAUGE SYMMETRIES

In the following, we choose a finite domain D ⊂ Σ on a
Cauchy surface Σ and characterize its phase space. The
boundary C ¼ ∂D separates the inside of the domain from
the rest of the Cauchy surface. The presence of the boundary
breaks the gauge symmetries. This is true both for the usual
Yang-Mills type of gauge theories with internal symmetry
groups, but it is also true for generally covariant theories,
such as general relativity. In either case, new edge modes are
excited at the boundary [2,29,30]. In quantum theory, edge
modes provide a neat tool to characterize the quantum
entanglement of physical states across a codimension-two
surface. Therefore, such a boundary C ¼ ∂D is also often

referred to as an entangling surface. An intuitive and often-
cited way to understand the emergence of such boundary
modes is to consider Wilson loops in electromagnetism.
This will be the focus of this section. In Sec. III, we turn to
general relativity.
Consider thus a closed loop α∶ S1 → Σ on the initial

hypersurface. The Wilson loop observable

hα½A� ¼ e−iq
H
α
A; ð2Þ

is invariant under Uð1Þ gauge transformations that shift A
into A − dλ. This is no surprise because the gauge param-
eter λ is not among the physical degrees of freedom in the
bulk Σ. If, however, we restrict ourselves to a finite domain
D and assume (see Fig. 2) that the entangling surface C cuts
the loop α into two separate paths γ ⊂ D and γ̄ ⊂ Σ −D,
the restriction of the Wilson loop observable to the compact
domain D is no longer invariant under the Uð1Þ trans-
formations. Instead, we now find

hγ½A − dλ� ¼ hγ½A�eiq
P

p
εpλðpÞ; ð3Þ

where εp is the relative orientation between the loop α and
the entangling surface C at the puncture p∈ α ∩ C. In this
sense, the gauge parameter λ becomes physical at the
boundary once we introduce an entangling surface that
breaks the Wilson lines apart. The gauge parameter
becomes a boundary mode dual to the charge excited at
the puncture.
Another way to make the same observation is to consider

the classical phase space of a bounded region in the
covariant phase-space formalism [31]. While we point
the reader to [24,32,33] for pedagogical introductions, we
recall here the most important concepts and definitions that
we need for the remainder of this work. If we start from the
Lagrangian of the theory and introduce the phase space P
via a Legendre transformation, the entire construction
depends on a choice of time. This seems to be at odds
with general covariance. The covariant phase-space formal-
ism provides a way to reconcile the Hamiltonian description
with covariance. Phase space P is built from the infinite-
dimensional manifold of solutions to the field equations

FIG. 2. The entangling surface C cuts a Wilson line α into two
parts γ and γ̄, breaking gauge invariance, introducing boundary
modes at the puncture.
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equipped with a symplectic form Ω, which is a two-form on
the infinite-dimensional space. The two-form Ω provides a
mapping between vectors and one-forms on field space
(i.e., it can be used to lower indices). It does not, however,
define a positive-definite inner product because it is skew
symmetric and may have degenerate null (i.e., gauge)
directions. Given a Lagrangian L, the symplectic form
can be derived from the first variation of L. Consider a
theory of dynamical fieldsΦI on a d-dimensional manifold.
The variation of the Lagrangian is given by

δL ¼ EIδΦI þ dðϑðδÞÞ; ð4Þ

where EI ¼ 0 are the Euler-Lagrange equations of motion
and ϑ denotes the symplectic potential. Notice that ϑ is a
one-form on field space and a (d − 1)-form on spacetime.
It will be convenient to distinguish vector fields δ from
exterior derivatives d on field space. When they act on the
fundamental fields, the two are related via dΦIðδÞ ¼ δΦI .
From the symplectic potential, one then constructs the
symplectic current by taking the exterior derivative dϑ.
The symplectic two-form Ω derives from the latter through
Ω ¼ RΣ dϑ, where the integral is defined over a Cauchy
hypersurface Σ ⊂ M. Note that although the integral is
defined over a Cauchy hypersurface, it is independent of
which Cauchy hypersurface we choose, because ddϑ ¼
d2L ¼ 0 on shell. Thus, the choice of Σ does not break the
manifest covariance of the formalism. Finally, let us point
out one important caveat in the derivation of the sym-
plectic form given the Lagrangian: in the presence of
symmetries, Ω is not invertible. It is therefore more
correctly referred to as a pre-symplectic form. To obtain
an invertible symplectic form, one has to quotient out the
symmetries of the phase space [34]. We will, however,
simply work with the presymplectic form for the remain-
der of our discussion.
Returning to the example above, we are interested in the

symplectic structure of a bounded region in electrody-
namics. Considering the variation of the Lagrangian for
Maxwell theory, LED½A� ¼ − 1

2
ðF½A� ∧ ⋆F½A�Þ, where

F ¼ dA is the field strength and ⋆ is the Hodge dual,
one finds that

δLED½A� ¼ δA ∧ ðd⋆FÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
EδA

þ dðð⋆FÞ ∧ δAÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dϑðδÞ

: ð5Þ

To describe the phase-space structure of a bounded region,
we further restrict the integral of the presymplectic current
to a compact domain D. The resulting presymplectic two-
form is

ΩD ¼
Z
D
d½⋆F� ∧ dA: ð6Þ

Consider now an arbitrary gauge-fixing condition such that
we can write the vector potential A as the sum of a gauge-
fixed solution Agf, which captures all the physical degrees
of freedom in the bulk, and some arbitrary gauge trans-
formation λ. In other words,

A ¼ Agf − dλ: ð7Þ

Inserting this decomposition back into (6), and taking into
account the field equations d⋆F ¼ 0, we obtain

ΩD ¼
Z
D
d½⋆F� ∧ dAgf −

I
C
d½⋆F�dλ: ð8Þ

The first term describes the geometry of the gauge-
invariant phase space for the electromagnetic field in
the region D. The boundary term describes the geometry
of the edge modes. Its simple functional form tells us that
the gauge parameter λ is conjugate, in the phase-space
sense, to the electric field through the boundary.
The goal of the next two sections is to provide an in-

depth analysis of the gravitational case for linearized fields,
where the analog of the boundary modes λ will provide us
with a local Poincaré frame at the boundary.
There is, however, a fundamental difference between the

gravitational and the electromagnetic case. In electromag-
netism, we can consider situations where there are no
charged particles and the radiation field is confined to a
finite pulse of compact support, localized withinD. For any
such configuration, the boundary term in Eq. (8) clearly
vanishes. This is so because photons are charge neutral.
They do not act as a source for radiation themselves. The
gravitational case is fundamentally different. Gravitational
radiation carries gravitational charge (energy, momentum,
spin) and thus sources gravity as well. As soon as there is
gravitational radiation in D, it will also excite a surface
charge at the boundary C. As we will see below, this surface
charge survives as a finite contribution to the presymplectic
structure at the perturbative level.

III. MODES OF GRAVITY: RADIATIVE FIELDS,
COULOMBIC FIELDS, AND BOUNDARY MODES

A. Review: Perturbative expansion of the field
equations in the tetrad formalism

Let us now turn to the general relativistic case. Our
starting point is gravity in the first-order tetrad formalism.
The analysis could be done equally well in the metric
formalism. One important difference is that working with
tetrads, we obtain an additional gauge redundancy in the
bulk, namely internal SOð1; 3Þ frame rotations of the frame
field. This leads to additional reference fields for the Lorentz
group at the boundary. These would be absent in metric
gravity. In the context of this paper, the main advantage of
working with tetrads rather than the metric is that tetrads are
tailor-made to deal with how boundaries couple to the fields
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inside the manifold.2 In tetrad gravity, the geometry is
encoded into an orthonormal frame eα that determines the
metric tensor:

gab ¼ ηαβeαaeβb: ð9Þ

In addition, there is the spin connection Aα
β with corre-

sponding covariant exterior derivative ∇ ¼ dþ ½A; ·�. Here,
internal Lorentz indices α; β;… are raised and lowered with
the flat ð−þþþÞ Minkowski metric ηαβ; a; b; c;… are
abstract spacetime indices; and ½·; ·� is the Lie bracket for the
Lie algebra soð1; 3Þ. In this language, solving the Einstein
equations amounts to imposing the equations

�Fα
β ∧ eβ ¼ 8πGTα; ð10Þ

∇eα ¼ 0; ð11Þ

where Tα is the energy-momentum three-form of matter,
which is the Hodge dual of the usual stress energy tensor
Tab, i.e.,

Tα
abc ¼ −eαdTdfεfabc: ð12Þ

In addition, �Fα
β denotes the internal Hodge dual of the

soð1; 3Þ-valued curvature two-form, i.e., �Fαβ ¼ 1
2
ϵαβγδFγδ,

withFα
β ¼ dAα

β þ Aα
γ ∧ Aγ

β denoting the curvature of the
connection and ϵαβγδ is the Levi-Civita tensor with respect to
internal indices with conventions ϵ0123 ¼ 1. Furthermore,
εabcd ¼ ϵαβγδeαaeβbeγceδd is the usual Levi-Civita tensor in
spacetime indices.
In flat space, with vanishing energy-momentum tensor,

i.e., Tab ¼ 0, the general solution to the field equations is
simply given by

eα ¼ Λα
μdXμ; ð13Þ

Aα
β ¼ Λα

μdΛβ
μ; ð14Þ

where the coordinate functions Xμ∶ M → R4 determine
an inertial frame of reference on spacetime M and
Λα

μ∶ M → SOð1; 3Þ is a local Lorentz transformation.
In the following, we consider a perturbative expansion of
the field equations around suchMinkowskian solutions. We
are interested in a decoupling limit with weak interaction
and self-interaction among gravity and matter.
The perturbative expansion is written as a formal power

series with respect to the coupling constant l ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
,

which is the Planck length. We thus introduce a
perturbation

eα ¼ Λα
μðdXμ þ fμÞ; ð15Þ

Aα
β ¼ Λα

μdΛβ
μ þ Λα

μΔμ
νΛβ

μ; ð16Þ

and expand the remaining dynamical fields, i.e., the tetrad
perturbation fμ, the difference tensor Δμ

ν, and the energy-
momentum three-form Tμ into a formal power series with
respect to the coupling constant l. We thus write

fμ ¼
X∞
n¼1

lnðnÞfμ; ð17Þ

Δμ
ν ¼

X∞
n¼1

lnðnÞΔμ
ν; ð18Þ

Tμ ¼
X∞
n¼0

lnðnþ2ÞTμ: ð19Þ

Notice that the expansion of the energy-momentum three-
form starts out one order lower than the expansion for fμ

and Δμ
ν. This is so because at lowest order in the

expansion, the energy-momentum tensor is independent
of the metric perturbation.
It is then also useful to decompose the tensorial coef-

ficients that appear in this expansion, (17) and (18), in
terms of the zeroth order of the frame field, i.e., we write

ðnÞfμ ¼ ðnÞfμνðXÞdXν; ð20Þ
ðnÞΔμ

ν ¼ ðnÞΔμ
νρðXÞdXρ: ð21Þ

Here, all indices μ; ν; ρ;… are treated as internal, i.e.,
they are raised and lowered with the signature ð−þþþÞ
flat Minkowski metric ημν, e.g., ðnÞfμν ¼ ημρ

ðnÞfρν. Note
that at each order in the perturbation, any antisymmetric
part of ðnÞfμν can be reabsorbed back into a redefinition of
the local Lorentz transformation Λα

μ. Hence, we can
always assume without loss of generality

ðnÞf½μν� ¼ 0: ð22Þ

We are now ready to consider the perturbative expansion
of the field equations. At lowest order n ¼ 1, the field
equations are

�½dð1ÞΔ�μν ∧ dXν ¼ 0 ⇔ ∂ρ
ð1ÞΔρν

μ − ∂μ
ð1ÞΔρν

ρ ¼ 0; ð23Þ

dð1Þfμ þð1Þ Δμ
ν ∧ dXν ¼ 0 ⇔ ð1ÞΔμν ¼ −2∂½μð1Þfν�; ð24Þ

2Tetrads are differential forms. Given a differential form in the
bulk, there is a natural projection onto the boundary, namely the
pullback. The pullback requires only an embedding, not a metric.
Hence, it provides a more primitive way to introduce fields
intrinsic to the boundary no matter whether the boundary is
spacelike, timelike, or null.
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where the operator � only acts on internal indices, i.e.,
�½dð1ÞΔ�μν ¼ 1

2
εμνρσð∂λð1ÞΔρσ

τÞdXλ ∧ dXτ. At next to lead-
ing order n ¼ 2, the field equations are

�½dð2ÞΔ�μν ∧ dXν ¼ ð2ÞTμ þ ð2Þtμ; ð25Þ
dð2Þfμ þð2Þ Δμ

ν ∧ dXν ¼ ð2Þθμ; ð26Þ

where we introduced the effective energy-momentum
three-form and torsion two-form of the order n ¼ 1
perturbation, i.e.,

ð2Þtμ ¼− � ½dð1ÞΔ�μν ∧ ð1Þfν−
1

2
� ½ð1ÞΔ; ð1ÞΔ�μν ∧ dXν; ð27Þ

ð2Þθμ ¼−ð1ÞΔμ
ν ∧ ð1Þfν: ð28Þ

Here, ½·; ·� denotes the Lie bracket between soð1; 3Þ-valued
p-forms, e.g., ½Δ;Δ�μν ¼ 2Δμ

ρ ∧ Δρ
ν. The source terms on

the right-hand side of (25) and (26) are a consequence of
the self-interaction of gravity—perturbations of the gravi-
tational field at first order are themselves a source of gravity
at second order.
The linearized field equations of the coupled system can

now be solved in the usual way, see, e.g., [35] for a detailed
analysis with pointlike sources. Taking advantage of the
gauge freedom of the field equations,3 the general solution
of (23), (24) is a superposition of plane waves with
amplitudes a�ðk⃗Þ, polarization tensors mμmν, and four-
momentum kμ,

ð1Þfμν ¼
1

ð2πÞ32
Z

d3k

2jk⃗j
ðmμmνaþðk⃗ÞeikμXμ

þ m̄μm̄νa−ðk⃗ÞeikμXμ þ cc:Þ; ð29Þ

where, in terms of, e.g., stereographic coordinates ðz; z̄Þ on
the two-sphere in momentum space,

kμ ¼
 
jk⃗j
k⃗

!
¼ jk⃗j

1þ jzj2

0
BBBB@

1þ jzj2
zþ z̄

−iðz − z̄Þ
jzj2 − 1

1
CCCCA;

mμ ¼ 1ffiffiffi
2

p 1

1þ jzj2

0
BBBB@

0

1 − z2

ið1þ z2Þ
2z

1
CCCCA: ð30Þ

To solve the second-order equations (25) and (26) by the
method of Green’s functions, it is useful to split the
perturbation of the spin connection into two terms that
take values in soð1; 3Þ,

ð2ÞΔμ
ν ¼ ð2ÞΓμ

ν þð2Þ Cμ
ν: ð31Þ

Here, the first terms is defined as the solution of the
equation

dð2Þfμ þ ð2ÞΓμ
ν ∧ dXν ¼ 0; ð32Þ

which can be solved algebraically by

ð2ÞΓμ
ν ¼ −∂μð2Þfν þ ∂ν

ð2Þfμ: ð33Þ

In the same way, the components of ð2ÞCμ
ν ¼ð2Þ Cμ

νρdXρ

can be obtained algebraically by inverting (28). Writing
ð2Þθμ ¼ 1

2
ð2ÞθμνρdXν ∧ dXρ for component functions

ð2Þθμνρ ¼ −ð2Þθμρν, we obtain

ð2ÞCρμν ¼ −ð2Þθρμν þ ð2Þθμρν þ ð2Þθνρμ: ð34Þ

We thus have

�½dð2ÞΓ�μν ∧ dXν ¼ ð2ÞTμ þ ð2Þtμ − �½dð2ÞC�μν ∧ dXν ≡ ð2ÞTμ
eff :

ð35Þ

Given the standard Lorentz gauge conditions

∂ρ
ð2Þfρμ −

1

2
∂ν

ð2Þfρρ ¼ 0; ð36Þ

Eq. (35) amounts to the Einstein equations at second order
in the perturbation, i.e.,

□
ð2Þfμν ¼ −

�
ð2ÞTeff

μν −
1

2
ημν

ð2ÞTeffρ
ρ

�
;

ð2ÞTeff
μν ¼ 1

3!
ð2ÞTeff

μρστεν
ρστ; ð37Þ

where ð2ÞTeff
μρστ ¼ ð2ÞTeff

μ½ρστ� are the components of the
effective order n ¼ 2 energy-momentum three-form and
□ ¼ ∂μ∂

μ is the D’Alembertian. Assuming no incoming
radiation from past null infinity at order n ¼ 2, the
solution to (35) for the gauge conditions (36) is thus
given by

ð2ÞfμνðXÞ ¼
1

4π

Z
d4X0GRðX − X0Þ

×

�
ð2ÞTeff

μν ðX0Þ − 1

2
ημν

ð2ÞTeffρ
ρ ðX0Þ

�
; ð38Þ

3A gauge transformation of fμν can be always reabsorbed (order
by order in the coupling constant) into a shift of the coordinate
scalars Xμ and a redefinition of the Lorentz gauge transformation
Λα

μ. The perturbation (29) satisfies the usual transverse traceless
gauge conditions ∂μð1Þfμν ¼ 0 and ð1Þfμμ ¼ 0.
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where GRðXÞ ¼ δðX0 − jX⃗jÞ=jX⃗j is the retarded Green
function.

B. Perturbative expansion of the symplectic
structure in a finite region

We now turn to the perturbative expansion of
the presymplectic two-form. The gravitational sector is
governed by the Hilbert-Palatini action:

Sgrav½A; e� ¼
1

16πG

Z
M

�ðeα ∧ eβÞ ∧ Fαβ½A�: ð39Þ

To add explicit matter sources, we add the action for N
point particles minimally coupled to the gravitational field.
The resulting field equations are at best formal. The reason
is intuitively clear [36]. If we try to concentrate a given
mass into a point, we will eventually create a black hole
before reaching the point particle limit. A possibility to
circumvent this problem is to shrink down the body and
take at the same time the ultrarelativistic limit, where the
mass goes to zero, but the energy, with respect to some
preferred observer at infinity, is kept fixed. In this way one
can find exact distributional solutions to Einstein’s equa-
tions; see for instance [37,38]. In the following, we are
dealing with perturbative gravity, where we can safely
ignore this problem and work with distributional point
sources. We can then formally solve the Einstein equations
order by order in the coupling constant.
The action for the coupled system is the sum of the

gravitational action and the action for the N point particles.
The total action is thus given by

S½A; e; fγi; Ni; pigNi¼1�

¼ Sgrav½A; e� þ
XN
i¼1

Z
γi

�
pi
αeα −

Ni

2
ðpi

αpα
i −m2

i Þ
�
; ð40Þ

where pi
α is the four-momentum of the ith particle, γi

denotes its worldline in M, and Ni denotes a Lagrange
multiplier that imposes the mass shell condition with rest
mass mi. The resulting energy momentum three-form for
the matter Lagrangian is distributional and given by the
variation of (40) with respect to the tetrad. That is,

Tα
abc ¼

XN
i¼1

Z
γi

dτpα
i ðτÞδ̃ð4ÞγiðτÞε˜abcd

∂
d
τ ; ð41Þ

where δ̃ð4Þp is the four-dimensional Dirac delta distribution
peaked at p∈M (a scalar density of weight 1) and ε

˜
abcd is

the inverse Levi-Civita tensor density.

Next, we consider a perturbative expansion around the
flat Minkowskian solution given in Eqs. (13) and (14).
We write pα ¼ Λα

μpμ, letting indices α; β; γ;… refer to
the tetrad eα, while indices μ; ν;… from the second half of

the Greek alphabet refer to the flat background coordinates
fXμg. We expand the particle action in powers of the
coupling constant l ¼ ffiffiffiffiffiffiffiffiffi

8πG
p

and obtain

Z
γ

�
pαeα −

N
2
ðpαpα −m2Þ

�

¼
Z
R

�
pμdqμ þ lpμ

ð1ÞfμνðqÞdqν −
N
2
ðpμpμ þm2Þ

�
þOðl2Þ; ð42Þ

where qμðτÞ denotes the coordinates of the trajectory
γ∶τ∈R → M ∋ γðτÞ with respect to the coordinate frame
fXμg. If we want to solve the field equations order by order
in l, we would now also need to consider a perturbative
expansion of the particle trajectory qμðτÞ in powers of the
coupling constant, i.e., qμðτÞ ¼ ð0ÞqμðτÞ þ lð1ÞqμðτÞ þ � � �,
see for example [36], where such an approach is developed
in great detail to first order in l. In this paper, we are only
interested in the zeroth leading order of the symplectic
structure. The first contribution to the symplectic structure
from the particle trajectory is Oðl0Þ. Hence, it is not
required for the present purpose to consider higher-order
perturbations of the trajectories.
The first variation of the action gives the Einstein

equations with a distributional energy momentum tensor
(41) in the bulk plus a boundary term. The boundary term
determines the presymplectic current ϑ. Schematically, we
have

δ½S� ¼ EOMðδÞ þ
I
∂M

ϑðδÞ; ð43Þ

where the term EOMðδÞ, which is linear in the field
variation δ, vanishes provided the equations of motion
(10), (11) are satisfied. Given the total action (40) of the
coupled system, the presymplectic current ϑ is given by4

ϑabc ¼
3

16πG
ϵαβγδeα½aeβbdAγδ

c�

þ
XN
i¼1

Z
γi

dτδ̃ð4ÞγiðτÞ∂
d
τ ε
˜
dabcp

i
fq

f
i ; ð44Þ

where pi
a ¼ pi

αðτÞeαajγiðτÞ is the four-momentum of the ith
particle and

qa
i ¼

�
∂

∂Xμ

�
a

γiðτÞ
dqμi ðτÞ ð45Þ

4Notice that the first-order action (40) is linear in derivatives,
i.e., S ¼ R dtðPQ̇ − NμCμðP;QÞÞ such that it is immediate to
identify the symplectic potential ϑ ¼ PdQ and constraints
CμðP;QÞ ≈ 0.
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denotes the variation of its position, which defines a
TγiM-valued one-form on configuration space.
Our goal in this section is to establish a full characteri-

zation of the gravitational phase space in a compact
domain D in perturbative gravity. We choose the region
D large enough such that it contains all particles i ¼
1;…; N and such that the n ¼ 1 radiative modes ð1Þf have
compact support within D. This simplifying assumption is
illustrated in Fig. 3. Next, we integrate the presymplectic
potential ϑ along D and identify the contributions from
matter and radiation and the additional boundary modes.
Taking into account the torsionless condition (11) and the
expansion (15), (16) of the configuration variables around
the Minkowski solution, we can collect all variations of
Λα

μ into a boundary term:

ΘD ≔
Z
D
ϑ ¼

XN
i¼1

pi
μdq

μ
i þ

1

2l

Z
D
�ðdXμ ∧ dXνÞ ∧ dð1ÞΔμν

þ 1

2

Z
D
�ðdXμ ∧ dXνÞ ∧ dð2ÞΔμν

þ
Z
D
�ðdX½μ ∧ ð1Þfν�Þ ∧ dð1ÞΔμν

þ 1

2

I
∂D

SμνðdΛρ
μÞΛρν þOðl2Þ; ð46Þ

where Sμν is the soð1; 3Þ spin current at the boundary:

Sμν ≔
1

l2
φ�
∂D½�ðdX½μ ∧ dXν�Þþ2l2 �ðdX½μ ∧ ð2Þfν�Þ�: ð47Þ

The fact that the SOð1; 3Þ gauge element Λα
μ appears only

through a boundary term is a consequence of the SOð1; 3Þ
gauge invariance of the action.
Let us now simplify the expression (46) further. Our

initial assumption was that the free radiative data ð1Þfμ has
compact support within D. All boundary terms containing
ð1Þfμ will thus vanish. It is for this reason, in fact, that no
Oðl−1Þ term appears in the definition of the SOð1; 3Þ spin
current Sμν; see (47). For the same reason, the second
term in (46) also vanishes. Indeed, taking into account
½d;d� ¼ 0, and repeatedly using Stokes’s theorem, we find

1

2l

Z
D
�ðdXμ ∧ dXνÞ ∧ dð1ÞΔμν

¼ −
1

2l

Z
D
�ðdX½μ ∧ Xν�Þ ∧ dðdð1ÞΔμνÞ

¼ þ 1

2l

Z
D
�ðdðdX½μÞ ∧ Xν�Þ ∧ dð1ÞΔμν

¼ −
1

2l

Z
D
�ðdX½μ ∧ dXν�Þ ∧ dð1ÞΔμν ¼ 0; ð48Þ

where we set all terms to zero that vanish thanks to the
Einstein equations (23) at order n ¼ 1.
We are now in the position to turn our attention from the

presymplectic potential to the perturbative expansion of the
presymplectic two-form onD. The presymplectic two-form
ΩD is the exterior derivative of the presymplectic
potential, i.e.,

FIG. 3. A subregion of spacetime, delimited by a timelike cylinder and two subregions D and D0 on Cauchy hypersurfaces Σ and Σ0,
respectively. The worldline of a single point particle within this region is depicted by γ. In this section, we determine the bulk and
boundary phase space onD in the linearized regime. In the derivation of the presymplectic form, the first-order perturbation of the tetrad
field ð1Þfμ, which accounts for gravitational waves, is assumed to have compact support within D. An example for such a subregion of
spacetime is represented by the shaded area in the Penrose diagram. In the white areas, ð1Þfμ ¼ 0, but ð2Þfμ ≠ 0.
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ΩD ¼ dΘD: ð49Þ

Going back to the perturbative expansion of the presym-
plectic potential (46), we obtain

ΩD ¼
XN
i¼1

dpi
μdq

μ
i þ
Z
D
�ðdX½μ ∧ ddXν�Þ∧ dð2ÞΔμν

þ
Z
D
½�ðdðdX½μÞ∧ ð1Þfν�Þ∧ dð1ÞΔμν

þ�ðdX½μ ∧ dð1Þfν�Þ∧ dð1ÞΔμν�

−
1

2

I
∂D

�
dSμνmν

μþ
1

2
Sμν½m;m�νμ

�
þOðlÞ; ð50Þ

where Sμν is the soð1; 3Þ-valued spin current (47) and we
introduced the Maurer-Cartan form in field space, which is
dual to it, i.e.,

m ¼ ðdΛ−1ÞΛ; dm ¼ 1

2
½m;m�: ð51Þ

The bulk terms can be neatly reorganized. First of all, we
introduce a field-space covariant derivative D given by the
ordinary exterior derivative d on field space shifted by a
diffeomorphism,5

DðnÞfμ ¼ dðnÞfμ − LX
ðnÞfμ; ð52Þ

DðnÞΔμν ¼ dðnÞΔμν − LX
ðnÞΔμν: ð53Þ

Here, Xa is a vector-valued one-form on field space,
explicitly,

Xa ¼
�

∂

∂Xμ

�
a
dXμ; ð54Þ

and L is the Lie derivative satisfying Lξð·Þ ¼ ξ ⌟ ðd·Þ þ
dðξ ⌟ ·Þ for all ξa ∈ΓðTMÞ. Next, we reorganize the various
terms. Consider first the second term in (50). Taking into
account the linearized Einstein equations at order n ¼ 2, we
can rewrite it as

Z
D
�ðdX½μ ∧ ddXν�Þ ∧ dð2ÞΔμν ¼

Z
D
dX½μ ∧ ddXν� ∧ dð�ð2ÞΔμνÞ

¼
I
∂D

dX½μdXν� ∧ dð�ð2ÞΔμνÞ þ
Z
D
dX½μdXν� ∧ ddð�ð2ÞΔμνÞ

¼
I
∂D

dX½μdXν� ∧ dð�ð2ÞΔμνÞ−
Z
D
dX½μdðdXν�Þ ∧ dð�ð2ÞΔμνÞ þ

Z
D
dXμdð�dðð2ÞΔμ

νÞ ∧ dXνÞ

¼
I
∂D

dX½μdXν� ∧ dð�ð2ÞΔμνÞ− 1

2

I
∂D

dX½μdXν� ∧ dð�ð2ÞΔμνÞ þ
Z
D
dXμdðð2ÞTμ þ ð2ÞtμÞ

¼
I
∂D

dðð�ð2ÞΔμνÞ ∧ dXνÞdXμ þ
XN
i¼1

dpi
μdXμjγi∩D þ

Z
D
dXμdð2Þtμ:

We insert this expression back into the presymplectic
structure and identify three separate terms at order Oðl0Þ
or lower. Let us first list them and then comment on their
physical significance in the next subsection. We have

ΩD ¼ Ωmatter
D þ Ωrad

D þΩ∂D þOðlÞ: ð55Þ

The first term is the matter contribution:

Ωmatter
D ¼

XN
i¼1

dpi
μðdqμi þ dXμjγi∩DÞ≡

XN
i¼1

dpi
μDq

μ
i : ð56Þ

The second term is the radiative part of the presymplectic
potential:

Ωrad
D ¼

Z
D
½�ðdðdX½μÞ ∧ ð1Þfν�Þ ∧ dð1ÞΔμν

þ �ðdX½μ ∧ dð1Þfν�Þ ∧ dð1ÞΔμν þ dXμdð2Þtμ�; ð57Þ

with ð2Þtμ denoting the vector-valued three-form (27). A
straightforward algebraic manipulation (see Appendix A)
simplifies this expression, which can be cast into

Ωrad
D ¼

Z
D
�ðdX½μ ∧ Dð1Þfν�Þ ∧ Dð1ÞΔμν: ð58Þ

5The connection is flat, i.e., D2 ¼ 0. The geometry of such
field-space connections for gauge theories and gravity is discussed
in great detail in [39].
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Finally, there is the boundary term

Ω∂D ¼
I
∂D

dPμdXμ −
1

2

I
∂D

�
dSμνmν

μ þ
1

2
Sμν½m;m�νμ

�
;

ð59Þ

where Sμν is the soð1; 3Þ spin current (47) and Pμ is the
local momentum

Pμ ¼ φ�
Cðð�ð2ÞΔμνÞ ∧ dXνÞ: ð60Þ

Summary

Before we turn to the interpretation of these terms, let us
briefly summarize what we have done so far. Starting from
general relativity in terms of tetrads, we performed an
expansion in terms of the coupling constant l ¼ ffiffiffiffiffiffiffiffiffi

8πG
p

up
to second order. We considered gravity coupled to N
massive point particles in a bounded region D and derived
the perturbative expansion of the presymplectic two-form
ΩD on phase space. Assuming that the region is big enough
such that gravitational radiation ð1Þf does not reach the
boundary and using the linearized equations of motion, we
simplified the expression to obtain three terms, correspond-
ing to matter modes (56), radiation modes (58), and
additional boundary modes (59).

C. Modes of gravity

Let us now explain the physical interpretation of the
various contributions to the presymplectic two-form ΩD.
First of all, we have the contribution from the matter
degrees of freedom (56). This contribution describes the
phase space of the point particles. The particles’ states
(points on phase space) are labeled by the particles’
position and their four-momentum pi

μ on the t ¼ const
initial surface Σ. Notice that the variation of the particles’
position is dressed by a coordinate transformation replac-
ing the differential dqμi by Dqμi ; see (56). This dressing
ensures that the symplectic structure of the point particles
is invariant under simultaneous diffeomorphisms
φ∈DiffðM∶MÞ transforming both tetrads and trajecto-
ries into eα → φ�eα and γi → φ−1

◯γi. As the coordinate
functions transform as scalar fields, i.e., Xμ → Xμ

◯φ, the
dressed differential Dqμi ¼ dqμi þ dXμjγi ¼ dðXμ

◯γiÞ is
invariant under such combined transformations of the
trajectories and the fields in spacetime.
Next, there are the radiative modes (58). Variations of the

first-order radiative perturbations ð1Þfμ and ð1ÞΔμ
ν appear in

the presymplectic two-form only through the covariant
field differential D ¼ d − LX. Going back to the mode
expansion (29), we find

Dð1Þfμ ¼ 1

ð2πÞ32
Z

d3k

2jk⃗j
ðmμmνðdaþÞðk⃗ÞeikμXμ

þ m̄μm̄νðda−Þðk⃗ÞeikμXμ þ cc:ÞdXν; ð61Þ

and similarly for ð1ÞΔμ
ν. The symplectic structure of the

radiative modes thus depends only on the variations of the
true physical degrees of freedom, i.e., the modes a�ðk⃗Þ
that characterize the strength and polarization of gravita-
tional waves in the given gauge. From an operational point
of view, the gauge condition that we implicitly used to
parametrize the radiation field (29) states that the Xi ¼
const coordinate lines are trajectories of test particles at
rest. These trajectories are geodesics up to terms of order
n ¼ 1 in the perturbative expansion. Gravitational waves
will change the relative physical distance between these
geodesics, but leave their coordinate distance fixed.
Finally, we have the boundary contribution (59). This is

where the otherwise irrelevant gauge modes become
physical. There are additional boundary modes Xμ dual
to diffeomorphisms and SOð1; 3Þ-valued boundary modes
that are dual to the Lorentz charges Sμν. These will be the
focus of the next section.

IV. MULTIFINGERED REFERENCE FRAMES
FROM GRAVITATIONAL BOUNDARY MODES

A. Boundary phase space

As we have seen in Sec. II, by the example of
electromagnetism, restricting the phase space of a gauge
theory to a bounded region leads to additional boundary
modes. The Uð1Þ gauge parameter λ, which is redundant in
the description of the physics of the bulk, becomes physical
at the boundary. Mathematically, this is realized by the
emergence of boundary contributions to the presymplectic
two-form.
In the case of general relativity in the tetrad formulation,

we have two such gauge groups. The field equations (10)
and (11) are invariant under four-dimensional diffeomor-
phisms and internal SOð1; 3Þ frame rotations. Inside a
compact regionD on a Cauchy surface Σ, it is impossible to
distinguish configurations that are connected by small
gauge transformations. Any such small gauge transforma-
tion can be written as a finite product of diffeomorphisms
generated by the exponential map of vector fields ξa1; ξ

a
2;…

times the exponential of a local soð1; 3Þ gauge element λαμ.
For such transformations to be small, both λαμ and the
vector fields ξa have compact support. If we extend them to
the boundary, they become physical, generating a symmetry
that maps a given state into an inequivalent one. The
characterization of the physical states of the theory will thus
include a description of additional boundary modes. In our
setup, where we consider the perturbative expansion of the
gravitational field in a neighborhood of Minkowski space,
the boundary modes show up as the coordinate fields Xμ
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and the SOð1; 3Þ gauge elements Λα
μ, arising from the

internal Lorentz symmetry. The corresponding contribution
to the presymplectic form is given by Eq. (59).
The coordinate fields Xμ, which are inertial with respect

to the background metric, act as physical reference frames
with respect to which we can construct gauge-invariant
(dressed) observables (see Fig. 4). This becomes particu-
larly evident in our setup, where we consider point particles
coupled to the gravitational field. In a generally covariant
theory, the embedding of a trajectory γi into the abstract
spacetime manifold is meaningless without giving a physi-
cal prescription for how to measure the location of the
trajectory. The physical reference fields Xμ allow us to
resolve this issue. The relative position of the trajectory
with respect to the coordinate system Xμ is gauge invariant.
To leading order in the perturbation, the particles move
along straight lines with respect to the reference frame Xμ,
i.e., ðXμ

◯γiÞðτÞ ¼ qμo þm−1
i pμ

i τ. Along the particles’ tra-
jectories, the reference frames become physical and serve
as coordinate fields that give physical meaning to the
otherwise gauge-dependent position γiðτÞ of the particles.
This relational definition is important, because it allows us
to access the gauge-invariant part of the presymplectic two-
form of the matter modes through the dressed variation of
the particles’ positions, Dqμi ¼ dqμi þ dXμjγi ¼ dðXμ

◯γiÞ.
The differential Dqμi is gauge invariant, because a diffeo-
morphism will shift both the trajectories γi of the particles
and the coordinate fields Xμ, in such a way that the dressed
quantity Xμ

◯γi does not change. In the same way, the fields

Λα
μ provide an internal reference frame for the Lorentz

group at each point of the boundary. Take, for example, the
SOð1; 3Þ curvature tensor Fα

β; its Λ-dressed version
Λα

μFα
βΛβ

ν is clearly SOð1; 3Þ gauge invariant.
The coordinate fields Xμ have an additional role. Besides

serving as dressing fields that give physical meaning to
radiative modes and particle trajectories, they also define
the location of the boundary itself. To the zeroth order of
the expansion, the coordinate fields Xμ define an inertial
frame of reference, which embeds the abstract boundary of
D into flat Minkowski spaceR4. In this sense, the boundary
modes Xμ provide a concrete realization of the embedding
fields of [5].
Given the presymplectic two-form at the boundary,

see (59), we define an extended phase space that contains
the conjugate boundary observables that are dual to the
boundary reference frame Xμ and the Lorentz fields Λα

μ.
First of all, we have the coordinate fields Xμ at the
boundary, which are dual to the local momentum

Pμ ¼ ð�ð2ÞΔμνÞ ∧ dXν: ð62Þ

If we send the boundary to infinity, the integral of the local
momentum (62) along the asymptotic two-sphere returns
the Arnowitt-Deser-Misner (ADM) linear momentum
[28,40–44]. The probably simplest way to see this is to
use the standard representation of the ADM momentum in
terms of the electric part of the Weyl tensor [28]. Take
hyperbolic coordinates in the vicinity of spacelike infinity,

Xμ ¼

0
BBBB@

ρ sinhðt=ρÞ
ρ coshðt=ρÞ sinϑ cosφ
ρ coshðt=ρÞ sinϑ sinφ
ρ coshðt=ρÞ cosϑ

1
CCCCA: ð63Þ

Next, we integrate (62) along a t ¼ const and ρ ¼ const
surface. Performing a partial integration and taking into
account the falloff conditions of the Coulombic fields, we
obtain

lim
ρ→∞

I
S2ρ;t

Pμ ¼ lim
ρ→∞

I
S2ρ;t

ð�ð2ÞΔμνÞ ∧ dXν

¼ − lim
ρ→∞

I
S2ρ;t

�ðdð2ÞΔμνÞXμ

¼ 1

8πG
lim
ρ→∞

I
S2ρ;t

d2Ωρ3ð2ÞCμνρσnνnρtσ; ð64Þ

where tμ ¼ ∂tXμ and nμ ¼ ρ−1Xμ are the timelike and
spacelike normal vectors to the asymptotic two-sphere,
d2Ω is the round area element d2Ω ¼ sinϑdϑdφ, and
ð2ÞCμνρσnνnρ denotes the n ¼ 2 leading order of the electric

FIG. 4. The additional boundary modes for the subregion D:
coordinates Xμ and Lorentz frames Λα

μ at each point of the
boundary. The coordinate fields serve two purposes: in the bulk,
they allow us to define the diffeomorphism-invariant, relative
position of the point particle moving along γ by expressing the
path in terms of the coordinate fields as Xμ

◯γ (indicated by
the dotted line). In addition, they give physical meaning to the
position of the boundary itself by providing an embedding into
the flat background spacetime.
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part of the Weyl tensor, which falls off like Oðρ−3Þ in the
outside region Σ̄ ¼ Σ −D.
Besides the local momentum, there is also a spin

current (47) at the boundary, which is dual to the local
Lorentz elements Λα

μ. In the linearized regime considered
here, the local momentum and spin current Pμ and Sμν
depend only linearly on the Coulombic modes ð2Þfμ, which
are themselves determined by the effective energy momen-
tum tensor via (38) and (26).
A few further observations. Using the equations of

motion, it is straightforward to see that both the local
momentum and angular momentum are conserved.
Throughout this work, we assumed that the n ¼ 1 radiative
modes ð1Þfμ have compact support in D. Together with the
second-order Einstein equations (25), this implies immedi-
ately that

dPμ ¼ 0 in Σ̄ ¼ Σ −D: ð65Þ

In the same way, we have conservation of the local angular
momentum, which is the sum of the local orbital angular
momentum and the intrinsic spin density (47),

Jμν ¼ 2P½μXν� þ Sμν: ð66Þ

To demonstrate that the local angular momentum
Jμν is conserved in the outside region Σ̄ ¼ Σ −D
(see Appendix B), where we show that

dJμν ¼ 0 in Σ̄ ¼ Σ −D: ð67Þ

It is straightforward to see that Ji½C� ¼ 1
2

H
C ϵ

ijkJjk is the
ADM angular momentum [40–42] and Ki½C� ¼ HC Ji0
returns the Beig–ÓMurchaddha relativistic center of mass
(the global boost generator) [44].
Finally, we invert the boundary symplectic structure and

obtain the commutation relations,

fP̃μðζ⃗Þ; Xνðζ⃗0Þg ¼ δνμδ̃Cðζ⃗; ζ⃗0Þ; ð68Þ

fS̃μνðζ⃗Þ;Λα
ρðζ⃗0Þg ¼ þ2ηρ½μΛα

ν�ðζ⃗Þδ̃Cðζ⃗; ζ⃗0Þ; ð69Þ

fS̃μνðζ⃗Þ; S̃μ0ν0 ðζ⃗0Þg ¼ −4δρ½μδ
σ
ν�ησσ0δ

σ0
½μ0δ

ρ0
ν0�S̃ρρ0 ðzÞδ̃Cðζ⃗; ζ⃗0Þ;

ð70Þ

where ζ⃗ and ζ⃗0 label points on the boundary surface C.
In here, the local four-momentum P̃μ and the spin current
S̃μν are now treated as surface densities intrinsic to C.
The connection to the fields in the interior of the manifold
is imposed by the momentum and spin momentum
constraints

C̃μ ≔ P̃μ − H̃μ; ð71Þ

C̃μν ≔ S̃μν − Ẽμν; ð72Þ

where the boundary Hamiltonian density H̃μ and the spin
surface density S̃μν are given by the pullback of the two-
forms (62) and (47) to C, i.e.,

H̃μ ≔ φ�
C½ð�ð2ÞΔμνÞ ∧ dXν�; ð73Þ

Ẽμν ≔ φ�
C
1

l2
½�ðdX½μ ∧ dXν�Þþ 2l2 � ðdX½μ ∧ ð2Þfν�Þ�: ð74Þ

We have thus found an extended phase space of bulk and
boundary modes and a set of additional constraints (71)
and (72) that establish the connection between the theory at
the boundary and the theory in the interior.

B. Implications for quantum gravity

The structure of the phase space that has emerged from
the discussions in the previous sections has important
implications for the quantum theory. As any full nonlinear
and nonperturbative theory of quantum gravity must agree
at low energies with the linearized theory, there is no need
to select a particular model or approach to quantum gravity.
At low energies, foundational questions are shared across
different approaches.
Through our preceding analysis, we found a neat sepa-

ration of the classical state space into matter modes ðpμ
i ; q

μ
i Þ,

radiative modes a�ðk⃗Þ, and boundary modes Xμ and Λα
μ

with corresponding momentum currents P̃μ and S̃μν. A
similar decomposition must also happen at the quantum
level. At the linearized level,6 we expect a kinematical state
space that admits a tensor product structure

KD ¼ Hmatter
D ⊗ Hrad

D|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Hbulk

⊗ Hbndry
∂D : ð75Þ

The first term is the Hilbert space for the matter degrees of
freedom, i.e., the tensor product of the one-particle Hilbert
spaces for each constituent system. The second term
describes the radiation modes. Inverting the presymplectic
two-form at leading order in the coupling constant, we
obtain the Poisson bracket between the positive and
negative frequency modes a� and ā�:

fasðk⃗Þ; ās0 ðk0
!Þg ¼ 2ijk⃗jδss0δð3Þðk⃗ − k⃗0Þ þOðlÞ;
s; s0 ∈ f�g: ð76Þ

6At the full nonperturbative level, we would not expect such a
factorization as it is no longer obvious how to disentangle
radiative modes from the boundary modes emerging from the
zeroth-order metric expansion.
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Notice that the G → 0 decoupling limit removes the non-
linear higher-order terms on the right-hand side. In this
limit, the Hilbert space of the radiation modes is generated
from the usual Fock vacuum j0i,

asðk⃗Þj0i ¼ 0: ð77Þ

Gravitons are excited from the vacuum by creation operators
a†½f� ¼Ps

R
d3k=jk⃗jfsðk⃗Þa†sðk⃗Þ. To obtain an element of

Hrad
D , the test functions fsðk⃗Þmust be such that their Fourier

transform has compact support in D.
Besides matter and radiation, there is the boundary

Hilbert space H∂D, which carries a representation of the
canonical commutation relations (68), (69), and (70). At a
formal level, we may choose a functional Schrödinger
representation, for which the momentum operators act as
functional derivatives, i.e.,

ðP̃μðζ⃗ÞΨbndryÞ½Xμ;Λα
μ�¼−iℏ

δ

δXμðζ⃗Þ
Ψbndry½Xμ;Λα

μ�; ð78Þ

ðS̃μνðζ⃗ÞΨbndryÞ½Xμ;Λα
μ�

¼ 2iℏΛα½μðζ⃗Þ
δ

δΛα
ν�ðζ⃗Þ

Ψbndry½Xμ;Λα
μ�; ð79Þ

whereas Xμðζ⃗Þ and Λα
μðζ⃗Þ act by multiplication and ζ⃗ ¼

ðϑ;φÞ are fiducial coordinates at ∂D. So far, the entire
construction is formal. The obvious difficulty is that it is not
enough to have a representation of the canonical boundary
Heisenberg commutation relations. We also need an inner
product. The formal infinite-dimensional Lebesgue mea-
sure D½Xμ� ¼Qζ⃗ d

4Xμðζ⃗Þ, gives rise to a vast Hilbert
space, which is nonseparable. This is hardly surprising.
The algebra of boundary charges is ultralocal. There is no
boundary-intrinsic Hamiltonian H ∼ X2 þ P2 with respect
to which we could built a (separable) boundary Fock space.
At first sight, this seems to be a major problem ahead, but
we will argue below that the presence of constraints will
render this problem rather fictitious. At the level of the
kinematical state space, no Fock space structure is required.
Only at the level of the physical phase space do we expect
to obtain a separable Hilbert space. This is reminiscent of a
similar construction in the context of loop quantum gravity
(see [45,46]), where the constraints are imposed on an
auxiliary kinematical Hilbert space, which is nonseparable.
Let us now turn our attention to the constraints (73)

and (74) that establish the correlation between the bulk and
boundary fields. In quantum theory, there are two ways to
look at such constrained systems: solving the constraints
before quantizing (reduced quantization) or quantizing first
and then imposing the constraints at the level of the wave
function [47–49]. In the latter case, one starts with a
kinematical state space with some auxiliary inner product.

Physical states are identified by the requirement that the
matrix elements of the constraints vanish between any two
such physical states. If the constraints are first class, we
impose instead the even stronger condition that the con-
straints annihilate all physical states [50]. Given the specific
form of the constraints (71) and (72) as a difference of a
canonical momentum and a complicated function of the
bulk configuration variables, the constraints can be given a
particularly neat interpretation. They provide a relational
evolution for the wave function of the modes in the bulk
with respect to the boundary modes Xμðζ⃗Þ and Λα

μðζ⃗Þ.
More concretely, consider the quantization of the constraint
(71) on the physical states in the configuration space basis.
Assuming, for a moment, that all constraints are first class,
we obtain a local Schrödinger equation at the boundary, i.e.,

P̂μðζ⃗ÞΨphys½Xμ;Λα
μ� ¼ −iℏ

δ

δXμðζ⃗Þ
Ψphys½Xμ;Λα

μ�

¼ Ĥμðζ⃗ÞΨphys½Xμ;Λα
μ�: ð80Þ

Here, the dependence of the wave function
Ψphys½X;Λ�∈Hbulk ⊗ H∂D on the bulk degrees of freedom
is left implicit. Notice that there are four such equations for
every point ζ⃗ at the codimension-two boundary C ¼ ∂D
generating local translations in Xμðζ⃗Þ. Such multifingered
evolution equations frequently appear whenever we con-
sider the relational evolution of gravitational observables in
terms of material frames of Refs. [49,51,52]. However,
there are two crucial differences to the usual formalism.
First, the reference fields are now built from gravity itself,7

without introducing any matter. Second, the constraints live
in one dimension less, at the codimension-two boundary of
D, where they describe the relational evolution of the wave
function in the bulk relative to the coordinate fields Xμðζ⃗Þ at
the boundary. There is, however, a subtle difficulty with
imposing (80) strongly. It is not at all obvious whether the
constraints (71) and (72) are first class, i.e., whether the
(classical or quantum) algebra of the constraints closes
under the bracket.8 In fact, our expectation is that they do
not close at finite distance and that there is an anomaly due
to cross terms such as fP̃μðζ⃗Þ; H̃νðζ⃗0Þg ≠ 0.

7By choosing, e.g., harmonic gauge conditions implicitly used
in (29).

8Recently, a great deal of attention was given to the idea to
define modified brackets with respect to which the algebra closes.
In this case, all diffeomorphisms are generated by a corresponding
surface charge [5,6,53–57]. These charges, in turn, provide a
representation of the algebra of vector fields on phase space. A
similar approach, which is based on metriplectic geometry, was
introduced recently by two of the authors of this research; see [57].
In the metriplectic framework, the bracket depends on dissipation.
If there is dissipation, the charges no longer form a closed algebra,
yet their Hamiltonian flow is still well defined.
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At spacelike infinity, when we send ρ ¼ ffiffiffiffiffiffiffiffiffiffiffi
XμXμ

p
to

infinity, this problem disappears due to the falloff con-
ditions—the cross terms go to zero. However, this limit also
creates new difficulties. The boundary mode Xμ diverges as
ρ → ∞. To remove this divergence, we proceed as follows.
Split a generic reference frame fXμg into a divergent part
and a finite shift Qμðζ⃗Þ,

Xμ ¼ Ωμ
νðXν

o þQνðζ⃗ÞÞ þOðρ−1Þ; ð81Þ

where ζ⃗ ¼ ðϑ;φÞ are coordinates at the asymptotic two-
sphere. The divergent part consists of a global (yet
arbitrary) Lorentz transformation Ωμ

ν in SOð1; 3Þ, i.e.,
dΩ ¼ 0;dΩ ≠ 0, and a fiducial reference frame, which is
kept fixed once and for all, i.e., dXμ

o ¼ 0. The global
SOð1; 3Þ transformation is required to have access to the
global ADM angular momentum and boost charges. The
finite translation Qμðζ⃗Þ, on the other hand, is an arbitrary
Lorentz vector-valued function on the asymptotic two-
sphere. The resulting IR-regularized variation of the boun-
dary modes is then given by

dXμ ¼ −½ΩdΩ−1�μνXν þΩμ
νdQν þOðρ−1Þ: ð82Þ

For any resulting reference frame Xμ, there is a correspond-
ing metric tensor ηab ¼ ημν∂aXμ

∂bXν. In addition, we also
have the fiducial reference metric ηoab ¼ ημν∂aX

μ
o∂bXν

o.
Clearly, both metric tensors are flat. Taking into account
the falloff condition for the coordinate transformation (81),
the two line elements can only differ by a tensor which is
Oðρ−1Þ. The map from Xμ

o to Xμ defines therefore an
asymptotic symmetry, namely an asymptotic BMS trans-
formation [25–28] in standard Minkowskian coordinates.
The analogous regularization for the SOð1; 3Þ spin frame

of reference is

Λα
μ ¼

�
δαν þ

1

ρ
λανðζ⃗Þ þOðρ−2Þ

�
Ωμ

ν ≡Mα
νΩμ

ν; ð83Þ

where λμνðζ⃗Þ is an soð1; 3Þ gauge element intrinsic to the
two-surface boundary C ¼ ∂D. It is possible to show that,
given this specific falloff, the boundary pre-symplectic two-
form (59) has a finite limit to spacelike infinity.9 The
resulting boundary phase space is the cotangent bundle of

the BMS group times an ultra-local contribution
½T�soð1; 3Þ�C. A detailed analysis of this phase space is
beyond the scope of this paper and will be presented
elsewhere. For the following discussion, the important
point is that this construction leaves us with an algebra
of constraints that is first class.
For concreteness, let us restrict our final remarks to the

BMS part of the asymptotic symmetries. The case of
asymptotic and internal frame rotations (83) follows in
complete analogy, but more care is needed because of the IR
divergence induced by Ẽμν, which diverges quadratically as
ρ → ∞, see (74). A generic state in the kinematical Hilbert
space K will now be entangled between the bulk and
boundary degrees of freedom. It will be constructed from a
quantum superposition of bulk statesΨbulk½Qμ;Ωμ

νÞ∈Hbulk
that depend parametrically on the asymptotic BMS frame of
reference,10 i.e.,

jΨi ¼
Z
½R4�S2

D½Qμ�
Z
SOð1;3Þ

dμΩΨbulk½Qμ;Ωμ
νÞ⊗ jQμ;Ωμ

νi;

ð84Þ

where dμΩ is the left- and right-invariant measure dμΩ ¼
Trð⋀6Ω−1dΩÞ on SOð1; 3Þ andD½Qμ� is a formal Lebsgue
measure for the translational subgroup, which is infinite
dimensional. At this point, the construction is formal, as
we have not specified the Hilbert space inner product
between the states jQμ;Ωμ

νi. Still, we can proceed to
discuss the basic structure of the resulting physical Hilbert
space. Physical states are those that satisfy a multifingered
Schrödinger equation with respect to asymptotic BMS
translations,

ðC̃μðζ⃗ÞΨÞ½Qμ;Ωμ
νÞ ≔ iℏ

δ

δQμðζ⃗Þ
Ψ½Qμ;Ωμ

νÞ

þ ðH̃μðζ⃗ÞΨÞ½Qμ;Ωμ
νÞ ¼ 0; ð85Þ

where H̃μ is the momentum density (73). In the same way,
there will also be a constraint for the global Lorentz charge,

iℏ
d
dt

����
t¼0

Ψ½expð−tωÞ⊳Qμ;Ωμ
ν⊲ expðtωÞÞ

¼ −
1

2
ðωμνJoμνΨÞ½Qμ;Ωμ

νÞ; ð86Þ

where Λ⊳Qμ ¼ Λμ
νQν is a left action and Ωμ

ν⊲Λ ¼
Ωμ

ρΛρ
ν is a right action for any Λμ

ν ∈ SOð1; 3Þ. The

9The contribution from the spin current still contains a
divergent part, but this term is a total derivative due to
dXμ

o ¼ 0. Hence, it creates a canonical transformation. In
quantum theory, canonical transformations are often realized
as unitary maps, unless they are not, in which case different
Hamiltonian formulations of the same dynamical system describe
the semiclassical limit of unitarily inequivalent quantum theories.
This seems to us, in fact, the main origin for the disagreement
between a standard perturbative Fock quantization and non-
perturbative approaches such as loop quantum gravity.

10The notation Ψbulk½Qμ;Ωμ
νÞ indicates that the bulk state

depends as a functional on the BMS translation Qμ∶ S2 → R4

and as a ordinary function on Ωμ
ν ∈ SOð1; 3Þ.
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corresponding Hamiltonian is Joμν, whose space-space and
spacetime components are the ADM angular momentum
and Beig–Ó Murchaddha center of mass. In our repre-
sentation,

Joμν ¼
1

2

I
io
d2ΩJ̃oμν; ð87Þ

where J̃oμν is the two-surface density

J̃oμν ¼ 2H̃½μXo
ν� þ 2φ�

ioðdXo
½μ ∧ ð2Þfν�Þ: ð88Þ

At the full nonperturbative and background-independent
level, the dynamics will be encoded into a generalized
projector P that maps kinematical states Ψ∈K into
physical states; see [45,58–60]. As we see now, a remnant
of this generalized projector survives the decoupling limit
that we have studied in this paper. The projector onto
physical states is the formal delta distribution on the
constraints

P ¼
Z
½R4�S2

D½N�
Z
SOð1;3Þ

dμexpðωÞ exp
�
i
ℏ

I
S2

NμC̃μ

�

× exp

�
i
2ℏ

ωμνC̃μν

�
: ð89Þ

Formally, the physical inner product is defined by the
matrix elements of the generalized projector on the kin-
ematical state space

hΨjΨ0iphys ¼ hΨjPΨ0ikin: ð90Þ

Consider now two such kinematical states. Take, for
example, a simple product state between the bulk degrees
of freedom and a quantum reference frame peaked perfectly
on the configurations Q0 and Ω0,

Ψ ¼ Ψ½Q0;Ω0� ⊗ jQ0;Ω0i; ð91Þ

and an entangled state

Φ ¼
X
i

Φi½Qi;Ωi� ⊗ jQi;Ωii; ð92Þ

where the reference frame is in a quantum superposition
of several such configurations. Assume a delta function
normalization for the kinematical inner product, i.e.,
hQ;ΩjQ0;Ω0i¼δðQ−Q0ÞδðΩ−Ω0Þ. Under this assump-
tion, the formal matrix elements of the projector (89)
become

hΨ;Φiphys ¼
X
i

hΨ½Q0;Ω0�jðUBMS
i→0 ΦiÞ½Qi;Ωi�ibulk; ð93Þ

where

UBMS
i→0 ¼ hQ0;Ω0jPjQi;Ωii ð94Þ

defines a representation of the BMS transformation on the
bulk Hilbert space that maps the BMS frame fQi;Ωig onto
fQ0;Ω0g. This viewpoint resonates with approaches to
quantum gravity such as loop quantum gravity [58,59,61],
where there is a kinematical boundary Hilbert and an
amplitude map that is defined via a generalized projector
P. This projector can act on widely different boundary
states. Following this logic, Eq. (94) can be used to
construct the corresponding matrix elements of BMS
transformations. The entire structure is, of course, formal,
but, even at the formal level, the emerging geometry is
clear. The kinematical state space K is a principal fiber
bundle ðK;Hphys;BMS;PÞ, the base space is the physical
Hilbert space ðHphys; h·j·iphysÞ, which is isomorphic—but
not in a canonical way—to the bulk Hilbert space, i.e., the
tensor product between the relativistic Hilbert space of
matter and the Fock space of the radiation modes. The
standard fibers are the BMS frames ðQμ;Ωμ

νÞ on which
the BMS group acts freely; the projector onto the base
manifold is P, which defines the physical inner product.
Consider then a specific model of quantum gravity,
defined by a projector P, see, e.g., [58,59,61] and calculate
its matrix elements to infer, via Eq. (94). If we take the
matrix elements of P between asymptotic boundary states,
it would be possible, in principle, to define via (94) the
matrix elements of asymptotic symmetries at the full
nonperturbative level. Our long-term goal is to understand
in this way the IR structure of quantum gravity from
within a full nonperturbative approach.
Furthermore, the sum

P
iðUBMS

i→0 ΦiÞ½Qi;Ωi� in Eq. (93)
implements what is called a quantum-controlled reference
frame transformation, transforming the quantum state of the
bulk degrees of freedom with a different unitary map UBMS

i→0

that depends on the configuration of the reference frame
ðQi;ΩiÞ. It thus constitutes a quantum reference frame
transformation in the sense of e.g., [16,18,20]. To make this
connection more explicit and to get a better intuition of this
transformation in general, let us restrict ourselves to a
change between two reference frames that differ only by
translations. That is, consider states for which Ωi ¼ Ω0. In
this case, the expression simplifies to

Ui→0 ¼ e−
i
ℏ

H
S2
ðQμ

i −Q
μ
0
ÞH̃μ ; ð95Þ
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implementing a pointwise translation by Qμ
i −Qμ

0 at each
point of the boundary S2, whose action on the bulk degrees
of freedom is defined by H̃μ, which we assume is self-
adjoint. The operator given in Eq. (95) generalizes the
existing quantum reference frame transformations for the
translation group [16,18] and Lorentz group [62] in two
ways: by going beyond global translations to pointwise
translations at the boundary and by identifying their action
on the gravitational degrees of freedom within the linear-
ized regime. Moreover, these transformations provide
a further step towards constructing general quantum-
controlled coordinate transformations and their action on
the geometry, as considered abstractly in [63]. In this
respect, they are complementary to the transformations
considered in [64,65], which allow one to change into the
local inertial frame of a quantum particle, and [66], which
implement general coordinate transformations but rely on
an auxiliary system to identify the different branches of the
superposition and do not include the action on the gravi-
tational field.

V. OUTLOOK AND DISCUSSION

Physics describes correlations among observable facts in
terms of fundamental laws of nature. These laws frequently
make use of auxiliary elements that are not themselves
observable. In electrodynamics, the charge current jμ

couples to the electromagnetic field via the vector potential
Aμ. In linearized gravity, the energy momentum tensor Tμν

couples to the gravitational field via the metric perturbation
fμν. Both Aμ and fμν are not directly observable. They are
the channels through which component systems interact.
The most elementary way to access these otherwise
invisible channels appears when we cut the gauge system
along a boundary. At the surface that separates the two
component parts, gauge invariance is broken. The then-
necessary boundary modes carry a representation of the
fundamental gauge group.
The purpose of this study is to provide a complete

characterization of gravitational boundary modes in the
simplified setting of linearized gravity in a finite domain.
Our discussion started out in Sec. II with a brief overview of
the situation in electrodynamics. In Sec. III, we considered
the perturbative expansion of the Einstein-Cartan equations
coupled to a system of N point particles. At zeroth order in
the coupling constant l ¼ ffiffiffiffiffiffiffiffiffi

8πG
p

, all propagating degrees of
freedom, gravitational waves and matter, are washed away.
At this order, we are left with empty Minkowski space. We
saw that there are infinitely many ways to parametrize
Minkowski space in terms of inertial coordinates fXμ∶ D →
R4g and local Lorentz frames fΛα

μ∶D → SOð1; 3Þg. Are
these different representations of Minkowski space all gauge
equivalent? They are not. They are not, because there is a

boundary ∂D ¼ C, which breaks gauge invariance. At the
boundary, the coordinate fields Xμ are dual to the local
momentum (60), while the Lorentz frame Λα

μ is conjugate
to the soð1; 3Þ-valued boundary area two-form (47). For any
finite-domain D, these boundary currents have a nonvanish-
ing limit as G → 0. In this sense, even empty space has
infinitely many physical boundary modes, which provide
reference frames for the gauge symmetries of gravity.
Next, we studied the perturbative expansion. At order

n ¼ 1, we have the free-radiation field. At the next-to-
leading order, we have the Coulombic fields, which are
sourced by the effective energy-momentum tensor.
Assuming no incoming radiation from past infinity at order
n ¼ 2, the second-order perturbation ð2Þfμ is fully deter-
mined by matter and radiation. Upon inserting the pertur-
bative expansion back into the presymplectic two-form, we
identified two terms. The symplectic structure is the sum of
a bulk contribution and a boundary contribution. At lowest
order in the expansion, the bulk symplectic structure
depends only on the radiation field and the states of matter.
The boundary symplectic structure is where the Coulombic
part of the gravitational field enters. It enters the boundary
term through the local momentum Pμ and the boundary spin
current Sμν; see Eqs. (62) and (47). The local momentum

Pμðζ⃗Þ and the spin current Sμνðζ⃗Þ are conjugate to the local

reference frame Xμðζ⃗Þ and the internal spin frame of

reference Λα
μðζ⃗Þ at the boundary. Let us also stress that

in our analysis the boundary modes emerge already from the
zeroth-order flat metric. In other approaches, the boundary
modes are introduced by hand. For example, in [4,5], they
arise as embedding fields that give physical meaning to the
boundary of the subregion. Another approach was discussed
in [12,13], where they emerge from within the full non-
perturbative theory through postselection. In [2], edge
modes are added to render the total presymplectic two-
form gauge invariant. In a similar way, it is possible to
extend the phase space such that the Komar charges form a
closed algebra under the Poisson bracket [4–6]. In our
approach, nothing is added. The boundary modes ðXμ;Λα

μÞ
are the fields that parametrize the flat metric, which is
treated as a q number as well.
Finally, we considered the quantization of the phase

space. In a full nonperturbative theory of quantum gravity,
all geometry will be subject to quantum fluctuations. In
Sec. IV, we saw how to realize the low-energy regime of
such a quantum geometry within perturbative gravity.
Besides matter and radiation, there are the boundary
contributions to phase space, which need to be taken into
account in the quantum theory, too. Quantization then
proceeds in a rather conventional way. Ignoring higher
orders in the coupling constant, the positive and negative
frequency modes of the radiation field turn into creation and
annihilation operators of a free field on Minkowski space.
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Since all elements of phase space ought to be quantum, we
also need a quantum representation of the reference frames
ðXμ;Λα

μÞ. At the kinematical level, the boundary charges

ðPμðζ⃗Þ; Sμνðζ⃗ÞÞ are fields intrinsic to the boundary, dual to

the boundary reference frames ðXμðζ⃗Þ;Λα
μðζ⃗ÞÞ. Physical

states lie on the hypersurface defined by the momentum and
spin-momentum constraints, i.e., (71) and (72). These
boundary constraints are what remains of the Wheeler–
DeWitt scalar, vector and Gauss constraint of the Einstein-
Cartan Hamiltonian system in the linearized regime. The
constraints lead to a multifingered Schrödinger equation,
which describes a relational evolution of the quantum state
with respect to the reference fields at the boundary. Since the
reference fields are part of the phase space, different
subregions are now realized as different configurations of
the bulk plus boundary phase space. Depending on the
boundary and falloff conditions at ∂D, the system may be
open or closed. If it is closed, there exists a Hamiltonian that
drives the time evolution with respect to the reference
frames at the boundary.11 If the system is open, we can
work with a modified bracket that takes into account
dissipation [57].
At finite distance, a further subtlety arises. We expect

that the charges are not conserved under the Poisson
bracket. To resolve this issue of anomalies at finite
distance, we considered the ρ → ∞ limit. On phase space,

this limit is subtle, because Xμðζ⃗Þ diverges as ρ ¼ ffiffiffiffiffiffiffiffiffiffiffi
XμXμ

p
goes to infinity. To remove this infrared divergence, we

made the following observation. Although Xμð ⃗ζÞ may

diverge, a variation δXμð ⃗ζÞ≡ δQμðζ⃗Þmay still be finite. In
this way, we found a rather immediate derivation of the

asymptotic BMS translations and their dual charges Pμðζ⃗Þ.
Given the conservation law (65) for the local momentum
and taking into account the asymptotic expansion of the
Green function near spacelike infinity, it is easy to check
that Pμ is, in fact, conserved along the ∂tXμ generators of
the asymptotic hyperboloid ρ ¼ ffiffiffiffiffiffiffiffiffiffiffi

XμXμ
p

→ ∞. Thus, we
obtain a familiar result: there are an infinite number of
angle-dependent conserved charges at spacelike infinity
[67]. At the quantum level, these conservation laws turn
into a multifingered Schrödinger equation. The quantum
states in the bulk evolve with respect to a BMS quantum
reference frame at the boundary. Thus, our analysis
extends the existing work on quantum reference frames
(QRF) to asymptotic symmetry groups, which are infinite
dimensional. Moreover, it contributes to a growing body
of recent results that demonstrate the close connection
of QRFs to gravitational physics, and boundary modes,

e.g., [13,64,66,68–71]. In particular, QRF transformations
that realize global translations and rotations [66], global
Lorentz transformations [62], and local coordinate trans-
formations [64,65] have been developed and applied to
gravitational physics. Our work strengthens the connec-
tion between these different fields. First of all, we
established the identity between boundary modes and
QRFs explicitly in the linearized regime. Moreover, we
extended the existing framework by providing the QRF
transformations for the BMS group, which amount to
pointwise translations and Lorentz rotations at the
boundary.
Let us close with a few final remarks on how our results

relate to nonperturbative approaches to quantum gravity.
We mentioned above that even an empty region of space
has infinitely many boundary modes. This observation is
crucial. In nonperturbative approaches such as Spinfoams,
loop quantum gravity, group-field theory, and quantum
Regge calculus [45,58,59,72–74], a quantum spacetime
consists of a discrete number of flat building blocks that are
glued together with deficit angles around codimension-two
corners [59,75–80]. A smooth geometry emerges at large
scales from the coarse-grained behavior of many such
building blocks [81–83]. By imposing flatness inside, all
physical degrees of freedom are the boundary modes at the
now-internal two-surface defects. There is no radiation
inside the fundamental building blocks; only the boundary
modes are quantized. In perturbative gravity, one takes the
opposite extreme—the radiation modes are quantum but
the boundary modes are classical. Here, we steer a middle
course. There is only a single boundary and we consider the
quantum theory of both the bulk and boundary modes in the
linearized regime.
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APPENDIX A: ON THE RADIATIVE
SYMPLECTIC STRUCTURE

In this appendix, we collect the missing details that lead
from Eq. (57) to the expression of the presymplectic two-
form of the radiation modes in which the invariance under
diffeomorphisms is manifest, i.e., Eq. (58). First of all, we

11This happens, for example, when we blow up the region D
into a complete Cauchy surface.
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insert the definition of the effective energy-momentum current of the radiative modes. Going back to (27), we find

Ωrad
D ¼

Z
D

h
�ðdðdX½μÞ ∧ ð1Þfν�Þ ∧ dð1ÞΔμν þ �ðdX½μ ∧ dð1Þfν�Þ ∧ dð1ÞΔμν þ dXμdð2Þtμ

i
¼
Z
D

h
�ðdðdX½μÞ ∧ ð1Þfν�Þ ∧ dð1ÞΔμν þ �ðdX½μ ∧ dð1Þfν�Þ ∧ dð1ÞΔμν

− �ðdX½μð1Þfν�Þ ∧ dðdð1ÞΔμνÞ − �ðdX½μdð1Þfν�Þ ∧ dð1ÞΔμν

− �ðdX½μdXν�Þ ∧ ½ð1ÞΔ;dð1ÞΔ�μν − 1

2
� ðdX½μdðdXν�ÞÞ ∧ ½ð1ÞΔ; ð1ÞΔ�μν

�
: ðA1Þ

The first, third, and fifth term after the second equality of (A1) sign can be reorganized as follows:

Z
D

h
�ðdðdX½μÞ ∧ ð1Þfν�Þ ∧ dð1ÞΔμν − �ðdX½μð1Þfν�Þ ∧ dðdð1ÞΔμνÞ þ − � ðdX½μdXν�Þ ∧ ½ð1ÞΔ;dð1ÞΔ�μν

i
¼ −

Z
D

h
�ðdX½μdð1Þfν�Þ ∧ dð1ÞΔμν þ �ðdX½μdXν�Þ ∧ ½ð1ÞΔ;dð1ÞΔ�μν

i
¼ −

Z
D

h
�ðdX½μdXρ ∧ ð1ÞΔν�ρÞ ∧ dð1ÞΔμν þ �ðdX½μdXν�Þ ∧ ½ð1ÞΔ;dð1ÞΔ�μν

i
¼
Z
D
�ðð1ÞΔρ½μdXρ ∧ dXν�Þ ∧ dð1ÞΔμν: ðA2Þ

Consider now the following identity:

ð1ÞΔρμdXρ ¼ −X ⌟ dðð1ÞfμÞ þ ðX ⌟ ð1ÞΔρμÞdXρ

¼ −LX
ð1Þfμ þ dðX ⌟ ð1ÞfμÞ þ ðX ⌟ ð1ÞΔρμÞdXρ: ðA3Þ

Consider also

Z
D
�ðdX½μ ∧ dðX ⌟ ð1Þfν�ÞÞ ∧ dð1ÞΔμν ¼ −

Z
D
�ðdX½μ ∧ ðX ⌟ ð1Þfν�ÞÞ ∧ ddð1ÞΔμν

¼
Z
D
�ðdðdX½μÞ ∧ ðX ⌟ ð1Þfν�ÞÞ ∧ dð1ÞΔμν ¼ −

Z
D
�ðdX½μ ∧ dðX ⌟ ð1Þfν�ÞÞ ∧ dð1ÞΔμν

¼
Z
D
�ðdX½μ ∧ dðX ⌟ ð1Þfν�ÞÞ ∧ ðX ⌟ dð1ÞΔμνÞ

¼
Z
D
�ðdX½μ ∧ dðX ⌟ ð1Þfν�ÞÞ ∧ LX

ð1ÞΔμν. ðA4Þ

Thus,

Z
D
�ðð1ÞΔρ½μdXρ ∧ dXν�Þ ∧ dð1ÞΔμν ¼

Z
D

h
− � ðdX½μ ∧ LX

ð1Þfν�Þ ∧ dð1ÞΔμν

þ �ðdX½μ ∧ dðX ⌟ ð1Þfν�ÞÞ ∧ LX
ð1ÞΔμν þ �ððX ⌟ ð1ÞΔρ½μÞdXρ ∧ dXν�ÞÞ ∧ dð1ÞΔμν

i
¼
Z
D

h
− � ðdX½μ ∧ LX

ð1Þfν�Þ ∧ dð1ÞΔμν þ �ðdX½μ ∧ LX
ð1Þfν�Þ ∧ LX

ð1ÞΔμν

− �ðdX½μ ∧ X ⌟ ðdð1Þfν�ÞÞ ∧ LX
ð1ÞΔμν þ �ððX ⌟ ð1ÞΔρ½μÞdXρ ∧ dXν�ÞÞ ∧ dð1ÞΔμν

i
: ðA5Þ

Next, we turn to the fourth term after the second equality sign in (A1). We obtain
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Z
D
�ðdX½μdð1Þfν�Þ ∧ dð1ÞΔμν ¼

Z
D
�ðdX½μdð1Þfν�Þ ∧ ðX ⌟ dð1ÞΔμνÞ

¼
Z
D

h
�ðdX½μdð1Þfν�Þ ∧ LX

ð1ÞΔμν − �ðdX½μdðdð1Þfν�ÞÞ ∧ X ⌟ ð1ÞΔμν
i
: ðA6Þ

Going back to (A1) and collecting the various terms, we obtain

Ωrad
D ¼

Z
D

�
�ðdX½μ ∧ Dð1Þfν�Þ ∧ Dð1ÞΔμν −

1

2
� ðdX½μdðdXν�ÞÞ ∧ ½ð1ÞΔ; ð1ÞΔ�μν

− �ðdX½μ ∧ X ⌟ ðdð1Þfν�ÞÞ ∧ LX
ð1ÞΔμν þ �ððX ⌟ ð1ÞΔρ½μÞdXρ ∧ dXν�ÞÞ ∧ dð1ÞΔμν

þ �ðdX½μdðdð1Þfν�ÞÞ ∧ X ⌟ ð1ÞΔμν

�
: ðA7Þ

The fourth term satisfies

�ððX ⌟ ð1ÞΔρ½μÞdXρ ∧ dXν�Þ ∧ dð1ÞΔμν ¼ �ððdð1ÞΔρ½μÞ ∧ dXρ ∧ dXν�ÞX ⌟ ð1ÞΔμν: ðA8Þ

Thus,

Ωrad
D ¼

Z
D

�
�ðdX½μ ∧ Dð1Þfν�Þ ∧ Dð1ÞΔμν −

1

2
� ðdX½μdðdXν�ÞÞ ∧ ½ð1ÞΔ; ð1ÞΔ�μν

− �ðdX½μ ∧ X ⌟ ðdð1Þfν�ÞÞ ∧ LX
ð1ÞΔμν þ �ðdX½μ ∧ ð1ÞΔν�ρ ∧ ddXρÞX ⌟ ð1ÞΔμν

�
: ðA9Þ

The fourth term can be written as

Z
D
�ðdX½μ ∧ ð1ÞΔν�ρ ∧ ddXρÞX⌟ ð1ÞΔμν ¼

Z
D

h
− � ðdX½μ ∧ dð1ÞΔν�ρdXρÞX⌟ ð1ÞΔμν − �ðdX½μ ∧ ð1ÞΔν�ρdXρÞ ∧ dðX⌟ ð1ÞΔμνÞ

i
¼
Z
D

h
− � ðdX½μ ∧ dð1ÞΔν�ρdXρÞX⌟ ð1ÞΔμν þ�ðdX½μ ∧X⌟ ðdð1Þfν�ÞÞ ∧ dðX⌟ ð1ÞΔμνÞ

þ �ðdX½μ ∧ ðX⌟ ð1ÞΔν�ρÞdXρÞ ∧ dðX⌟ ð1ÞΔμνÞ
i

¼
Z
D

h
− � ðdX½μ ∧ dð1ÞΔν�ρdXρÞX⌟ ð1ÞΔμν þ�ðdX½μ ∧X⌟ ðdð1Þfν�ÞÞ ∧ dðX⌟ ð1ÞΔμνÞ

−
1

2
� ðdX½μdXν�Þ ∧ d½X⌟ ð1ÞΔ;X⌟ ð1ÞΔ�μν

i
: ðA10Þ

Notice that the last term in this equation is a total derivative and hence vanishes, since ð1Þfμ has compact support. Inserting
this expression back into Eq. (A9), we obtain

Ωrad
D ¼

Z
D

�
�ðdX½μ ∧ Dð1Þfν�Þ ∧ Dð1ÞΔμν −

1

2
� ðdX½μdðdXν�ÞÞ ∧ ½ð1ÞΔ; ð1ÞΔ�μν

− �ðdX½μ ∧ X ⌟ ðdð1Þfν�ÞÞX ⌟ ðdð1ÞΔμνÞ − �ðdX½μ ∧ dð1ÞΔν�ρdXρÞX ⌟ ð1ÞΔμν

�
: ðA11Þ

It is now fairly straightforward to show that the second term cancels against the third and fourth. Consider first the third
term. Once again taking into account the field equations at order n ¼ 1, we obtain
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Z
D
�ðdX½μ ∧ X ⌟ ðdð1Þfν�ÞÞX ⌟ ðdð1ÞΔμνÞ ¼

Z
D
�ðdX½μX ⌟ ðdð1Þfν�ÞÞ ∧ dð1ÞΔμν

¼
Z
D

h
− � ðdX½μðX ⌟ ð1ÞΔν�ρÞdXρÞ ∧ dð1ÞΔμν þ �ðdX½μð1ÞΔν�ρdXρÞ ∧ dð1ÞΔμν

i
¼
Z
D

�
− � ðdX½μdXν�Þ ∧ ½dð1ÞΔ; ðX ⌟ ð1ÞΔÞ�μν − 1

2
� ðdX½μdXν�Þ½ð1ÞΔ; dð1ÞΔ�μν

�

¼
Z
D

�
− � ðdX½μ ∧ dð1ÞΔν�ρdXρÞX ⌟ ð1ÞΔμν −

1
2
� ðdX½μdðdXν�ÞÞ ∧ ½ð1ÞΔ; ð1ÞΔ�μν

�
:

ðA12Þ

Thus,

Ωrad
D ¼

Z
D
�ðdX½μ ∧ Dð1Þfν�Þ ∧ Dð1ÞΔμν: ðA13Þ

APPENDIX B: ANGULAR MOMENTUM
CONSERVATION

In this appendix, we show that the local angular local is
conserved. The calculation simplifies by contracting the
local angular momentum with an a constant but otherwise
arbitrary soð1; 3Þ Lie algebra element ωμ

ν∶ dωμ
ν ¼ 0. We

define the two-form on spacetime:

J½ω� ¼ 1

2
TrðωJÞ ≔ −ð2P½μXμ� þ SμνÞωμν: ðB1Þ

Taking into account the Einstein equations (25) and
torsionless equation (26) at order n ¼ 2 in the region
Σ ¼ Σ −D, where ð1Þfμ ¼ 0, we obtain

dJμν ¼ 2P½μ ∧ dXν� − 2 � ðdX½μ ∧ dð2Þfν�Þ
¼ 2dX½μ ∧ dXτ ∧ �ð2ÞΔν�τ þ 2 � ðdX½μ ∧ ð2ÞΔν�τÞ ∧ dXτ:

ðB2Þ

Thus,

1

2
dJμνωμν ¼ −

1

2
εντρσdXμ ∧ dXτ ∧ ð2ÞΔρσων

μ −
1

2
εμνρσdXρ

∧ dXτ ∧ð2Þ Δσ
τω

μν: ðB3Þ

Using the SOð1; 3Þ invariance of the Levi-Civita
tensor, i.e.,

∀ λμν ∈ soð1; 3Þ∶ ετ½μνρλτν� ¼ 0; ðB4Þ

we immediately find dJ½ω� ¼ 0. Since ωμ
ν ∈ soð1; 3Þ is

arbitrary, we conclude

dJμν ¼ 0: ðB5Þ
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