
From complexity geometry to holographic spacetime

Johanna Erdmenger * and Anna-Lena Weigel†

Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of Excellence ct.qmat,
Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany

Marius Gerbershagen ‡

Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) and The International Solvay Institutes,
Pleinlaan 2, 1050 Brussels, Belgium

Michal P. Heller §

Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium

(Received 23 February 2023; accepted 12 September 2023; published 27 November 2023)

An important conjecture within the AdS=CFT correspondence relates holographic spacetime to the
quantum computational complexity of the dual quantum field theory. However, the quantitative under-
standing of this relation is largely an open question. In this work, to address this question we establish a map
between a computational complexity measure and its holographic counterpart from first principles. We
consider quantum circuits built out of conformal transformations in two-dimensional conformal field theory
and a complexity measure based on assigning a cost to quantum gates via the Fubini-Study distance. We find
a novel geometric object in three-dimensional anti–de Sitter spacetimes that is dual to this distance. This
duality also provides a more general map between holographic geometry of anti–de Sitter universes and
complexity geometry as defined in information theory, in which each point represents a state and distances
between states are measured by the Fubini-Study metric. We apply the newly found duality to the eternal
black hole spacetime and discuss both the origin of linear growth of complexity and the switchback effect
within our approach.
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I. INTRODUCTION

The question of assigning cost to state preparation in
holography [1–3] has received significant attention in
recent years, building on a conjecture by Susskind relating
cost assignment to black hole physics [4]. The focal notion
in this context has been computational complexity, a
quantity from quantum information counting how many
computation steps are necessary to prepare a certain target
state from a fixed reference state [5,6]. In chaotic systems
of finite size, computational complexity is expected to show
a number of features that are universal, in the sense that they
hold for any chaotic system and any reasonable definition
of complexity. These expected universal features were

conjectured to be related to geometric features of anti–de
Sitter (AdS) black hole geometries in [4]. They involve
the growth of the size of black hole interiors with time. In
line with the universality expectation, these features are
probed by many gravity observables. The most prominently
studied holographic complexity proposals are the so-called
“complexity ¼ volume” [4,7], “complexity ¼ action” [8,9],
and “complexity ¼ volume 2.0” [10] proposals. Recently,
an infinite class of such gravitational observables was put
forward under the slogan “complexity ¼ anything” [11,12].
Moreover, the holographic complexity proposals triggered
progress on computational complexity within quantum field
theory (QFT) (see [6] for a review). However, up to now the
relation to holographic complexity is restricted to qualitative
comparisons, due to the fact that soluble examples are either
free QFTs or models lacking control over either the
boundary or the bulk side.
The main result of our work is a general construction

method for gravity duals of the building blocks of computa-
tional complexity in QFT, that is quantum circuits and cost
functions. We propose for the first time a map between
computational complexity in conformal field theories
(CFTs) and a geometric object in the gravity theory that
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is constructed from first principles, with time evolution built
into the gravity dual in a Lorentz covariant way. This map
can be naturally applied to the most relevant case—AdS
black hole spacetimes and dual thermofield double (TFD)
states [13]. Conceptually, our approach extends the known
relation between information and geometry for finite Hilbert
spaces, as given by Nielsen’s realization [14] of discrete
complexity measures by group geodesics, to AdS=CFT.
Much of the previous work on computational complexity

in QFTs is based on the framework proposed by Nielsen
in [14] to bound complexity of discrete circuits using
differential geometry tools. Instead of counting discrete
gates that belong to the native quantum computing language,
in the Nielsen approach the circuit evolution proceeds in a
continuous manner by applying a path ordered exponential,

jψðτÞi ¼ P exp

�
i
Z

τ

0

dτ0Qðτ0Þ
�
jψð0Þi: ð1Þ

Different circuits performing the same task are distinguished
by a cost function F½jψðτÞi; QðτÞ� that measures how
expensive the application of QðτÞ onto the state jψðτÞi is.
Such a cost function can viewed as weighting components of
QðτÞ in a basis of generators of infinitesimal gates viewed as
ultimate circuit building blocks. The complexity is then
defined as the minimum of the total cost,

C ¼ min
Z

τf

0

dτF½jψðτÞi; QðτÞ�; ð2Þ

subject to the condition that they connect fixed reference
jψð0Þi and target jψðτfÞi states. A cost function F defines a
Finsler geometry [14] if it is smooth, positive, positively
homogeneous of degree one in its second argument and
obeys the triangle inequality. In this case, the target and
reference states are represented by manifold points and the
complexity by the length of the shortest path between them,
i.e. by the geodesic. The following question then arises
naturally:
How is this auxiliary complexity geometry for properly

understood circuits in holographic QFTs encoded in the
gravity dual description?
This important question is addressed in the present work.

There are three key conceptual problems that we have to
consider in view of answering this question: What is meant
by τ in holography? What constitutes a gate set in a QFT?
What QFT cost functions can be interpreted holographi-
cally? In our proposal we are guided by the observation that
the only interface to translate between the boundary and the
bulk comes from the identification of source terms in path
integrals in holographic QFTs with asymptotic boundary
conditions for bulk fields [2,3,15,16]. Therefore, it is
natural to identify the circuit parameter τ with the physical
time t at the boundary [17],

τ≡ t: ð3Þ

As a consequence, the circuit generator QðτÞ has to be
identified with the physical Hamiltonian HðtÞ,

QðτÞ≡HðtÞ: ð4Þ

Different QFT source configurations correspond to control-
lable modifications of the Hamiltonian obtained by adding
local primary operators. Therefore, these operators constitute
natural generators of the infinitesimal gates. Moreover,
constant t slices naturally define states. Considering such
slices therefore naturally introduces reference and target
states jψð0Þi and jψðτfÞi. This perspective on obtaining
gravity duals for a quantum circuits was outlined in our
previous work [17]. Here, we take the crucial further step of
connecting the gravity duals of quantum circuits with
notions of computational complexity.
We apply this general method to the example of a

computational complexity definition based on the
Fubini-Study distance as cost function. The Fubini-Study
distance is a natural distance measure in Hilbert space. For
two infinitesimally separated states jψi and jψi þ jδψi, it
takes the form,

ds2FS ¼
hδψ jδψi
hψ jψi −

hδψ jψihψ jδψi
hψ jψi2 : ð5Þ

The Fubini-Study distance is the unique Riemannian
metric on projective Hilbert space1 invariant under unitary
transformations [18]. The geodesic distance θ between two
states jψðt1Þi and jψðt2ÞiÞ for this metric is given by (see
Fig. 1)

cosðθÞ2 ¼ hψðt1Þjψðt2Þihψðt2Þjψðt1Þi
hψðt1Þjψðt1Þihψðt2Þjψðt2Þi

; ð6Þ

which implies that θ is bounded from above by π=2.
How can this ansatz define a nontrivial complexity

measure? The answer to this question relies on the fact
that due to restricting to Hamiltonians obtained by turning
on specific sources, we cannot move along some of the
directions in the Hilbert space and therefore the shortest
path is not necessarily a geodesic. In other words, by only
allowing directions corresponding to a subset of source
deformations in the QFT, we assign infinite cost to the other
Hilbert space directions. Moreover, we define the cost
function to be the square of the Fubini-Study line element,

1The projective Hilbert space arises from identifying jψi ∼
αjψi for α∈C, i.e. it is the space of properly normalized
physically indistinguishable Hilbert space elements.
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FFS ¼ ds2FS: ð7Þ

This is a slight departure from the formalism of [14], as it
implies that the cost function is not positively homogeneous
of degree one and hence does not define a Finsler metric in
our setup. However, similar notions of complexity associ-
ated to cost functions which are positively homogeneous of
degree greater than one were introduced into the computa-
tional complexity setup for QFTs in [19] with the justifi-
cation that it provides a better match to the “complexity ¼
volume” proposal2 (see also [22–24] for further discussion
on the merits and drawbacks of this choice). For us,
choosing the cost function as the square of the Fubini-
Study line element simplifies the dual bulk description
while also allowing for a complexity measure that fulfills
important properties postulated to hold for complexity
measures in the AdS=CFT setting, as we will see in the
following.
A key insight of our present work comes from recogniz-

ing that the holographic dictionary naturally provides
information about overlaps of states and, related to them,
correlation functions. The Fubini-Study cost function uti-
lizes precisely this information, as it reduces to the variance
of HðtÞ when applied to one layer of the circuit (1),

FFS ¼ hψðtÞjHðtÞ2jψðtÞi − hψðtÞjHðtÞjψðtÞi2: ð8Þ

This quantity was previously investigated in the computa-
tional complexity context in [17,20,21,25–28]. As HðtÞ is
a sum over integrals of local operators, the Fubini-Study
cost (8) is a linear combination of two-point functions in a
state jψðtÞi. Since there is a systematic holographic pro-
cedure for calculating two-point functions in any geometric
state, the Fubini-Study metric (8) is not only a natural choice
from the computational complexity point of view, but also
has a natural holographic realization. However, this bulk
realization is in general nontrivial: as the states of interest
are by construction time-dependent, it requires knowledge
of nonequilibrium two-point functions associated to an
evolving gravitational background. The dynamics of such
two-point functions can be studied, as was done for instance
in [29–31], but in general is accessible only via means of
numerical holography [32]. This makes the computation
of (8) rather challenging to pursue in a generic setup.
In our work we strive for more, namely for obtaining

access to such two-point functions just from the knowledge

of the geometry itself.3 This turns out to be possible for
circuits holographically represented by the pure gravity
sector of AdS3 holography. Such circuits are built from
insertions of the energy-momentum tensor in two-
dimensional CFT acting on an energy eigenstate or a TFD
state. Alternatively, we may view such circuits as realizing a
gradual change in the state via conformal transformations.
See [20,21,27,41–49] for earlier works on these circuits on,
respectively the field theory and gravity sides of the duality.
In particular, the authors of [48] studied Fubini-Study cost for
circuits implementing global conformal transformations in
d ≥ 2 and derived a bulk dual to the Fubini-Study metric for
this particular class of circuits.
Building on previous work [17], in the present paper we

map the Fubini-Study distance (8) along the boundary
circuit to a geometric quantity in the gravity theory using
the AdS=CFT dictionary. From a broader perspective, we
thus provide a precise relation between infinitely dimen-
sional complexity geometry associated with the Fubini-
Study cost studied in [20,21] and the holographic geometry
of AdS universes. The gravity expression we find applies to
all asymptotically AdS3 geometries without matter fields
dual to conformal transformations of the vacuum state and
excited as well as thermal states. This result opens up the
possibility for deriving further gravity duals of quantum
information quantities. It can be also thought of as a natural,
yet crucial generalization in the context of holographic
complexity of the previous AdS=CFT studies of distance
measures between states such as the Fisher information
metric [45,50–61].
Furthermore, we also investigate which features expected

from computational complexity in finite size chaotic systems
are reproduced by the Fubini-Study complexity measure that
we consider. In the perhaps most interesting case of the time-
evolved TFD state, we find a linear growth of complexity,
matching the expectations from [4]. To our knowledge, this
is the first time that this feature is found in a scenario where
both the bulk and boundary sides are under control and the
equality of both descriptions is derived from the AdS=CFT
dictionary. Moreover, we apply the gravity expression—that
we found to be dual to the Fubini-Study distance in bulk
geometries without matter fields—to a class of shock wave
geometries sourced by sharply concentrated bulk matter.
This reproduces a characteristic time delay in the growth of
complexity known as the switchback effect [7,62], a further
important feature of complexity in finite size systems.
However for the states dual to the shock wave geometries,
the Fubini-Study distance (8) is by definition constant in2In a restricted special case this also applies to the Fubini-Study

complexity: for states that are perturbative conformal transforma-
tions of the vacuum, the Fubini-Study complexity we are con-
sidering here was found to be proportional to a difference in
“complexity ¼ volume” between the vacuum and the target state
up to the third order in perturbation theory [17,20,21]. This
agreement would not hold if one were to use the Fubini-Study line
element instead of its square in the definition.

3Obtaining observables just from the geometry itself is possible
for one-point functions of local operators [2,3,15,16,33], Wilson
loops [34,35] and the fine-grained entropy [36–39]. In contrast,
the computation of higher Rényi entropies requires backreaction
[40] and hence these entropies are not encoded in the non-
backreacted geometry itself.
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time and hence cannot show any sign of the switchback
effect. Therefore, in this case our new geometric bulk
quantity is no longer dual to the Fubini-Study distance.
In summary, we have constructed a gravity observable

that satisfies the main features required for a holographic
complexity measure—linear growth and the switchback
effect—whose field theory dual is known for all geometries
without matter fields through a first principles derivation.
The outline of our paper is as follows. We start in Sec. II

with a review of the construction from [17] of the bulk dual
to a circuit of conformally transformed CFT states. In
Sec. III, we construct the bulk dual to the Fubini-Study
distance. The Fubini-Study complexity of the time-evolved
TFD state is studied in Sec. IV while Sec. V deals with the
question whether it can reproduce the switchback effect.
We close in Secs. VI and VII with a discussion and outlook.
In Appendix A, we comment on the differences between
our work and [48]. Appendix B corroborates our results on
the switchback effect discussed in Sec. V by studying it in
different shock wave geometries.

II. SETUP: HOLOGRAPHIC DUAL
TO QUANTUM CIRCUITS

As outlined in the Introduction, studying holographically
circuits generated by arbitrarily smeared local operators in
holographic QFTs is of key importance for providing a
microscopic understanding of holography of complexity.
The simplest available setting is the energy-momentum
sector of two-dimensional holographic conformal field
theories, which generate (in general, local) conformal
transformations. In [17], we presented a general prescription
for constructing an exact gravity dual for quantum circuits
generated by conformal transformations. Here, we briefly
review these results, as they allow us to study explicitly the
gravity dual to the Fubini-Study cost and, in the eternal
black hole geometry, also to the associated complexity.
We consider a two-dimensional CFT in the standard

Euclidean framework obtained by analytic continuation
t → it from Lorentzian signature. In two dimensions,
conformal transformations generate two copies of the
Virasoro group whose group elements are orientation
preserving diffeomorphisms,

z → fðzÞ; ð9Þ

of the complex coordinate z ¼ tþ iϕ where t is the time
coordinate and ϕ∈ ½0; 2πÞ the angular coordinate. In this
setup, the quantum circuit we consider corresponds to a path
fðτ; zÞ through the space of diffeomorphisms. As a function
of the parameter τ, fðτ; zÞ determines the conformal trans-
formation that when applied onto the reference state jψð0Þi
yields the state jψðτÞi. Infinitesimal changes fðτ; zÞ →
fðτ þ dτ; zÞ along the path are generated by [27,41]

QðτÞ ¼
Z

2π

0

dϕ
2π

ϵðτ; zÞTðzÞ ¼
X∞
n¼−∞

ϵ−nðτÞLn: ð10Þ

Here, TðzÞ ¼Pn Lnenz is the energy-momentum tensor
with Virasoro generators Ln obeying the venerable Virasoro
algebra,

½Ln; Lm� ¼ ðn −mÞLnþm þ c
12

ðn3 − nÞδnþm;0; ð11Þ

and ϵðτ; zÞ admits the Fourier expansion ϵðτ; zÞ ¼P
n ϵnðτÞenz. The infinitesimal diffeomorphism z → zþ

ϵðτ; zÞ is related to the path fðτ; zÞ by the multiplication law
of the Virasoro group, giving

ϵðτ; fðτ; zÞÞ ¼ d
dτ

fðτ; zÞ: ð12Þ

There are two ways to interpret this circuit gravitation-
ally depending on whether the variable τ is taken to be an
external auxiliary parameter or identified with the physical
time. In the former case, each value of τ is associated to a
different bulk geometry where for all τ, the state jψðτÞi
lives on the same time slice in physical time (say at t ¼ 0)

FIG. 1. Illustration of the map between a distance measure in the
complexity geometry on the left and a geometric object in the
asymptotically AdS spacetime on the right. Any two states
jψðt1Þi; jψðt2Þi can be put on a Bloch sphere spanned by
jψðt1Þi and an orthogonal state jχi obtained by subtracting from
jψðt2Þi the part parallel to jψðt1Þi, i.e. jψðt2Þi ∝ jχi þ
hψðt1Þjψðt2Þijψðt1Þi. The geodesic distance for the Fubini-Study
metric between jψðt1Þi and jψðt2Þi is then the angle θ on this
Bloch sphere. These two states live on different time slices at the
boundary of the same AdS geometry shown on the right-hand side.
The infinitesimal distance in the complexity geometry on the left
between the states jψðt1 ¼ tÞi and jψðt2 ¼ tþ dtÞi manifests
itself as a geometric object in the AdS space on the right.
Therefore, the total cost also acquires a geometric dual localized
in between the two time slices t ¼ 0 and t ¼ tf in the AdS space.
For optimal circuits, this geometric object becomes a gravity dual
to the complexity.
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on the AdS boundary. For conformal transformations acting
on pure states of the CFT, these bulk geometries are
Bañados geometries. On the other hand, if the parameter
τ is identical to the physical time t, the states jψðτÞi live on
different time slices on the boundary of the same asymp-
totically AdS spacetime (see Fig. 1). In this case, the
nontrivial time evolution is generated by turning on a
source term for the energy-momentum tensor in the path
integral picture. It is the latter picture that we will use in the
following.
Let us now describe in more detail how to obtain the

correct source term for a given circuit determined by
the path fðt; zÞ. As the energy-momentum tensor on the

boundary is sourced by the boundary metric gð0Þij , we need
to consider the CFT on a nontrivial background metric.
This background metric is nontrivial but fixed, and thus
this procedure does not lead to the introduction of
dynamical gravity on the boundary. The exact form of
the background metric is determined by demanding that
the physical Hamiltonian HðtÞ and the sum of the left- and
right-moving conformal transformation generators QðtÞ
and Q̄ðtÞ are equal,

HðtÞ ¼
Z

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgð0ÞÞ

q
Tt

t ¼! QðtÞ þ Q̄ðtÞ: ð13Þ

This condition ensures that the sequence of states gen-

erated by time-evolution in the background gð0Þij is the
same as the sequence of states generated by the path
ordered exponential (1) together with its right-moving
counterpart.
The solution of (13) is given as follows. At t < 0,

before the circuit begins acting, the background metric
for the CFT is given by ds2ð0Þ ¼ dzdz̄ and the Hamiltonian

is the standard CFT Hamiltonian HðtÞ ¼ L0 þ L̄0. For
0 ≤ t ≤ tf, the circuit implements non-trivial conformal
transformations. In this time range, the boundary metric is
given by

ds2ð0Þ ¼
�
∂f
∂z

��
∂f̄
∂z

�
dz2 þ

��
∂f
∂z

��
∂f̄
∂z̄

�

þ
�
∂f
∂z̄

��
∂f̄
∂z

��
dzdz̄þ

�
∂f
∂z̄

��
∂f̄
∂z̄

�
dz̄2;

0 ≤ t ≤ tf; ð14Þ

where the derivatives acting on f ≡ fðt; zÞ and f̄ ≡ f̄ðt; z̄Þ
in this expression are all nonvanishing because t ¼ ðzþ
z̄Þ=2 depends implicitly on z and z̄. Note that the metric
in (14) is flat. This property, which is special to two
dimensions, means that the nontrivial time-evolution we
are after is obtained simply by deforming the timelike

slices on which the states are defined.4 Finally, at time
t > tf we have arrived at the target state. In this range of
the time coordinate the function fðt; zÞ ¼ fðtf; zÞ is
independent of t and the metric (14) reduces to5

ds2ð0Þ ¼
�
∂fðtf; zÞ

∂z

��
∂f̄ðtf; z̄Þ

∂z̄

�
dzdz̄; t > tf: ð17Þ

Finally, in order to obtain the bulk metric we employ the
Fefferman-Graham expansion [63,64],

ds2 ¼ dr2

r2
þ
�
1

r2
gð0Þij þ gð2Þij þ r2gð4Þij

�
dxidxj; ð18Þ

where

gð2Þij ¼ −
1

2
Rð0Þgð0Þij −

6

c
hTiji and

gð4Þij ¼ 1

4
ðgð2Þðgð0ÞÞ−1gð2ÞÞij: ð19Þ

Unlike in higher dimensions, the Fefferman-Graham expan-
sion truncates, and therefore the expression (18) is valid for
all r. The energy-momentum tensor expectation values
in (19) are determined from the expectation values hTiji
in the background ds2ð0Þ ¼ dzdz̄ by the same coordinate

transformation z → fðt; zÞ; z̄ → f̄ðt; z̄Þ that leads to the
expression (14) for the boundary metric. For example, for

4The fact that we can restrict to flat metrics can be justified as
follows. An arbitrary curved metric in two dimensions can be
written as a Weyl transformation e−2ωds2ð0Þ of a flat metric. Under
this transformation, the energy-momentum tensor acquires an
additional term which is constant, i.e. proportional to the identity
operator,

Tij → Tij þ
c
6

�
∂iω∂jω −

1

2
gð0Þij ∂

kω∂kω −∇ð0Þ
i ∇ð0Þ

j ω

þ gð0Þij ∇k
ð0Þ∇ð0Þ

k ω

�
: ð15Þ

Therefore, also the Hamiltonian HðtÞ changes by a constant term
under this transformation. However, the circuit Hamiltonians
QðtÞ and Q̄ðtÞ do not include any terms proportional to the
identity operator, thereby allowing us to exclude curved back-
ground metrics.

5It is possible to transform back to a frame in which the metric
is ds2ð0Þ ¼ dzdz̄ by applying a residual flatness preserving Weyl
transformation,

ds2ð0Þ → e−2ωds2ð0Þ ¼
1

f0ðtf; Fðtf; fðt; zÞÞÞ
ds2ð0Þ; ð16Þ

where f0ðt; zÞ denotes the derivative with respect to the second
argument. Since this transformation leaves the final state invariant
up to an overall phase factor, it is not strictly necessary, and we
will omit it in the following.
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a sequence of states jψðtÞi given by conformal transforma-
tions of the vacuum state, the expectation values in the
background ds2ð0Þ ¼ dzdz̄ are given by hTzzi ¼ hTz̄ z̄i ¼
−c=24, hTzz̄i ¼ 0 and transform to

hTzzi ¼ −
c
24

��
∂f
∂z

�
2

þ
�
∂f̄
∂z

�
2
�
;

hTz̄ z̄i ¼ −
c
24

��
∂f
∂z̄

�
2

þ
�
∂f̄
∂z̄

�
2
�
;

hTzz̄i ¼ −
c
24

��
∂f
∂z

��
∂f
∂z̄

�
þ
�
∂f̄
∂z

��
∂f̄
∂z̄

��
ð20Þ

in the background (14). This procedure yields a bulk dual to
the quantum circuit generated by QðtÞ and Q̄ðtÞ, in which
the entire circuit is encoded in the evolution of a single bulk
geometry.

III. HOLOGRAPHIC DUAL
TO FUBINI-STUDY DISTANCE

The goal of this section is to derive the gravitational dual
to the Fubini-Study distance (5) in the circuit construction
described in Sec. II. From a high level point of view, this
crucial step provides a bridge between an auxiliary circuit

geometry defined in terms of the boundary quantities and
the bulk geometry of AdS.
We will construct this gravity dual using techniques

inspired by mathematical tools from integral geometry
known under the name of kinematic space [65]. In our
setup the kinematic space is the space of all geodesics
anchored on the asymptotic boundary.6 This auxiliary space
has been used previously to reformulate geometric objects in
asymptotically AdS3 spaces as functionals on the kinematic
space; see e.g. [66–77]. In particular, complexity measures
outside the realm of complexity geometry have been
explored in the context of the kinematic space in [78,79].
By the Ryu-Takayanagi formula, which associates the length
of the geodesics in the kinematic space with the CFT
entanglement entropy, the kinematic space formulation of
the problem allows a derivation of duals to bulk geometric
objects in terms of boundary entanglement data. Here, we
will do the reverse: we will use the kinematic space to map
the Fubini-Study cost function (5)—a boundary quantity—
to a geometric object in the bulk defined by its formulation
as a kinematic space functional.
Let us first describe the kinematic space in more detail.

Each geodesic is specified by its two end points ðz1; z̄1Þ and
ðz2; z̄2Þ. The length of this geodesic in our geometry dual to
a quantum circuit is given by

l ¼ log

�
sinððfðt2; z2Þ − fðt1; z1ÞÞ=2Þ sinððf̄ðt2; z̄2Þ − f̄ðt1; z̄1ÞÞ=2Þ

ϵ2UV

�
; ð21Þ

where f; f̄ parametrize the conformal transformations
which define the circuit and ϵUV is a UV cutoff.
The goal is now to find a relation between the geodesic

length l and the two-point function of the Hamiltonian
density whose integral gives the Fubini-Study cost function
(8). For the trivial circuit fðt; zÞ ¼ z, f̄ðt; z̄Þ ¼ z̄, it is easy
to express connected two-point correlators of the energy-
momentum tensor in terms of l,

hTðz1ÞTðz2Þi ¼
c
32

1

sinððz1 − z2Þ=2Þ4
¼ c

2
ð∂z1∂z2lÞ2: ð22Þ

This leads to the following connected two-point function of
the Hamiltonian density:

hHðz1; z̄1ÞHðz2; z̄2Þi ¼ hTðz1ÞTðz2Þi þ hT̄ðz̄1ÞT̄ðz̄2Þi
¼ c

2
½ð∂z1∂z2lÞ2 þ ð∂z̄1∂z̄2lÞ2�

¼ c
4
½ð∂ϕ1

∂t2lÞð∂t1∂ϕ2
lÞ

þ ð∂ϕ1
∂ϕ2

lÞð∂t1∂t2lÞ�: ð23Þ

For our circuit we have to allow arbitrary f and f̄. In this
case, after some algebra we find the following relation

between the connected two-point function of the
Hamiltonian density H and the geodesic length l:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þðt1;ϕ1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þðt2;ϕ2Þ

q
hHðt1;ϕ1ÞHðt2;ϕ2Þi

¼ ∂ϕ1
f1∂t1f1∂ϕ2

f2∂t2f2hTðf1ÞTðf2Þi
þ ∂ϕ1

f̄1∂t1 f̄1∂ϕ2
f̄2∂t2 f̄2hT̄ðf̄1ÞT̄ðf̄2Þi ¼ F bulk; ð24Þ

where

F bulk ¼
c
4

�
ð∂ϕ1

∂ϕ2
lÞð∂t1∂t2lÞ þ ð∂ϕ1

∂t2lÞð∂t1∂ϕ2
lÞ

−
1

2
gð0Þt1ϕ1

gð0Þt2ϕ2
gijð0Þðt1;ϕ1Þgklð0Þðt2;ϕ2Þð∂i∂klÞð∂j∂llÞ

�
:

ð25Þ

Therefore, we have found a bulk dual to the Fubini-Study
cost function,

6Note that this includes winding geodesics if the spacetime has
nontrivial topology; see Fig. 2.
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FFSðtÞ ¼
Z

dϕ1

Z
dϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þðt;ϕ1Þ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þðt;ϕ2Þ

q
hHðt;ϕ1ÞHðt;ϕ2Þi

¼ FbulkðtÞ ¼
Z

dϕ1

Z
dϕ2F bulk; ð26Þ

expressed in terms of geodesic lengths. This mapping
between a natural measure of distance between states
and a purely geometric object in the bulk is our first main
technical result. As (26) was derived from the AdS=CFT
dictionary, it is valid for any quantum circuit built out of
conformal transformations. Note that despite the geodesic
length l being UV divergent, (26) is UV finite. This is to be
expected, since applications of exponents of smeared local
operators (in our case, the energy-momentum tensor) are
not expected to alter the ultraviolet behavior of the states.
Indeed, the Fubini-Study distance was shown in [20,21] to
exhibit UV finiteness for the circuits used here.7

Interestingly, the volume V of a constant time slice of
pure AdS3 from the “complexity ¼ volume” proposal can
be also obtained from the kinematic space formulation in
the trivial circuit fðt; zÞ ¼ z, f̄ðt; z̄Þ ¼ z̄. It is given by a
formula similar to (26) [75,76],

V ¼
Z

dϕdρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gindðϕ;ρÞ

p
∝
Z

dϕ1

Z
dϕ2l∂ϕ1

∂ϕ2
l; ð27Þ

where gind is the induced metric on the constant time slice
in the bulk and ρ the AdS3 radial coordinate. Both (27)
and (26) are quadratic in the geodesic length l but differ in
the structure of derivatives applied to l. Because l appears
without a derivative in (27), the volume is UV divergent.

A. Conical defects

In fact, while we have derived the formula (26) only for
circuits comprising states that are conformal transformations

of the vacuum state, it applies to a much wider set of cases.
In particular, we find that (26) also holds for conformal
transformations of primary states with conformal weight
h ¼ c

24
ð1 − 1=n2Þ where n∈N. For excited primary states,

the connected two-point function of the energy-momentum
tensor is given by

hhjTðz1ÞTðz2Þjhi ¼
c
32

1

sinððz1 − z2Þ=2Þ4

−
h
2

1

sinððz1 − z2Þ=2Þ2
: ð28Þ

These states are dual to conical defects arising from a Zn
identification of pure AdS3. In this spacetime, there are n
geodesics connecting two boundary points ðt1;ϕ1Þ, ðt2;ϕ2Þ
with winding numbers w ¼ 0;…; n − 1 (see Fig. 2) and
length,

lw ¼ log

�
sin ððfðt2; z2Þ − fðt1; z1Þ þ 2πwÞ=2nÞ sin ððf̄ðt2; z̄2Þ − f̄ðt1; z̄1Þ − 2πwÞ=2nÞ

ϵ2UV

�
; ð29Þ

Therefore, the kinematic space consists of n sectors with
fixed winding number w and to obtain a bulk dual to the
connected two-point function of the Hamiltonian density,
we have to sum over all w,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þðt1;ϕ1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þðt2;ϕ2Þ

q
hhjHðt1;ϕ1ÞHðt2;ϕ2Þjhi

¼ ∂ϕ1
f1∂t1f1∂ϕ2

f2∂t2f2hhjTðf1ÞTðf2Þjhi þ ðc:cÞ

¼
Xn−1
w¼0

c
4

�
ð∂ϕ1

∂ϕ2
lwÞð∂t1∂t2lwÞ þ ð∂ϕ1

∂t2lwÞð∂t1∂ϕ2
lwÞ

−
1

2
gð0Þt1ϕ1

gð0Þt2ϕ2
gi1j1ð0Þ g

k2l2
ð0Þ ð∂i1∂k2lwÞð∂j1∂l2lwÞ

�
: ð30Þ

Inserting this into (26) yields again a geometric expression
for the Fubini-Study cost function (8). This determines the

FIG. 2. Boundary anchored geodesics making up the kinematic
space for the AdS3 geometry dual to a conformally transformed
vacuum state on the left and the Z3 conical defect dual to an
excited state on the right.

7To be precise, it is necessary to choose a regularization
procedure for the integral around the point ϕ1 ¼ ϕ2 where the
two energy-momentum tensor insertions collide [20,21]. This
regularization is implicit in writing the Fubini-Study distance as
the integral over local operators and does not affect the final
result.
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gravity dual to the Fubini-Study distance for any two pure
states related by conformal transformations (i.e. any two
states in the same Verma module).

B. BTZ black holes

Apart from conical defects, the expression (26) also
correctly reproduces the connected two-point function of
the Hamiltonian in a thermal state dual to a BTZ black hole
or the TFD state,

jTFDðtÞi ¼ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

n

e−iEnte−βEn=2jEniLjEniR; ð31Þ

dual to the two-sided BTZ geometry, where the sum runs
over all energy eigenstates. In this case, there are multiple
geodesics to consider. The length of a geodesic stretching
between two-points on the asymptotic boundary of the one-
sided BTZ black hole is given by

l ¼ log

�
coshð2πðϕ1 − ϕ2Þ=βÞ − coshð2πðt1 − t2Þ=βÞ

ϵUV

�
;

ð32Þ

while geodesics between two different asymptotic boun-
daries in the maximally extended two-sided BTZ geometry
have length,

l ¼ log

�
coshð2πðϕ1 − ϕ2Þ=βÞ þ coshð2πðt1 þ t2Þ=βÞ

ϵUV

�
:

ð33Þ

For geodesics with winding numbers, simply set
ϕ1 − ϕ2 → ϕ1 − ϕ2 þ 2πw. Applying (24) and (25), inte-
grating over ϕ1 and ϕ2 as well as summing over all possible
winding numbers8 leads also in this case to a result
proportional to the thermal two-point function,

hH2iβ − hHi2β ¼
∂
2
βZðβÞ
ZðβÞ −

�
∂βZðβÞ
ZðβÞ

�
2

¼ 2cπ2

3β3
; ð34Þ

where ZðβÞ ¼ Tr½e−βH� ¼ exp ð c
12

4π2

β Þ is the thermal parti-
tion function. For the two-sided black hole, the Hamiltonian
H ¼ HL þHR is the sum of the two Hamiltonians on the
left and right asymptotic boundaries and its connected two-
point function in the TFD state is given by four times the
result of (34). In the bulk, these four contributions come
from the four possibilities of placing boundary points
ðϕ1; t1Þ, ðϕ2; t2Þ on the two asymptotic boundaries.

We note two small subtleties concerning this result. First,
in the case where the integral in (26) runs over the end
points of geodesics on the same asymptotic boundary, the
integral is formally divergent due to infinities at colliding
operator insertion points where ϕ1 ¼ ϕ2. A consistent
result is obtained through regularization. By restricting
ϕ1 − ϕ2 to be greater than some value ϵ̃ we obtain a result
where the two-point function of the Hamiltonian emerges at
order Oðϵ̃0Þ. Second, in the case where the integral runs
over geodesic lengths on different asymptotic boundaries,
the time derivatives in (25) have to be taken with respect
to the Killing time which is given by t1, respectively −t2, on
the left, respectively right, asymptotic boundary in order to
obtain the correct sign.
In summary, we have found a geometric dual, expressed

in terms of geodesic lengths, to the Fubini-Study distance
between two states related by infinitesimal time-evolution.
This expression applies to all asymptotically AdS3 space-
times without bulk matter fields, i.e. Bañados geometries
corresponding to conformal transformations of the vacuum
state as well as excited primary states and the BTZ black
hole corresponding to a thermal state. This maps a cost
function of a field theory complexity measure into a purely
geometric quantity in the dual field theory, opening the
door to studying gravity duals to computational complexity
from first principles.

IV. FROM COST TO COMPLEXITY

So far, we have discussed the map between the boundary
cost and bulk geometry. With complexity arising from the
optimization of the cost, as encapsulated by Eq. (2), in the
present section we want to apply our framework to study
bulk complexity completely ab initio.
The main question we are aiming to answer is the

following. It has been conjectured that the computational
complexity in quantum systems which describe AdS black
holes evolves universally (i.e. for any reasonable definition
of complexity) in a particular way with time. It is supposed
to increase linearly until an exponentially long timescale in
the black hole entropy S, saturates over a duration of a
doubly exponentially long timescale until it decreases again
at the quantum recurrence time trec and the process starts
anew [4,7,80,81].9 We illustrate this expectation in Fig. 3.
Our goal for this section is to study which of these features
can be reproduced in our approach.
To answer this question, let us first compute the

total cost,

FFS;totðtÞ ¼
Z

t

0

dt0FFSðt0Þ ð35Þ

8The sum over winding numbers is equivalent to integrating
χ ¼ ðϕ1 þ ϕ2Þ=2 from 0 to 2π and ψ ¼ ðϕ1 − ϕ2Þ=2 from 0
to ∞.

9See also [82,83] for a proof for randomized quantum circuits
with a finite number of qubits and [28,84] for a bulk quantum
generalization of the “complexity ¼ volume” proposal that
exhibits a plateau at very late times.
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for a particular circuit that computes the time-evolved TFD
state jTFDðtÞi dual to the BTZ black hole in question,
without minimizing over different circuits to obtain the
complexity. The results for FFS;tot then provide an upper
bound for the complexity. There is one particular circuit for
which this is particularly easy to do this and that is the time
evolution of the BTZ black hole itself where jTFDðtÞi is
created simply by ordinary time evolution with H ¼ HL þ
HR andHL;R ¼ L0 þ L̄0 from the reference state jTFDð0Þi.
In that case we indeed find a linear increase with t in
FFS;totðtÞ due to FFSðtÞ being constant in t. Therefore, if the
conjecture on the linear increase of complexity is true, then
the optimal circuit for constructing the time-evolved TFD
state is not far away from ordinary time evolution for less
than exponential times.
Similar arguments lead to the dip at the recurrence time.

By also allowing circuits which time evolve reversely (i.e.
evolution with −H instead of H) it is obvious that the
complexity is upper bounded by

CFSðtÞ ≤ min

�Z
t

0

dt0FFSðt0Þ;
Z

trec

t
dt0FFSðt0Þ

�
; ð36Þ

and therefore must decrease to zero again at t ¼ trec.
To show that ordinary time evolution is indeed optimal,

we now optimize the total cost over all circuits that connect
jTFDð0Þi with jTFDðtÞi via applying conformal trans-
formations,

CFSðtÞ ¼ minFFS;totðtÞ: ð37Þ

The minimization procedure proceeds by performing a
variation of FFS;totðtÞ with respect to fðt; zÞ and solving
the resulting equations of motion to determine the path
fðt; zÞ of least total cost. For simplicity, we restrict to
conformal transformations acting only on one boundary of
the wormhole.10

The Fubini-Study cost function in this situation of
interest is given by

FFSðtÞ ¼ hψðtÞjQðtÞ2jψðtÞi − hψðtÞjQðtÞjψðtÞi2
¼ hTFDð0ÞjQ̃ðtÞ2jTFDð0Þi
− hTFDð0ÞjQ̃ðtÞjTFDð0Þi2: ð38Þ

Here, the circuit Hamiltonian QðtÞ is defined in (10) while
Q̃ðtÞ is its conformal transformation defined by letting the
path ordered exponential from (1) act on QðtÞ instead of
jTFDð0Þi in (38). From the well-known transformation law
of the stress-energy tensor, Q̃ðtÞ can be written as

Q̃ðtÞ ¼
Z

dϕ

�
1þ ḟðt; zÞ

f0ðt; zÞ
��

TðzÞ − c
12

ff; zg
�
; ð39Þ

using ϵðt; zÞ ¼ ḟðt; Fðt; zÞÞ þ f0ðt; Fðt; zÞÞ from (12). The
notation is such that Fðt; zÞ is the inverse of fðt; zÞ, i.e.
fðt; Fðt; zÞÞ ¼ z, while ḟ is the derivative with respect to
the first argument of f and f0 the one with respect to the
second argument. The thermal two-point function of the
energy-momentum tensor can be obtained by the conformal
Ward identity [86],

hTFDð0ÞjTðz1ÞTðz2ÞjTFDð0Þi

¼ c
24

℘00
�
z1 − z2
2π

�
þ 2

2πi∂τZðτÞ
ZðτÞ

 
℘

�
z1 − z2
2π

�
þ 2η1

!

þ ð2πi∂τÞ2ZðτÞ
ZðτÞ −

�
2πi∂τZðτÞ

ZðτÞ
�

2

; ð40Þ

where ZðτÞ is the (holomorphic part of) the partition
function and ℘ðzÞ denotes the Weierstraß elliptic function
with associated parameter η1. From periodicity in ϕ, it is
clear that the Fubini-Study cost must be of the form,

FFS ¼
X
n≥0

αnγnγ−n; ð41Þ

where γn are the Fourier coefficients of γ ¼ 1þ ḟ=f0. The
αn prefactors are non-negative since FFS is a positive
quantity (if αm were negative for some m ≥ 0, FFS could
become negative as well when γm ≫ γn≠m). The explicit
form of αn can be derived from (40),11 but we will not be
need it and therefore leave αn as an unspecified non-
negative number in the following discussion.

FIG. 3. Time evolution of computational complexity as con-
jectured by [4].

10Note that coupling the both boundaries/the both underlying
quantum field theories, as, for example, in [23,85], goes signifi-
cantly beyond the algebraic setup of ours.

11For completeness, we note that the ϕ integrals which have to
be evaluated in order to compute αn need to be regularized due to
singularities of the two-point function (40) at coincident insertion
points z1 ¼ z2. This can be achieved for instance using differential
regularization as in [20]. By writing ℘ððz1 − z2Þ=2Þ þ 2η1 ¼
2π2

P
m∈Z ∂ϕ1

∂ϕ2
log sinh2ððz1 − z2 þ 2πimτÞ=2Þ and shifting

the ∂ϕ1
∂ϕ2

derivatives onto the γ prefactors using partial integra-
tion while neglecting the boundary terms, the integral is well-
defined, and it can be explicitly seen that αn is non-negative.
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Then, inserting (41) into (35) and varying with respect to
fn, the Fourier coefficients of f, determines the optimal
path with minimum total cost. To solve the resulting
equations of motion we expand in a perturbation parameter
σ, fðt; zÞ ¼ zþ σfð1Þðt; zÞ þ σ2fð2Þðt; zÞ þOðσ3Þ. Written
in a polar decomposition for the Fourier coefficients

fðkÞn ðtÞ ¼ jfðkÞn ðtÞjeiθðkÞn ðtÞ, this gives to leading order in σ
the equations of motion,

f̈ð1Þ0 ¼ 0 for n ¼ 0

α0n∂tjfð1Þn j2 ¼ 0; αnjf̈ð1Þn j þ 2α0nθ̇
ð1Þ
n jfð1Þn j ¼ 0

for n > 0: ð42Þ

For the target state jTFDðtfÞi, the boundary conditions for
these equations are fðt ¼ 0Þ ¼ fðt ¼ tfÞ ¼ z. Therefore,

we find from (42) that fð1Þn ¼ 0 for all n. As the first order
contribution in σ to fðt; zÞ vanishes, we deduce that the
second order contribution vanishes as well (simply replace

σ2 → σ to get the same equation of motion for fð2Þn as for

fð1Þn ). Hence, order by order in perturbation theory we find
that time evolution by nontrivial conformal transformations
is more expensive in our setup than ordinary time evolution
with H ¼ L0 þ L̄0. Thus, the computational complexity
increases or decreases linearly in the regime where pertur-
bation theory is applicable, i.e. at times close to zero or
close to a multiple of the recurrence time.
In the complexity geometry picture of [14], contribu-

tions which might be invisible in perturbation theory can in
particular appear at conjugate points in the complexity
geometry. In previous studies of computational complexity
in chaotic systems, the appearance of conjugate points
has lead to a saturation of computational complexity; see
e.g. [87–89]. In our setup, the notion of conjugate points
on a geodesic in a Finsler geometry as used by [14] is not
applicable because the squared Fubini-Study distance is
positively homogeneous of degree two under H → αH
instead of degree one as required for a Finsler metric.
Nevertheless, similar effects which our perturbative cal-
culation cannot capture might still lead to a saturation in
our case.

V. THE FUBINI-STUDY COST FUNCTION
AND THE SWITCHBACK EFFECT

Given that the bulk dual to the Fubini-Study cost derived
in Sec. III in the BTZ geometry correctly reproduces the
thermal two-point function, we now study what happens if
bulk matter fields enter the picture. In particular, we
investigate BTZ geometries perturbed by adding shock
waves. In this situation computational complexity shows a
striking time dependence where an exponential growth
regime turns into a linear one at the scrambling time, a
phenomenon known as the switchback effect [7,62].

We find that the geometric expression Fbulk from
Eq. (25), which we found to be dual to the Fubini-Study
distance, is sensitive to the switchback effect but that the
Fubini-Study cost is not. This shows that the equality
between the Fubini-Study distance and Fbulk is not appli-
cable to geometries sourced by bulk matter fields (and
indeed there is no reason to expect it to). Nevertheless, the
fact that Fbulk can probe the switchback effect implies that
this quantity shows the features generally expected from a
cost function for a holographic complexity measure [11,12]:
linear growth at late times in the BTZ wormhole geometry
and an imprint of the switchback effect [4,7,62].
Let us now briefly review the switchback effect on the

field theory side. In the computational complexity setup,
the perturbation generating the shock wave in the dual
bulk picture is implemented by applying a precursor
operator which in the Schrödinger picture is given by
U†ðtWÞWUðtWÞ. The standard, discrete gate-counting
complexity of this operator on its own can be estimated
by a simple infection model [7,81]. In this model, the
operatorW acts on a single qubit and is counted as a single
gate. The complexity of the precursor U†ðtWÞWUðtWÞ is
then given by one plus the number of gates in U†ðtWÞ and
UðtWÞ minus the number of gates that cancel between
U†ðtWÞ and UðtWÞ. How many such cancellations occur is
determined by an infection model: by acting with W on a
qubit, this qubit becomes infected and the infection
spreads throughout the quantum system when an infected
qubit couples to a noninfected one by two- or more qubit
gates in UðtWÞ. Gates inside UðtWÞ and U†ðtWÞ cancel if
they act on noninfected qubits. This leads to a complexity
of the precursor operator given by [7,81]

C ∝ K log ð1þ e
2π
β ðtW−t�ÞÞ; ð43Þ

where K is the number of qubits and t� is the scrambling
time, given by t� ¼ β

2π log c in two-dimensional CFTs [90].
There is a characteristic time delay in the complexity
growth: for W ≠ 1 there is first an exponential increase in
tW for small tW followed by a linear growth regime.12

In the context of two-dimensional conformal field
theories, the operator W is taken to be a heavy primary
operator whose insertion at t ¼ tW → −∞ leads to a null
shock wave propagating along the horizon [90]. On the
gravity side, the computational complexity of the precursor
is then estimated by applying one of the holographic

12It is important to note that this behavior is observed for
the tW dependence, the parameter of the precursor. The model
does not capture subsequent time evolution UðtÞjψð0Þi ¼
UðtÞU†ðtWÞWUðtWÞjTFDð0Þi occurring after the precursor
has been applied onto the TFD state, and hence the complexity
is only the complexity of the precursor operator itself.
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complexity proposals13 which shows the same time-
evolution behavior (43) as obtained from the infection
models described above. This has been derived for the
“complexity ¼ volume” proposal in [7] and for the
“complexity ¼ action” proposal in [8,9]. This property
also holds by construction for the infinite families of
holographic complexity measures proposed in [11,12], as
it is one of their two defining features.
However, for the field theory quantity that we are

considering—the Fubini-Study cost (8) and its time integral
(35)—it is clear that (43) cannot be reproduced. It is easy to
see14 that the Fubini-Study distance between the state
jψi ¼ U†ðtWÞWUðtWÞjTFDð0Þi and the state eiHdtjψi is
independent of tW . In fact, this argument showing that
expectation values hψ jOjψi are independent of tW holds for
any operator O that is diagonal in the energy eigenbasis.
The independence of the Fubini-Study distance of tW
should not come as a surprise, as the switchback effect
is expected to follow from locality, whereas the Fubini-
Study cost does not account for it explicitly.15

Nevertheless, the geometric expression Fbulk obtained in
Sec. III—which for bulk geometries without matter fields is
equal to the Fubini-Study cost function—reproduces the
switchback effect as we will show below. This makes clear
that this expression is not dual to the Fubini-Study cost
function for the perturbed TFD states.
We now come to the gravitational calculation of Fbulk in

the shock wave geometries. The shock wave geometries we
consider are given by portions of BTZ geometries glued
together along null surfaces [91]. For a shock wave moving
from the bottom left to the top right in the Penrose diagram,
in Kruskal coordinates a point ðu ¼ 0; v;ϕÞ on one side is
identified with ðu ¼ 0; vþ hðϕÞ;ϕÞ on the other side
where the displacement hðϕÞ depends on the exact form
of the bulk matter concentration that sources the shock
wave. We will consider bulk matter that is concentrated
along the horizon at u ¼ 0 in Kruskal coordinates as well as
localized at ϕ ¼ ϕ̂ in the angular direction similar to the
setup in [92]. The periodicity ϕ ∼ ϕþ 2π requires the bulk
energy-momentum tensor to be given by

Tuu ¼
α

2πGN

X
n∈Z

δðuÞδðϕ − ϕ̂þ 2πnÞ: ð44Þ

while the other components of Tμν vanish. The parameter,

α ¼ 2 exp

�
−
2π

β
ðtW − t�Þ

�
; ð45Þ

determines the strength of the shock [7]. Solving Einstein’s
equations gives a metric of the form,

ds2 ¼ −
4

ð1þ uvÞ2 dudvþ r2H
ð1 − uvÞ2
ð1þ uvÞ2 dϕ

2

þ 4δðuÞhðϕÞdu2; ð46Þ

where the displacement along the horizon at u ¼ 0 is
given by

v → vþ hðϕÞ with

hðϕÞ ¼ α
coshðrHðjϕ − ϕ̂j − πð2n − 1ÞÞÞ

sinhðrHπÞ
;

πðn − 1Þ ≤ jϕ − ϕ̂j ≤ πn: ð47Þ

Here, rH ¼ 2π
β is the horizon radius. For a shock wave

moving in the opposite direction (bottom right to top left),
the gluing condition is ðu − hðϕÞ; v ¼ 0;ϕÞ ∼ ðu; v ¼
0;ϕÞ and α ¼ 2 exp ð− 2π

β ðtW þ t�ÞÞ.
In order to check if the quantity Fbulk from (26) can

reproduce (43), we first have to derive the geodesic
lengths between opposite asymptotic boundaries of the
shock wave geometries. This is easy to do with a recipe
from [91]. All asymptotically AdS3 geometries can be
embedded into a four-dimensional embedding space R2;2.
The geodesic length l between two points ðT1; T2; X1; X2Þ
and ðT 0

1; T
0
2; X

0
1; X

0
2Þ in the embedding space is given by

coshðlÞ ¼ T1T 0
1 þ T2T 0

2 − X1X0
1 − X2X0

2: ð48Þ

The embedding space coordinates are related to the
Kruskal,

ds2 ¼ −4dudvþ r2Hð1 − uvÞ2dϕ2

ð1þ uvÞ2 ; ð49Þ

and BTZ coordinates,

ds2 ¼ −ðr2 − r2HÞdt2 þ
dr2

r2 − r2H
þ r2dϕ2; ð50Þ

by

13At t ¼ 0 in order to capture the complexity of the precursor
and not any subsequent time evolution.

14Let the TFD state be given by jTFDi ¼
1ffiffiffiffiffiffiffi
ZðβÞ

p P
n e

−βEn=2jEniLjEniR and expand the operator W in

energy eigenstates, W ¼Pn;m WnmjEniLhEmjL × 1R. Then, by
an elementary calculation we see that the expectation values
hψ jHjψi and hψ jH2jψi are independent of tW , and, via (8), it
settles the point.

15We thank Qi-Feng Wu for pointing this out.
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T1 ¼
vþ u
1þ uv

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
rH

sinhðrHtÞ;

T2 ¼
1 − uv
1þ uv

coshðrHϕÞ ¼
r
rH

coshðrHϕÞ;

X1 ¼
v − u
1þ uv

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
rH

coshðrHtÞ;

X2 ¼
1 − uv
1þ uv

sinhðrHϕÞ ¼
r
rH

sinhðrHϕÞ: ð51Þ

The length of a geodesic in the shock wave geometry is
then obtained by adding together the length l1 of a
geodesic running from the right boundary to a point
ðu ¼ 0; v ¼ vs;ϕ ¼ ϕsÞ on the horizon with the length
l2 of a geodesic running from ðu ¼ 0; v ¼ vs þ
hðϕsÞ;ϕ ¼ ϕsÞ to the left boundary. The total geodesic
length is given by l ¼ l1 þ l2 subject to the minimality
conditions,

∂vsl ¼ ∂ϕs
l ¼ 0: ð52Þ

Solving these equations yields

l ¼ log

�
1

2

�
coshð2rHt̄Þ þ coshð2rHΔϕÞ

þ αerHt1 coshðrHðϕ2 − ϕ̂ − ð2n − 1ÞπÞÞ
þ αe−rHt2 coshðrHðϕ1 − ϕ̂ − ð2n − 1ÞπÞÞ

þ 1

2
α2e2rHΔt

��
; Δϕn−1 ≶ Δϕ ≶ Δϕn; ð53Þ

where ϕ1;2 ¼ ϕ̄� Δϕ, t1;2 ¼ t̄� Δt and Δϕn ¼
1
2
log
h
sinhðrHðt̄þðϕ̄−ϕ̂−2πnÞÞÞ
sinhðrHðt̄−ðϕ̄−ϕ̂−2πnÞÞÞ

i
for 1 ≤ n ≤ bjt̄jþϕ̄−ϕ̂

2π c. For the ≶
comparison, the upper comparator is chosen for t̄ > 0 and
the lower one for t̄ < 0.
We then insert this geodesic length into (26) and evaluate

the resulting expressions numerically. The results for geo-
desics anchored at t ¼ 0 show that there is a time delay in

tW before Fbulk saturates to the value of the Fubini-Study
distance in the TFD state (see Fig. 4). Consequently, the
total cost (35) increases linearly with a time delay. This
matches perfectly with the expectations from the simple
infection models for computational complexity described
above: the total cost first starts from zero, then increases
exponentially until the scrambling time and linearly after-
wards.16 Up to numerical errors and an overall prefactor of
tW and t� which is not fixed in the infection models (one
may always rescale the time which it takes for one layer of
the circuit to act in the infection model by a constant), the
total cost is given by the right hand side of (43) when the
number of qubits K is identified with the central charge c,
as in [81].
In Appendix B, we study further shock wave geometries

with noncompact horizons and delocalized matter concen-
trations where we again qualitatively reproduce the switch-
back effect from the geometric expression Fbulk although
the matching to the expectations from the infection model
is not as good as above.

VI. DISCUSSION

Providing a more microscopic picture of optimal state
preparation in holography, based on quantum field theory, is
an important open research question that has not been yet
satisfactory answered for any of the existing holographic
complexity proposals. Arguably, our best bet for a definition
of complexity in quantum field theory stems from [14] and
is based on minimizing cost functionals for continuous
quantum circuits (1). Therefore, it is natural to expect that

0.2 0.4 0.6 0.8 1.0
tW

0.5

1.0
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Fbulk

0.2 0.4 0.6 0.8 1.0
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0.001

Fbulk

0.2 0.4 0.6 0.8 1.0
tW
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FIG. 4. Left and center: the bulk cost function Fbulk plotted over tW in the localized shock wave geometry with compact horizon on a
linear resp. logarithmic scale. Right: the corresponding total cost Fbulk;tot (the tW integral of Fbulk). The plots match perfectly with the
expectation from the infection models that the exponential increase, which is clearly visible in the log-scale plot in the center, turns into a
linear increase at the scrambling time. All plots are evaluated for t� ¼ 0.5 and β ¼ 1=4.

16Note that here we are comparing a total cost on the gravity
side with expectations about complexity (the minimal total cost).
Therefore the match is not obvious not only because the cost
function we use on the gravity side might not be sensitive to the
switchback effect but also because this effect might only appear
after optimizing. However, we have already determined in Sec. IV
that complexity and total cost are the same in the BTZ black hole
(ordinary time evolution is the optimal path), and therefore it is
reasonable to expect that the same happens in the shock wave
geometries.
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progress on understanding of the holographic complexity
should be achievable along the lines of [14] upon the use of
the holographic dictionary.
In the present paper we have recognized that the Fubini-

Study cost (8) introduced in this context in [25] necessarily
acquires a dual gravitational interpretation if one views
boundary time evolution in the presence of sources as a
quantum circuit. However, typically the gravitational
counterpart is a complicated quantity as it depends on
two point functions of local operators in nonequilibrium
states. This led us to the setting of two-dimensional holo-
graphic CFTs in which ultimately due to the underlying
Virasoro algebra we were able to construct the gravity dual
to the Fubini-Study cost explicitly in terms of geodesic
lengths between spacelike separated boundary points; see
Fig. 2. The bulk representation of the Fubini-Study cost (26)
is valid for empty AdS, conical defects and the BTZ black
hole geometries. We used the latter realization to show that
the Fubini-Study complexity shows the expected linear
growth for the time-evolved TFD state. Finally, we dem-
onstrated that in the presence of bulk matter fields such as
shock waves the bulk quantity we introduce with (26) is no
longer dual to the Fubini-Study cost. This is expected, since
the geometry contains backreacting matter, and our novel
gravitational quantity represents the Fubini-Study cost only
in the universal sector of AdS3 holography given by pure
gravity with negative cosmological constant. Nevertheless,
(26) considered more generally is interesting in these
geometries since—in contrast to the boundary Fubini-study
cost—the bulk quantity (26) shows the switchback effect.
There are important aspects in which the geometric

object on the gravity side we constructed differs from all
previous holographic complexity proposals. For clarity of
presentation, let us discuss them one by one.
As described in Sec. IV, we find a linearly increasing

complexity (or decreasing close to the recurrence time).
However, the way the linear increase arises from the bulk
perspective is different in our case than in previously
proposed holographic complexity measures. In the latter
case, the holographic dual to computational complexity lies
within a bulk region that is spacelike to the boundary time

slice in which the target state is defined. The linear increase
in this case is essentially due to the increasing size of the
wormhole interior. In our work, we are integrating the
quantity Fbulk from (25), which in this case is constant, over
time. Therefore its bulk dual contains geodesics which
probe the bulk region lying between the two time slices
where the reference and target states are defined; see Fig. 5.
Another difference is that we find a computational com-
plexity which is UV finite.17 This is related to the fact that
our reference states are energy eigenstates or a TFD state at
t ¼ 0 instead of a spatially unentangled state proposed as a
reference state for the earlier complexity proposals in [9].
Indeed, the analyses in [19,25] showed explicitly that
starting with spatially disentangled state one can mimic
the leading divergence of holographic complexity propos-
als in the setting of free quantum fields. Therefore, our bulk
dual to computational complexity realizes the features
expected from complexity calculations in finite qubit
systems in a somewhat different way than the conjectured
holographic complexity proposals. In contrast to them,
however, we have derived the relation between the boun-
dary complexity and its bulk representation from first
principles.
Furthermore, our gravity expression—while somewhat

similar in spirit—does not fit in the set of holographic
complexity proposals put forward in [11,12] under the
slogan of “complexity ¼ anything.” In the proposals
of [11,12], holographic complexity measures are constructed
by integrating functionals of the bulk metric on codimen-
sion-one or codimension-zero hypersurfaces in the bulk.
These hypersurfaces are obtained by extremizing functionals
of the induced metric and extrinsic curvature on either the
hypersurface itself in case it is codimension-one or else on
the hypersurface boundaries. Moreover, the hypersurfaces
are restricted to asymptote to t ¼ t0 on the left and right
asymptotic boundary of a wormhole geometry in the bulk.
As mentioned above, this restriction does not hold true for
the holographic complexity measure proposed in our present

FIG. 5. Left: bulk region swept out by geodesics contributing to Fbulk [defined in (25)]. Right: union of all the bulk regions on the left
for 0 ≤ t ≤ t0 contributing to the computational complexity CFSðt0Þ.

17Another UV finite complexity proposal generalizing CA has
been studied in [93].
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work, which is defined through geodesics ending at 0 ≤ t ≤
t0 on the AdS boundary. The geometric quantity Fbulk dual
to the Fubini-Study cost function, on the other hand, is
naturally associated to a codimension-zero bulk region
swept out by all geodesics anchored at t ¼ t0 (see Fig. 5)
and thus constructed similarly to the complexity proposals
of [12].18

In hindsight [94], another approach pursuing sources in
the context of state or operator preparation in quantum field
theory has been the path integral optimization [78,95–98].
These works, motivated by the multiscale renormalization
ansatz (MERA) [99,100], its continuous generalization
(cMERA) [101,102] and the quest for understanding its
origins in geometric terms, pursued redundancies in
Euclidean path integrals representing the same state prepa-
ration as an origin of an optimization procedure. There are
two main differences between these results and our studies.
The first one has to do with the fact that in our work we
have a full control and understanding over our cost
function, whereas in the one adopted in the path-integral
optimization approach for Lorentzian circuits become

problematic [94]. The second one has to do the prominent
role the UV cutoff plays in the optimization procedure in
the case of the path-integral optimization [94,103] with our
work using a UV-finite cost function. In particular, the latter
has led to a new perspective on the path-integral optimi-
zation [104–107], which crucially involves coarse-graining
CFT states [108,109]. In contrast, our work is entirely
phrased in the language of a local operators in CFT.
The complexity measure studied in this paper does not

show the saturation behavior expected in finite qubit
systems. From the bulk perspective, this is not particularly
surprising since the bulk dual Fbulk to the Fubini-Study
distance we constructed is a purely classical quantity and
does not take into account quantum gravity effects which
were argued to lead to the saturation [81] as recently
shown in two-dimensional models of quantum gravity
in [28,84,110]. As it turns out, by a small modification of
Fbulk it is also possible to obtain a total cost which
saturates at an intermediate timescale. Summing only
over geodesics in the BTZ geometry with winding
numbers w ≤ wmax leads to an expression,

F̃bulkðtÞ ¼
2cπ2

3β3

sinh
�
4π2wmax

β

��
2þ cosh

�
4π2wmax

β

�
2 þ 3 cosh

�
4π2wmax

β

�
cosh

�
4πt
β

��
�
cosh

�
4π2wmax

β

�
þ cosh

�
4πt
β

��
3

; ð54Þ

which is to very good approximation constant in t for
t < πwmax followed by a falloff exponential in t for
t > πwmax. Integrating this in t then leads to a time-
dependence as expected from Fig. 3, i.e. a linear increase
followed by a plateau. The CFT interpretation of this
procedure is unclear,19 as but we bring it up nevertheless
as a possibly interesting model of late time holographic
complexity dynamics.
Finally, we want to emphasize that the results of Sec. III

relate the Fubini-Study distance to the entanglement entropy
in two-dimensional holographic conformal field theories. As
the expression (26) for the Fubini-Study distance involves
the lengths of geodesics, which are dual to entanglement

entropies [36–39], the Fubini-Study distance is determined
entirely in terms of the entanglement structure of the
boundary state. Note that for states dual to conical defects
and black holes, this relation naturally involves geodesics
with nonzero winding number which are dual to generalized
notions of entanglement entropy that account for entangle-
ment between different fields as well as between spatial
degrees of freedom, also known as entwinement [111–114].
Interestingly, these relations provide some tentative support
for the idea that the modified cost function F̃bulkðtÞ defined
by restricting the winding number to be smaller than some
maximum can probe bulk quantum corrections as such
restrictions on the maximumwinding number were observed

18To see this explicitly, note that in coordinates where the BTZ metric is given by (50) and the corresponding coordinates ðp; qÞ for
the Penrose diagram defined by U ¼ signðr − rHÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
j r−rHrþrH

j
q

e−trH=L
2 ¼ tanðp−q

2
Þ, V¼

ffiffiffiffiffiffiffiffiffiffiffiffi
j r−rHrþrH

j
q

etrH=L
2 ¼ tanðpþq

2
Þ, the codimension-one

surfaces bounding the codimension-zero hypersurface shown on the left hand side of Fig. 5 are given by t ¼ t0 ¼ const. and
q ¼ arctanðsinh t0Þ ¼ const. As in [12], the shape of these bounding surfaces can be obtained by extremizing a functional G½γ; K� of
the induced metric γ and extrinsic curvature K, δX

R ffiffiffi
γ

p
G½γ; K� ¼ 0 where X parametrizes the location of the hypersurface. For

instance, for the upper bounding surface q ¼ q0 in Fig. 5, this functional can be chosen asG½γ; K� ¼ 4þ RðγÞ2 where RðγÞ is the Ricci
scalar associated to γ. To obtain Fbulk one would then need to integrate another functional of the bulk metric inside the codimension-
zero hypersurface in between the two bounding surfaces.

But even though this construction works the same way as in [12], Fbulk is not a holographic complexity measure in the sense
of [12] due to it being constant in time instead of growing linearly at late times.

19The modified cost function F̃bulk does not correspond to the Fubini-Study distance which for any quantum system in a thermal state
evolving with a constant Hamiltonian is constant as well and thus always leads to a linearly increasing total cost.
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in [114] and attributed to finite central charge effects which
disappear in the limit where the gravity theory becomes
classical.

VII. OUTLOOK

The construction of the bulk dual to quantum circuits
allows us to derive holographic duals to CFT cost func-
tionals and vice versa from first principles. A natural next
step is to expand the dictionary between CFT cost func-
tionals and bulk quantities beyond the instance we iden-
tified and solved in the present work. One natural direction
along these lines can build on [48] to generalize our
approach to the global part of the conformal group in an
arbitrary number of dimensions. Another important direc-
tion is to include additional sources on the CFT size beyond
the metric, which couples to the energy-momentum tensor.
Including primary operators into the picture is particularly
important, as it will allow for a better understanding of the
switchback effect using an entirely controllable holo-
graphic cost setup. Also, this will allow to leave the
kinematic confines of the conformal group and study cost
and complexity relevant to strongly coupled theories, rather
than shared by all CFTs.
By construction, the gravity dual to the circuit encodes

features of the auxiliary complexity geometry. We have
shown how the complexity geometry metric is encoded
holographically. It would be interesting to understand if
other characteristics of the circuit geometry, for instance the
sectional curvature considered in the context of circuits
underlying our work in [20,21] and also of broader interest
for complexity in quantum-many body systems [115–118],
acquire a natural gravitational interpretation.
It would also be interesting to extend our setup to the

lower-dimensional duality between Jackiw–Teitelboim
(JT) gravity and random matrix theory. An interesting
feature of this duality is that the partition function of JT
gravity cannot be written as a trace over a Hilbert space of
e−βH due to it being dual to an average over random
matrices [119,120]. Therefore, the expression on the right-
hand side of (34) whose bulk dual we found in AdS3 is not
equal to the Fubini-Study distance in the TFD state as it
does not have the interpretation of a connected two-point
function of the Hamiltonian in the TFD state. Rather, to
determine the averaged Fubini-Study distance one has
to compute

hH2iβ − hHi2β ¼
∂
2
βZðβÞ
ZðβÞ −

�
∂βZðβÞ
ZðβÞ

�
2

; ð55Þ

i.e. first compute the Fubini-Study distance for a single
member of the random matrix ensemble and then average.
Finding a JT gravity dual to this averaged Fubini-Study
distance would allow for studying quantum corrections at
late times. Such corrections were already found to lead to a

plateau in the holographic complexity measures in JT
gravity studied in [28,84,110]. Ensemble averages of CFTs
in two and higher dimensions have recently attracted
considerable attention in relation to new Euclidean worm-
hole contributions to the gravitational path integral (see
e.g. [121–124]). Therefore, generalizing our setup to JT
gravity will likely provide further clues if and how holo-
graphic complexity measures in higher dimensions such as
the one studied here saturate at late times.
We also note that computational complexity has

found applications in diagnosing quantum chaos through
differing saturation times for chaotic and integrable sys-
tems [125,126]. As holographic CFTs show signs of
quantum chaos as well, it would be interesting to general-
ize our methods to probe these features. Since the chaotic
features are encoded in the part of the spectrum that is not
fixed by symmetry considerations such as conformal and
modular transformations [127], this will require general-
izing to quantum circuits transforming between different
Verma modules.
Furthermore, it will be interesting to consider general-

izations of our results may to higher dimensions. Quantum
circuits built out of global conformal transformations as
well as the Fubini-Study cost function were studied in
higher dimensions in [48]. A starting point for looking at
higher dimensions is an alternative proposal for a bulk dual
of the Fubini-Study cost of 2D CFTs in terms of timelike
geodesics in a conical defect geometry, as was put forward
in the more restricted setup where only global conformal
transformations act on the reference state [48]. It will
therefore be interesting to derive the bulk dual of the circuit
considered in [48] using similar techniques as in Sec. II. An
important challenge to overcome in this regard is that in
higher dimensions the dual bulk spacetime can in general
be reconstructed with the Fefferman-Graham expansion
only in the asymptotic region near the boundary. However,
other parts of our construction, such as expressing the two-
point function of the Hamiltonian in terms of a UV finite
expression involving geodesic lengths, are likely to also
apply in higher dimensions.20

Finally, the Virasoro algebra that constitutes a crucial
ingredient in our construction also emerges in a variety of
discrete systems such as spin chains and their tensor network
description [128–135]. It will be interesting to connect with
complexity studies in these quantum-many body settings, in
light of recent advancements [117,136,137] on computa-
tional complexity in discrete systems in the framework
of [14] that we also employed here.

20The UV finiteness is a result of the fact that the UV regulator
drops out after taking derivatives of geodesic lengths with respect
to the location of their end points. This property continues to hold
in higher dimensions.
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APPENDIX A: LESSONS FROM SL(2,R)
CIRCUITS

In this appendix we compare our geometrization of the
Fubini-Study metric in the holographic bulk spacetime with
the construction in [48] for SL(2,R) circuits.
The authors of [48] considered circuits implementing

global conformal transformations in d ≥ 2. For a more
direct comparison with our work, we discuss only CFTs in
two dimensions. In this setup, the global conformal trans-
formations form the symmetry group SL(2,R), and diffeo-
morphims may be parametrized in terms of three
parameters γRðτÞ; ζðτÞ; ζ�ðτÞ,

Fðτ; xþÞ ¼ −i log
�
ieiðxþþγRðτÞÞ − ζðτÞ
iþ eiðxþþγRðτÞÞζ�ðτÞ

�
; ðA1Þ

where x� are light cone coordinates on the cylinder. The
circuit corresponding to (A1) is given by

UðτÞjhi≡ eiζðτÞL−1eiγðτÞL0eiζ1ðτÞL1 jhi; ðA2Þ

where γðτÞ¼ γRðτÞ− i logð1− jζj2Þ and ζ1ðτÞ¼ ζ�ðτÞeiγRðτÞ.
Note that the transformation (A1) is a symmetry of the CFT
in the vacuum state. Therefore, an appropriate reference state
for such circuits is jhi with h > 0. The Fubini-Study
distance for (A1) is given by

ds2FS ¼ 2h
dζdζ�

ð1 − jζj2Þ2 : ðA3Þ

In the gravity theory, the reference state jhi in the CFT
circuit corresponds to a conical defect geometry,

ds2AdS ¼ dρ2 − cosh ρ2dt2 þ sinh2ðρÞdϕ2; ðA4Þ

where ϕ is 2π
n -periodic and n∈N. The geometry can be

interpreted as empty AdS with a particle of mass m located
at the center ρ ¼ 0; t ¼ 0;ϕ ¼ 0. As it moves along a
timelike trajectory, the massive particle cuts out a wedge
related to its mass, m ¼ −1=8Gn2 [59].
The authors of [48] then observed that the symplectic

geometry associated to the circuit generated by the trans-
formations (A1) is equivalent to that of timelike geodesics
in AdS. This equivalence indicates that geometric features
of the phase space such as the Fubini-Study distance (A3)
may be written in terms of timelike geodesics. The timelike
geodesics corresponding to the circuit arising from (A1)
may be obtained by considering the empty AdS geodesic
ðρðtÞ; t;ϕðtÞÞ ¼ ð0; t; 0Þ and boosting it by (A1), which
yields a sequence of geodesics in a single geometry. It is
convenient to rewrite the geodesics in terms of embedding-
space coordinates,

T1 ¼ coshðρðtÞÞ cosðtÞ;
T2 ¼ coshðρðtÞÞ sinðtÞ;
X1 ¼ sinhðρðtÞÞ cosðϕðtÞÞ;
X2 ¼ sinhðρðtÞÞ sinðϕðtÞÞ; ðA5Þ

with metric ds2 ¼ −dT2
1 − dT2

2 þ dX2
1 þ dX2

2. If we apply
only a left-moving transformation (A1), the geodesics read

ϕðtÞ ¼ arctan

�
iþ 2iζ�

e2itζ − ζ�

�
;

ρðtÞ ¼ arcsechð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

q
Þ: ðA6Þ

By Xμ we now denote the vector Xμ ¼ fX1; X2g. The
Fubini-Study distance is then given in terms of the minimal
and maximal distance between two such geodesics [48],

ds2FS ¼
h
2
ðδX2

perp;min þ δX2
perp;maxÞ: ðA7Þ

Let us now highlight some important differences to our
construction of a dual to the Fubini-Study metric. First of
all, the result (A7) relies on the identification of the
configuration space ðζ; ζ�; γRÞ associated to the circuit
and the phase space of timelike geodesics in AdS. It is
therefore not straightforward to generalize (A7) to
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geometries other than the conical defect and to trans-
formations beyond SL(2,R). A general conformal trans-
formation in two dimensions, which is the focus of our
work, is parametrized by an infinite number of parameters
and therefore can no longer be identified with the phase
space of a massive particle. Furthermore, in [48], there is no
dual to the circuit itself in the bulk geometry. Instead, a state
in the CFT corresponds to a geodesic along its full
trajectory and multiple boosted geodesics representing
the states in the circuit are considered within the same
geometry. On the other hand, in our construction, the state
is defined on a constant time slice in the CFT and extends
into the bulk to the full Wheeler-De Witt patch. The
evolution of the state according to the circuit is encoded
in the time evolution of the geometry. In particular, physical
time has no significance in (A7) and is eliminated by the
extremization procedure.
Finding a similar realization of the Fubini-Study distance

in terms of timelike geodesics in our setup is not straight-
forward as the timelike geodesics considered in [48] differ
in another important aspect from our construction: The
Uð1Þ transformation xþ → xþ þ γRðτÞ constitutes a global
symmetry and leaves the timelike geodesic invariant. The
Uð1Þ transformation acts on each constant time slice by
shifting it by a value γRðτÞ that is constant with respect to
the physical time t. In our construction, the identification
τ ¼ t implies that a similar Uð1Þ transformation xþ →
xþ þ αðtÞ acts differently on each constant time slices as
the shift αðtÞ now depends on physical time. Timelike
geodesics in this case start exhibiting αðtÞ-dependence.
Since we know that αðtÞ does not enter the Fubini-Study
distance, it is therefore natural to consider a geometric
object that we already know to share this property instead.
This is the length of spacelike geodesics on a constant time
slice, which is the main ingredient of our cost measure, as
discussed in Sec. III.

APPENDIX B: THE SWITCHBACK EFFECT
IN DELOCALIZED AND BLACK STRING

SHOCK WAVES

In order to determine how universal the switchback
effects found in Sec. V are, in this appendix we study the
geometric expression Fbulk from (25) in further shock wave
geometries than the ones considered in Sec. V. We consider
shock waves in a black string geometry, i.e. a black hole
with noncompact horizon, as well as delocalized shock
waves where the matter is concentrated uniformly in the
angular direction. We find that in both cases the switchback
effect is reproduced qualitatively in the sense that Fbulk
increases with increasing tW before saturating to the
variance of the Hamiltonian in the TFD state. From a
quantitative perspective the match to the expectations from
the infection models from [7,81] is not quite as good as for

the localized shock waves in the BTZ black hole geometry
considered in Sec. V. Note, however, that the infection
models are very simplified versions of the full gravity setup
which in particular are based on the assumption of an
initially spatially localized perturbation spreading through-
out a finite size system. With this caveat in mind, it is not
surprising that our result deviate somewhat from the results
of the infectionmodels when these assumptions are violated.

1. Delocalized shock waves

We will start with simple shock wave geometries where
the shock wave is delocalized in the space direction (but
still localized at the horizon) used for instance in [7]. In this
case, the solution of Einstein’s equation is given by (46)
with a displacement function hðϕÞ ¼ α that is constant
along the spatial direction. The geodesic length from the
left boundary to the point ðu ¼ 0; v ¼ vs þ α;ϕ ¼ ϕsÞ on
the left side of the shock wave is given by

l1 ¼ log

�
erHt1ðvs þ αÞ þ coshðrHðϕ1 − ϕsÞÞffiffiffiffiffiffiffiffi

ϵUV
p

�
; ðB1Þ

and the length from the point ðu ¼ 0; v ¼ vs;ϕ ¼ ϕsÞ on
the right side of the shock wave to the right boundary by

l2 ¼ log

�
−e−rHt2vs þ coshðrHðϕ2 − ϕsÞÞffiffiffiffiffiffiffiffi

ϵUV
p

�
: ðB2Þ

The total geodesic length is given by

l¼ log

"
1

ϵUV

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
coshðrHðϕ1−ϕ2ÞÞþ

1

2
coshðrHðt1þ t2ÞÞ

r

þα

2
erHðt1−t2Þ=2

!
2
#
: ðB3Þ

Taking into account only these geodesics between different
asymptotic boundaries we find again a time delay in tW
before the Fubini-Study distance saturates (see Fig. 6), and
thus the total Fubini-Study cost (35) increases linearly with
a time delay. These features qualitatively reproduce the
switchback effect. However, in this case Fbulk is negative in
some parameter regimes which is not sensible for a cost
function for computational complexity, and hence Fbulk can
no longer be interpreted as the gravity analog of the number
of infected qubits in the model of [7,81]. As the delocalized
shock waves are more akin to a delocalized perturbation W
acting on the whole system instead of the localized
perturbation acting on a single qubit considered in [7,81],
this match in qualitative but not quantitative terms is not too
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surprising. However Fbulk is also bounded from below by
− 1

2
times the thermal two-point function hH2iβ − hHi2β.

By also including geodesics stretching between points on
the same asymptotic boundaries which are not modified by
the introduction of the shock wave, Fbulk acquires an
additional positive contribution hH2iβ − hHi2β that ensures
positivity of the total result.

2. Localized shock waves with non-compact horizon

Another class of shock wave geometries are those with
non-compact horizon and localized matter concentrations
studied in [92]. In this case, a localized shock wave
corresponds to a metric (46) with displacement,

v → vþ hðϕÞ with hðϕÞ ¼ αe−jϕ−ϕ̂jrH ; ðB4Þ

where ϕ̂ is a constant parameter and −∞ < ϕ < ∞. This
is obtained by solving Einstein’s equations with an
energy concentration localized at the u ¼ 0 horizon and
at ϕ ¼ ϕ̂ [90],

Tuu ¼
α

2πGN
δðuÞδðϕ − ϕ̂Þ and Tμν ¼ 0; ðμ; νÞ ≠ ðu; uÞ:

ðB5Þ

The geodesic lengths are given by

l1 ¼ log

�
erHt1ðvs þ hðϕsÞÞ þ coshðrHðϕ1 − ϕsÞÞffiffiffiffiffiffiffiffi

ϵUV
p

�
;

l2 ¼ log

�
−e−rHt2vs þ coshðrHðϕ2 − ϕsÞÞffiffiffiffiffiffiffiffi

ϵUV
p

�
; ðB6Þ

and

l ¼ log½coshðrHðt̄� ΔϕÞÞðcoshðrHðt̄ ∓ ΔϕÞÞ
þ αerHð�ϕ̂∓ϕ̄þΔtÞÞ�; ðB7Þ

with � ¼ sgn
�
ϕ̄ − ϕ̂ − 1

2rH
log
�
coshðrHðt̄−ΔϕÞÞ
coshðrHðt̄þΔϕÞÞ

��
where

ϕ̄ ¼ ðϕ1 þ ϕ2Þ=2, Δϕ ¼ ðϕ1 − ϕ2Þ=2, t̄ ¼ ðt1 þ t2Þ=2,
Δt ¼ ðt1 − t2Þ=2. The results for Fbulk from (26) are
qualitatively similar to the case of a localized shock wave
with compact horizon studied in Sec. V. Again, we find an
increase of FFS followed by a saturation if tW and with it the
shock wave strength α is varied while t ¼ 0 is kept constant.
Unlike for the compact horizon case, however, here we find
that Fbulk does not asymptote to zero for tW → 0. In the
infection model of [7,81], this may be interpreted as a
perturbation W which is so large that already at tW ¼ 0 a
sizeable fraction of the system is infected.
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