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In this work, we investigate the real-time dynamics of quenching a state from phase separation in a
holographic model of first-order phase transition. In addition to the typical phase-separated and high-
energy final states, we have discovered a novel dynamical process that drives the system to a low-
temperature supercooled final state within a narrow range of quench parameters. The critical behavior is
also revealed during the fully nonlinear dynamics. Following a sudden quench with critical parameters, the
phase separation can be attracted to a critical nucleus. Specifically, the critical nucleus will subsequently
shrink in size and eventually disappear for supercritical parameters, where the system is actually
supercooled with a temperature lower than the initial one. While for subcritical parameters, the nucleus
will grow in size and finally reform a phase separation, where the absorbed quenching energy is reflected in
the increment of the latent heat.
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I. INTRODUCTION

The concept of phase transitions, which signals abrupt
changes in the properties of a thermodynamic system
across the phase boundary in a phase diagram, is inher-
ently related to equilibrium physics. Within the frame-
work of equilibrium physics, the real-time dynamics of
phase transitions is approximated by the so-called quasi-
static process. However, this process, by definition, is too
idealized to capture the transition process in real life,
which generally goes beyond the realm of thermodynamic
and even hydrodynamic descriptions and enters the far-
from-equilibrium regime. Thus, it is significant to develop
a theoretical framework to describe the real-time dynam-
ics of phase transitions in a more realistic manner.
Fortunately, holographic duality provides a desirable
framework where a many-body system can be mapped
into a few-body gravitational entity with an extra dimen-
sion [1–4]. In particular, the real-time dynamics of the

many-body system can be extracted from the bulk
dynamics of its dual gravitational one, which is always
amenable to the numerical simulations even though the
analytic treatment is inapplicable [5].
Among others, such a holographic tool has recently

demonstrated its unique power in investigating a variety of
issues related to the first-order phase transition, from the
thermodynamic properties of the equilibrium states [6,7]
and the near-equilibrium stability by linear response
analysis [8,9] all the way to the out-of-equilibrium evolu-
tion by fully nonlinear simulations [10–21]. In particular,
the real-time process of the phase separation via both the
spinodal decomposition and the nucleation in the super-
cooled phase is successfully achieved by the bulk gravi-
tational dynamics [12–17,21].
Despite the broad interest in phase separation, the

ongoing discussion surrounding this phenomenon is pre-
dominantly confined to the microcanonical ensemble,
where the energy of the system is conserved throughout
the evolution. This limitation restricts our comprehension
of the intricate interplay between relevant thermodynamic
variables in realistic systems. The heating process of an ice-
water mixture serves as an exemplary instance. If it is a
first-order phase transition, then not only should one
find that the heating enlarges the liquid water region and
reduce the solid ice region, but one should also observe that
the final coexisting phases are still at the critical temper-
ature. Certainly, compared to the aforementioned phase-
separation dynamics, it is a numerical challenge to realize
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such a physical process by the dual gravitational simu-
lations because the involved system is essentially an
open one rather than a closed one. The purpose of this
paper is to take up this challenge and manage to
investigate the real-time dynamics of the heating process
based on phase separation.
An additional motivation for this paper is to provide

evidence for the nonlinear instability of phase-separated
states. The process of inducing phase separation in a
supercooled state involves the formation and growth of
seed nuclei. Such dynamical process exhibits a wealth of
critical phenomena [17,19,21], analogous to the type I
critical gravitational collapse [22–25] and the bald/
scalarized black hole transition via a nonlinear accretion
of the scalar field [26–30]. That is to say, there exists a
critical nucleus that acts as a dynamical barrier, beyond
which nucleation becomes more favorable and the system
undergoes phase separation. A natural question is whether
there is a critical dynamics mechanism from the phase-
separated state to the supercooled state, analogous to the
bidirectional transition between bald black holes and
scalarized black holes through a critical state [27]. The
holographic quench mechanism introduced in this paper
provides an effective approach for this dynamical process.
The plan of the paper is as follows. After the

Introduction, we give a brief description of a holographic
first-order phase transition model in Sec. II, where the
Ward-Takahashi identity and phase structure are revealed.
In Sec. III, we review the physical process of the system
reaching the phase-separated state from the spinodal region
and the supercooled region, respectively. In Sec. IV, we
take the phase-separated state as the initial data and then
impose a time-dependent quench on it. On the one hand,
the three characteristic stages that the system undergoes in
the quench process are revealed. On the other hand, the
numerical results indicate that the quench mechanism is
an effective measure to achieve the dynamical transition
from the phase-separated state to the homogeneous state,
during which the system exhibits critical behavior. Finally,
we conclude the paper with a summary and an outlook
in Sec. V.

II. HOLOGRAPHIC SETUP

In this section, we will introduce a holographic model
with a first-order phase transition and then show the
Ward-Takahashi identity and phase structure.

A. Holographic model

We consider the Einstein-scalar system in the four-
dimensional asymptotically anti–de Sitter spacetime
(AdS) described by the Lagrangian density

L ¼ R −
1

2
∇μϕ∇μϕ − VðϕÞ; ð1Þ

with the following scalar potential:

VðϕÞ ¼ −6 cosh
�

ϕffiffiffi
3

p
�
−
ϕ4

5
; ð2Þ

where the AdS radius has been set to unity for convenience.
According to the AdS=CFT correspondence, this gravity
system is dual to a boundary conformal field theory with a
scalar operator of conformal dimension Δ ¼ 2. To explore
the operators of the stress tensor and scalar, we need to
renormalize the bulk action by adding some boundary terms
to make it finite. This can be achieved as follows [31–33]:

2κ24Sren ¼
Z
M
dx4

ffiffiffiffiffiffi
−g

p
Lþ 2

Z
∂M

dx3
ffiffiffiffiffiffi
−γ

p
K

−
Z
∂M

dx3
ffiffiffiffiffiffi
−γ

p �
R½γ� þ 4þ 1

2
ϕ2

�
; ð3Þ

where R½γ� is the Ricci scalar associated with the induced
metric γμν on the boundary and K is the trace of extrinsic
curvature Kμν ¼ γσμ∇σnν with nν the outward normal vector
field to the boundary. On the one hand, the variation of the
action with respect to the bulk fields gives rise to the
equations of motion as

Gμν ≡ Rμν −
1

2
Rgμν

¼ 1

2
∇μϕ∇νϕ −

�
1

4
ð∇ϕÞ2 þ 1

2
VðϕÞ

�
gμν; ð4aÞ

∇μ∇μϕ ¼ dVðϕÞ
dϕ

: ð4bÞ

On the other hand, the aforementioned two dual oper-
ators are given by

hOi ¼ κ24 limr→∞

r2ffiffiffiffiffiffi−γp δSren
δϕ

¼ −
1

2
lim
r→∞

r2ðϕþ nμ∇μϕÞ; ð5aÞ

hTiji ¼ −2κ24 limr→∞

rffiffiffiffiffiffi−γp δSren
δγij

¼ lim
r→∞

r

�
G½γ�ij − Kij −

�
2 − K þ 1

4
ϕ2

�
γij

�
: ð5bÞ

Accordingly, the variation of the renormalized on-shell
action can be expressed as

κ24δSren ¼
Z
∂M

d3x
ffiffiffiffiffiffiffiffiffiffi−γð0Þ

p �
−
1

2
hTijiδγijð0Þ þ hOiδϕð0Þ

�
;

ð6Þ
where the subscripts “(0)” denote the coefficients of
the leading-order term in the asymptotic behavior of the
corresponding bulk fields near the boundary.
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Such a renormalized on-shell action is invariant under
the following diffeomorphism:

δγij ¼ £ξγij; δϕ ¼ £ξϕ; ð7Þ

where £ξ is the Lie derivative with respect to an arbitrary
vector field ξi tangent to the boundary, from which one can
derive the Ward-Takahashi identity

∇jhTiji ¼ hOi∇iϕð0Þ: ð8Þ

In particular, following the coordinate system introduced in
Appendix B, the time component of the above equations
reduces to

∂tϵ − ∂xJx − ∂yJy ¼ −hOi∂tϕð0Þ; ð9Þ

where ϵ denotes the energy density, Jx and Jy represent
the momentum density in the spatial directions x and y,
respectively. In what follows, we shall focus on the case in
which the system is homogeneous along the y direction
and periodic along the x direction. Therefore, the temporal
evolution of the total energy of the system is determined
by how the scalar operator responds to the time-dependent
scalar source.

B. Phase diagram

In order to reveal the phase structure of this model, we
obtain the static solutions to the field equations (4) numeri-
cally using both the DeTurck method [34] and the nonlinear
evolution method [5], which are described in Appendixes A
and B, respectively. The resulting phase diagram is dis-
played in Fig. 1, where the blue and black lines represent
homogeneous and inhomogeneous phases, respectively.

According to the first law of thermodynamics
F ¼ −sdT, with F being the free energy density, the
homogeneous phases can be classified into three types.
The first type is the thermodynamically stable phase, which
lies on the upper branch with an entropy density greater
than that of point A and on the lower branch with an
entropy density less than that of point D. The positions
of points A and D are determined by requiring that the
corresponding free energy densities are equal to each other
at the critical temperature Tc ¼ 0.247. The difference in
the entropy density between points A and D indicates the
discontinuity of the first derivative of the free energy
density with respect to the temperature at Tc, signaling a
thermal first-order phase transition in the canonical ensem-
ble. The second type is referred to as the metastable phase,
which includes the supercooled region AB and the super-
heated region CD. The third type is the spinodal region
between points B and C, which is thermodynamically
unstable. Interestingly, there is a close relationship between
thermodynamic instability and dynamical instability.
Roughly speaking, the thermodynamically stable (unstable)
phase is also linearly dynamically stable (unstable), while
the metastable phase is linearly dynamically stable but
nonlinearly dynamically unstable.
The intermediate dynamical process of the above non-

linearly dynamical instability, as well as the final state
driven by either linearly or nonlinearly dynamical insta-
bility, is related to the inhomogeneous phase in Fig. 1.
Specifically, the inhomogeneous state in the region BE and
the region CF with only one linearly unstable mode serve
as the critical state for the metastable phase to undergo
toward the linearly stable phase-separated phase lying in
the region EF. Such a phase-separated phase, formed by
phase A and phase D joined by a domain wall in between,
also serves as the final state of the thermodynamically
unstable phase under tiny perturbations. Since the dual

FIG. 1. (a) Canonical phase diagram: the entropy density as a function of the temperature. (b) Microcanonical phase diagram: the
entropy density difference between the inhomogeneous and homogeneous states as a function of the energy density. The blue and black
lines represent homogeneous and inhomogeneous states, respectively. The vertical gray line represents the phase transition temperature.
The schematic paths ða; bÞ and ðc; d; fÞ correspond to the dynamical processes shown in the left and right panels of Fig. 2, respectively.
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boundary system of the inhomogeneous state has spatial
dependence, the physical results here are affected by the
size of the boundary space, which is reflected in the fact
that the black curve representing the inhomogeneous states
in the figure adjusts accordingly as the size of the system
changes. On the one hand, in a finite volume, the spatial
size can limit the spinodal instability, causing points B and
C to move toward the center of the spinodal region [17]. On
the other hand, in the infinite volume limit, points E and F
will coincide with points A andD, respectively, resulting in
the entropy density of the phase-separation region covering
the entire AD interval. In our work, we choose the period
length in the x direction of space to be a finite but large
value Lx ¼ 24π to suppress the influence of the size effect
on dynamics to a certain extent.
To facilitate a clear discussion of the two distinct types

of dynamical transition mechanisms involving linearly
and nonlinearly dynamical instabilities mentioned above,
we present the microcanonical phase diagram in Fig. 1(b)
as an energy density dependence of the entropy density
difference between the inhomogeneous and homogeneous
states. In the microcanonical ensemble, the system tends
to reside in the state of maximum entropy. The presence of
spinodal instability in the BC region implies that the
system, at the state located at point a, will undergo
spontaneous evolution toward the phase-separated state
at point b, exhibiting greater entropy but the same energy.
In contrast, the states belonging to AB and CD regions
manifest a distinct behavior. Without loss of generality,
we consider the state at point c as an example, where the
system remains stable under small perturbations. To
initiate the dynamical transition, a disturbance of suffi-
cient strength is required as a seed nucleus. Furthermore,
if the disturbance strength approaches a threshold, the
system will display a critical behavior, which proceeds
through three stages. First, the addition of the seed nucleus
leads to a sudden reduction in the energy and entropy of
the system. Subsequently, the system swiftly converges to
the critical state at point d. Finally, the phase-separated
state with maximum entropy at point f is reached for
supercritical strength, and conversely, the system evolves
to the homogeneous state with local maximum entropy at
point e. The details of the real-time dynamics during the
dynamical transitions are presented in Fig. 2, which we
shall describe in the next section.

III. PHASE SEPARATION

In this section, we perform fully nonlinear numerical
simulations of the dual gravitational dynamics to generate
the phase-separated state, which serves as the initial data
for the subsequent heating process. A detailed description
of the numerical procedure can be found in Appendix B [35].
To clarify the two aforementioned dynamical transition
mechanisms, we select the initial states at points a and c
in the spinodal and supercooled regions of Fig. 1(b),

respectively. The resulting real-time dynamics are depicted
in Figs. 2(a) and 2(b), respectively.
In the case of spontaneous dynamical transition, the

initial state may undergo spinodal instability, where even
tiny perturbations can trigger a dynamical transition in the
system. To account for this, we introduce an x-dependent
perturbation to the scalar field, given by the following
expression:

δϕ ¼ −0.1z2ð1 − zÞ2 exp ½−10cos2ðx=24Þ�: ð10Þ

The z2 term in the form of perturbation depends on the
asymptotic behavior of the scalar field near the AdS
boundary (B5), where the coefficient of the linear term
ϕ1 is fixed to 1 in the dynamical process. Since the initial
position of the horizon is at z ¼ 1, the existence of the term
ð1 − zÞ2 indicates that the perturbation converges to 0 at the
horizon. As can be seen from Fig. 2(a), this form of
perturbation excites three energy peaks on the background
of the homogeneous solution. Notably, due to the periodic
boundary condition, the peaks on both ends of the space are
identical. Subsequently, two of these energy peaks slowly
migrate toward each other and eventually merge to form a
larger phase, leading to a phase-separated state as shown
in Figs. 2(c) and 2(d). Specifically, this state consists of
the phases at points A and D in Fig. 1(b), connected by
domain walls.
In contrast, when the dynamical transition originates

from the supercooled region, the absence of unstable modes
in the initial state prevents small perturbations from
destabilizing the system. To initiate the dynamical tran-
sition, we introduce a perturbation with a large enough
amplitude to overcome the dynamical barrier, serving as a
seed nucleus for the system. The expression for this
perturbation is given by

δϕ ¼ pz2 exp ½−50cot2ðx=24Þ�; ð11Þ

where the perturbation amplitude p ¼ 1.285364 is chosen
to be slightly larger than the threshold p� required for the
dynamical transition. The value of the threshold p� depends
on the specific form of perturbation. We find that pertur-
bations to the horizon can effectively reduce the value of
the threshold. Therefore, compared to the form (10), the
term ð1 − zÞ2 is absent here. As shown in Fig. 2(b), the
disturbed system quickly converges to a critical state at
early times and remains in this state for a prolonged period.
Eventually, the nucleus grows and leads to the formation of
the low-energy phase, culminating in the phase-separated
state. As the initial energy of the system, in this case, is
higher than that of the spontaneous dynamical transition,
the ratio of space occupied by the high-energy phase to that
occupied by the low-energy phase in the final state is
naturally greater than that observed in the spontaneous
dynamical transition, as depicted in Figs. 2(c) and 2(d).
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Remarkably, the system displays a critical behavior
similar to that observed in gravitational collapse and
scalarization phenomena during this process. Specifically,
there exists a threshold p� at which the system just stays
in the critical state. For supercritical parameter p > p�, the
system undergoes a dynamical transition; otherwise, the
system returns to a homogeneous state. For p near p�,
the system is attracted to the critical state and remains in this
state for a duration satisfying

τ ∝ −γ ln ðjp − p�jÞ; ð12Þ

where the critical exponent γ is equal to the reciprocal of
the eigenvalue of the only unstable eigenmode of the critical
state. For more details, please refer to [21].

IV. HOLOGRAPHIC QUENCH

In this section, we expand upon the analysis presented in
the previous section by investigating the nonlinear dynam-
ics of a time-dependent scalar source on the background
solution of the phase-separated state. It is worth noting that
the confining AdS boundary effectively restricts matter
from escaping, which implies that the two dynamical
transition processes discussed earlier occur under the

(a) (b)

(c) (d)

FIG. 2. (a),(b) The energy density as a function of time with the initial states at points a in the spinodal region and c in the supercooled
region in Fig. 1(b), respectively. (c),(d) The spatial dependence of the energy density and expectation value of the scalar field of the final
state, which is extracted from the dynamical evolution at time t ¼ 3000. The blue and orange lines correspond to the final states given in
processes (a) and (b), respectively. The horizontal red dotted lines represent the states at the phase transition temperature in
homogeneous solutions [points A and D in Fig. 1(a)]. Note that the high-energy phase has a lower expected value of the scalar field,
while the low-energy phase possesses a higher one.
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microcanonical ensemble. Consequently, the total energy
of the system remains conserved during the evolution.
However, as indicated by the Ward-Takahashi identity (8),
the time-dependent scalar source can induce changes in the
total energy, expressed as

∂tE ¼ −
Z

dx hOi ∂tϕð0Þ: ð13Þ

It is important to note that periodic boundary conditions are
imposed in the spatial x direction. Furthermore, in addition
to the energy, the electric charge of a charged system also
undergoes changes under the time-dependent scalar source
boundary conditions [36–38].

A. Quench dynamics

To investigate the system’s response to the scalar source,
we impose a time-dependent behavior on the scalar source
over the phase-separated state obtained from the process
depicted in Fig. 2(a), given by

ϕð0Þ ¼ ΛþH exp ½−0.5ðt − 10Þ2�; ð14Þ

where the parameter H denotes the strength of the quench,
while the source rapidly decays to the constant Λ at late
times, which serves as the boundary condition for the
dynamical transition processes. In our study, we set Λ to be
equal to 1. The real-time dynamics during the quench
process with a strength of H ¼ 0.2 are illustrated in Fig. 3.
The overall evolution process can be divided into three

distinct stages. During the first stage, the energy density
variation is primarily influenced by the combination of
the time-dependent scalar source and the scalar field’s

expectation value. Notably, there is no energy flow in the
space region occupied by the two phases, resulting in the
phenomenon where the energy density can only shift up
and down, as depicted in Fig. 4(a). This stage corresponds
to a process in which the two phases are each independently
quenched. Since the low-energy phase possesses a larger
expectation value, its energy density is more sensitive to
the scalar source, which can be easily observed from (9).
Specifically, when t < 10, the energy density of the low-
energy phase decreases in tandem with the increasing
source due to its positive expected value. Conversely,
the energy density of the high-energy phase remains
relatively unchanged during this period, owing to its
expected value being close to zero. When 10 < t < 15,
as the source decays back to its initial value Λ, the energy
density curves of both phases rise and stabilize at a new
location where the energy density is higher than the initial
value. That is to say, after the quench, the energy of both
phases increases. This stage is characterized by a variation
in the total energy of the system with the scalar source.
After this, the total energy is conserved since the scalar
source is a constant, as shown in Fig. 5(a). At the end of
the first stage, an intriguing phenomenon occurs with the
behavior of the domain walls. Two energy peaks are excited
at the junctions of domain walls and the high-energy phase,
and in the second stage shown in Fig. 4(b), these energy
peaks propagate toward the interior of the high-energy
phase. Eventually, at late times, they merge together at the
center of the phase domain after colliding. At the time
t ¼ 20, the second set of energy peaks is excited again at
the domain walls, which move outward and are absorbed
by the first set of energy peaks subsequently. During
this stage, multiple groups of energy peaks propagating

FIG. 3. The temporal and spatial dependence of the energy density (a) and the expectation value of scalar field (b) in the quench
process with quench strength H ¼ 0.2.
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outward are excited successively at the domain walls,
which are shown as sawtoothlike ripples in Fig. 3(a).
They end up merging together to form a larger one at
time t ¼ 40. Finally, due to the periodic boundary

conditions, the energy peaks pass through the edges of
the system and are converted into inward energy waves in
the third stage shown in Fig. 4(c). They then hit the domain
walls with the result that part of them goes through and the

(a) (b)

(c) (d)

FIG. 4. (a)–(c) Three characteristic stages in the quench process. The solid lines of different colors represent the energy density of the
system at different times. The horizontal red dotted lines represent the energy density of the states at the phase transition temperature in
homogeneous solutions. (d) The energy density of the initial and final states during the quench process. Among them, the final state is
extracted from the dynamical evolution at time t ¼ 3000.

(a) (b)

FIG. 5. The average energy (a) and the average entropy (b) of the system as a function of time during quenching with H ¼ 0.2.
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other part bounces off. As the energy waves repeatedly
propagate through space and gradually decay, the system
eventually converges to a phase-separated state with the
same properties as the initial state but with a larger total
energy shown in Fig. 4(d). During the quench process, the
expectation value of the scalar field predominantly exhibits
oscillatory behavior, as depicted in Fig. 3(b).
The time dependence of the average energy and average

entropy defined as S̄ ¼ 2π
Lx

R
dxΣ2ðrhÞ in the quench process

are shown in Fig. 5, where Σ2ðrhÞ represents the area of the
apparent horizon and Lx stands for the length of the box.
Since the integral of the expectation value of the scalar
field is always positive, the change in energy follows the
opposite trend of the scalar source, as depicted in Fig. 5(a).
Although the energy can increase or decrease during the
quench process, the final state always has a higher energy
than the initial state. The reason for this is that, on the one
hand, the changes in the physical quantities of the initial
and final states satisfy the following first law of black hole
thermodynamics:

ΔE ¼ TcΔS: ð15Þ

Note that Tc is the phase transition temperature, which is
also the temperature of the initial and final states during
the quench process. On the other hand, the second law of
black hole mechanics requires the entropy of the system
never decreases in dynamical processes, which is shown
in Fig. 5(b). Therefore, the right-hand side of the above
equation is always positive, indicating that the energy of the
system cannot be extracted through the quench process.
This behavior differs from that of charged systems [36–38].
There is a similar but distinct phenomenon for the case

where quench strength H is negative. The first and second
stages of this dynamic process with H ¼ −0.2 are illus-
trated in Fig. 6. Since the third stage is the stage where the
system is in the linear region of the phase-separated state,
similar to the process in Fig. 4(c), we will only focus on the

dynamical behavior of the system in the first two stages
here. As depicted in Fig. 6(a), during the first stage, the
energy density in the two-phase region oscillates similar to
that in Fig. 4(a), as a response to the activation and
deactivation of the scalar source. Since the monotonicity
of the scalar source variation is the opposite of the case of
positive H, the up and down motion of the energy curve is
also reversed. Of particular note is the dynamical behavior
of the domain walls, which differs fundamentally from the
previous case. No energy peaks are excited in this scenario;
instead, the domain walls undergo significant changes in
position. The configuration of domain walls is broken at
some point in the middle, and then the top half expands
while the bottom half contracts. As shown in Fig. 6(b), in
the second stage, domain walls in the upper half gradually
evolve into a set of energy valleys propagating outward.
Finally, they collide in the middle of the region occupied by
the high-energy phase and merge together. Actually, at this
stage, multiple groups of energy valleys are generated from
the domain walls and are absorbed one by one, similar to
the phenomenon in Fig. 4(b).
In order to further reveal the effect of quench strength on

the system, we present the variation of the average energy
of the final state with the quench strength in Fig. 7(a).
Our findings suggest that a stronger quench leads to more
energy being added to the system. Furthermore, a quench
with sufficient strength (greater than the critical value H�)
can destroy the phase-separated structure and drive the
system toward a homogeneous final state, as shown in
Fig. 7(b). Interestingly, the final state obtained through a
quench process with a strength H� < H < HA is not the
thermodynamically preferred state. Instead, it is a meta-
stable state located in the supercooled region exhibiting
nonlinear instability. This implies that the system can
undergo a dynamical transition to the phase-separated state
again by introducing a seed nucleus, as observed in the
process depicted in Fig. 2(b). However, when the quench
strength exceeds HA, the system is quenched to a stable
homogeneous state lying on the upper branch with energy

(a) (b)

FIG. 6. The first (a) and second (b) stages in the quench process with quench strength H ¼ −0.2.

CHEN, LIU, TIAN, WU, and ZHANG PHYS. REV. D 108, 106017 (2023)

106017-8



higher than that of point A in Fig. 1(a). The results also
indicate that, although the energy of the system is always
increased during such a quench process, the temperature of
the final state may remain unchanged, decrease, or increase,
depending on the quench strength.

B. Critical quench

In the study of black hole dynamics, the linear dynamical
instability has been widely revealed, which is manifested as
the initial value possessing a dynamically unstable mode,
such as superradiant instability [39,40], spontaneous sca-
larization [41–47], and spinodal instability [8,13]. Under an
arbitrarily small perturbation, the excited unstable mode
will grow exponentially with time and push the system
away from the initial state, leading to the occurrence of
dynamical transition. In this case, the linearly unstable
initial state can be considered to be located on an excited
state, which can spontaneously evolve to a ground state.
In addition, there exists a type of nonlinear dynamical
instability, which is manifested in the fact that the occur-
rence of the corresponding dynamical transition requires
the perturbation strength to exceed a nonzero threshold.
Such a threshold indicates the existence of a barrier in the
dynamical transition. Under this scenario, the initial state is
dynamically stable under perturbations due to the lack of
unstable modes, indicating that it resides on a local ground
state. On the other hand, the occurrence of the dynamical
transition and the existence of the threshold indicate that
there is another local ground state as the final state and an

excited state as the barrier, as shown in Fig. 8. Under a
sufficiently large disturbance, the system can dynamically
transition from one local ground state to the other by
crossing over the excited state. When the disturbance
strength approaches the threshold for dynamical transition,
the system will stay in the excited state during the
dynamical intermediate process. Furthermore, this critical
dynamical transition is generally bidirectional. For exam-
ple, through the accretion mechanism of the scalar field,

(a) (b)

FIG. 7. (a) The average energy of the final state of the quench process as a function of quench strength. When the quench strength is
larger than the critical valueH�, the final state is a homogeneous state, on the contrary, it is still a phase-separated state. The final state of
the quench process with strengthHA < H lies on the upper branch with energy above that of point A in Fig. 1(a). That is to say, the final
state is a supercooled state in the AB region of Fig. 1(a) when the quench strengthH� < H < HA. (b) The energy density as a function of
time during the quench process with the quench strength H ¼ 0.44 slightly greater than the critical quench strength H�.

FIG. 8. The schematic diagram of the nonlinear instability, in
which the horizonal and vertical axes represent the geometric
configuration of the gravitational system and the related thermo-
dynamic potential, respectively. The local minimum points α and
γ represent the two local ground states of the system, connected
by an excited state β.
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a bald black hole and a scalarized black hole located in
two local ground states can achieve bidirectional dynamical
transition by crossing a critical scalarized black hole as the
excited state [26–30].
In the holographic first-order phase transition, the critical

dynamical transition shown in Fig. 2(b) indicates that the
supercooled state and the phase-separated state are located
in two local ground states, respectively. When the disturb-
ance strength approaches a threshold, the critical inhomo-
geneous state that appears during the evolution serves as a
dynamical barrier in the transition process, which is located
on the excited state. Since the configuration of such a
critical state appears as an energy well locally existing on
the background of the homogeneous solution, the mecha-
nism that triggers this dynamical transition is a inhomo-
geneous scalar field disturbance with a sufficiently large
amplitude, which acts as a seed nucleus to induce the
nucleation process. Inspired by the bidirectional dynamical
transition process of the bald and scalarized black holes, the
phase-separated state here is supposed to also suffer from
nonlinear instability and is able to be driven to a super-
cooled state by some dynamical mechanism. However,
since the configuration of phase-separated state is far from
that of the critical state, the naive disturbance mechanism
(such as scalar field disturbances) is incapable of imple-
menting this dynamical process. The expected dynamical
mechanism is required to not only increase the energy
of the system, but also evolve the configuration of the
system to approach the critical state with global near
uniformity. This is different from the bidirectional tran-
sition between a bald black hole and a scalarized black
hole, which can be achieved through the same scalar field
disturbance mechanism.
The holographic quench mechanism provides an effec-

tive approach to realize the dynamical transition from the
phase-separated state to the supercooled state. On the one
hand, the quench mechanism is capable of injecting enough
energy into the system. As shown in Fig. 7(a), the energy of
the quenching system increases monotonically with the
increase of the quench strength. Specifically, for a suffi-
ciently large quench strength, the energy of the final state of
the evolution exceeds the energy of the state represented by
the point B in Fig. 1(b), indicating that the system enters the
energy region where the critical state exists. Furthermore,
the energy brought by the stronger quench process can even
bring the system into the energy region with a single
homogeneous solution. On the other hand, the quench
process strongly changes the configuration of the phase-
separated state and gives it a tendency to evolve toward the
configuration of the critical state. As shown in Figs. 4(a)
and 6(a), in the first stage of the quench process, the high-
and low-energy phases are heated independently and the
energy of the low-energy phase gradually approaches that
of the high-energy phase due to the larger expectation value
of the low-energy phase. That is to say, the configuration of

the system tends to be homogeneous after quenching. At
the end of this stage, an inhomogeneous energy flow is
excited at the domain walls, opening the possibility for the
formation of a critical nucleus.
From Fig. 8, we expect that the transition from the phase-

separated state to the supercooled state also requires
crossing the critical nucleus as the excited state. To this
end, through the dichotomy method, we continuously
approach the critical value H� of the quench strength in
Fig. 7(a) to reveal the critical dynamical behavior of the
system. The corresponding simulation results are shown in
Fig. 9, from which it can be observed that the system is
attracted to a critical state of the critical nucleus configu-
ration during the dynamical transition from the phase-
separated state to the homogeneous supercooled state.
Subsequently, for the case of subcritical parameter
H < H�, as shown in Fig. 9(a), the critical nucleus
gradually grows up at the end of the evolution, forming
a low-energy phase. The formation of the low-energy phase
indicates that the system returns to a phase-separated state
with the same configuration as the initial state. However,
compared with the initial state, the space ratio occupied by
the low-energy phase is greatly reduced due to the energy
brought by the quench. Instead, for the case of supercritical
parameter H > H�, as shown in Fig. 9(b), the critical
nucleus gradually dissipates into the homogeneous
background, leaving a globally homogeneous system.
Similar to the dynamical transition from the homogeneous
supercooled state to the phase-separated state induced
by the seed nucleus, the critical nucleus also acts as a
dynamical barrier in the transition in the opposite direc-
tion caused by the quench. Such results are consistent with
the critical scalarization phenomenon of black holes,
where two states with nonlinear instability can be dynami-
cally transformed into each other by crossing a linearly
unstable critical state. The difference lies in the dynamical
mechanism. Different from the phenomenon that the
scalar field accretion mechanism can induce both scala-
rization and descalarization processes, the scalar field
disturbance in holographic first-order phase transition
is more suitable for the dynamical transition from a
homogeneous state to a phase-separated state, while the
transition in the opposite direction is competent by the
heating process.
Interestingly, as seen in Fig. 9, the critical nucleus

configuration in such a dynamical process is formed by
the fusion of double energy wells, which originate from
the propagating energy flow from the domain walls to the
low-energy phase caused by the quench. In order to reveal
the dynamical properties of such energy wells, we choose a
quench strength slightly away from the critical value and
show the real-time dynamics in Fig. 10. Our numerical
results show that each energy well is capable of nucleating
individually and forming a low-energy region. The
system then briefly stays in a state with double low-energy
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regions connected by an energy peak. However, such a
configuration is dynamically linearly unstable. Eventually,
the energy peak gradually dissipates and the double low-
energy regions fuse together to form a stable low-energy
phase. The three characteristic configurations experienced
by the system during this dynamical process are shown
in Fig. 10(b). This is the case in which the quench strength
is less than the critical value. Conversely, for the quench
strength greater than the critical value, as shown in

Fig. 7(b), the double energy wells each dissipate into the
homogeneous background. That is to say, the energy wells
exhibit the dynamical properties of a critical nucleus:
nucleation (for the subcritical quench strength) or dissipa-
tion (for the supercritical quench strength). When the
quench strength gradually approaches the critical value,
the double energy wells merge together and converge to the
linearly unstable critical nucleus, which further evolves into
nucleation or dissipation.

FIG. 9. The real-time dynamics of the energy density for the case where the quench strength is near the critical value H�. Cases of
(a) subcritical strength (H ¼ 0.42480111203125) and (b) supercritical strength (H ¼ 0.424801112109375), respectively.

(a) (b)

FIG. 10. (a) The temporal and spatial dependence of the energy density during the quench process with the quench strength
H ¼ 0.424775 slightly smaller than the critical value H�. (b) The three characteristic energy density configurations in such dynamical
process.
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V. CONCLUSION

In this paper, we have investigated the quench dynamics
in the holographic model of first-order phase transition,
utilizing the characteristic formalism. Our study involved
heating a phase-separated initial state and subsequently
tracking its nonlinear dynamical evolution.
In the first step, we prepared the phase-separated initial

state through various strategies. Specifically, for a low-
energy initial state, we induced it by perturbing an unstable
state in the spinodal region. Because of the linear insta-
bility, even the slightest perturbation will prompt the
system to undergo phase separation. Conversely, for a
high-energy initial state, we induced it by perturbing a
metastable state that is subject to nonlinear instability.
In such cases, the dynamical transition can still be triggered
by applying a sufficiently strong disturbance that serves as
a seed nucleus for the system.
In the second step, we investigated the dynamical

behavior of the system in the phase-separated state under
temporal dependence of the scalar source. Specifically, we
introduced a thermal quench over a short period of time. We
have found that there are two distinct forms of response to
the quenches with different signs.
Within this step, we further observed three characteristic

stages in each response process. The first stage can be
viewed as a process in which the high-energy and low-
energy phases are independently quenched since no energy
flow has formed throughout the entire space. Furthermore,
as indicated by the Ward-Takahashi identity (9), the time-
dependent scalar source influences the energy of the system
via the expectation value of the scalar field. Given the
positive expectation value that the low-energy phase
possesses, its energy variation over time is opposite to
that of the scalar source. As a result, quenches of different
signs will induce energy to vary in opposite ways over time.
Conversely, the energy of the high-energy phase hardly
changes due to its nearly vanishing expectation value of
the scalar field. At the end of this stage, an intriguing
phenomenon arises with the behavior of the domain walls,
as they exhibit varying responses to the quenches with
different signs. Specifically, for the quench with a positive
(negative) sign, two energy peaks (valleys) are excited at
the domain walls. In the second stage, these energy peaks
(valleys) subsequently propagate deep into the high-energy
phase region. Throughout this process, multiple groups
of energy peaks or valleys are successively excited and
absorbed, resulting in the formation of a large energy flow.
Ultimately, for a weak quench strength, as the energy flow
gradually decays in space, the system settles down to a
phase-separated state with higher energy in the third stage.
Furthermore, altering the quench strength typically

results in a corresponding change in the final state.
Specifically, as the quench strength increases, we observed
a critical value of strength, denoted by H�, that can break
the phase-separated structure and dynamically drive the

system to a homogeneous state. As illustrated in the
microcanonical phase diagram in Fig. 1(b), the homo-
geneous state with energy greater than the phase-separated
state at point b can take two forms. Specifically, it can be
the metastable state located in the AB region, or it can be
the stable state with higher energy than the state at point A.
It is important to note that the system cannot remain in a
state with an energy lower than that of point B due to
spinodal instability. As illustrated in Fig. 7(a), our results
show the existence of a second critical strength value,
denoted by HA. Specifically, when the quench strength lies
within the range H� < H < HA, the system evolves into
the metastable state below the phase transition temperature.
Conversely, if HA < H, the final state is a thermodynami-
cally stable phase.
In the third step, we investigate the real-time dynamics of

the system near the critical quench strength H�. Such a
quench can dynamically drive the system from a phase-
separated state to a critical state with a critical nucleus
configuration, which is dynamically unstable and evolves
toward nucleation (for subcritical quench strengths) or
dissipation (for supercritical quench strengths). This
dynamical property, in which different quench strengths
lead to different evolution trends, also occurs in local
energy wells. The above results confirm that the homo-
geneous supercooled state and inhomogeneous phase-
separated state are, respectively, located in two local ground
states and can dynamically transform into each other by
crossing the critical nucleus as an excited state. Among
them, scalar disturbance can trigger the transition from the
supercooled state to the phase-separated state, while for the
transition in the opposite direction, the holographic quench
provides a more effective triggering mechanism.
In the future, it is interesting to explore the effect of the

topology on the boundary system. Because of the periodic
boundary condition along the x direction, the system is
located on a torus. The aperiodic boundary condition is
introduced in AdS–boundary conformal field theory duality
[48,49] or,more recently, the double holography [50–52]. For
the numerical setups in higher dimensions [53–56], Courant-
Friedrichs-Lewy conditions may have more stringent con-
straints on aperiodic boundary conditions. Furthermore, to
study the properties of strongly coupled quantum systems
near phase transition points [57–61], one can observe the
changes in entanglement entropy [62–65] and complexity
[66–69] during the quench process [37,70–78]. It would be
also interesting to extend our analysis to some other gravity
modes, such as the charged inhomogeneous system. In
addition, it is meaningful to seek a hydrodynamic description
for the quench process.
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APPENDIX A: NUMERICAL PROCEDURE
FOR STATIC SOLUTIONS

1. The Einstein-DeTurck formalism

The line element of the standard Schwarzschild-AdS4
geometry is

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2 þ dx21

�
; ðA1Þ

fðzÞ ¼ 1 −
�
z
zh

�
3

; ðA2Þ

where z ¼ zh is the locus of the bifurcation and the AdS
radius L has been set to 1. For a regular metric on the
bifurcation, the transformation of radial coordinate z is
imposed to be

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

z
zh

r
;

which renders the conformal boundary to be y ¼ 1 and the
locus of the bifurcation to be y ¼ 0. With the break of the
translational symmetry along the x direction, the most
general metric reads

ds2 ¼ 1

z2hð1 − y2Þ2
�
−y2PQ1dt2 þ

4z2hQ2

P
dy2

þQ4ðdxþ yð1 − yÞ3Q3dyÞ2 þQ5dx21

�
; ðA3Þ

ϕ ¼ zhð1 − y2ÞQ6; ðA4Þ

with P ¼ 3 − 3y2 þ y4 and Qiði ¼ 1;…; 6Þ being the
functions of ðx; yÞ.
Instead of solving the Einstein equations (4) directly, we

solve the so-called Einstein-DeTurck equations, which are

Rμν þ 3gμν ¼
�
Tμν −

T
2
gμν

�
þ∇ðμξνÞ; ðA5Þ

where

ξμ ≔ ½Γμ
νσðgÞ − Γμ

νσðḡÞ�gνσ

is the DeTurck vector and ḡ is the reference metric, whose
line element is chosen to be (A1). For Dirichlet boundaries,
ḡ is required to satisfy the same boundary conditions as g,
but there is no requirement on Neumann boundaries [53]
(see also [54,56]).
The domain of interest is periodic in the x direction,

which is x∈ ½0; 2l�. Considering the mirror symmetry at
x ¼ l, the whole domain of integration can be reduced to
x∈ ½0; l� together with y∈ ½0; 1�. The full boundary con-
ditions are shown in Table I.
Because of the nonperiodicity, both directions are dis-

cretized by the Chebyshev pseudospectral method with
Gauss-Lobatto grids. Subsequently, the geometry can be
solved numerically by the Newton-Raphson iteration.
The boundary conditions at the bifurcation y ¼ 0 will

further imply that Q1ðx; 0Þ ¼ Q2ðx; 0Þ, which fixes the
Hawking temperature of the black hole as

Th ¼
3

4πzh
: ðA6Þ

2. Asymptotic expansions

In the Fefferman-Graham expansion of fZ; χg, the
asymptotic behaviors of Qi near the conformal boundary
Z ¼ 0 are obtained as

Q1 ¼ 1 −
Z2

8
−
Z3

�
3z2h þQð0;3Þ

1 ½χ; 1�
�

48z3h
þ � � � ; ðA7Þ

Q2 ¼ 1 −
Z3Qð0;1Þ

6 ½χ; 1�
6zh

þ � � � ; ðA8Þ

Q3 ¼ −
ZQð0;1Þ

3 ½χ; 1�
2zh

þ
Z2

�
−Qð0;1Þ

3 ½χ; 1� þQð0;2Þ
3 ½χ; 1�

�
8z2h

þ � � � ; ðA9Þ

TABLE I. Boundary conditions.

1 2 3 4 5 6

y ¼ 1 Q1 ¼ 1 Q2 ¼ 1 Q3 ¼ 0 Q4 ¼ 1 Q5 ¼ 1 Q6 ¼ 1

y ¼ 0 ∂yQ1 ¼ 0 ∂yQ2 ¼ 0 ∂yQ3 ¼ 0 ∂yQ4 ¼ 0 ∂yQ5 ¼ 0 ∂yQ6 ¼ 0

x ¼ l ∂xQ1 ¼ 0 ∂xQ2 ¼ 0 Q3 ¼ 0 ∂xQ4 ¼ 0 ∂xQ5 ¼ 0 ∂xQ6 ¼ 0

x ¼ 0 ∂xQ1 ¼ 0 ∂xQ2 ¼ 0 Q3 ¼ 0 ∂xQ4 ¼ 0 ∂xQ5 ¼ 0 ∂xQ6 ¼ 0
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Q4 ¼ 1 −
Z2

8
−
Z3ð3z2h þQ4ð0;3Þ½χ; 1�Þ

48z3h
þ � � � ; ðA10Þ

Q5¼1−
Z2

8

þ
Z3

�
6z2hþ24z2hQ

ð0;1Þ
6 ½χ;1�þQð0;3Þ

1 ½χ;1�þQð0;3Þ
4 ½χ;1�

�
48z3h

þ���; ðA11Þ

Q6 ¼ 1 −
ZQð0;1Þ

6 ½χ; 1�
2zh

−
193Z2

720
þ � � � ; ðA12Þ

where the derivatives Qð0;jÞ
i ði ¼ f1;…; 6g; j ¼ f1; 2; 3gÞ

are related to coordinate y. For instance, Qð0;1Þ
6 ½χ; 1� means

that Qð0;1Þ
6 ½χ; y�jy¼1.

With these expansions in hand, the entropy and energy
density can be expressed by

sðχÞ ¼ 2π

z2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4½χ; 0�Q5½χ; 0�

p
; ðA13Þ

eðχÞ¼96þ9z2hþ32z2hQ
ð0;1Þ
6 ½χ;1�þ3Qð0;3Þ

1 ½χ;1�
96z3h

; ðA14Þ

respectively. Hence, the averaged entropy and energy can
be further integrated as

S̄ ¼ 1

l

Z
l

0

sðχÞdχ; ðA15Þ

Ē ¼ 1

l

Z
l

0

eðχÞdχ: ðA16Þ

APPENDIX B: NUMERICAL PROCEDURE
FOR DYNAMIC EVOLUTION

1. Evolution algorithm

For the nonlinear evolution, the coupled field equa-
tions (4) are solved numerically using the characteristic
formulation method in [5], which has been shown to be
applicable to various gravitational dynamics problems in
the asymptotically AdS spacetime. The ansatz for the
metric is given by

ds2¼Σ2ðGdx2þG−1dy2Þþ2dtðdr−Adt−FdxÞ; ðB1Þ

where all fields are functions of ðt; x; rÞ. To simplify the
problem, we have assumed that the system is translation
invariant in the y direction. Note that such a form of ansatz
is invariant under the radial shifts

r → r̄ ¼ rþ λðt; xÞ; ðB2aÞ

A → Ā ¼ Aþ ∂tλðt; xÞ; ðB2bÞ

F → F̄ ¼ F þ ∂xλðt; xÞ; ðB2cÞ

and, in general, there are two ways to fix the parameter λ.
One simple way is to require λ to disappear throughout the
evolution. However, in our work, we use the reparamet-
rization freedom to put the apparent horizon at a fixed
radial position r ¼ 1. In this case, since the computational
domain is a fixed interval, we can conveniently discretize
the fields with pseudospectral methods. The Chebyshev
and Fourier pseudospectral methods are used to discretize
the fields in the radial (z) and spatial (x) directions,
respectively. Note that we compactify the radial coordinate
by z ¼ r−1 such that the AdS boundary is at the position
of z ¼ 0.
In order to decouple the field equations, we introduce

a derivative operator dþ ¼ ∂t − z2A∂z, which is the direc-
tional derivative along the outgoing null geodesic. At this
point, the set of equations (4) has the following nested
structure:

Σ00 þ 2

z
Σ0 þ 1

4

�
G02

G2
þ ϕ02

�
Σ ¼ 0; ðB3aÞ

F00 þ
�
2

z
−
G0

G

�
F0 þ

�
∂z þ

2

z
−
G0

G

��
2Σ0

Σ
−
G0

G

�
F

¼ SF½ϕ; G;Σ�; ðB3bÞ

ðdþΣÞ0 þ
Σ0

Σ
dþΣ ¼ SdþΣ½ϕ; G;Σ; F�; ðB3cÞ

ðdþGÞ0þ
�
Σ0

Σ
−
G0

G

�
dþG¼SdþG½ϕ;G;Σ;F;dþΣ�; ðB3dÞ

ðdþϕÞ0 þ
Σ0

Σ
dþϕ ¼ Sdþϕ½ϕ; G;Σ; F; dþΣ�; ðB3eÞ

A00 þ 2

z
A0 ¼ SA½ϕ; G;Σ; F; dþΣ; dþG; dþϕ�; ðB3fÞ

ðdþFÞ0 −
�
2Σ0

Σ
þ G0

G

�
dþF

¼ SdþF½ϕ; G;Σ; F; dþΣ; dþG; dþϕ; A�; ðB3gÞ

dþdþΣ ¼ SdþdþΣ½ϕ; G;Σ; F; dþΣ; dþG; dþϕ; A; dþF�;
ðB3hÞ
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where the prime stands for the derivative with respect to the
variable z. Once given the data for the fields ϕ andG on the
time slice t0, the above equations can be solved sequen-
tially, since the source terms given on the right-hand side of
the equations depend only on the known fields. In fact, the
last two equations are not solved but are used to detect
numerical errors. The reason this can be done is that, once
the field A is solved from Eq. (B3f), the fields ϕ and G can
be pushed to the next time slice t0 þ dt by integrating in
time for ∂tϕ and ∂tG, which can be obtained from the
auxiliary fields

∂tϕ ¼ dþϕþ z2Aϕ0; ðB4aÞ

∂tG ¼ dþGþ z2AG0: ðB4bÞ

The procedure is iterated until the entire simulation is
completed.

2. Boundary conditions

In order to clarify the boundary conditions, we expand
the field equations (B3) near the AdS boundary and obtain
the asymptotic behavior of the fields as follows:

ϕ ¼ ϕ1zþ ϕ2z2 þ oðz3Þ; ðB5aÞ

G ¼ 1þ g3z3 þ oðz4Þ; ðB5bÞ

Σ ¼ z−1 þ λ −
ϕ2
1

8
zþ oðz2Þ; ðB5cÞ

F ¼ −∂xλþ f1zþ oðz2Þ; ðB5dÞ

A¼1

2
z−2þλz−1þ1

2
λ2−

ϕ2
1

8
−∂tλþa1zþoðz2Þ; ðB5eÞ

where the source of the scalar field ϕ1 is a free parameter
for the field equations, which is used to quench the system
in our work. Since the asymptotic behavior of the fields is
known, the scalar operator and energy-momentum tensor
operator can be evaluated immediately from Eqs. (5)

hOi ¼ 1

2
ðλϕ1 þ ϕ2 − ∂tϕ1Þ; ðB6aÞ

hTiji¼

0
BB@

−2a1−ϕ1hOi −3
2
f1þ 1

4
ϕ1∂xϕ1 0

−3
2
f1þ 1

4
ϕ1∂xϕ1 −a1þ 3

2
g3 0

0 0 −a1− 3
2
g3

1
CCA:

ðB6bÞ

Meanwhile, the Ward-Takahashi identity (8) gives rise to
the time derivatives of a1 and f1 as follows:

∂ta1¼
3

4
∂xf1−

1

2
ϕ1∂thOi−1

8
ð∂xϕ1Þ2−

1

8
ϕ1∂

2
xϕ1; ðB7aÞ

∂tf1 ¼
2

3
∂xa1 − ∂xg3 þ

2

3
∂xϕ1hOi þ 1

6
∂tϕ1∂xϕ1

þ 1

6
ϕ1∂x∂tϕ1: ðB7bÞ

Actually, the above equations can also be obtained
by asymptotic analysis of Eqs. (B3g) and (B3h) on the
boundary, respectively.
With these preliminaries in hand, we can now start

discussing how to solve these Eqs. (B3). First, Eq. (B3a) is
a linear second-order ordinary differential equation for
the field Σ. The two integration constants are fixed by the
coefficients of the first and second terms in the asymptotic
behavior (B5c), which indicates the parameter λ must be
considered as the dynamical variable like ϕ and G. The
corresponding time derivative term can be extracted from
the asymptotic behavior of field A (B5e),

∂tλ ¼ lim
z→0

�
1

2
z−2 þ λz−1 þ 1

2
λ2 −

ϕ2
1

8
− A

�
: ðB8Þ

Second, the coefficient of the subleading term f1 in the
asymptotic behavior of field F (B5d) provides the single
integration constant for Eq. (B3b) due to the vanishing
coefficient of the z−2 term. The value of its time derivative
can be easily calculated from Eq. (B7b). Then, the apparent
horizon condition is used to fix the single needed integra-
tion constant for Eq. (B3c),

dþΣðzh; t; xÞ ¼
1

2GΣ

�
z2F2Σ0

Σ
þ F∂xG

G
− ∂xF

�				
zh

: ðB9Þ

Next, for Eqs. (B3d) and (B3e), the integration constants
are fixed by the coefficients of the first term in the
asymptotic behavior dþG ∼ − 3

2
g3z2 þ oðz3Þ and the sec-

ond term in the asymptotic behavior dþϕ ∼ − 1
2
ϕ1 −

ðλϕ1 þ ϕ2 − ∂tϕ1Þzþ oðz2Þ, respectively. As we said
before, we require the position of the apparent horizon
to be time invariant, meaning that the time derivative of
the condition (B9) is also always satisfied at the apparent
horizon. Using Eq. (B3h), the stationary horizon condition
can induce a second-order elliptic equation for A at the
horizon, which fixes one of the two integration constants
for Eq. (B3f). The other is fixed by the coefficient of the
leading term in the asymptotic behavior (B5e). The
numerical code is available in [35].
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3. Convergence test

In our integration strategy, the redundant boundary con-
dition (B7a) induced by Eq. (B3h) on the AdS boundary
allows us to detect numerical errors during the evolution.
Without loss of generality, we take the case of spontaneous
dynamical transition in Fig. 2(a) as an example to demonstrate
the accuracy and convergence of our numerical code. At this
time, the condition (B7) is exactly the energy conservation
condition ∂tĒ ¼ 0 due to the time-independent scalar source.

Since the homogeneous state as the initial data is obtained by
theNewton-Raphson iteration algorithm, in order to avoid the
influence of the iterative error, we keep the number of grid
points along the radial direction (z) and vary the number of
grid points along the spatial direction (x). Because of the
spectral method, the expected convergence rate is exponen-
tial. The results in Fig. 11 show that the accuracy of our
numerical code improves exponentially as the grid points
increase, which is exactly the spectral accuracy.
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