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AdS=CFT correspondence is a “first-principle” tool to study the strongly coupled many-body systems.
While it has been extensively applied to investigate the continuous symmetry breaking dynamics, the
dynamics of discrete symmetry breaking are rarely investigated. In this paper, the model of kink formation
in a strongly coupled one-dimensional chain is realized from the AdS=CFT correspondence. In doing so,
we first construct a model of real scalar fields with parity symmetries in the AdS bulk. By quenching the
system across the critical point at a finite rate, kink hairs turn out in the bulk due to the spontaneous parity
symmetry breaking, which accomplishes a counterexample of “no hair conjecture” of black hole. Due to
the AdS=CFT correspondence, kink hairs in the bulk are dual to the kinks in the AdS boundary. The mean
of the dual kink numbers are found to satisfy a universal power-law relation to the quench rate, in
agreement with the celebrated Kibble-Zurek mechanism. Moreover, the higher cumulants of the kink
numbers are proportional to the mean numbers, consistent with the assumption that the formation of kinks
satisfy the binomial distributions which goes beyond the Kibble-Zurek mechanism.
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I. INTRODUCTION

No hair conjecture of black hole states that the solution of
black hole can be entirely characterized by its mass, electric
charge, and angular momentum [1–3]. However, this con-
jecturewas challenged invariousways.Counterexamples are
found in black holes with non-Abelian Yang-Mills fields [4],
in higher dimensional gravity [5], or with the soft hairs [6],
just to name some examples. For reviews one can refer to [7]
and references therein. Among these, Gubser’s proposal [8]
for the hair of charged scalar fields in a spacetime with
negative cosmological constant was widely applied in the
holographic superconducting phenomena [9], which brought
in a surge of the applied holography especially in condensed
matter physics [10].

However, the study of the hair of topological structures is
rare [11]. In this paper, we initiate the investigation on the
hair of topological defects—kink formations from the
discrete symmetry breaking in a planar Schwarzschild-
anti–de-Sitter (AdS) black hole due to the prominent
Kibble-Zurek mechanism (KZM) [12–14]. KZM was first
proposed in the cosmology scenario [12] and later was
extended to the superfluid in condensed matter [14]. It
states that when the system is driven into a symmetry
breaking phase in a finite rate, topological defects will
emerge at the interfaces between the distinct symmetry
breaking domains. Therefore, the number of topological
defects can be predicted theoretically which obeys a
universal power-law scaling to the quench rate. KZM
has been tested in various systems in condensed matter
physics, such as [15–17]. For reviews in KZM, please refer
to [18,19].
Here, we dynamically realize the kink hairs of real scalar

fields from the parity symmetry (Z2 symmetry) breaking in
the AdS bulk, refer to Fig. 1. By decreasing the temperature
of the system across the critical point, the former Z2

symmetry of the scalar fields spontaneously break along
a spatial direction. Then kinks form at the interfaces of the
symmetry breaking domains. By fixing the final temper-
ature lower than the critical temperature for a while, we see
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the stable structures of the kinks in the final equilibrium
state. This indicates that these kink hairs are dynamically
stable.
From the AdS=CFT correspondence [20–22], its holo-

graphic dual can mimic the kink formations in a strongly
coupled one-dimensional chain. See Fig. 1 for the illus-
tration of this correspondence. The interfaces between the
balls with different arrows in the AdS boundary indicate
the structures of kinks (we do not distinguish between
kinks and antikinks in this paper), which resembles the
kink formation in a one-dimensional chain in condensed
matter physics, such as the Ising chain [23]. We find that
the kink numbers in the boundary field theory satisfy a
universal power-law relation to the quench rate, consistent
with the KZM’s prediction. In recent, it was proposed that
the statistics of kink numbers satisfies a binomial distri-
bution and the higher cumulants are predicted to obey a
universal power-law scaling to the quench rate as well [24].
We examine this binomial distribution and power-law
relation for the holographic kinks and find that the
numerical results match the theoretical predictions very
well. In addition, we investigate the probability of vanish-
ing kinks, which can observe the onset of adiabaticity from
the critical dynamics. The numerical fitting of this prob-
ability against the mean kink numbers matches the
theoretical predictions closely. Other holographic models
of the topological defects from the continuous symmetry
breaking, such as U(1) symmetry breaking can be found
in [25–39]. The papers [27,28] studied the KZ scalings in
an analytical way and found consistent results with KZM,
while other papers [25,26,29–39] numerically realized the
formation of defects, either vortices in two-spatial dimen-
sions or winding numbers in one-spatial dimension.
However, they all dealt with complex scalar fields with
U(1) symmetry, which is different from our paper in which
we will study the real scalar fields with discrete Z2

symmetry.

II. MODEL OF PARITY SYMMETRY BREAKING

We start with a U(1) symmetric Abelian-Higgs model in
the bulk with the Lagrangian [9],

L ¼ −
1

4
FμνFμν − jDμΨ̃j2 −m2jΨ̃j2; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ and Aμ is the U(1) gauge field.
Dμ ¼ ∇μ − iAμ and Ψ̃ is the complex scalar field. For
simplicity, we work in the probe limit. Thus, the equations
of motions (EoMs) read,

DμDμΨ̃ −m2Ψ̃ ¼ 0; ∇μFμν ¼ Jν: ð2Þ

in which Jν ¼ i½Ψ̃�DνΨ̃ − Ψ̃ðDνΨ̃Þ��. In order to transform
the Lagrangian with U(1) symmetry to Z2 symmetry, we
need to transform the complex scalar fields to real scalar
fields. To this end, we make the following gauge trans-
formations

Ψ̃ ¼ Ψeiλ; Aμ ¼ Mμ þ ∂μλ; ð3Þ

where Ψ;Mμ and λ are real functions. With these real
functions, the previous Eq. (2) can be rewritten as

DμDμΨ −m2Ψ ¼ 0; ∇μFμν ¼ 2MνΨ2; ð4Þ

where Dμ ¼ ∇μ − iMμ. [Alternatively, one can rewrite the
action Eq. (1) in a Stückelberg form, then gauge the phase
to be zero [40]. These two procedures are equivalent.]
Therefore, if þΨ is a solution to the Eq. (4), −Ψ must
be a solution as well. This indicates a Z2 symmetry
(þΨ ↔ −Ψ) of the Eq. (4).
In an asymptotic AdS spacetime, as the temperature of

the black hole T is lower than a critical value Tc, the scalar
fields will condensate near the black hole [8]. This idea

FIG. 1. The sketchy figure to illustrate the correspondence between the kink formations in the AdS bulk and in the AdS boundary field
theory. The black hole indicates that this is a finite temperature phase transition. Different colors in AdS bulk implies domain wall-like
structures which forms kinks normal to the radial direction. Interfaces between the balls with different arrows indicate the kinks in the
AdS boundary. The inset figure illustrates the Z2 symmetry breaking of the scalar fields.
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is the prototype of the holographic superconductor/
superfluid [9]. Therefore, we see that �Ψ are the Z2

degenerated solutions to the ground state in the low
temperature. That is, as T < Tc the ground state will
spontaneously break the Z2 symmetry by choosing either
þΨ or −Ψ. However, the above arguments goes only for
static case. In a dynamical processing, quenching the
system from high temperature (T > Tc) to low temperature
(T < Tc), scalar fields will condensate in a different way.
According to the KZM [12–14], dynamically driving the
system to a symmetry breaking phase will induce the
formation of topological defects in the spatial direction.
Besides, these topological defects will be randomly dis-
tributed in space. In our case, kink formations will occur
due to the parity symmetry breaking.
We adopt the idea of KZM to realize the kink formation

in the bulk, i.e., the “kink hairs” of a black hole in an
asymptotic AdS spacetime, refer to Fig. 1. In this case we
need to solve the system in a dynamically. A convenient
choice is to use the Eddington-Finkelstein coordinates in
the planar Schwarzschild-AdS black hole [25,26],

ds2 ¼ 1

z2
½−fðzÞdt2 − 2dtdzþ dx2 þ dy2�: ð5Þ

in which fðzÞ ¼ 1 − ðz=zhÞ3 with zh the horizon position.
Without loss of generality, we set the AdS radius be
lAdS ¼ 1 and the horizon location be zh ¼ 1 as well.
Thus the AdS boundary is located at z ¼ 0 and the
temperature of the black hole is T ¼ 3=ð4πÞ.

III. BOUNDARY CONDITIONS
AND NUMERICAL SCHEMES

We set the ansatz of fields as Ψ ¼ Ψðt; z; xÞ;Mt ¼
Mtðt; z; xÞ;Mz ¼ Mzðt; z; xÞ;Mx ¼ Mxðt; z; xÞ, and we
have turned off the fields My. In this ansatz we assume
a homogeneous dependence on the y-direction, besides we
set the periodic boundary condition along x-direction.
Thus, the boundary field theory is effectively one-dimen-
sional. The above ansatz of the fields is self-consistent with
the EoMs (4) since there are four independent equations
to solve four real functions. We should stress that the
inclusion of Mz is important since we are woking in the
Eddington-Finkelstein coordinates. Even in the static case
we cannot excludeMz, insteadMz ¼ Mt=fðzÞ in static. See
the Appendix A for details.
The expansions of the fields near AdS boundary z ¼ 0 is

(for simplicity we setm2¼−2),Ψ∼Ψ1ðt;xÞzþΨ2ðt;xÞz2þ
Oðz3Þ, Mt ∼ μðt; xÞ − ρðt; xÞzþOðz3Þ, Mz ∼ azðt; xÞ þ
bzðt; xÞzþOðz3Þ, Mx ∼ axðt; xÞ þ bxðt; xÞzþOðz3Þ. We
choose the standard quantization by setting Ψ1ðt; xÞ≡ 0,
thus Ψ2 is related to the condensate of the superconducting
order parameter Oðt; xÞ in the boundary field theory. μ and
ρ are interpreted as the chemical potential and charge
density respectively in the boundary. From the expansions

of the Eq. (4) we find that az ¼ μ. ax and bx are the velocity
and current of the gauge fields on the boundary. We set
ax ¼ 0 to work in the holographic superfluid model. Near
the horizon we set Mt ¼ 0 as usual, and let other fields be
finite.
In the KZM, one needs to quench the system across the

critical point which is obtained from the equilibrium states.
In this paper we quench the chemical potential μ. In the
equilibrium or in the static case we find the critical potential
is μc ≈ 4.06. We linearly quench the system from T ¼
1.4Tc to T ¼ 0.8Tc and the linear quench profile is

TðtÞ=Tc ¼ 1 − t=τQ; ð6Þ

where τQ is the quench rate. From the dimensional analysis
we know that ½T� ¼ ½μ� ¼ ½mass�, thus T=μ is massless.
From the setup of holographic superconductor [9] we
see that decreasing T is equivalent to increasing μ, i.e.,
TðtÞ=Tc ¼ μc=μðtÞ. Therefore, we quench the chemical
potential as μðtÞ ¼ μc=ð1 − t=τQÞ.
At initial time, the system is in a state with vanishing

scalar fields. In this case the simple solution to the gauge
fields are Mt ¼ MzfðzÞ ¼ μðtiÞ − μðtiÞz and Mx ¼ 0.
However, in order to quench the system and evolve it to
a state with topological defects (kinks in our paper), a
common procedure is to introduce white noise into the
system at initial time. To this end, we introduce a very
small Gaussian white noise ζðxi; tÞ for the scalar fields
in the bulk with hζðxi; tÞi ¼ 0 and hζðxi; tÞζðxj; t0Þi ¼
hδðt − t0Þδðxi − xjÞ, in which h ¼ 0.001. Then we thermal-
ize this system by fixing the temperature at T ¼ 1.4Tc for a
while in order to diminish the extra virtual kinks caused by
the noise. After the thermalization we quench the system
according to Eq. (6). The system will evolve according to
the Eq. (4). Once the temperature arrives at T ¼ 0.8Tc we
stop the quench and maintain the temperature until the
system reach the final equilibrium. We adopt the 4th
Runge-Kutta method in the time direction with time step
Δt ¼ 0.01. In the radial direction z, we use the Chebyshev
pseudospectral methods with 21 grid points. In the periodic
x-direction, we use the Fourier decomposition with 401
grid points. The length of the loop along the x-direction is
set to be L ¼ 200.

IV. RESULTS

A. Kink hairs in the AdS bulk

Quench the system through the critical pointTc from high
temperature to low temperature [refer to Eq. (6)], the system
will enter a superconducting phase and the formation of
kinks will turn out due to the KZM [12–14]. In Fig. 2 we
exhibit the kink formations in the AdS bulk at the final
equilibrium state. From the panel (a) of Fig. 2, we see that
the kink structures exist along the x-direction while in the
z-direction they perform mildly from the horizon (z ¼ 1) to
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the boundary (z ¼ 0).1 Panel (b) shows the densities of the
scalar fields in the bulk, from which we can see the kink
structures clearly along the x-direction. It is found that some
kinks are broader and others are narrower. This is due to the
random distributions of the kinks. Panel (c) exhibits the pro-
file of the kinks from the view parallel to x-direction. The
profile is perfectly symmetric along Ψ ¼ 0 axis, indicates
the Z2 symmetry breaking in the bulk along the radial
direction. From panel (d) we can see the one-dimensional
kinks at the horizon. The absolute value of the maximum are
equal to the absolute values of the minimum of the kinks,
which is the reflection of the Z2 symmetry breaking.
In the mean field theory one single kink behaves as
Ψ ¼ Ψmax tanh½aðx − bÞ�, where a is proportional to the
mass of the scalar field while b is the locations of the
kink [41]. In the inset plot of panel (d), we show the profile
of a single kink in the dashed box at round x ≈ 58.1 and its

best fit (red line) as 1.1 × tanh½0.8ðx − 58.1Þ�. We see that
the theoretical prediction and the numerical results match
very well. Therefore we realize the “kink hairs” from Z2

symmetry breaking near the horizon and also in the bulk.

B. Holographic kink formation in the AdS boundary

From the holographic superconductor [9], the scalar
hairs in the bulk will induce the condensate of the order
parameters in the boundary field theory. Thus, we speculate
that the kinks of scalar fields in the bulk will also induce the
kinks of the order parameter in the boundary field theory
which is strongly coupled.
In Fig. 3 we exhibit the kink formations of the order

parameter OðxÞ in the boundary field theory corresponding
to the kink hairs in the Fig. 2. In the panel (a), we show the
snapshots of the order parameter along the x-direction at
four different time stages, i.e., from the initial to the final
equilibrium state. The quench rate in this figure is τQ ¼ 20.
At the initial time t=τQ ¼ −0.4, the order parameter
exhibits a random profile and then evolves and grows
rapidly around t=τQ ¼ 0.35. At the time t=τQ ¼ 0.6 the
order parameter are well developed but still not in the
equilibrium state. We stop the evolution at t=τQ ¼ 2.5,
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FIG. 2. Kink formations in the AdS bulk. (a) Stereoscopic visualization of the kink formations in the AdS bulk; (b) Density plot of the
kink formation in the bulk; (c) Profile of the kink formation in the bulk from the viewpoint parallel to the x-direction; (d) Profile of the
kinks at the horizon. The inset plot shows the fitted line (in red) of a kink in the dashed box.

1In order not to make any confusion, we should stress that the
structures in the bulk look like domain walls. However, it is safe
to call them “kinks” since the kink structures only exist along
x-direction and no kink structures exist along z-direction. There-
fore, the topological structure of kinks “effectively” exist in one-
dimensional space.
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when the system arrives at the final equilibrium state and
the order parameter develops stable kinks. Compare the
time t=τQ ¼ 0.6 and t=τQ ¼ 2.5 we see that some kinks do
not change their locations (for instance the kink at around
x ¼ 140) and some minor ripples disappear due to the
coarsening dynamics. The inset plot in the last snapshots
shows the kink at around x ¼ 58.1, and its best fit in blue
3.96 × tanhðx − 58.1Þ, which matches the theoretical pre-
diction very well. Compare to the panel (d) in Fig. 2 we see
that except the differences of the amplitudes and the slopes,
the locations of kinks at the horizon and at the z ¼ 0
boundary do not change. Panel (b) of Fig. 3 shows the time
evolution of the corresponding average absolute values of
the order parameter hjOji from the initial time to the final
equilibrium time where it arrives at a plateau.

C. Kink number distribution and universal scalings

We need to note that the kink numbers always appear as
even because of the periodic boundary conditions we adopt
[32]. Therefore, we count the number of kink pairs n in the
following rather than counting the number of individual
kinks. It is useful to examine whether the kink formations
in the holographic model satisfies the KZM’s scaling
relation between the average numbers hni and the quench
rate τQ,

hni ∝ τQ
−dν=ð1þzνÞ; ð7Þ

where d is the effective spatial dimension of the topological
defects, ν and z are the static critical exponent and dynamic
critical exponent in the equilibrium, respectively [14]. It is
noted that d ¼ 1 in our case both for the kinks in the bulk
and those in the AdS boundary, since the kinks form only
along the x-direction while other spatial directions do not
have the structures of defects. Besides, from the analysis in
Figs. 2 and 3 we see that the kink numbers in the bulk are
equivalent to those in the boundary. As reported previously
[25,31,42], the boundary field theory is a mean field theory
therefore we have ν ¼ 1=2 and z ¼ 2.
Beyond the KZM, distributions of kink numbers have

been theoretically investigated beyond the mean density.
The kink numbers are assumed to satisfy the binomial
distribution which can be associated with independent
Bernoulli trials [24]. The first three cumulants of the
kink pair numbers, i.e., κ1 ¼ hni; κ2 ¼ hðn − hniÞ2i and
κ3 ¼ hðn − hniÞ3i are expected obey a universal power-law
scaling as κq∝τ−dν=ð1þzνÞ

Q ; (q ¼ 1, 2, 3). The ratios between
the cumulants can be readily obtained from the binomial
distributions as

κ2=κ1 ¼ ð2 −
ffiffiffi
2

p
Þ=2 ≈ 0.293; ð8Þ

κ3=κ1 ¼ 1 − 3=
ffiffiffi
2

p
þ 2=

ffiffiffi
3

p
≈ 0.033: ð9Þ

Moreover, from the central limit theorem the binomial
distribution can be approximated by the Gaussian
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FIG. 3. Kink formations in the AdS boundary. (a) Snapshots of the order parameterOðxÞ at the AdS boundary along the x-direction at
four different times t=τQ ¼ −0.40, 0.35, 0.60, and 2.50 with the quench rate τQ ¼ 20. The inset plot in the lowest panel exhibits the best
fit (in blue) of a kink in the dashed box; (b) Time evolution of the average absolute values of the order parameter hjOji. Four colored
points correspond to the four time stages in the panel (a).
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distribution in the large limit of trial numbers with fixed
probability of success. Therefore, the probability density of
the kink number PðnÞ can be approximated as

PðnÞ ≈ 1ffiffiffiffiffiffiffiffiffiffi
2πκ2

p exp

�
−
ðn − hniÞ2

2κ2

�
ð10Þ

In Fig. 4(a), the histogram of the probability density of the
kink pair numbersPðnÞ are exhibited. For the three different
quench rates, i.e., τQ ¼ 8100, 400, and 3, the probability
density can be well approximated by the Gaussian distri-
bution (black solid lines) in Eq. (10). In Fig. 4(b) we show
the relations between the first three cumulants κ1;2;3 to the
quench rate τQ. We have simulated independently 10000
times to generate this figure. In the slow quench regime as τQ
is greater, the three cumulants satisfy a universal power
law to the quench rate with a roughly the same power as
the fitted lines indicate. Specifically, the fitted lines are
κ1 ≈ ð20.48� 0.12Þ × τ−0.256�0.012

Q , κ2 ≈ ð6.38� 0.06Þ ×
τ−0.256�0.015
Q and κ3 ≈ ð0.48� 0.09Þ × τ−0.258�0.054

Q .
Therefore, the numerical power is consistent with the
theoretical prediction −dν=ð1þ zνÞ ¼ −0.25 in Eq. (7).
From the fittings, the numerical ratios of these cumulants
are κ2=κ1 ≈ 0.312 and κ3=κ1 ≈ 0.023. Compared to the

theoretical predictions in Eqs. (8) and (9) we see that the
ratio κ2=κ1 is close to the theoretical predictions, however,
the ratio κ3=κ1 has roughly 30% deviations from the
theoretical prediction. This deviation is because the numeri-
cal statistics of κ3 relies much on the amount of the
simulation data [32,43].More simulations of κ3 are expected
to improve this situation.
Probability of vanishing kinks Pðn ¼ 0Þ reveals the

onset of adiabaticity of the critical dynamics. From the
Eq. (10) we can estimate the relations between Pðn ¼ 0Þ
against the mean numbers hni. In the Fig. 4(c) we show the
double logarithmic plot between Pðn ¼ 0Þ and hni, and
observe that they indeed satisfy the Gaussian approxima-
tions Eq. (10).

V. DISCUSSIONS

We have initiated the study of kink hairs in the AdS black
hole due to the spontaneous Z2 symmetry breaking of the
real scalar fields in the bulk. By quenching the temperature
of the system across the critical point, the kink hairs turned
out in the bulk as a result of the KZM. This is a counter-
example to the no hair conjecture in black hole.
Holographically the kinks in the bulk induced the kink
formation in the boundary field theory, which could model
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FIG. 4. (a) Histogram of the probability density of kink pair numbers with different quench rates. The solid lines are the best fit with
Gaussian distributions; (b) Double logarithmic plot of the first three cumulants κq to the quench rate τQ. In the slow quench regime
(greater τQ), the cumulants satisfy a power law with a common power indicated by the almost parallel fitted lines; (c) Double logarithmic
plot between − log ð ffiffiffiffiffiffiffiffiffiffi

2πκ2
p

Pðn ¼ 0ÞÞ and the mean kink numbers hni. The fitted line indicates that they satisfy the Gaussian
approximations Eq. (10) very well. The inset plot is the relation between Pðn ¼ 0Þ and hni in the normal axis.
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the kinks in a one-dimensional chain in condensed matter
physics. Since the kinks appeared in the form of kinks and
antikinks, we made the full counting statistics of the pair
numbers of kinks. The mean numbers of the kink pairs
were found to satisfy a power-law scaling to the quench
rate, consistent with the KZM. Moreover, beyond the
KZM, the number distributions of kinks were assumed
to be binomial distribution and higher cumulants were
found to be proportional to the mean numbers. The ratios
between these cumulants were found to be consistent with
theoretical predictions, although κ3=κ1 is a little bit
away from theories. We gave some explanations of this
deviation since κ3 depended much on the simulation times.
This deviation was also observed in some existing
literatures [32,43]. In the large limit of the trial numbers,
the binomial distribution can be approximated by the
Gaussian distributions. We indeed found that the histogram
of the probability density of the kink pair numbers could be
well fitted by the Gaussian distribution. Furthermore, this
Gaussian distribution could also predict the probability of
vanishing kinks, which could be used to study the adia-
baticity limit of the critical dynamics. We found that the
numerical results of the probability of vanishing kinks
matched the theoretical predictions very well.
From the AdS=CFT correspondence the boundary field

theory is a mean field theory [10], thus, our model compares
to the Ginzburg-Landau theory in studying the kinks in one-
dimensional chain [44,45]. In the Appendix B of this paper,
we have shown the kink formations due to the spontaneous
Z2 symmetry breaking of real field ϕ in the time-dependent
Ginzburg-Landau (TDGL) theory. Compared to this TDGL
theory, we found that the holographic model had similar
behaviors to the TDGL model. In particular, the universal
scalings between the cumulants of the kink pair numbers and
the quench rates all had the scaling powers close to −0.25,
consistent with the KZM predictions in mean field theory.
Furthermore, for the TDGL model the ratios between the
cumulantswere also very close to the theoretical predictions,
demonstrating that the formations of kinks satisfy the
binomial distributions [24]. Interestingly, the original
assumption of the binomial distribution of kink formations
as well as the universal scalings between the cumulants and
the quench rate were made in a quantum Ising model with
transverse magnetic fields, however, here we found that this
assumption could also be applied in the holographic model
and TDGL model. From this sense, we can argue that our
holographic kink formations is a kind of “effectivemodel” to
mimic the Ising model or TDGLmodel in condensed matter
physics. In the Appendix B we also studied the Gaussian
approximations of the probability distribution for the kinks
just like we did in the holographic studies, and we found
that for the TDGL model the numerical results matched
the Gaussian approximations very well. In the adiabatic
limit, i.e., in the limit of vanishing kinks, the probability
distribution could also be approximated by the Gaussian

distribution in the TDGL model. For details of the studying
of TDGL model, please refer to the Appendix B. However,
the merit of our holographic model is that the boundary field
theory is strongly coupled while the TDGL theory is weakly
coupled [10]. Findings in this paper indicate that the strong
coupling does not change the universal power-law scalings
between the first three cumulants to the quench rate
compared to weak theory. And the probabilities of the
vanishing kinks also match the Gaussian approximations
in the weak theory.
A caveat is that the one-dimensional Ising chain does not

possess any finite temperature phase transition, however it
has phase transition from paramagnetic to ferromagnetic if
one drives the external transverse magnetic field across the
critical point [23]. Therefore, our holographic model of the
kinks formation resembles the one-dimensional Ising chain
in such a sense that the temperature in our case is similar to
the magnetic field strength in Ising chain. However, the
striking difference between the mean field theory (includ-
ing holographic model and TDGL model) and the quantum
Ising model resides in the distinct powers of the universal
scalings between the cumulants and the quench rate. In the
mean field theory this power is −0.25, while for the
quantum Ising model with transverse magnetic field it is
−0.5 [24]. This difference was due to the different
dynamical critical exponents z and static critical exponents
ν in these two models. For mean field theory they are z ¼ 2
and ν ¼ 1=2, thus from the Eq. (7) the power is −0.25;
while for Ising model they are z ¼ ν ¼ 1 thus the power is
−0.5. Although the scaling powers are distinct between
mean field theory and the Ising model, the ratios between
the cumulants are similar and match the theoretical pre-
dictions from the Ising model [refer to Eqs. (8) and (9)]. As
we have already discussed above, this indicates that the
kink formations in the holographic model and the TDGL
model also satisfy the binomial distributions, which was
previously proposed to be the distributions of kinks in the
Ising model. In this sense we can say that the mean field
theory model is an “effective model” for the Ising model.
For future prospects, there also exists structural phase

transitions from linear to a doubly degenerate zigzag
phases, such as the trapped ion chains [46,47]. Our holo-
graphic model may have relevances to such kind of phase
transition as well. This holographic model of kinks in
one-dimensional space can be readily extended to two-
dimensional space and many interesting properties can be
further studied, such as kink spatial distributions [38], the
entanglement entropy [48], etc. We expect that our initial
work on the holographic kinks will shed light on studies in
the strongly coupled topological defects.

ACKNOWLEDGMENTS

This work was partially supported by the National Natural
Science Foundation of China (Grants No. 11875095,
No. 12175008, and No. 12305067).

FROM BLACK HOLE TO ONE-DIMENSIONAL CHAIN: PARITY … PHYS. REV. D 108, 106015 (2023)

106015-7



APPENDIX A: EXPLICIT FORMS
OF EQUATIONS OF MOTIONS

The EoMs (4) in the main text can be decomposed into

∇μ∇μΨ −MμMμΨ −m2Ψ ¼ 0; ðA1Þ

ð∇μMμÞΨþ 2Mμ∇μΨ ¼ 0; ðA2Þ

∇μFμν ¼ 2MνΨ2: ðA3Þ

The Eqs. (A1) and (A2) are respectively from the real part
and imaginary part of the scalar equations in (4). As was
emphasized in [49], these equations are not independent. In
fact, from the EoMs of gauge fields (A3) one can derive the
imaginary part EoMs (A2), such as

0≡∇νð∇μFμνÞ ⇒ ∇νð2MνΨ2Þ ¼ 0

⇒ ð∇νMνÞΨþ 2Mν∇νΨ ¼ 0: ðA4Þ
The last equality is exactly the imaginary part of the scalar
EoMs (A2).
In our ansatz of the fields and in the frame of the line-

element Eq. (5) in the main text, the above EoMs become
(1) The gauge fields (A3) part:

0 ¼ −
2Ψ2Mt

z2
þ ∂

2
xMt þ f∂2zMt − ∂txMx − ∂tzMt

− f∂tzMz þ ∂
2
t Mz; ðA5Þ

0 ¼ −
2Ψ2Mz

z2
þ ∂

2
xMz − ∂zxMx þ ∂

2
zMt − ∂tzMz;

ðA6Þ

0 ¼ −
2Ψ2Mx

z2
− f0∂xMz þ f0∂zMx þ ∂zxMt

− f∂zxMz þ f∂2zMx þ ∂txMz − 2∂tzMx. ðA7Þ
(2) The real part of scalar fields (A1):

0 ¼ −
m2Ψ
2z2

−
1

2
ΨM2

x þΨMtMz −
1

2
ΨfM2

z þ
1

2
∂
2
xΨ

−
f∂zΨ
z

þ 1

2
∂zðf∂zΨÞ þ

∂tΨ
z

− ∂tzΨ. ðA8Þ

(3) The imaginary part of scalar fields (A2):

0¼2Ψ
z
ðfMz−MtÞ

−Ψð∂zðfMzÞþ∂xMx−∂tMz−∂zMtÞ
þ2ðMt∂zΨþMz∂tΨ−Mx∂xΨ−fMz∂zΨÞ ðA9Þ

in which f0 ¼ f0ðzÞ. There are five equations, but
only four of them are independent due to the

constraint (A4). Therefore, there are four indepen-
dent equations for four real fields, i.e., Ψ;Mt;Mz,
and Mx. Thus, our ansatz of the fields are self-
consistent. We need to stress that including the
ðt; xÞ-dependence, our ansatz is the only possible
choice. One cannot omit Mz or Mx.

In order to get the initial condition for our quench, we
need to solve the static as well as x-independent case of the
EoMs. Therefore, the EoMs (A5)–(A7) become

0 ¼ −
2Ψ2Mt

z2
þ f∂2zMt; ðA10Þ

0 ¼ −
2Ψ2Mz

z2
þ ∂

2
zMt; ðA11Þ

0 ¼ −
2Ψ2Mx

z2
þ f0∂zMx þ f∂2zMx: ðA12Þ

From Eq. (A12) we can safely set Mx ¼ 0. From (A10)
and (A11) we can readily get Mz ¼ Mt=f. At the initial
time the system is in the normal state with vanishing
scalar fields Ψ ¼ 0. Thus we can solve Mt ¼ μ − μz and
Mz ¼ ðμ − μzÞ=f by imposing the boundary condition
Mtðz → 0Þ ¼ μ and Mtðz → 1Þ ¼ 0.

APPENDIX B: KINK FORMATIONS IN A TIME-
DEPENDENT GINZBURG-LANDAU MODEL

We start with a model of real non-conserved scalar order
parameters ϕ, which can be described by the time-depen-
dent Ginzburg-Landau (TDGL) equation coupled with a
Langevin noise term θðt; x⃗Þ [44],

ϕ̈þ ηϕ̇ − c2∇2ϕþ 1

2
ðβϕ3 −m2ϵðtÞϕÞ ¼ θðt; x⃗Þ; ðB1Þ

where η represents the viscosity, c, β, m are constant
coefficients and ϵðtÞ is a relative distance to the critical point.
The noise satisfies hθðt; x⃗Þi ¼ 0 and hθðt0; x⃗0Þθðt; x⃗Þi ¼
2ηTδðx⃗0 − x⃗Þδðt0 − tÞ in which T represents the temperature
of the reservoir whichwill be kept constant in our paper. After
the transformation,

t →
t
m
; x⃗ → x⃗

c
m
; η → ηm;

ϕ → ϕ
mffiffiffi
β

p ; T → T
m3c
β

; ðB2Þ

the above Eq. (B1) can be transformed to a familiar form as

ϕ̈þ ηϕ̇ −∇2ϕþ 1

2
ðϕ3 − ϵðtÞϕÞ ¼ θðt; x⃗Þ: ðB3Þ

It is well-known that in the TDGL model, as ϵ < 0 the
solution ϕ ¼ 0 is preferred, however as ϵ > 0 the preferred
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solution is ϕ ≠ 0. Therefore, if we quench ϵ from negative,
across the critical point ϵ ¼ 0, to positive, the previous Z2

symmetries of the real scalar field ϕ will spontaneously
break and the kinks will form. For simplicity, we linearly
quench ϵ as ϵðtÞ ¼ t=τQ, where τQ is the quench rate.
Therefore, we can quench the system from negative ϵ to
positive ϵ. Specifically, we start the quench from t=τQ ¼
−1.6 to t=τQ ¼ 10, then we stop the quench and keep it at
ϵf ¼ 10. Until the final equilibrium state, the order param-

eter will take the values ϕ ¼ � ffiffiffiffiffi
ϵf

p ¼ � ffiffiffiffiffi
10

p
. To analyti-

cally solve the Eq. (B3) is formidable, thus we resort to
numerical solutions. In the numerics, we have set η ¼ 1 and
T ¼ 0.01. The length of the system is L ¼ 200 with the
periodic boundary conditions. Therefore, in the spatial
direction we Fourier decompose the length to 103 grids.
In the time directions, the 4th Runge-Kutta methods are
adopted with the time step Δt ¼ 0.01.
From Fig. 5(a) we see the four snap shots of the time

evolution of the kink profile from the initial time to the final
equilibrium state. At t=τQ ¼ −1.6 the scalar field is random
with very tiny amplitudes which will serves as inhomo-
geneous seeds for the time evolution of the system. At
t=τQ ¼ 12 the scalar field is still random but with larger
amplitudes. It is the instant before the rapid growth of the
average order parameter, see the red point in panel (b).
Later at t=τQ ¼ 27 the system already underwent the rapid

growth and just before the plateau of the average order
parameter, see the green point in panel (b). At this instant,
the amplitudes of the scalar fields already developed, but
the kinks are not well formed. At the final equilibrium time
t=τQ ¼ 202 the kinks are well developed and they will stay
in this form for a long time, which are dynamically stable.
Figure 6(a) exhibits the histogram of the probabilities of

the kink pair numbers with various quench rates. The solid
lines are from the Gaussian approximations in the Eq. (10)
in the main text. Figure 6(b) shows the relations between
the cumulants of the kink pair numbers against the
quench rate. The dashed line is the reference line with
the slope −0.25 which is the theoretical power from GL
model. In this double logarithmic plot, we see that the first
three cumulants κ1;2;3 are closely parallel to the reference
line. Thus, we can infer that they satisfy a universal power-
law scaling to the quench rate, consistent with the KZM
and the predictions from [24]. The fitted lines are approxi-
mated κ1 ≈ 12.930 × τ−0.251Q ; κ2 ≈ 3.805 × τ−0.251Q , and
κ3 ≈ 0.297 × τ−0.252Q . Thus, the ratios between them are
κ2=κ1 ≈ 0.294 and κ3=κ1 ≈ 0.023, which are very close to
the theoretical predictions in the Eqs. (8) and (9) in the main
text. This indicates that the distributions of the kink
numbers satisfy the binomial distributions.
The probability of vanishing kinks Pðn ¼ 0Þ can

uncover the limit of adiabaticity of the critical dynamics.
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FIG. 5. Kink formations in the TDGL model. (a) Snap shots of the kink configurations at four different stages with the quench rate
τQ ¼ e1; (b) Time evolution of the average absolute values of the order parameter. The colored points correspond to the four snap shots
in panel (a).

FROM BLACK HOLE TO ONE-DIMENSIONAL CHAIN: PARITY … PHYS. REV. D 108, 106015 (2023)

106015-9



Therefore, from the Gaussian approximation Eq. (10) in the
main text, Pðn ¼ 0Þ should have a Gaussian relation to the
mean kink numbers. Figure 7 shows the double logarithmic
plot between − log ð ffiffiffiffiffiffiffiffiffiffi

2πκ2
p

Pðn ¼ 0ÞÞ and hni, which
verifies the relation in Eq. (10) in the main text. The inset
plot is the relation between Pðn ¼ 0Þ and hni in the normal
coordinates.
Compared to the holographic model of the kink forma-

tions in the main text, we can see that the TDGL model has
many similar behaviors to the holographic model, such as

the time evolutions of the order parameter, the power-law
scalings between the cumulants of the kink pair numbers vs.
the quench rate, and the Gaussian approximations in the
limit of vanishing kinks. We think this resemblance is
not surprising, since from AdS=CFT correspondence the
boundary field theory is a mean field theory with strong
couplings [10]. As we have mentioned in the “Discussion”
part in the main text, it seems that the strong coupling does
not change the universal power-law scalings from the theory
withweak couplings. The resemblance between the strongly
coupled holographic models and the weakly coupled mean
field theory were commonly seen in existing literatures,
such as in [25,26].
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