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No experimental evidence of the quantum nature of gravity has been observed yet and a realistic setup
with improved sensitivity is eagerly awaited. We find two effects, which can substantially enhance the
signal of gravity-induced quantum entanglement, by examining an optomechanical system in which two
oscillators gravitationally couple and one composes an optical cavity. The first effect comes from a higher-
order term of the optomechanical interaction and generates the signal at the first order of the gravitational
coupling in contrast to the second-order results in previous works. The second effect is the resonance
between the two oscillators. If their frequencies are close enough, the weak gravitational coupling
effectively strengthens. Combining these two effects, the signal in the interference visibility could be
amplified by a factor of 1024 for our optimistic parameters. The two effects would be useful in seeking
feasible experimental setups to probe quantum gravity signals.

DOI: 10.1103/PhysRevD.108.106014

I. INTRODUCTION

The construction of a quantum gravity theory poses a
fundamental challenge in theoretical physics [1,2]. One of
the main difficulties stems from the lack of sufficient
experimental evidence to investigate quantum gravity. As
a first step in addressing this issue, Feynman proposed a
thought experiment to observe a probe system evolving
under a quantum superposition of gravitational fields [3].
This idea inspired the investigations of quantum coherent
phenomena on a low-energy tabletop experiment. A novel
proposal is often commonly referred to as the Bose et al.–
Matletto-Vedral (BMV) proposal [4,5]. In Refs. [4,5], the
authors considered a scenario where two quantum masses,
initially in a nonentangled state and each in a spatial
superposition, interact only through Newtonian gravity.
They concluded that the entanglement between the masses
is generated by the gravitational interaction and that such a
phenomenon indicates the quantum coherent behavior of
gravity. Stimulated by this statement, there are many exper-
imental proposals based on matter-wave interferometers
[6–11], mechanical oscillator model [12,13], optomechan-
ical systems [14–18] and their hybrid model [19–23]. Also,
the theoretical aspects of gravity-induced entanglement have
been studied. In Refs. [24–29], the entanglement due to

Newtonian gravity was shown to be consistent with quantum
field theoretical description. On the other hand, it was
discussed that such a Newtonian entanglement does not
directly lead to the quantization of the gravitational field
[30,31]. In this context, itmay also be interesting to verify the
entanglement due to gravity in a relativistic regime [32–35].
The above major trends pave the way to uncovering the

quantum aspects of gravity. Recent advancements in
optomechanics [36–44] further encourage us to investigate
the quantum signal of gravity in an optomechanical setup.
In this direction, Balushi et al. proposed such a setup
involving two mechanical oscillators interacting through
Newtonian gravity, each of which is coupled to an opto-
mechanical interferometer [14]. The authors demonstrated
that the gravitational interaction between the quantum
oscillators induces an effective frequency shift of photons
within the interferometer, and this results in a dephasing of
photon interference visibility. In Ref. [17], the entangle-
ment generation due to gravity in the setup was analyzed in
an exact nonperturbative manner.
Despite various efforts to realize quantum gravity experi-

ments, no experimental evidence of quantum gravity has
been observed to date. In this paper, we present an amplifi-
cation of the quantum signal of gravity in an optomechan-
ical setup. Inspired by the work of Balushi et al. [14],
we consider a hybrid system consisting of two oscillators
and one optomechanical interferometer. In this setup, the
two oscillators interact with each other by gravity, and
one of the oscillators is coupled to a single photon in
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the interferometer via an optomechanical interaction. In
Ref. [14], they considered the leading order of an opto-
mechanical interaction and demonstrated that the modifi-
cation of the photon interference visibility is of the second
order of gravitational coupling. In comparison, we treat up
to the sub-leading order of the optomechanical interaction.
As a result, we find that the visibility deviates by the first
order of gravitational coupling. In other words, the large
signal of gravity can be observed in the experiment
accessible to the higher-order optomechanical coupling.
We further investigate how the resonance of the two
oscillators affects the gravitational deviation of the visibil-
ity. It is then demonstrated that such a deviation is amplified
with the inverse of a frequency difference between two
oscillators, provided that quantum coherence can be main-
tained in the system for a sufficiently long time. We finally
evaluate the entanglement due to gravity in this system.
Focusing on the resonance effect, we discuss the relation-
ship between gravity-induced entanglement and the gravi-
tational deviation of visibility.
This paper is organized as follows: The setup and the

Hamiltonian are introduced in Sec. II. Then, we investigate
the time evolution of the system in Sec. III. In Sec. IV, we
show the visibility of single-photon interference in the
optomechanical setup and discuss that the gravitational
effect appears as a lower order of the gravitational coupling
constant compared to Ref. [14]. We present numerical
results of the visibility in Sec. V. In Sec. VI, we examine the
resonance effect on the visibility. We also estimate quantum
entanglement generated by gravity in Sec. VII, and clarify
the relationship between the entanglement generation and
the gravitational deviation in the visibility. Finally, we
summarize the paper in Sec. VIII.

II. THE SETUP AND HAMILTONIAN

Let us consider a cavity optomechanical system to detect
the quantum feature of gravity. Figure 1 illustrates an
experimental setup with a pair of cavities and two micro-
mechanical rods of length 2L. The two rods are suspended
by independent center bars with a vertical separation h and
can oscillate in a horizontal plane. A single photon emitted
by the source passes through the half mirror and then is in a
superposition of the state being in cavity 1 and in cavity 2.
Here, the annihilation and creation operators of the photon in
cavities 1 and 2 are represented as fĉ1; ĉ†1g and fĉ2; ĉ†2g,
respectively. The photon in the cavity 1 pushes the mirror of
mass m at the left end of rod A and interacts with the
mechanical mode of oscillating rod A. The oscillation of rod
A is characterized by its angular position and momentum
operator θ̂a; p̂a. Its moment of inertia and angular frequency
are defined as Ia ¼ 2mL2 andΩa, respectively. Rod B with
themirror massM interacts with rod A only through gravity.
Similarly, the oscillation of rod B is characterized by θ̂b; p̂b,
and its moment of inertia and frequency are given by

Ib ¼ 2ML2;Ωb. This setup is based on the system proposed
in Ref. [14]. They considered another set of cavities
interacting with rod B, which is removed in our setup for
simplicity. To analytically solve the dynamics of this system,
we assume that the vertical separation of the rods is much
smaller than their length 2L ≫ h, and the oscillations of rods
A and B are small θa; θb ≪ 1.
Let us consider the optomechanical coupling between

the photon in cavity 1 and rod A by taking a higher-order
correction into account. When the mirror m is in the
original position θa ¼ 0, the photon frequency of the cavity
mode would be

ωc ¼
πcn
l

; ð1Þ

where l is the original cavity length, c is the speed of light,
and n is an integer. When a photon enters cavity 1 and
pushes the mirror m, the frequency of the cavity mode is
modified as

ω0
c ¼

πcn
lþ L sin θa

≈ ωc

�
1 −

L
l
θa þ

L2

l2
θ2a

�
: ð2Þ

Here we include the second order of θa, which was
neglected in the previous works [14,17]. This second-order
correction might appear to be a subleading effect of the
optomechanical coupling between the photon and rod A,
which slightly distorts the harmonic oscillator potential of
rod A. However, we will show that this contribution has a
significant impact on the signal of the quantum nature of
gravity.

FIG. 1. Our setup with two optical cavities and two micro
mechanical rods. A single photon emitted by the source is
prepared in a quantum superposition state in cavity 1 and 2
by a half mirror. Rod A and cavity 1 form an optomechanical
system. The photon in cavity 1 and the mirror of massm attached
to rod A interact with each other. The mirrors of rod B are
coupled to the mirrors of rod A only through gravity. Quantum
entanglement between rod B and the other system of the setup
(i.e., rod A and the photon in the cavities) mediated by the
gravitational coupling could be measured by the change of the
interference visibility of the photons.
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We organize the total Hamiltonian up to the second order of θa as

Ĥ ¼ ℏω0
cĉ

†
1ĉ1 þ ℏωcĉ

†
2ĉ2 þ

1

2Ia
p̂2
a þ

1

2
IaΩ2

aθ̂
2
a þ

1

2Ib
p̂2
b þ

1

2
IbΩ2

bθ̂
2
b þ

GmML2

h3
ðθ̂2a þ θ̂2b − 2θ̂aθ̂bÞ

≈ ℏωcĉ
†
1ĉ1 þ ℏωcĉ

†
2ĉ2 þ

1

2Ia
p̂2
a þ

Ia
2

�
Ω2

a þ
GM
h3

þ ℏωc

ml2
ĉ†1ĉ1

�
θ̂2a −

ℏωcL
l

ĉ†1ĉ1θ̂a

þ 1

2Ib
p̂2
b þ

Ib
2

�
Ω2

b þ
Gm
h3

�
θ̂2b þ 2

GmML2

h3
θ̂aθ̂b

¼ ℏωcĉ
†
1ĉ1 þ ℏωcĉ

†
2ĉ2 þ

X
n¼0;1

Ĥa;njnic1c1hnj þ Ĥb þ Ĥg; ð3Þ

where we plugged Eq. (2) in the second line. The last term
in the first line denotes the gravitational interaction part,
which is derived in Appendix A. In the last line of Eq. (3),
jnic1 denotes an eigenstate of the photon number in cavity
1, ĉ†1ĉ1, and Ĥa;n is an effective Hamiltonian of rod A
depending on the photon number n inside cavity 1. This
Hamiltonian containing the optomechanical coupling with
the cavity photon is given as

Ĥa;n ¼ ℏωa;n

�
â†nân − nλnðâ†n þ ânÞ þ

1

2

�
; ð4Þ

ân ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iaωa;n

2ℏ

r
θ̂a þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Iaωa;nℏ

p p̂a;

λn ¼
�
ωa;0

ωa;n

�
3=2 ωc

ωa;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2Iaωa;0

s
L
l
; ð5Þ

where λn denotes an optomechanical coupling constant,
and the oscillation frequency of rod A depends on the
photon number n as

ωa;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

a þ
GM
h3

r
×

(
1 ðn ¼ 0; no photon in cavity 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ℏωc

Iaω2
a

L2

l2

q
ðn ¼ 1; photon pressure distorts the potentialÞ : ð6Þ

The effective Hamiltonian of rod B, Ĥb, and the gravita-
tional interaction term Ĥg in Eq. (3) are defined as

Ĥb ¼ ℏωbb̂
†b̂; b̂ ¼

ffiffiffiffiffiffiffiffiffiffi
Ibωb

2ℏ

r
θ̂b þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ibωbℏ

p p̂b;

ωb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

b þ
Gm
h3

r
; ð7Þ

and

Ĥg ¼ −gℏωa;0ðâ†0 þ â0Þðb̂† þ b̂Þ;

g ¼ G
2h3ωa;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mM

ωa;0ωb

s
; ð8Þ

respectively.
As observed in Eq. (6), the oscillation frequency of rod A

is shifted from Ωa due to the gravitational interaction
between the rods. Moreover, the frequency also differs
depending on the photon number n; if the photon hits the
mirror of rod A (n ¼ 1), the mechanical potential of rod A
is not only displaced by the O½θa� term in Eq. (2), but also
distorted according to theO½θa�2 term. The distortion of the
potential is reinterpreted as the shift in the cavity mode

frequency from ωa;0 to ωa;1. Remark that this frequency
shift due to the optomechanical coupling was not consid-
ered in Ref. [14], and this is the key novelty in our paper. In
comparison to the previous works, the frequency ratio
ωa;0=ωa;1 will be an important parameter as the new effect
from the higher-order contribution of θa.

III. THE EVOLUTION OF THE SYSTEM

Now we are ready to solve the time evolution of our
system. The initial state of the total system is prepared as a
nonentangled state

jψðt ¼ 0Þi ¼ 1ffiffiffi
2

p ðj0ic1j1ic2 þ j1ic1j0ic2Þ ⊗ jαia ⊗ jβib:

ð9Þ

Here, jnic1jn0ic2 denotes the photon state when n number
of photons enters cavity 1 and n0 number of photons enters
cavity 2. jαia is a coherent state of the mechanical mode of
rod A for â0 (not for â1), and jβib is a coherent state of that
of rod B. Since the gravitational coupling is very small
g ≪ 1, we evaluate the evolved state by perturbation theory
with respect to g. Up to the first order of g, we obtain

ENHANCEMENT OF QUANTUM GRAVITY SIGNAL IN AN … PHYS. REV. D 108, 106014 (2023)

106014-3



jψðtÞi ¼ e−iĤt=ℏjψð0Þi

¼ e−iωctffiffiffi
2

p
X
n¼0;1

jnic1j1− nic2e−iðĤa;nþĤbÞt=ℏ
�
1−

i
ℏ

Z
t

0

dt0ĤI
g;nðt0Þ

�
jαiajβib þOðg2Þ;

¼ e−iωctffiffiffi
2

p
X
n¼0;1

jnic1j1− nic2½1þ 2igðÎnðtÞ þ nĴ ðtÞÞ�e−iðĤa;nþĤbÞt=ℏjαiajβib þOðg2Þ; ð10Þ

where ĤI
g;nðtÞ ¼ eiðĤa;nþĤbÞt=ℏĤge−iðĤa;nþĤbÞt=ℏ is the gravitational interaction in the interaction picture. From the second

line to the third line, we used e−iðĤa;nþĤbÞt=ℏĤI
g;nðt0Þ ¼ ĤI

g;nðt0 − tÞe−iðĤa;nþĤbÞt=ℏ and performed the t0 integration, which
yielded new Hermitian operators

ÎnðtÞ ≔
ffiffiffiffiffiffiffiffiffi
ω3
a;0

ωa;n

s �
sin½ωn;þt=2�

ωn;þ
ðe−iωn;þt=2â†nb̂† þ eiωn;þt=2ânb̂Þ þ

sin½ωn;−t=2�
ωn;−

ðe−iωn;−t=2â†nb̂þ eiωn;−t=2ânb̂
†Þ
�
; ð11Þ

Ĵ ðtÞ ≔ λ0
ω3
a;0

ω2
a;1ωb

ðF�ðtÞb̂† þ FðtÞb̂Þ;

FðtÞ ≔ i
ω2
a;1 þ eiωbtf−ω2

a;1 þ iωa;1ωb sin½ωa;1t� þ ð1 − cos½ωa;1t�Þω2
bg

ω1;þω1;−
; ð12Þ

whereωn;� ≔ ωa;n � ωb. În denotes the direct gravitational
interaction between rod A and rod B, while Ĵ represents the
effective coupling between rod B and the photon in cavity 1.
In addition, these operators contain an inverse ofωn;−, which
indicates a resonance effect occurring in the limit of
ωa;n → ωb. We will see how the resonance appears in the
photon interference visibility in the Sec. VI.
In passing, we note that the free evolution of the initial

coherent state of rod A leads to a squeezed coherent state.
When the photon is not in cavity 1 (n ¼ 0), the initial state
jαia is evolved by the free Hamiltonian of â0 and â†0 in
Eq. (4) into another coherent state jαe−iωa;0tia. However,

when the photon is in cavity 1, not only the optomechanical
coupling is involved, but also the Hamiltonian is composed
of â1 and â†1, which are associated with the different
frequency ωa;1. In Appendix B, we show that the time-
evolved state of rod A becomes a squeezed coherent state.
However, our main result can be understood without being
familiar with these lengthy calculations and intricate states.

IV. THE CALCULATION OF THE VISIBILITY

Based on the time-evolved state in Eq. (10), we calculate
the interference visibility of the photon in the cavities, which
is defined with the absolute value of the interference term, as

VcðtÞ ≔ 2jTr½c1h0jc2h1jψðtÞihψðtÞj1ic1j0ic2�j;
¼ jahαjbhβjeiðĤa;0þĤbÞt=ℏf1 − 2igðÎ†

0ðtÞ − Î1ðtÞ − Ĵ ðtÞÞge−iðĤa;1þĤbÞt=ℏjαiajβib þOðg2Þj;
¼ Vð0Þ

c ðtÞð1þ 2gIm½0hÎ†
0ðtÞi1 −0 hÎ1ðtÞi1�Þ þOðg2Þ; ð13Þ

where Vð0Þ
c is the result without the gravitational coupling,

and 0h� � �i1 is not the expectation value but an off-diagonal
element of the photon state.

Vð0Þ
c ðtÞ ¼ jahαjeiĤa;0t=ℏe−iĤa;1t=ℏjαiaj;

0h� � �i1 ¼ ahαjbhβjeiðĤa;0þĤbÞt=ℏ � � � e−iðĤa;1þĤbÞt=ℏjαiajβib
ahαjeiĤa;0t=ℏe−iĤa;1t=ℏjαia

:

ð14Þ
Their full expressions can be found in Appendix C.
It is interesting to note that the contribution from Ĵ ðtÞ

does not appear at OðgÞ in Eq. (13), since it is a Hermitian

operator and appears as Im½hĴ ðtÞi�, where hĴ ðtÞi ¼
bhβjeiĤbt=ℏĴ ðtÞe−iĤbt=ℏjβib. In contrast, the contribution

from ÎnðtÞ survives, because the difference in the fre-
quency of rod A, ωa;0 ≠ ωa;1, originating in the second-

order contribution of θa distinguishes Î0ðtÞ and Î1ðtÞ and
prevents their cancellation. Hence, we gain the OðgÞ
contribution to the visibility. In the previous works [14],
however, this frequency difference was not appreciated. In
that case, Î1ðtÞ is replaced by Î0ðtÞ and they were canceled
in Eq. (13). Then, the leading contribution from gravity to
the visibility would be the second order of g,
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VcðtÞ ≈ Vð0Þ
c ðtÞð1þ 4g2jhJ ðtÞij2Þ; ðωa;0 ¼ ωa;1;without the higher-order correction of θaÞ: ð15Þ

Therefore, it is possible to make a remarkable signal amplification of the gravitational quantum effect by considering the
higher-order contribution of θa in our setup.
By assuming β is a real number for simplicity, the explicit form of visibility is given by

VcðtÞ ≈ Vð0Þ
c ðtÞ

�
1þ 2gωa;0β

��
sin½ω0;þt=2�

ω0;þ
þ sin½ω0;−t=2�

ω0;−

�
C0 þ

�
sin½ω1;þt=2�

ω1;þ
þ sin½ω1;−t=2�

ω1;−

�
C1

��
; ð16Þ

where we introduced ωn;− ≔ ωa;n − ωb. The coefficient of each term is given by

C0 ¼
ffiffiffiffiffiffiffiffi
ωa;0

ωa;1

r
cos

�
ωa;0t
2

�
Im½0hâ1i1 þ0 hâ†1i1� þ

ffiffiffiffiffiffiffiffi
ωa;1

ωa;0

r
sin

�
ωa;0t
2

�
Re½0hâ1i1 −0 hâ†1i1�;

C1 ¼ −
ffiffiffiffiffiffiffiffi
ωa;1

ωa;0

r �
cos

�
ωa;1t
2

�
Im½0hâ1i1 þ0 hâ†1i1� þ sin

�
ωa;1t
2

�
Re½0hâ1i1 −0 hâ†1i1�

�
; ð17Þ

where 0h� � �i1 was defined in Eq. (14). The full expressions
for Cn without the assumption of a real β can be found in
Appendix C. Note that the dependence on the initial
coherent state α of rod A and the optomechanical coupling
constant λn are encoded in Cn. In the limit of ωa;1 → ωa;0,
C1 becomes −C0, their coefficients become identical and
the linear term of g in Eq. (16) vanishes.
In Eq. (16), we can see that the first-order gravity-

induced contribution to the visibility is proportional to β.
These terms physically represent some superposed states in
which the oscillation of rod B gravitationally affects rod A
in distinct ways depending on the frequency ωa;n. The
factors sin½ωn;�t=2�=ωn;� indicate that how much rod B
changes the motion of rod A depends on their frequency
matching between ωb and ωa;n. In particular, if they are
very close ωb ≈ ωa;n, a resonance phenomenon takes place
and the term with ωn;− ≔ ωa;n − ωb is significantly ampli-
fied, as we will see in Sec. VI.
In the studies by Carney et al. [20,21], they also

investigated the appearance of the quantum gravity signals
linearly dependent on the gravitational coupling constant g,
within the context of a hybrid system comprising an
oscillator and a trapped atom. They consider an initial

state in which the hybrid systems are already entangled
through a quantum interaction other than gravity. While
their approach differs from our idea, it should be noted that
they also achieved aO½g� contribution in the visibility of the
atom by preparing the initially entangled state.

V. THE OðgÞ CONTRIBUTION
TO THE VISIBILITY

In this section, we will present some numerical results
demonstrating the visibility (14) amplified by the newOðgÞ
contribution. Note that we avoid the resonance in this
section to separately study the two different amplification
effects, and we will explore it in the next section. We set
the mirror masses of both rods m ¼ M ¼ 10−13 ½kg�, the
vertical interval between the two rods h ¼ 2 × 10−6 ½m�,
the original frequency of rod A Ωa ¼ 3 × 103 ½Hz�, the
original frequency of rod BΩb ¼ 0.84 × Ωa ½Hz�, the initial
coherent parameter of the rods α ¼ β ¼ 1, the photon
wave frequency ωc ¼ 450 × 1012 ½Hz� and the original
cavity length l ¼ 0.01 ½m�. Using these parameters, the
dimensionless parameters contained in the visibility are
computed as

λ0 ¼ 4.5

�
m

10−13 ½kg�
�

−1=2
�

Ωa

3 × 103 ½Hz�
�

−3=2
�

ωc

450 × 1012 ½Hz�
��

l
0.01 ½m�

�
−1
;

ωb

ωa;0
¼ 1.9

�
Ωb

3 × 103 ½Hz�
��

Ωa

3 × 103 ½Hz�
�

−1
; ð18Þ

where we set ωb not very close to ωa;1 to avoid the resonance. The following two parameters are especially important:

1 −
ωa;0

ωa;1
¼ 2.8 × 10−10

�
λ0
4.5

�
2
�

Ωa

3 × 103 ½Hz�
��

ωc

450 × 1012 ½Hz�
�

−1
;

g ¼ 5.1 × 10−14
�

m
10−13 ½kg�

�
1=2

�
M

10−13 ½kg�
�

1=2
�

Ωa

3 × 103 ½Hz�
�

−3=2
�

h
2 × 10−6 ½m�

�
−3
: ð19Þ
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We see that ωa;0=ωa;1 − 1, which originates from the O½θ2a�
contribution in Eq. (2), is extremely small, although the
gravitational coupling parameter g is even smaller.
Let us first study the case without the gravitational

coupling g ¼ 0, namely the zeroth-order results. Figure 2

shows the time dependence of the visibility Vð0Þ
c . The left

panel shows the behavior in the early time and the right
panel shows for the longer time period. The red lines
represent the result of our calculation that takes the O½θ2a�
contribution into account, leading to ωa;0 < ωa;1. The blue
dashed lines ignore the correction and adopt ωa;0 ¼ ωa;1 in
the same way as the previous works [14]. As seen in the left
panel, the visibility decoheres and recoheres due to the
optomechanical coupling between the photon and the rod A
systems. No visible difference between the two cases is
observed for the early time. However, we see a clear
difference in the photon visibility in the right panel of
Fig. 2, which comes from the frequency difference in ωa;n

even without the gravitational coupling. This strong
dephasing at around ωa;0t=ð2πÞ ≈ 2 × 109 is caused by
the fact that the two states of rod A with and without the
photon, namely e−iĤa;0t=ℏjαia and e−iĤa;1t=ℏjαia, oscillate
for the different timescales 1=ωa;0 and 1=ωa;1, respectively.
These two states become nearly orthogonal for every period
of time when their phase difference accumulates to
ð2N þ 1Þπ,

ðωa;1−ωa;0Þt¼ð2Nþ1Þπ

⇒
ωa;0t
2π

¼ Nþ1=2
ωa;1=ωa;0−1

≈1.8ð2Nþ1Þ×109; ð20Þ

where N ¼ 0; 1; 2;… is integer. This explains why the
recoherence of the red line is repeatedly suppressed in the
right panel of Fig. 2.

In Figs. 3 and 4, we present the gravitational contribution
to the visibility as the relative correction from the no gravity
cases seen above, VcðtÞ=VcðtÞð0Þ − 1. The parameters are
the same as Eqs. (18) and (19) again. The left panel of
Fig. 3 depicts the result for the ωa;0 ¼ ωa;1 case as in
Ref. [14]. We see a periodic motion of the visibility
correction from gravity. Its amplitude is roughly estimated
from Eq. (15) as 4g2jhJ ðtÞij2 ≈O½4g2λ20� ≈ 9.4 × 10−26.
The right panel of Fig. 3 shows the result in the ωa;0 < ωa;1

case respecting the second-order contribution of θa. We can
see that the visibility repeats decoherence and recoherence
which amplitude is linear growing. We can derive the
growth rate of the oscillation from Eq. (16). If we replace
periodic functions contained in C0, C1 to 1, we get order
estimation of these functions as C0 ≈ −C1 ≈O½2ðαþ λ0Þ�,
which indicates that the initial coherent state of rod A is
displaced by λ0 due to the photon pressure. By substituting
these estimations into Eq. (16) and considering a leading
term of 1 − ωa;0=ωa;1, we obtain

VcðtÞ=VcðtÞð0Þ − 1 ≈O
�
4gðαþ λ0Þ

�
1 −

ωa;0

ωa;1

��
× ωa;0t

≈ 1.3 × 10−21
ωa;0t
2π

: ð21Þ

This estimation holds in a short timescale satisfying
t ≪ ðωa;1 − ωa;0Þ−1 as in the right panel of Fig. 3. This
is about O½ð1 − ωa;0=ωa;1Þðαþ λ0Þ=ðg2λ20Þ�ωa;0t ≈ 1.4 ×
104ωa;0t=ð2πÞ larger compared to the ωa;0 ¼ ωa;1 case in
the left panel. In Fig. 4, we present the gravitational
contribution to the visibility for a longer time period in
our case of ωa;0 < ωa;1. Again, we observe the periodic
dephasing at ωa;0t=ð2πÞ ≈ 1.8ð2N þ 1Þ × 109 as explained
in Eq. (20). The amplitude reaches an order of 10−13 at that

FIG. 2. The time dependence of the visibility without the gravitational contribution, Vð0Þ
c ðtÞ given in Eq. (14). The red line denotes our

result that takes into account the higher-order contribution Oðθ2aÞ and appreciates the frequency difference ωa;0 < ωa;1, while the blue
dashed line denotes the previous result that neglects the higher-order correction. The parameters are set as in Eqs. (18) and (19), except
for ωa;1 ¼ ωa;0 for the blue dashed line. The left panel shows a log plot for an early time, and the right panel shows a linear plot for a
much longer timescale. As seen in the right panel, the frequency difference causes a strong dephasing at the corresponding timescale,
ωa;0t=ð2πÞ ≈ 1.8ð2N þ 1Þ × 109, only in our result.
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time. In contrast, in the ωa;0 ¼ ωa;1 case, the amplitude
does not exceed ∼10−23 even in the longer timescale.
The significant amplification of the longer time period in

Fig. 4 arises because the visibility is given by the first order
of g in our case, whereas it appears from the second order of
g if we disregard the second-order contribution of θa. After
a sufficient amount of time has passed, the terms inside the
bracket f� � �g in Eq. (16) become O½2ðαþ λ0Þ�, and the
gravitational shift of the visibility extends toO½4gðαþ λ0Þ�,
which is on the order of 7.5 × 10−13 and consistent with
Fig. 4. It should be noted that we chose the value of ωb
for which the resonance is ineffective, and thus, this

amplification of the visibility results only from the reduc-
tion of the order of the gravitational coupling g. In the
next section, we will discuss how to further enhance the
gravitational signal in visibility using the resonance effect.

VI. THE RESONANCE EFFECT

Since the setup contains two oscillators, we expect that a
resonant behavior affects the visibility if their frequencies
are close enough. In this section, we discuss the case where
ωa;1 is close to ωb, focus on the resonance term in the
visibility in Eq. (16), and discuss how much the resonance
effect amplifies the visibility.
We will consider the resonance for ωb ≈ ωa;1. This

physically means that the oscillating rod A resonates with
rod B only when the photon enters cavity 1. Since the
visibility captures the state difference between the photon
within cavity 1 and cavity 2, the resonance effect is
supposed to affect the visibility significantly. However,
remember that ωa;1 and ωa;0 are very close as seen in
Eq. (19). Therefore, when we suppose to set ωb to be close
to ωa;1, ωb is inevitably close to ωa;0 as well. If ωa;1 is
closer to ωb much more than ωa;0, the system has a
exclusive resonance only between ωb and ωa;1. Then,
the strength of the resonance effect is controlled by their
frequency difference. We introduce such a frequency
matching parameter as

ϵ ≔
ω1;−

ωa;1
¼ 1 −

ωb

ωa;1
: ð22Þ

In contrast, if ωa;1 is much closer to ωa;0 than ωb, that is ωb

is close to both of ωa;1 and ωa;0, the resonance takes place
in both superposed states simultaneously. Then the reso-
nant contribution from the gravitational coupling to the
visibility is suppressed, because this effect does not

FIG. 4. The gravitational contribution to the visibility given in
Eq. (16) is shown for a longer timescale. We consider the higher-
order optomechanical contribution O½θ2a�, which gives
ωa;0 < ωa;1. At the dephasing time derived in Eq. (20), we
observe a large amplification of the gravitational signal about
O½4gðαþ λ0Þ�, denoted by the first order of the gravitational
coupling g. In contrast, the ωa;0 ¼ ωa;1 result shown in the left
panel of Fig. 3 was given by the second-order of g, namely
O½4g2λ20�. Hence, the signal is enhanced due to the reduction of
the gravitational coupling order from O½g2� into O½g� by taking
the higher-order contribution O½θ2a� into account.

FIG. 3. The time dependence of the gravitational contribution to the visibility, Vc=V
ð0Þ
c − 1. The parameters are set as in Eqs. (18) and

(19). The left panel shows the result in Eq. (15) when we neglect the higher order contribution ofO½θ2a�, or namely ωa;0 ¼ ωa;1. We see a
periodic recoherence whose amplitude is order estimated as O½4g2λ20�. The right panel displays the result in Eq. (16), which takes into
account theO½θ2a� contribution and ωa;0 < ωa;1. Its amplitude O½4gðαþ λ0Þð1 − ωa;0=ωa;1Þ� × ωa;0t in this plot is larger than one in the
left panel only by a factor of ∼104. However, we will see a much greater growth of the visibility change at a sufficiently longer timescale
in Fig. 4.
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distinguish the two superposed states labeled by n ¼ 0 and
n ¼ 1. To determine which of the above two cases happens,
we compare ϵ to 1 − ωa;0=ωa;1. For ϵ ≪ 1 − ωa;0=ωa;1, the
exclusive resonance occurs, while the simultaneous reso-
nance takes place for ϵ ≫ 1 − ωa;0=ωa;1. We will confirm

this physical argument by analytic and numerical inves-
tigations below.
Assuming α ¼ 0 and β∈R to simplify the expression,

Eq (16) reduces to

VCðtÞ ≈ Vð0Þ
C ðtÞ

�
1 − 2gλ0βωa;0

�
sin½ω1;−t=2�

ω1;−
−
sin½ω0;−t=2�

ω0;−

��
sin

�
ω1;þt
2

�
þ sin

�
ω1;−t
2

���
ð23Þ

The second term denotes the gravitational contribution to the visibility in O½g� and can exhibit the resonance. If we make a
measurement at some time around t ≈ 1=ωn;−, the resonance effect would be significant. Particularly, at around the time
t ≈ π=ω1;−, we obtain

VCðtÞ
Vð0Þ
C ðtÞ

≈ 1 −
�
1þ sin

�
ω1;þt
2

��
×

8<: 2gλ0β=ϵ
	
ϵ ≪ 1 − ωa;0

ωa;1
∶ Exclusive resonance



2gλ0βð1 − ωa;0

ωa;1
Þ=ϵ2

	
ϵ ≫ 1 − ωa;0

ωa;1
∶ Simultaneous resonance


 ; ð24Þ

where we used ω0;−=ωa;0 ¼ ϵþ ð1 − ωa;0=ωa;1Þ þ
O½ð1 − ωa;0=ωa;1Þ2� to obtain the expression on the lower
case. The upper case indicates the exclusive resonance and
the lower case corresponds to the simultaneous resonance.
Compared to the upper case, the lower case is suppressed
by a factor of ð1 − ωa;0=ωa;1Þ=ϵ ≪ 1.
Figure 5 shows the resonance behavior of the visibility

for the varying frequency matching parameter ϵ. A gray line
denotes the absolute value of the relative modification of

the visibility due to gravity jVc=V
ð0Þ
c − 1j at the observation

time t ¼ π=ω1;−. Red and blue lines represent the absolute
value of the last factor in Eq. (24) for ϵ ≪ 1 − ωa;0=ωa;1

and ϵ ≫ 1 − ωa;0=ωa;1, respectively, namely j2gλ0β=ϵj and
j2gλ0βð1 − ωa;0=ωa;1Þ=ϵ2j. Note that we set α ¼ 0 to justify
the assumption of Eq. (23). The other parameters are

chosen as in Eqs. (18) and (19). The red and blue lines
agree well with the numerical calculation in the corre-
sponding parameter regions. As we expected, the resonance
enhancement is characterized by the inverse of ϵ on the
left side, while the double inverse of ϵ on the right side. We
also observe that the transition takes place when the ωa;0

resonance becomes comparable with the ωa;1 resonance
at ϵ ≈ ð1 − ωa;0=ωa;1Þ ¼ 2.8 × 10−10.
In Fig. 6, we present the gravitational contribution to

the visibility with parameters yielding the resonance effect.
We take ωb=ωa;0 ≈ 1þ 2.7 × 10−10, which corresponds to
ϵ ¼ 10−11; This indicates the exclusive resonance of ωa;1

andωb which we find in the left region in Fig. 5. Otherwise,
we adopt the parameters in Eqs. (18) and (19). The left
and the right panels show the ωa;0 ¼ ωa;1 case and the

FIG. 5. Resonance behavior of the gravitational correction to the visibility against the frequency matching parameter ϵ ≔ 1 − ωb=ωa;1.

The gray line denotes the relative contribution from gravity to the visibility, jVc=V
ð0Þ
c − 1j at the time of t ¼ π=ω1;−. The red and blue

lines represent the analytic estimate of the resonance effect given in Eq. (24) for 1 − ωa;0=ωa;1 ≫ ϵ and 1 − ωa;0=ωa;1 ≪ ϵ, respectively.
The red and blue lines show good agreements with the numerical result on the left and right region of ϵ ¼ 1 − ωa;0=ωa;1 ¼ 2.8 × 10−10

respectively as expected. The parameters are set as λ0 ¼ 4.5; 1 − ωa;0=ωa;1 ¼ 2.8 × 10−10; g ¼ 5.1 × 10−14; α ¼ 0; β ¼ 1.
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ωa;0 < ωa;1 case, respectively. Comparing with Figs. 3 and
4, we see the significant enhancement of the amplitude in
both panels arising from the resonance effect. Note that the
resonance also occurs even if we ignore the second order of
θa as seen in the left panel of Fig. 6. This is because the
visibility correction in Eq. (15) is given by Ĵ , which also
contains a term inversely proportional to ω1;− ¼ ω0;− [see
Eq. (12)]. This leads to a periodic enhancement in the
visibility change of O½4g2λ20=ðω0;−=ωa;0Þ2� ≈ 1.3 × 10−6

with a timescale ωa;0t ≈ ðω0;−=ωa;0Þ−1 ≈ 3.8 × 109. In
the right panel of Fig. 6, we see an even larger amplitude
of the visibility change, which reaches the percent level.
The resonance effect amplifies the result of Fig. 4, whose
amplitude was O½4gðαþ λ0Þ�, by the factor of O½1=ϵ� and
achieves the amplitude of O½4gðαþ λ0Þ=ϵ� ≈ 7.5 × 10−2

periodically with a timescale ωa;0t ≈ 1=ϵ ¼ 1011.
To see the resonant amplification of 1=ϵ as in the right

panel of Fig. 6, the system is required to maintain its
quantum coherence for about three years, t ≈ 1=ðωa;0ϵÞ≈
3.3 × 107 ½s�, with our parameter choice. However, this is
technically difficult to achieve at present due to the
environmental decoherence of the quantum system. Also,
it is challenging to tune two frequencies to be sufficiently
close with high accuracy of ϵ ¼ 10−11. These difficulties
indicate that there is a lower bound of ϵ in the realistic
situation. Let us suppose that ϵ is fixed at some value in
the right region of Fig. 5 regarding as the possible lower
bound in the setup, and control the parameter 1 − ωa;0=ωa;1

to obtain the best resonance enhancement. As we raise
1 − ωa;0=ωa;1, the blue plot in Fig. 5 shifts upward,
which means that we gain more enhancement at fixed ϵ.
Hence, if the experimental setup is possible to achieve
ϵð>1 − ωa;0=ωa;1Þ, we observe the signal enhancement of

2gλ0βð1 − ωa;0=ωa;1Þ=ϵ2 due to the resonance effect, which
amplification is improved by setting a larger 1 − ωa;0=ωa;1.
To summarize the results of Secs. V and VI, we found

two ways to enhance the gravitational contribution to the
visibility; First, we take the second-order term in the
optomechanical coupling into account, which leads to
ωa;0 < ωa;1. Then, the visibility is given by the first order
of the gravitational coupling g at t ≈ ðωa;1 − ωa;0Þ−1, while
it appears from its second order in the previous works [14].
This first effect can amplify the signal by a factor of
1=ðgλ0Þ. Second, by adjusting the frequencies of two
oscillators to be close enough ϵ ≔ 1 − ωb=ωa;1 ≪ 1, we
gain a resonance effect depending on the parameter regions.
For ϵ ≪ 1 − ωa;0=ωa;1, rod A resonates with rod B only
when the photon enters cavity 1, and the signal gains 1=ϵ
amplification due to this exclusive resonance. While for
ϵ ≫ 1 − ωa;0=ωa;1, each oscillating mode of rod A reso-
nates with rod B, and the signal is amplified about
ð1 − ωa;0=ωa;1Þ=ϵ2 due to the simultaneous resonance.
Finally, the signal on the right panel in Fig. 6 is 1=ðgλ0ϵÞ ∼
1024 times amplified compared to the original result on the
left panel in Fig. 3.

VII. GRAVITY-INDUCED ENTANGLEMENT

The quantum entanglement [45] created by gravity
between systems is one of the major targets to probe the
quantum feature of gravity [4,5]. In this section, we adopt
the entanglement negativity as a measure of quantum
entanglement; negativity of bipartite states is defined as
the sum of negative eigenvalues of the partially transposed
density matrix [46–48]. This is closely related to the
maximum number of distillable Bell pairs in the system.
Especially, the value of negativity of a state vanishes when

FIG. 6. The gravitational contribution to the visibility Vc=V
ð0Þ
c − 1 enhanced by the resonance effect for the long timescale. We set

parameters as ϵ ≔ 1 − ωb=ωa;1 ¼ 10−11 to induce the resonance and α ¼ 0 for simplicity. Otherwise, we choose the same parameters as
given in Figs. 3 and 4. The left panel shows the case when we ignored the higher-order contribution O½θ2a�, i.e. ωa;0 ¼ ωa;1, which is
evaluated using Eq. (15). This corresponds to the resonant version of the left panel in Fig. 3, and we see a resonance enhancement of
O½ðω0;−=ωa;0Þ−2� ∼ 1020 compared to the result given in the previous section. The right panel shows the result when we take O½θ2a� into
account, i.e. ωa;0 < ωa;1, which is given in Eq. (16). This result is the resonant version of Fig. 4, and is aboutO½ϵ−1� ∼ 1011 times larger
than the result in Fig. 4.

ENHANCEMENT OF QUANTUM GRAVITY SIGNAL IN AN … PHYS. REV. D 108, 106014 (2023)

106014-9



the state is separable, and takes 1=2 when the state is given
by the Bell state. We evaluate the negativity between rod B
and the other systems which should be induced by the
quantum gravitational interaction between the two rods.
To obtain the negativity, we calculated the partially

transposed total density matrix ρ̂TBðtÞ and expand it with
respect to the small parameter g. Then, we compute its
eigenvalues up to the first order of g. The negativity
between rod B and the others is given by a summation
of the negative eigenvalues of ρ̂TBðtÞ. As a result, we obtain
the following expressions,

N B∶Aþc ¼ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n¼0;1

ahαjeiĤa;nt=ℏK̂†
nðtÞK̂nðtÞe−iĤa;nt=ℏjαia

s
;

ð25Þ

K̂nðtÞ ¼
ffiffiffiffiffiffiffiffiffi
ω3
a;0

ωa;n

s �
sin½ωn;þt=2�

ωn;þ
eiωn;þt=2ân

þ sin½ωn;−t=2�
ωn;−

e−iωn;−t=2â†n þ nλ0

�
ωa;0

ωa;1

�
3=2 FðtÞ

ωb

�
:

ð26Þ

Even in the limit of ωa;1 → ωa;0, we find a nonzero value of
the negativity (25) in the first order of g, although the
gravitational contribution in visibility appears only from its
second order. This implies that the entanglement generation
reflects in the gravitational correction to the visibility only
in a very suppressed way, when we ignore the higher order
optomechanical contribution O½θ2a�. In the meantime, the
operator K̂n is closely related to În and Ĵ , which are used
in the calculation of the visibility and given in Eqs. (11)
and (12), as În þ nĴ ¼ K̂nb̂þ K̂†

nb̂
†.

To explore how the negativity and thevisibility are related,
we simplify Eq. (25) under several assumptions.We focus on
the situation where ωa;1 is much closer to ωb than ωa;0, and
the resonance due to ωa;1 ≈ ωb exclusively takes place. Its
condition is given by 1 ≫ 1 − ωa;0=ωa;1 ≫ ϵ. In addition,
we assume α ¼ 0 for simplicity. We also make use of the
relation λ20 ≫ 1 − ωa;0=ωa;1, which means that the second-
order contribution of θa is subdominant compared to its
first order contribution. Then the negativity reduces to the
following form.

N B∶Aþc ≈ 2gωa;0λ0

���� sin½ω1;−t=2�
ω1;−

����: ð27Þ

Here, we see that the resonance effect amplifies the
negativity, if we wait until t ≈ 1=ω1;−, in the same way as
thevisibility. By comparing this simplified formof negativity
to the visibility in Eq. (23) under the assumption
1 ≫ 1 − ωa;0=ωa;1 ≫ ϵ > 0, we acquire a relationship
between visibility and negativity as

VcðtÞ≈Vð0Þ
c ðtÞ

�
1−βN B∶AþcðtÞ

×

�����sin�ω1;−t
2

�����þ sgn

�
sin

�
ω1;−t
2

��
sin

�
ω1;þt
2

���
:

ð28Þ

The second term on the right-hand side is proportional to the
negativity, and it clearly indicates that the visibility of the
photon system alters due to the gravity-induced entangle-
ment between rod B and other systems. Moreover, the last
term depending onω1;þ is a highly oscillating mode, and the
visibility behavior in a long timescale is almost determined
by j sin½ω1;−t=2�=ω1;−j under the assumptions we imposed.
Hence, when the resonance effect of the visibility exists, the
production of the gravity-induced entanglement is also
amplified due to the resonance. Comparing Fig. 7 with the
right panel of Fig. 6, the timescale that the negativity grows is

approximately the same as it that Vc=V
ð0Þ
c − 1 has a large

negative value, that is, the visibility Vc degrades due to
gravity. This means that gravity-induced entanglement can
lead to the decoherence of the photon.
In Fig. 7, we present the time dependence of the

negativity between rod B and the others in the resonant
case. A red line denotes the ωa;0 < ωa;1 case, while a
blue line denotes the ωa;0 ¼ ωa;1 case. We take the
resonance parameters which are the same as in Fig. 6;
λ0 ¼ 4.5;ωb=ωa;0 ≈ 1þ 2.7 × 10−10 (i.e. ϵ ¼ 10−11),
1−ωa;0=ωa;1 ¼ 2.8× 10−10; g¼ 5.1× 10−14;α¼ 0;β ¼ 1.
For ωa;0 < ωa;1 case, we see the amplitude is enhanced
by O½2gλ0=ϵ� ≈ 3.1 × 10−2 periodically with a timescale
1=ϵ ¼ 1011. Also, for ωa;0 ¼ ωa;1 case, the resonance

FIG. 7. Time dependence of the quantum entanglement gen-
erated between rod B and the others (i.e., rod A and the photon) in
the resonant scenario. The vertical axis denotes a measure of
entanglement called negativity given in Eq. (25), which value
takes zero for a separable state. A red line shows the result when
we consider the higher-order contribution O½θ2a�, that leads to
ωa;0 < ωa;1. A blue line shows the case when we ignored O½θ2a�,
or equivalently ωa;0 ¼ ωa;1. The parameters are the same as in
Fig. 6. The negativity behaves along with the visibility in Fig. 6 as
expected from their relation Eq. (28). The resonance amplifica-
tion can be seen in both figures.
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enhancement is about O½2gλ0ðωa;0=ω0;−Þ� ≈ 1.2 × 10−3

with its time period ωa;0=ω0;− ≈ 3.8 × 109. It should be
noted that the negativity is given by the first order of the
gravitational coupling g even for ωa;0 ¼ ωa;1 case as shown
in Eq. (25), while the visibility appears from its second
order. This implies that the entanglement generation is not
fully captured in the visibility when we ignore the higher-
order optomechanical contribution O½θ2a�. Comparing the
two cases, we find that the amplitude of ωa;0 < ωa;1 case is
about 10 times larger than ωa;0 ¼ ωa;1 case, which arises
from the exclusive resonance effect as in Fig. 6. Also, we
find that the visibility decoheres as the negativity increases
by comparing Fig. 6 and 7, as we expected from Eq. (28).
Physically, this result indicates that the optomechanical
system decoheres due to the entanglement generation
between rod B and the photon systems.

VIII. DISCUSSION AND CONCLUSION

Today, numerous experimental approaches are proposed
to discover the quantum aspect of gravity. However,
nobody has observed the quantum gravitational signal
yet. Recently, inspired by the experimental progress in
optomechanical systems, the optomechanical Cavendish
experiment was proposed as a realistic way to probe the
quantum nature of gravity [14]. Based on the previous
research [14,17], we considered an experimental setup with
an optical cavity system and two mechanical rods A and B.
In the setup, a cavity photon is coupled to rod A, and two
rods A and B gravitationally interacts. We suppose to read
the quantum gravity effect from the interference visibility
of the photon. In contrast to the previous research [14,17],
it should be remarked that we treat up to the second order of
the oscillation angle of rod A, θa, which is considered as a
higher order of optomechanical coupling between the
photon and rod A systems. According to the first order
of optomechanical coupling, the rod A state evolves into a
coherent state due to the photon pressure when the photon
hits the oscillator of rod A. Furthermore, in our present
analysis, the effective frequency of rod A alters by the
second order of optomechanical interaction depending on
the photon number; ωa;0 if a single photon hits the rod A,
while ωa;1 if not.
As a result, we found two effects that amplify the

gravitational signal in the visibility of the quantum opto-
mechanical system. First, we showed that the higher-order
contribution of θa makes the visibility further sensitive to
the quantum gravity effect. The gravitational modification
in the visibility was given by the first order of the
gravitational coupling g, while it appears from the second
order of g in the previous works [14,17]. Another way to
enhance the quantum gravity signal is to make use of the
resonance. Since the setup contains two oscillators A and
B, the resonance occurs when the two frequencies of these
oscillators are close enough. We also found the relational

equation between the visibility and negativity. This reveals
that the resonance effect occurs both in the visibility and
negativity at the same time.
By combining the two effects found in this work, we

expect to improve the quantum gravity signal significantly
in an optomechanical experiment, which may lead to the
implementation of the quantum Cavendish experiment in
the near future. However, there are still some difficulties
preventing a sufficient profit in our approach. In our
analysis, the characteristic times of the two enhancements
are given by t ≈ ðωa;1 − ωa;0Þ−1 and t ≈ ðωb − ωa;1Þ−1,
respectively. The frequency difference between ωa;0

and ωa;1 is typically tiny, and the large resonance enhance-
ment is realized for the small matching parameter
ϵ ≔ 1 − ωb=ωa;1. Hence, for utilizing the two enhance-
ments, we need to coherently sustain our system for a long
time, and this may be a challenging issue. Despite that, our
investigation gives remarkable suggestions to enhance the
quantum gravity signal in the conventional experimental
setup. Particularly, the resonance effect can be very useful,
not only in our setup but also in many systems containing
several oscillators.
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APPENDIX A: GRAVITATIONAL INTERACTION
HAMILTONIAN

We will show how to obtain the gravitational
interaction Hamiltonian in Eq. (3). We first assume
1 ≫ h=L ≫ θb − θa. This assumption indicates that the
vertical separation of two rods is much smaller than the
length of each rod to focus on gravity mediating only
between mirrors located near each other. Also, the oscil-
lation of rods is negligible compared to the vertical
separation of rods. Considering a quantized form of
Newtonian gravity between mirrors of rod A and B with
the above assumption, we get

−2GmMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ð2L sin½ðθ̂b − θ̂aÞ=2�Þ2

q
≈
GmML2

h3
ðθ̂2a þ θ̂2b − 2θ̂aθ̂bÞ; ðA1Þ

where we neglected a constant term. The first and the
second terms in the last line play a role to shift the original
oscillation frequency of each rod. The last term coupling
angular positions of two rods induces gravity-induced
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entanglement between them. We inserted this expression to
the first line of Eq. (3).

APPENDIX B: TIME-EVOLVED STATE

Here, we derive a time evolution of the total state given
in Eq. (10) and show its explicit form. Using the
Hamiltonian in Eq. (3) and the initial state in Eq. (9),
the time evolved state is given by

jψðtÞi ¼ e−iωctffiffiffi
2

p
X
n¼0;1

jn; 1 − nice−iðĤa;nþĤbþĤgÞt=ℏjαiajβib

ðB1Þ
In the following, we focus on the state of rods A and B
written as e−iðĤa;nþĤbþĤgÞt=ℏjαiajβib. First, we move on to
the interaction picture and consider up to the first order of
gravitational coupling constant g. We denote the free
evolution Hamiltonian without gravity and gravitational-
interacting Hamiltonian as follows:

Ĥð0Þ
n ¼ Ĥa;n þ Ĥb;

ĤI
g;nðtÞ ≔ eiĤ

ð0Þ
n t=ℏĤge−iĤ

ð0Þ
n t=ℏ: ðB2Þ

Using these Hamiltonians, the time-evolved state of rods A
and B is rewritten as

e−iĤ
ð0Þ
n t=ℏjαiajβib ¼ e−iĤ

ð0Þ
n t=ℏT

�
exp

�
−
i
ℏ

Z
t

0

dt0ĤI
g;nðt0Þ

��
× jαiajβib

≈ e−iĤ
ð0Þ
n t=ℏ

�
1 −

i
ℏ

Z
t

0

dt0ĤI
g;nðt0Þ

�
× jαiajβib þO½g2�: ðB3Þ

In the second line, we take into account the first order of g.
By using the following relation satisfied for the interaction
picture Hamiltonian

e−iĤ
ð0Þ
n t=ℏHI

g;nðt0Þ ¼ HI
g;nðt0 − tÞe−iĤð0Þ

n t=ℏ; ðB4Þ

we obtain the time-evolved state as

e−iĤ
ð0Þ
n t=ℏjαiajβib ≈

�
1 −

i
ℏ

Z
t

0

dt0ĤI
g;nðt0 − tÞ

�
× e−iĤa;nt=ℏjαiae−iĤbt=ℏjβib: ðB5Þ

Next, we investigate the explicit form of the free
evolution state of rod A, e−iĤa;nt=ℏjαia, contained in
Eq. (B5). Beforehand, we should note that the initial
coherent state jαia is a coherent eigenstate of â0, but not
of â1. As we see in the following, jαia is regarded as a
squeezed coherent state in terms of â1. The relationship
between â0 and â1 is given by

â1 ¼ Ŝ½ζ1�â0Ŝ†½ζ1� ¼ cosh½ζ1�â0 þ sinh½ζ1�â†0; ðB6Þ

ζn ≔−
1

2
log

�
ωa;0

ωa;n

�
;

Ŝ½ξ�≔ exp

�
1

2
ðξ�â20−ξâ20Þ

�
¼ exp

�
1

2
ðξ�â21−ξâ21Þ

�
: ðB7Þ

Here, Ŝ is a squeezing operator and ζn is a squeezing
parameter. This leads to another relative equation combin-
ing two vacuum states of â0 and â1,

j0ia;0¼ Ŝ½−ζ1�j0ia;1; where â0j0ia;0¼ â1j0ia;1¼ 0: ðB8Þ

Furthermore, the above equation is extended to a relative
equation connecting a coherent state of â0 to another state
of â1.

jαia ¼ jαia;0 ¼ D̂n½αn�Ŝ½−ζn�j0ia;n ¼ jα;−ζ1ia;1; ðB9Þ

D̂n½η�≔ exp ½η�â†n−ηân�; αn ≔ cosh½ζn�αþ sinh½ζn�α�;
jη;ξia;n ¼ D̂n½η�Ŝ½ξ�j0ia;n: ðB10Þ

Here, D̂n and αn are the displacement operator and the
coherent parameter defined in terms of ân, respectively.
jη; ξia;n is the squeezed coherent state concerning ân. This
relational equation indicates that the initial coherent state of
â0 is equivalent to a squeezed coherent state of â1. Since the
Hamiltonian of rod A contains both â0 and â1, we need to
solve time evolution for the squeezed coherent state in
general. The squeezing effect in our calculation arises from
the fact that we consider the higher-order optomechanical
contribution O½θ2a�, two different frequencies ωa;0;ωa;1

were introduced, and two different annihilation operators
â0; â1 appears in the Hamiltonian.
The free time evolution operator of rod A is rewritten as

follows:

e−iĤa;nt=ℏ ¼ eiϕ
0
nD̂n½nλn� exp ½−iωa;ntâ

†
nân�D̂†

n½nλn�;

ϕ0
n ≔ ωa;n

�
nλ2n −

1

2

�
t: ðB11Þ

This expression clearly shows that the original harmonics
oscillator potential e−iωa;ntâ

†
nân is shifted horizontally with

the coherent parameter nλn. Combining Eqs. (B9) and
(B11), the free evolution state of rod A is given as

e−iĤa;nt=ℏjαia;0 ¼ eiϕ
0
nD̂n½nλn� exp ½−iωa;ntâ

†
nân�D̂†

n½nλn�
× D̂n½αn�Ŝ½−ζn�j0ia;n

¼ eiϕn jΦa;n; e−2iωa;ntζnia;n; ðB12Þ
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where

ϕn ≔ ϕ0
n þ nλnfIm½αa;nð1 − e−iωa;ntÞ� − λn sin½ωa;nt�g;

Φa;n ≔ e−iωa;ntαn þ nλnð1 − e−iωa;ntÞ: ðB13Þ

From the first line to the second line in Eq. (B12), we make
use of the following relations:

e−iωa;ntâ
†
nân D̂n½η� ¼ D̂n½e−iωa;ntη�e−iωa;ntâ

†
nân ;

e−iωa;ntâ
†
nân Ŝ½ξ� ¼ Ŝ½e−2iωa;ntξ�e−iωa;ntâ

†
nân : ðB14Þ

With a similar calculation, we obtain the free time
evolution of rod B as follows:

e−iĤbt=ℏjβib ¼ jΦbi; Φb ≔ e−iωbtβ: ðB15Þ

Next, we show the explicit form of the gravitational
interacting part in the time evolution operator
i
ℏ

R
t
0 dt

0ĤI
g;nðt0 − tÞ. First, we rewrite the gravitational inter-

acting Hamiltonian in the context of ân,

Ĥg ≔ −gℏωa;0ðâ†0 þ â0Þðb̂† þ b̂Þ
¼ −gℏ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωa;nωa;0
p ðâ†n þ ânÞðb̂† þ b̂Þ; ðB16Þ

Using the above expression and Eq. (B11), we get

ĤI
g;nðtÞ ¼ −gℏ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωa;nωa;0
p

D̂n½nλn�eiωa;ntâ
†
nânD̂†

n½nλn�ðâ†n þ ânÞD̂n½nλn�e−iωa;ntâ
†
nânD̂†

n½nλn�
⊗ eiĤbt=ℏðb̂† þ b̂Þe−iĤbt=ℏ

¼ −gℏ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa;nωa;0

p ½eiωa;nðtÞâ†n þ e−iωa;nðtÞân þ 2nλa;nð1 − cosðωa;nðtÞÞÞ�
⊗ ½eiωbðtÞb̂† þ e−iωbðtÞb̂�: ðB17Þ

Finally, by integrating this interaction picture Hamiltonian, we obtain

i
ℏ

Z
t

0

dt0ĤI
g;nðt0 − tÞ ¼ −ig ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωa;nωa;0
p Z

t

0

dt0½eiωa;nðt0−tÞâ†n þ e−iωa;nðt0−tÞân þ 2nλa;nð1 − cosðωa;nðt0 − tÞÞÞ�

⊗ ½eiωbðt0−tÞb̂† þ e−iωbðt0−tÞb̂�
¼ −2igðÎnðtÞ þ nĴ ðtÞÞ: ðB18Þ

Here ÎnðtÞ; Ĵ ðtÞ are defined in Eqs. (11) and(12).
Finally, according to Eqs. (B12), (B15), and (B18), the time-evolved state is

jψðtÞi ¼ e−iωctffiffiffi
2

p
X
n¼0;1

jn; 1 − nicð1þ 2igðÎnðtÞ þ nĴ ðtÞÞÞe−iĤa;nt=ℏjαiae−iĤbt=ℏjβib; ðB19Þ

where the free evolution states of rod A and B are
given by

e−iĤa;nt=ℏjαia ¼ eiϕn jΦa;n; e−2iωa;ntζnia;n;
e−iĤbt=ℏjβib ¼ jΦbi: ðB20Þ

APPENDIX C: THE EXPLICIT
FORM OF THE VISIBILITY

In this section, we demonstrate an explicit form of
visibility in Eq. (13). First, we rewrite the zeroth-order
visibility Vð0Þ

c ðtÞ defined in Eq. (14) using Eq. (B12),

Vð0Þ
c ðtÞ ≔ jahαjeiĤa;0t=ℏe−iĤa;1t=ℏjαiaj

¼ a;0hΦa;0jΦa;1; e−2iωa;1tζ1i1
¼ a;1hΦ̃a;0;−ζ1jΦa;1; e−2iωa;1tζ1i1: ðC1Þ

In the third equality, we rewrite the bra state in terms of â1
in a similar way as Eq. (B9), where its coherent parameter is
calculated as

Φ̃a;0 ¼ cosh½ζ1�Φa;0 þ sinh½ζ1�Φ�
a;0: ðC2Þ

We can see that Vð0Þ
c ðtÞ is an inner product of two squeezed

coherent states, and its explicit form is given by
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Vð0Þ
c ðtÞ ¼

�
Re½A½e−2iωa;1tζ1��Re½A�½−ζ1��

π2

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

A½e−2iωa;1tζ1� þ A�½−ζ1�

s
× exp ½−Re½A½e−2iωa;1tζ1��Re½Φa;1�2 − Re½A�½−ζ1��Re½Φ̃a;0�2�

× exp

�ðA½e−2iωa;1tζ1�Re½Φa;1� − A�½−ζ1�Re½Φ̃a;0� þ iðIm½Φa;1� − Im½Φ̃a;0�ÞÞ2
A½e−2iωa;1tζ1� þ A�½−ζ1�

�
; ðC3Þ

where

A½ξ� ≔ 1þ ðξ=jξjÞ tanh½jξj�
1 − ðξ=jξjÞ tanh½jξj� : ðC4Þ

Next, we focus on the gravitational contribution to visibility. In advance, the inner product of â using a general coherent
squeezed state is given as follows:

hη0; ξ0jâjη; ξi ¼ E½η0; ξ0jη; ξ�hη0; ξ0jη; ξi; ðC5Þ

E½η0; ξ0jη; ξ� ≔ ð1þ A�½ξ0�ÞðA½ξ�Re½η� þ iIm½η�Þ þ ð1 − A½ξ�ÞðA�½ξ0�Re½η0� − iIm½η0�Þ
A½ξ� þ A�½ξ0� : ðC6Þ

Also, the inner product of â† is given by

hβ0; ζ0jâ†jβ; ζi ¼ E�½β; ζ; β0; ζ0�hβ0; ζ0jβ; ζi: ðC7Þ

Then, the inner products of the annihilation and creation operators of rod A appearing in the visibility are given by

0hâ1i1 ≔ ahαjbhβjeiðĤa;0þĤbÞt=ℏâ1e−iðĤa;1þĤbÞt=ℏjαiajβib
ahαjeiĤa;0t=ℏe−iĤa;1t=ℏjαia

¼ a;1hΦ̃a;0;−ζ1jâ1jΦa;1; e−2iωa;1tζ1i1
a;1hΦ̃a;0;−ζ1jΦa;1; e−2iωa;1tζ1i1

¼ E½Φ̃a;0;−ζ1jΦa;1; e−2iωa;1tζ1�; ðC8Þ

0hâ†1i1 ≔ ahαjbhβjeiðĤa;0þĤbÞt=ℏâ†1e
−iðĤa;1þĤbÞt=ℏjαiajβib

ahαjeiĤa;0t=ℏe−iĤa;1t=ℏjαia
¼ a;1hΦ̃a;0;−ζ1jâ†1jΦa;1; e−2iωa;1tζ1i1

a;1hΦ̃a;0;−ζ1jΦa;1; e−2iωa;1tζ1i1
¼ E�½Φa;1; e−2iωa;1tζ1jΦ̃a;0;−ζ1�; ðC9Þ

0hâ0i1 ≔0 hcosh½ζ1�â1 − sinh½ζ1�â†1i1 ¼ cosh½ζ1�0hâ1i1 − sinh½ζ1�0hâ†1i1; ðC10Þ

0hâ†0i1 ≔0 h− sinh½ζ1�â1 þ cosh½ζ1�â†1i1 ¼ − sinh½ζ1�0hâ1i1 þ cosh½ζ1�0hâ†1i1: ðC11Þ

Similarly, the inner products of rod B operators are given as follows:

0hb̂i1 ¼ Φb; 0hb̂†i1 ¼ Φ�
b ðC12Þ

Based on these equations, we obtain the inner product of În as
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0hÎnðtÞi1 ¼
ffiffiffiffiffiffiffiffiffi
ω3
a;0

ωa;n

s �
sin½ωn;þt=2�

ωn;þ
ðe−iωn;þt=2Φ�

b 0hâ†ni1 þ eiωn;þt=2Φb 0hâni1Þ

þ sin½ωn;−t=2�
ωn;−

ðe−iωn;−t=2Φb 0hâ†ni1 þ eiωn;−t=2Φ�
b 0hâni1Þ

�
; ðC13Þ

where the expressions of 0hâni1, ; 0hâ†ni1 are shown in Eqs. (C8)–(C11).
At last, by substituting Eq. (C13) into Eq. (13), we obtain the final expression for the visibility.

VcðtÞ ¼ Vð0Þ
c ðtÞð1þ 2gIm½0hÎ†

0ðtÞi1 −0 hÎ1ðtÞi1�Þ þO½g2� ðC14Þ

≈ Vð0Þ
c ðtÞ

�
1þ 2gωa;0

�
sin½ω0;þt=2�

ω0;þ
D0;þ þ sin½ω1;þt=2�

ω1;þ
D1;þ þ sin½ω0;−t=2�

ω0;−
D0;− þ sin½ω1;−t=2�

ω1;−
D1;−

��
: ðC15Þ

Here, the coefficients of each term are given by

D0;� ¼
ffiffiffiffiffiffiffiffi
ωa;0

ωa;1

r
Re½e∓iωa;0t=2β�Im½0h ba1i1 þ0 h ba1†i1� ∓ ffiffiffiffiffiffiffiffi

ωa;1

ωa;0

r
Im½e∓iωa;0t=2β�Re½0h ba1i1 −0 h ba1†i1�; ðC16Þ

D1;� ¼ −
ffiffiffiffiffiffiffiffi
ωa;1

ωa;0

r
ðRe½e�iωa;1t=2β�Im½0h ba1i1 þ0 h ba1†i1� � Im½e�iωa;1t=2β�Re½0h ba1i1 −0 h ba1†i1�Þ; ðC17Þ

and Vð0Þ
c ðtÞ is given in Eq. (C3). We see that this explicit

form reduces to Eq. (16) when β is a real number.

APPENDIX D: NEGATIVITY BETWEEN ROD B
AND OTHER SYSTEMS

Here, we show the derivation of the negativity between
rod B and other systems in Sec. VII, and display its
explicit form.
We need to get a density matrix of the state. To do so, we

define the unit orthogonal bases of each state to construct
the matrix. Since there are only two kinds of state jΦbi and
b̂†jΦbi for the rod B state in Eq. (B19), the bases for rod B
system is given by two orthogonal states,

jb0i ≔ jΦbi; jb1i ≔ b̂†jΦbi −Φ�
bjΦbi: ðD1Þ

Then, the time-evolved state is rewritten as

jψðtÞi ¼ 1ffiffiffi
2

p e−iωctðjψ0ijb0i þ jψ1ijb1iÞ; ðD2Þ

where jψ ji is the state of rod A and the photon systems

jψ0i ¼ j0if1þ 2igðΦbK̂0 þΦ�
bK̂

†
0ÞgjΦa;0ia;0 þ j1i

× f1þ 2iγðΦbK̂1 þΦ�
bK̂

†
1ÞgjΦa;1; e−2iωa;1tζ1ia;1;

ðD3Þ
jψ1i ¼ 2igðj0iK̂†

0jΦa;0ia;0 þ j1iK̂†
1jΦa;1; e−2iωa;1tζ1ia;1Þ.

ðD4Þ

K̂n is defined in Eq. (26). We also introduce unit orthogonal
bases for the complement system of rod B jψ0i; jψ1i,

jb0i≔ jψ0i; jb̄1i≔
1ffiffiffiffiffiffi
Nb̄

p ðjψ1i− hψ0jψ1ijψ0iÞ: ðD5Þ

ffiffiffiffiffiffi
Nb̄

p
is a normalization factor given by

ffiffiffiffiffiffi
Nb̄

p ¼ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n¼0;1

ahαjeiĤa;nt=ℏK̂†
nðtÞK̂nðtÞe−iĤa;nt=ℏjαia

s
:

ðD6Þ

Using the bases introduced above, we construct the
density matrix.

ρðtÞ ¼ jψðtÞihψðtÞj ¼
X3
I;J¼0

ðρð0ÞIJ þ ρð1ÞIJ ÞjeIiheJj; ðD7Þ

where ρð0Þ and ρð1Þ are the density matrix of the 0th order
and the first order of g. jeJi is the composite bases of the
total system

je0i ¼ jb0ijb̄0i; je1i ¼ jb1ijb̄0i;
je2i ¼ jb0ijb̄1i; je3i ¼ jb1ijb̄1i; ðD8Þ

and the matrix components are given by
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ρð0Þ ¼

0BBB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCCA; ρð1Þ ¼

0BBB@
0 0 hψ1jψ0i

ffiffiffiffiffiffi
Nb̄

p

0 0 0 0

hψ0jψ1i 0 0 0ffiffiffiffiffiffi
Nb̄

p
0 0 0

1CCCA: ðD9Þ

Then, we perform a partial transpose to the density matrix, solve its eigenvalues up to the first order of g. Note that ρð0Þ is
triple degenerated, so we need to solve a degenarated eigensystem. Finally, by estimating a total sum of the negative
eigenvalues, we find that the negativity is given by the normalization factor

ffiffiffiffiffiffi
Nb̄

p
,

N B∶others ¼
ffiffiffiffiffiffi
Nb̄

p ðD10Þ

¼ 2gωa;0

��
sin½ω0;þt=2�

ω0;þ

�
2

ðjΦa;0j2 þ 1Þ þ
�
sin½ω0;−t=2�

ω0;−

�
2

jΦa;0j2

þ 4
sin½ω0;þt=2�

ω0;þ

sin½ω0;−t=2�
ω0;−

cos
�
ωbt
2

�
Re½eiωatΦ2

a;0�

þ k2
��

sin½ω1;þt=2�
ω1;þ

�
2

ðjΦa;1j2 þ cosh2jζ1jÞ þ
�
sin½ω1;−t=2�

ω1;−

�
2

ðjΦa;1j2 þ sinh2jζ1jÞ

þ 4
sin½ω1;þt=2�

ω1;þ

sin½ω1;−t=2�
ω1;−

cos

�
ωbt
2

�
Re½eiωa;1tðΦ2

a;1 − e−2iωa;1t sinh j2ζ1jÞ�

þ 2λ1Re

�
FðtÞ
ωb

�
sin½ω1;þt=2�

ω1;þ
e−iω1;þt=2Φ�

a;1 þ
sin½ω1;−t=2�

ω1;−
eiω1;−t=2Φa;1

��
þ λ21

����FðtÞωb

����2��1=2: ðD11Þ

From the first line to the second line, we calculate the inner product in Eq. (D6) using the following formulas

hη; ξjâ2jη; ξi ¼ η2 − eiθ sinh 2r; hη; ξjâ†2jη; ξi ¼ η�2 − e−iθ sinh 2r; ðD12Þ

hη; ξjââ†jη; ξi ¼ jηj2 þ cosh2r; hη; ξjâ†âjη; ξi ¼ jηj2 þ sinh2r; ðD13Þ

where ξ ¼ reiθ.
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