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Sign and magnitude of the thermodynamic curvature provides empirical information about the nature of
microstructures of a general thermodynamic system. For charged black holes in anti–de Sitter (AdS),
thermodynamic curvature is positive for large charge or chemical potential, and diverges for extremal black
holes, indicating strongly repulsive nature. We compute the thermodynamic curvature at low temperatures,
for charged black holes with AdS2 near horizon geometry, and containing a zero temperature horizon radius
rh, in a spacetime which asymptotically approaches AdSD (for D > 3). In the semiclassical analysis at low
temperatures, the curvature shows a novel crossover from negative to positive side, indicating the shift from
attraction to repulsion dominated regime near T ¼ 0, before diverging as 1=ðγTÞ, where γ is the coefficient
of leading low temperature correction to entropy. Accounting for quantum fluctuations, the curvature
computed in the canonical ensemble is positive, whereas the one in the grand canonical ensemble, shows a
crossover from negative to positive side in the Schwarzian region. Moreover, the divergence of curvature at
T ¼ 0 is cured irrespective of the ensemble used, resulting in a universal constant, inversely related to the
number of symmetry generators of vacuum AdS2.
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I. INTRODUCTION

Thermodynamics of charged black holes in AdSD
spacetimes has been well studied, particularly with the
motivation of understanding holographic field theories at
finite temperature [1–5]. The presence of an AdS2 factor in
the near horizon geometry which has the form AdS2 ×Md
(whereMd is a compact space withD ¼ dþ 2) is expected
to give universal information about the low energy quantum
theories for these black holes. The study of low energy
aspects based on the AdS2 factor has improved our
understanding with the advent of Sachdev-Ye-Kitaev mod-
els [6–9] and related studies in the low energy limit of string
theories [6–41].
A universal property of black holes in AdSD with charge

Q (and also SYK models) is that, there are interesting
crossovers at low temperatures, with various thermody-
namic quantities receiving nontrivial classical and quantum
corrections [42–45]. Energy and charge fluctuations of the
low temperature quantum theory lead to a Schwarzian
action [24,42]:

I½f;ϕ� ¼ −S0ðQÞ þ K
2

Z
1=T

0

dτð∂τϕ − ið2πETÞ∂τfÞ2

−
γ

4π2

Z
1=T

0

dτftanðπTfðτÞÞ; τg; ð1:1Þ

with the following notation for the Schwarzian

fgðτÞ; τg ¼ g000

g0
−
3

2

�
g00

g0

�
2

: ð1:2Þ

The action is specified in terms of three parameters, namely
γ, the compressibility given as

K ¼ dQ
dμ

����
T¼0

; ð1:3Þ

and the electric field at the horizon E, which can be
computed as

dS0ðQÞ
dQ

¼ 2πE: ð1:4Þ

In particular, the dimensionless parameter E appeared first
in the works of Sen [10] while proposing an entropy
function for general black holes (see [7,8] for its appear-
ance in complex SYKmodels). Unlike the zero temperature
entropy S0 and E, the compressibility K and the coefficient
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γ are not universal and depend upon the UV details of the
theory. There are further novel modifications of the above
model with the inclusion of quantum corrections and also
including supersymmetric situations [43–45].
The aim of this paper is to attempt an understanding of

the nature of microstructures of such low temperature
charged black holes in AdS following recent developments
[23,42–46], using the methods of thermodynamic geom-
etry. The main idea of this approach is based on thermo-
dynamic fluctuation theory, which starts from writing the
number of microstates of a thermodynamic system as

Ω ¼ e
S
kB ; ð1:5Þ

where kB is the Boltzmann constant. One now considers a
thermodynamic system I0 in equilibrium, with a sub-
system I in it, in addition to having a couple of independent
fluctuating variables, xi where i ¼ 1, 2. The number of
microstates in Eq. (1.5) can now be related to the
probability Pðx1; x2Þ of locating the state of the system
somewhere between ðx1; x2Þ and (x1 þ dx1, x2 þ dx2).
According to second law of thermodynamics the pair
ðx1; x2Þ picks the values that maximize the entropy
S ¼ Smax. In effect, ðx1; x2Þ describe fluctuations around
the maximum and the probability around this maximum
can be written as [47]:

Pðx1; x2Þ ∝ e−
1
2
Δl2 ; ð1:6Þ

where the line element which measures thermodynamic
distance between two nearby fluctuation states is written as:

Δl2 ¼ −
1

kB

∂
2S

∂xi∂xj
ΔxiΔxj: ð1:7Þ

The distance is then shorter when the fluctuation between
neighboring states is more probable. The thermodynamic
curvature R computed from the line element in Eq. (1.7)
contains much information, and has been studied for
various systems in nature, such as ideal/van der Waals
fluids, quantum gases to other Bose/Fermi systems, includ-
ing the Ising model and black holes [48–64]. The current
understanding based on the available empirical data is that
repulsive (attractive) interactions of a thermodynamic
system turn out to have positive (negative) value of R
[47]. R typically diverges at the phase transitions points and
has zero crossings at the points where the attractive and
repulsive interactions are in balance or in a noninteracting
situation.
Thermodynamic geometry of charged black holes in

AdS has been well studied in the canonical, grand canoni-
cal and also other mixed ensembles in several works (see,
e.g., [53,54]). It has also been observed that the curvature R
is generally positive for the large black hole branch above a
certain critical charge or chemical potential and diverges as

þ1=T near T ¼ 0, i.e., in the extremal limit. These
computations are done for charged black holes in AdS,
far away from the horizon. In this work, our motivation is to
study the computation of R for charged black holes in AdS,
in a certain low temperature regime where the dynamics is
governed by corrections to the AdS2 near horizon geom-
etry. The partition function has been computed recently in
both canonical and grand canonical ensembles, carefully
taking into account the quantum fluctuations [23,42–46],
resolving the mass-gap puzzle [43,44]. As noted above, the
thermodynamic variables of black holes in the low temper-
ature limit show certain universal properties, but there are
also nonuniversal behaviors, which depend on the how the
AdS2 is embedded in the higher dimensional theory. Here,
universality of thermodynamic quantities implies inde-
pendence of their characteristics on parameters of the
geometry far from the AdS2 near-horizon region. Indeed,
the behavior of R in the low temperature limit we find here,
is due to the presence of a near horizon AdS2 geometry, and
its nature differs far away from the horizon. More impor-
tantly, R diverges on the positive side at T ¼ 0, in the
semiclassical limit, which is similar to earlier calculations
done in the full geometry [53–55]. In addition, the
curvature contains a novel crossover from the negative
to positive side, which objectively points toward the
existence of attractive interactions (bosonic in nature as
per our conventions) which develop at low temperatures,
i.e., for T ≪ 1=rh, before becoming repulsive. Once the
quantum corrections to thermodynamic quantities are
included, both the curvatures computed in the canonical
and grand canonical ensembles and evaluated at T ¼ 0,
turn out to be equal to a constant. The key take away
message is that the quantum corrections to the near horizon
nearly AdS2 geometry cure divergence of the thermody-
namic curvature at T ¼ 0. This presumably also means that
the microstructures are weakly repulsive in nature at T ¼ 0,
as opposed to the strongly repulsive nature thought of
earlier [53–55].
The rest of the paper is as structured as follows. In

Sec. II, we set up the notations and collect known details of
thermodynamic geometry of charged blackholes in AdS
spacetimes. These computations will be for charged black
holes in D-dimensions far from the horizon. In particular,
we note from Fig. 1, that the thermodynamic curvature is
generally positive for large black holes above a certain
chemical potential and diverges at T ¼ 0. In Sec. III, we
perform a computation of the thermodynamic curvature in
semiclassical as well as with the inclusion of quantum
corrections to thermodynamic quantities. Subsection III A
contains the computation of thermodynamic curvature in
the semiclassical limit, where the corrections to entropy
come from corrections to the AdS2 geometry [42] and show
that there is a novel crossover. The T ¼ 0 behavior
is unmodified and matches with that seen in Fig. 1. In
Sec. III B, we follow [43] and note down the thermodynamic
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quantities in the low temperature limit, where the quantum
corrections in both the canonical and grand canonical
ensembles can be used to compute the curvature. In the
canonical ensemble, the curvature is generally positive, with
no crossover and is a positive constant at T ¼ 0. In the grand
canonical ensemble, the curvature is a positive constant at
T ¼ 0, but crosses over to the negative side with slight
increase of temperature, but still well below 1=rh. At T ¼ 0,
both the curvatures are finite as well as independent of
charge, giving a universal constant. We end with remarks
in Sec. IV.

II. CHARGED BLACK HOLES IN AdSD

Let us start with the action of Einstein-Maxwell theory in
AdSdþ2 (d > 1) in the presence of a U(1) gauge field with
the action [5]:

I¼
Z

ddþ2x
ffiffiffi
g

p �
−

1

2κ2

�
Rdþ2þ

dðdþ1Þ
L2

�
þF2

�
; ð2:1Þ

where we set κ2 ¼ 8π and the gravitational constant
GN ¼ 1. Rdþ2 is the Ricci scalar, with L denoting the

AdSdþ2 radius. The above theory is known to contain black
hole solutions with the metric

ds2 ¼ fðrÞdτ2 þ dr2

fðrÞ þ r2dΩ2
d; ð2:2Þ

where dΩ2
d stands for the metric of the d- dimensional

sphere, and

fðrÞ ¼ 1þ r2

L2
þ q2

r2d−2
−

m
rd−1

: ð2:3Þ

As r → ∞, the metric in Eq. (2.2) goes over to AdSdþ2,
whereas near the horizon the geometry is AdS2 × Sd. The
mass is

M ¼ dωd

16π
m ¼ dπ

dþ1
2
−1r−d−1ðL2r2d þ r2dþ2 þ L2q2r2Þ

8L2Γðdþ1
2
Þ :

ð2:4Þ

The grand canonical potential is given as

ΩðT; μÞ ¼ ωdr0ðT; μÞd−1
16π

�
1 −

r0ðT; μÞ2
L2

�

−
ωdðd − 1Þμ2r0ðT; μÞd−1

2d
: ð2:5Þ

from which the entropy and charge can be obtained to be

SðT; μÞ ¼ π
dþ1
2 rd0

2Γðdþ1
2
Þ ; ð2:6Þ

QðT; μÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þdp

ωd

4
ffiffiffi
2

p
π

q ¼ ðd − 1Þπd−1
2 μrd−10

2Γðdþ1
2
Þ ; ð2:7Þ

where ωd ¼ 2π
dþ1
2

Γðdþ1
2
Þ. Focussing on the large black hole

branch, the specific heat can be written as,

Cμ ¼
d2π

dþ3
2 L2T

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dL2ðd3ð2μ2−1Þ−2d2μ2þdð−2μ2þ4π2L2T2þ1Þþ2μ2Þ

p
þ2πdL2T

dðdþ1Þ

�
d

Γðdþ1
2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dL2ðd3ð2μ2 − 1Þ − 2d2μ2 þ dð−2μ2 þ 4π2L2T2 þ 1Þ þ 2μ2Þ

p ; ð2:8Þ

Black holes in the fixed potential ensemble are known to
show distinct behavior for μ < 1 and μ > 1 [5] and our
interest is in the later regime where extremal limit can be
taken. Using the grand potential, a thermodynamic line
element can be constructed as [47,53,54,64],

Δl2 ¼ −
1

T
∂
2ΩðT; μÞ
∂xi∂xj

ΔxiΔxj; ð2:9Þ

where the fluctuation coordinates xi are chosen as ðT; μÞ.
The above line element is conformally related to the one in
Eq. (1.7). The curvature following from it can be com-
puted straightforwardly, though the resulting expression
is quite long to express here. We instead show the result
in Fig. 1, which matches with the earlier computations
[53,54].
The low temperature behavior for μ > 1 is given below

which will be useful later:

FIG. 1. Thermodynamic curvature of charged black holes in
AdS4 in the ðT; μÞ plane) for μ > 1 (red curve) and μ < 1 (blue
curve). The red curve is for μ ¼ 1.05 and the blue curve
for μ ¼ 0.8.
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R ¼ 3
ffiffiffi
3

p ð2μ2 − 1Þ
4π2ðμ2 − 1Þ3=2L3T

−
3ð6μ2 − 1Þ

4ðπðμ2 − 1Þ2L2Þ

þ ð4 ffiffiffi
3

p
μ2 þ ffiffiffi

3
p ÞT

2ðμ2 − 1Þ5=2L þOðT2Þ: ð2:10Þ

We note that R is positive and diverges as T → 0, indicating
strongly repulsive type interactions of microstructures.

III. LOW TEMPERATURE NEARLY AdS2

Various thermodynamic quantities of the extremal black
hole can be extracted as below. At sufficiently low temper-
atures, nonconstant modes on Sd are not excited and certain
universal features can be obtained. In the fixed potential
case, the expressions in the previous section were for
general values of T and μ and in this section, following
[42], the low temperature expressions (at fixed μ ¼ μ0) can
be obtained by writing r0 as

r0 ¼ rhðμ0Þ þ
2πL2

dþ 1
T þOðT2Þ ð3:1Þ

where

rh ≡ L

�ðd − 1Þðμ208πðd − 1Þ − dÞ
dðdþ 1Þ

�
1=2

; ð3:2Þ

is the zero temperature horizon radius and μ0 ¼ μjT¼0. The
expansion in Eq. (3.2), allows writing extremal value of
entropy as

S0 ¼
2πωd

8π
rdh; ð3:3Þ

where ωd is the area of d-dimensional unit sphere. Note that
the entropy S0 is given terms of the area of the horizon in
the d-dimensional geometry. Compressibility can be writ-
ten as

K ¼ ðd − 1Þωdrd−3h ½dðdþ 1Þr2h þ ðd − 1Þ2L2�
ðdþ 1Þ : ð3:4Þ

Extremal value of charge can be expressed in terms of μ0 as

Q ¼
ðd2 − 1Þπd−1

2 μ0

�
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd2−1Þðdð2μ2

0
−1Þ−2μ2

0
Þ

p
dðdþ1Þ

�
d−1

2ðdþ 1ÞΓðdþ1
2
Þ : ð3:5Þ

The low temperature analysis can also be done in the
canonical ensemble at constantQ. Note that in the extremal
limit, the function fðrÞ in Eq. (2.3) has a double zero at rh.
The key idea in studying the near-extremal black holes is

to divide their geometry into a near horizon and a far away
region, such that both the regions overlap in the bulk
[26,43]. For the near horizon region at fixed temperature

and charge situation, one can expand the radius (in four
dimensions) as [42,43]

r ¼ rh þ δrh; δrh ¼ 2πTr22 þ � � � ; ð3:6Þ

where r2 ≡ Lrhffiffiffiffiffiffiffiffiffiffiffi
L2þ6r2h

p is the radius of AdS2. The near horizon

region is at a distance r − rh ≪ rh, and is nearly
AdS2 × S2. Considering the metric in Eq. (2.3) one can
define ρ ¼ r − rh and obtain the near-horizon region metric
to be

ds2 ¼ ðρ2 − 4π2T2r42Þ
r22

dτ2 þ r22
ðρ2 − 4π2T2r42Þ

dρ2

þ ðrh þ ρÞ2dΩ2 ð3:7Þ

where the first two terms stand for the finite temperature
AdS2, and the last term corresponds to the metric of a
sphere with an almost constant radius rh. The additional
slowly varying term is the size of the sphere, which breaks
the symmetries of AdS2, dominating the dynamics at
low-temperatures [16,19]. As discussed in [42,43], for
2πTr22 < ρ ≪ rh, the geometry approaches vacuum AdS2,
whereas the region Tr2h < ρ ≪ rh is the Schwarzian regime.

A. Semiclassical analysis

In the nearly AdS2 spacetime the thermodynamic quan-
tities receive corrections. The free energy in the fixed
charge ensemble F ¼ Ωþ μQ gets corrected to order T2

as [42,65]:

F ¼
π

d−1
2 rdh

�
d2rh

ðd−1ÞL2 þ d
�

1
rh
− 2π2L2rhT2

ðd−1Þ2L2þdðdþ1Þr2h

	
− 2πT

	
4Γðdþ1

2
Þ :

ð3:8Þ

The entropy in this limit acquires corrections at low
temperature as

SðQ; T → 0Þ ¼ S0ðQÞ þ γT þ � � � ; ð3:9Þ

where γ ¼ M−1
SLð2Þ is the conformal symmetry breaking

scale. S0ðQÞ is the zero temperature entropy and is nonzero,
as given in Eq. (3.3). The coefficient can be deduced from
the corrections to the near horizon AdS2 geometry
[9,16,17,19] as

γ ¼ dπ
dþ3
2 L2rdþ1

h

Γðdþ1
2
Þððd − 1Þ2L2 þ dðdþ 1Þr2hÞ

: ð3:10Þ

Due to the above scaling of entropy with temperature as in
Eq. (3.9), it was believed that the statistical description
breaks down at temperatures lower than 1=γ. The scale
MSLð2Þ is now understood as the energy at which the
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(approximate) near horizon conformal symmetry of AdS2
is broken. This becomes evident once the quantum cor-
rections are taken into account [43]. For now, we continue
with the semiclassical analysis and return to consider the
quantum corrected thermodynamic quantities in the next
subsection. The low temperature behavior of the chemical
potential μ at leading order can be written as [42]

μðTÞ ¼ μ0 − 2πET þ…; ð3:11Þ

where

2πE ¼
ffiffiffi
2

p
πLrh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dððd − 1ÞL2 þ ðdþ 1Þr2hÞ

p
ðd − 1Þ2L2 þ dðdþ 1Þr2h

: ð3:12Þ

The second term in Eq. (3.11) is purely the contribution at
the boundary of AdS2 and its contribution at the AdSdþ2

boundary can be computed in the presence of time diffeo-
morphisms and gives the second term in Eq. (1.1). We will
see in the following section that Eq. (3.11) gets corrected
further due to quantum fluctuations and we will use
the temperature dependent terms there to compute the
curvature.
We can compute the thermodynamic curvature straight-

forwardly in both the canonical and grand canonical
ensembles, but we prefer the later here, for comparison
with the results in the previous section. While using zero
temperature relations, we will continue to express the
thermodynamic relations in terms of either rh, Q or μ0
as per convenience as all these are constants, related to each
other. The particular length ratio L=rh is kept fixed as the
temperature is lowered in the limit T → 0. We will set
L ¼ 1 in the plots. Evaluating the curvature following from
the metric in Eq. (2.9), the expression for the four dimen-
sional case is

R ¼
ffiffiffi
3

p ð3ð1 − 2μ20Þ4 − 4π2ð4μ60 þ 8μ40 − 11μ20 − 1ÞL2T2Þ
4π2ðμ20 − 1Þ3=2ð2μ20 − 1Þ3L3T

:

ð3:13Þ

The above expression has been written in terms of μ0 for
convenience, and can be converted to the fluctuating
variable Q using Eq. (3.5). The first few terms of
Eq. (3.13) close to T ¼ 0 are

R ¼ 3
ffiffiffi
3

p ð2μ20 − 1Þ
4π2ðμ20 − 1Þ3=2L3T

−
ffiffiffi
3

p ð4μ60 þ 8μ40 − 11μ20 − 1ÞT
ðμ20 − 1Þ3=2ð2μ20 − 1Þ3L

þOðT2Þ ð3:14Þ

The general result for curvature in Fig. 1 is positive all
along and approaches zero at high temperatures. However,
the low temperature curvature in Eq. (3.13) behaves slightly
differently, a seen in Fig. 2. As the temperature is lowered
(and still much below the energy scale 1=rh), the curvature

can be negative, before resuming the positive behavior and
subsequent divergence as T → 0. The T ¼ 0 behavior is
universal in this limit. That is, the first term of thermody-
namic curvature in the general expression in Eq. (2.10) and
the low temperature computation in Eq. (3.14) agree
exactly, showing the typical 1=T divergence in the extremal
limit. In fact, we note that the coefficient of leading 1=T
term in either of these low temperature series for curvature
is exactly 1=γ.
Based on the empirical understanding of thermodynamic

curvature, the points of crossover of R indicate shift of the
nature of collective interactions of microstructures from
attraction dominated (negative R) to repulsion dominated
(positive R) at a temperature, which is in the physical
region of interest. That is, the shaded region in Fig. 3 where
the black hole also shows a crossover and the description in
terms of an effective action governed by the Schwarzian
starts becoming feasible (see Fig. 2 in [42]). The zero
crossing of the thermodynamic curvature in Eq. (3.13)
occurs at

FIG. 2. Thermodynamic curvature for charged black holes with
near horizon AdS2 geometry at low temperature. The curvature
crosses over from negative to positive side at T ¼ 0.282 for
Q ¼ 0.2 (or equivalently μ0 ¼ 1.052).

FIG. 3. The red and blue curves represent 1=rh and 1=ð2πrhÞ
respectively, with the shaded region in between them marking the
Schwarzian regime. The dashed curve represents the temperature
at which the curvature [Eq. (3.15)] has zeroes as a function of μ0.
d ¼ 2 for all the cases.
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TR¼0 ¼
ffiffiffi
3

p ð1 − 2μ20Þ2

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ60 þ 8μ40 − 11μ20 − 1

q
L

ð3:15Þ

as also seen in Fig. 3, happening at temperatures much
lower than 1=rh, and for some range of charges, even
happening below 1=ð2πrhÞ, which is the nearly AdS2
region. Of course, the crossing of R shown in Fig. 3 cannot
be trusted at temperature comparable to 1=rh.
We should probably also mention that our computations

in this paper are limited to the situation corresponding to a
large chemical potential, as in [42], such that the horizon
radius in Eq. (3.2) exists. Hence, the thermodynamic
curvature does not capture phase transitions or critical
points.

B. Quantum corrections

In this subsection, we follow the analysis in [43], where
the corrections to thermodynamic quantities coming from
quantum fluctuations were computed for Reissner-
Nordström near-extremal black holes at low temperatures.
One of the key findings of [43] is that in the fixed charge
sector, the density of states of the system does not show a
gap, but rather a continuum of states, for the case of
nonsupersymmetric black holes. The computed partition
function in the canonical and grand canonical ensembles
shows that the low energy limit is well captured by two
dimensional Jackiw-Teitelboim (JT) gravity, which is
coupled to a Uð1Þ gauge field and other gauge fields
coming from dimensional reduction. We first compute the
thermodynamic curvature in the canonical ensemble and
then in the grand canonical ensemble.
The partition function in the fixed charge ensemble was

shown in [43] to be

ZRN½T;Q� ¼ ðγTÞ3=2eπr2h−M0ðQÞ=Tþ2π2γT: ð3:16Þ

Here, the terms in the exponential correspond respectively
to the extremal entropy, extremal mass and the semi-
classical corrections near extremality. We should mention
that γ in the above expression is same as the one appearing
in Eq. (3.10), but its origin is tied to the value of the dilation
evaluated from the boundary terms originating in the
overlap region of near and far regimes of the near extremal
black [43]. The important piece for the current analysis of
course is the prefactor in Eq. (3.16), which follows from the
gravitational one-loop contribution of the JT mode, and
also dominates the low temperature behavior of thermo-
dynamic quantities to follow. For our purposes, the entropy
computed from the corrected free energy following from
Eq. (3.16) is

SðQ; TÞ ¼ S0ðQÞ þ γT þ k
2
log ðγTÞ: ð3:17Þ

The leading two terms are same as the ones noted in
Eq. (3.9), where k ¼ 3 for the general case considered in
[43], but we leave it arbitrary for reasons to be clear below.
The specific heat following from Eq. (3.17) is

C ¼ 1

18
T

�
9k
T

þ 2
ffiffiffi
6

p
π7=4L5=2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πL2 þ 3Q2

p
−

ffiffiffi
π

p
LÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πL2 þ 3Q2
p

�
;

ð3:18Þ
where one notices that the quantum corrections regulate the
expression in the T ¼ 0 limit giving a constant k=2. The
chemical potential is found to be

μ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þ3r2h

p
8

ffiffiffi
π

p
LrhðL2þ6r2hÞ3

× ð24π2L4r3hT
2ðL2þ2r2hÞþL2TðL2þ6r2hÞ

× ðL2ð8πr2hþ27Þþ6r2hð8πr2hþ9ÞÞ−4rhðL2þ6r2hÞ3Þ:
ð3:19Þ

The partition function in the fixed potential ensemble
reads [43]

ZRN½T;μ�¼eμ
Q0
T þS0ðQ0Þ−M0ðQ0Þ=TðγTÞk=2e2π2γTZUð1Þ; ð3:20Þ

where ZUð1Þ is the contribution of the Uð1Þ mode, which
can change the power k depending on the regime of
temperature being studied. Here, one remembers that in
the grand canonical ensemble, μ0 is taken to be function of
only Q, which is the zero temperature contribution from
Eq. (3.19) and can also be obtained by inverting Eq. (3.5).
We ignore it for now, as does not induce any change to the
qualitative behavior of the curvature to be discussed below.
With the above partition functions in both ensembles, one
can now do the computation of thermodynamic curvatures
in both the canonical and the grand canonical ensembles.
For the canonical ensemble, one can write a metric as
[47,53,54,64],

dl2 ¼ −
1

T
∂
2F
∂T2

ðdTÞ2 þ 1

T
∂
2F

∂Q2
ðdQÞ2; ð3:21Þ

whereas for the grand canonical, one can use the same
metric noted earlier in Eq. (2.9). The thermodynamic
curvature can be computed analytically as such in both
the ensembles, though the expressions are quite involved
and are given in the Appendix. Here, the expression for
curvature can be expressed in terms of Q as well. The
behavior of curvatures in both the ensembles is summarized
in Fig. 4, which shows major changes due to quantum
corrections coming from the JT mode. First, the thermo-
dynamic curvature at T ¼ 0 does not diverge anymore,
irrespective of the ensemble used, and actually gives
RT¼0 ¼ 1=k, which is a universal constant independent
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of charge. This is in stark contrast to the divergence seen in
the thermodynamic curvature in earlier studies for full
AdSD background [51,53–55], and also the semiclassical
analysis in the nearly AdS2 near horizon geometry in the
last subsection. Thus, the quantum corrections following
from the JT mode regularise the divergence of thermody-
namic curvature in the low temperature limit. From the
existing results on Ruppeiner geometry, one concludes that
a small positive constant value of thermodynamic curvature
at T ¼ 0 might presumably mean the presence of weakly
interacting repulsive nature of the system. In the grand
canonical ensemble, the thermodynamic curvature starts
out as highly negative indicating the possibility of strongly
interacting microstructure behavior akin to a bosonic
system. This is followed by a point where there is a
crossover from negative to positive side at a temperature
between 1=ð2πrhÞ and 1=rh (shaded region in Fig. 5). This
crossing was already seen in the semiclassical analysis in
Fig. 3, but there it started showing up from much lower
temperatures in the AdS2 regime. Here, with quantum
corrections, the zero crossings of curvature occur precisely
within the shaded region, i.e., where the Schwarzian

description starts becoming relevant, and the black hole
is expected to have a crossover [42]. One hopes the
quantum corrected temperature of crossover found here
is more reliable. Also, the quantum corrected behavior of
thermodynamic curvature cannot be obtained directly by
taking a naive T ¼ 0 limit of the results in the full AdSD
geometry [47,53,54,64].
We should mention that the curvature in the canonical

ensemble also has a crossover for some range of charges, but
it happens at temperatures well above 1=rh, where the
analysis is not reliable, and hence are not included in the
plots. All these features are also happen below the conformal
symmetry breaking scaleMSLð2Þ, which is not a problemhere
as there is no mass gap. Due to the arguments in [43] for
nonsupersymmetric black holes, the thermodynamic analy-
sis in this limit is justified.

IV. CONCLUSIONS

Charged black holes in AdS have long been used as
holographic models for strongly interacting quantum sys-
tems at finite density [39]. Close to the boundary, the
geometry asymptotes to AdSD, where the usual AdS=CFT
relations hold, giving an understanding of bulk properties in
terms of field theory inD − 1 spacetimedimensions. The low
temperature correlations (forD > 3) however were linked to
the presence of the near horizon AdS2 geometry alone [29].
More recently, following examples of the SYK model,
interesting one dimensional Schwarzian action has been
studied [16,17,19,23,24,35,36], which has allowed novel
computation of quantum properties, in comparison to the
AdSD approach. The effective one dimensional action has
also been obtained from the low energy limit of the Einstein-
Maxwell theory which contains the charged black holes in
asymptoticallyAdSD spacetime [42–45]. In particular, at low
temperatures, the black holes exhibit interesting crossovers
to the Schwarzian regime.The semiclassical analysis is now
supplemented by the quantum corrections, which play a
crucial role in resolving the mass gap puzzle in the non-
supersymmetry near extremal black holes [43].
Purely from thermodynamics point of view, Ruppeiner

geometry is known to give reliable results on the nature of
microscopic interactions of degrees of freedom, for a wide
range of systems, starting fromblack holes to quantumgases.
For the case of charged black holes in full AdSD geometry,
the key features of thermodynamic curvature are as follows.
The curvature shows one negative divergence at the critical
point of phase transition and a positive divergence at T ¼ 0
[53–55]. The negative to positive crossing of the curvature
happens exactly at the point where theGibbs free energy also
changes sign and this corresponds to Hawking-Page tran-
sition. Except for the behavior of curvature at T ¼ 0, all the
other features can be understood independently either from
the free energy or the behavior of other thermodynamic
quantities. Following recent developments in [42–45] which
showed that the thermodynamic quantities of charged black

FIG. 5. The red and blue curves represent 1=rh and 1=ð2πrhÞ
respectively, with the shaded region in between them marking the
Schwarzian regime. The dashed curve represents the temperature
at which the curvature in the grand canonical ensemble has zeroes
as a function of charge Q (or equivalently the chemical
potential μ0).

FIG. 4. Red and blue curves represent respectively, the thermo-
dynamic curvatures in canonical and grand canonical ensembles
in four dimensions for Q ¼ 2, L ¼ 1. The value at T ¼ 0 is R ¼
1=k where we took k ¼ 3 here.
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holes at low temperatures undergo nontrivial changes at the
semiclassical and also due to quantum fluctuations, it is
imperative to revisit the computation of thermodynamic
geometry in these regimes. In this paper, we performed a
computation of the curvature R in the low temperature
regime, both in the semiclassical limit as well as after
including quantum corrections, in the nearly AdS2 space-
time. It is then useful to compare the behavior of thermo-
dynamic curvature of charged black holes in the full AdSD
geometry [53–55] with the computation done here in the low
temperature regime.
First, in the semiclassical limit, as the temperature is

lowered, keeping the charge fixed (and sufficiently large), R
shows an additional new crossover from negative to positive
side (before diverging as 1

γT), in the region where the
temperature is much less than 1=rh [and also possibly below
1=ð2πrhÞ]. This is also the region where the black hole
undergoes interesting crossovers [42]. Let us note that the
above crossovers are particularly low energy phenomena,
where the black holes in AdSD geometry are better approxi-
mated as AdS2 ×Md (where Md is a compact space with
D ¼ dþ 2). The Einstein-Maxwell action in the former
geometry can be rewritten in the later background, to obtain
an effective dilaton gravity theory in two dimensions, as
described in [16,17,19,23,24,35,36]. As one moves away
from the AdS2 throat region, this two dimensional theory
exhibits novel conformal symmetry breaking behavior and
becomes dynamical, which might be understood in terms of
holographic renormalization group flow. Such studies are
expected to throw more light on the connection between the
behavior of thermodynamic curvature in the full AdSD
geometry and its low energy behavior presented here. This
should be pursued in the future.
Actually, for the charged black holes in AdS, if we take

the temperature to be extremely low, the theory is essen-
tially topological [16,17,19,23,24,35,36]. The nearly AdS2
gravity with a finite temperature can be understood in terms
of JT gravity with a boundary Schwarzian action, resulting
in the − k

2
T logT term in the free energy. This term

resulting from quantum corrections, dominates the low
temperature behavior and in our case renders the thermo-
dynamic curvatures finite. In fact, with quantum correc-
tions, the curvature is regular with no divergence at any low
temperature. In the grand canonical ensemble, the thermo-
dynamic curvature continues to show a smooth crossover
for a wide range of charges, for temperatures which
precisely lie between 1=ð2πrhÞ and 1=rh. The crossover
presumably corresponds to a shift in the nature of dominant
interactions of microstructures from bosonic (negativeR) to
fermionic (positive R) type, which should be understood
better. Furthermore, the value of the curvature at T ¼ 0 is a
universal constant, inversely related to the number of SLð2Þ
generators. For the present case, it is tempting to speculate
that the interactions of microstructures are weakly repulsive
as the temperature nears zero, as opposed to the strongly

repulsive nature anticipated earlier from the analysis of
thermodynamic curvature in the full AdSD geometry
[53–55]. In the supersymmetric case, this number should
equal the number of generators of the full supergroup.
There are other instances where such universal constants
have appeared in special limits of thermodynamic curvature
with interesting physical interpretations [63,66,67], but
were all at finite temperature.
Another related remark concerns the applicability of

thermodynamic geometry to low temperature situations.
Thermodynamic curvature has thus far been studied with
particular emphasis on the phase transitions and critical
phenomena, which are all phenomena at finite temperature.
It is then interesting that the value of thermodynamic
curvature at T ¼ 0 found here, is inversely related to the
power k of temperature in the partition function in
Eq. (3.16), which for the present case is known to be
k ¼ 3. This is also the number of symmetry generators of
the SLð2Þ group which is preserved by the pure AdS2
geometry.1 It points to a deeper connection of thermody-
namic curvature to the symmetry generators and should be
explored further by examining similar issues for super-
symmetric black holes. Given that near extremal black
holes in both supersymmetric (where additional BPS
conditions are possible) and nonsupersymmetric theories
have a ground state degeneracy with nonzero entropy, it
may be possible to set up thermodynamic geometry for
quantum systems at zero temperature.
Some further avenues which can be explored are as

follows. Black holes in higher derivative gravity are known
to give nontrivial corrections to the entropy of black holes,
both in supersymmetric and nonsupersymmetric situations.
It is important to study their thermodynamic geometry in
the near horizon limit, with corrections to AdS2 geometry
as done here. Second, it has been suggested that the mass
gap does exist for BPS black holes in supersymmetric
theories [44,45], it is then interesting to check whether the
thermodynamic curvature in either of the ensembles studied
here, has any new behavior.
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APPENDIX: EXPRESSIONS FOR THERMODYNAMIC CURVATURES

Here, we note down the thermodynamic curvatures found in Sec. III for case of low temperature nearly AdS2. Curvature
in the canonical ensemble is computed using the line element in Eq. (3.21), in terms of the fluctuation variables ðT;QÞ, but
expressed below in terms of ðT; rhÞ for clarity. rh can be converted in terms of chargeQ, using Eq. (3.2). The expression is,

R ¼ A=B;

A ¼ 36r3ð6r2h þ 1Þ2ð248832π2r18h Tðπ2T2 þ 21Þ þ 2239488r17h ð2π2T2 þ 3Þ
þ 20736r16h Tð14π4T2 þ 126π2 þ 243Þ þ 15552r15h ð15π4T4 − 8π3T2 þ 552π2T2 þ 252Þ
þ 3456r14h Tð4π4T2 þ 3π2ð81T2 þ 70Þ − 54π þ 3159Þ − 2304r13h ð7π5T4 − 270π4T4 þ 45π3T2

− 2565π2T2 − 567Þ − 192r12h Tð112π6T4 þ 372π4T2 þ 270π3T2 − 9π2ð1377T2 þ 70Þ þ 972π − 46656Þ
− 864r11h ð12π5T4 − 529π4T4 þ 40π3T2 − 2280π2T2 − 315Þ − 32r10h Tð472π6T4 þ 858π4T2

þ 1728π3T2 − 27π2ð2727T2 þ 14Þ þ 2430π − 118827Þ − 64r9hð29π5T4 − 2070π4T4 þ 90π3T2

− 5400π2T2 − 567Þ − 32r8hTð84π6T4 þ 121π4T2 þ 702π3T2 − 3π2ð11745T2 þ 7Þ þ 540π − 29160Þ
− 12r7hð8π5T4 − 1119π4T4 þ 40π3T2 − 2568π2T2 − 252Þ − 8r6hTð24π4T2 þ 552π3T2

− π2ð35667T2 þ 2Þ þ 270π − 17091Þ − 16r5hðπ3T2 − 69π2T2 − 9Þ − 4r4hTð106π3T2

− 9567π2T2 þ 36π − 2916Þ þ 2r2hTð−8π3T2 þ 1287π2T2 − 2π þ 261Þ þ 4478976π2r20h T

þ 5038848r19h þ 3r3h þ 9ð8π2T3 þ TÞÞ
B ¼ ð8π2r3hT þ 18r2h þ 3Þ2ð432r9hðπ2T2 þ 12Þ þ 144r7hð4π2T2 þ 9Þ þ 12r5hð7π2T2 þ 12Þ

þ r3hð6 − 24π2T2Þ þ 3888r8hT − 72ð2π − 81Þr6hT − 24ð2π − 99Þr4hT þ ð306 − 4πÞr2hT
þ 7776r11h þ 9TÞ2: ðA1Þ

Similarly, the thermodynamic curvature in the grand canonical ensemble is computed in terms of the fluctuation variables
ðμ0; TÞ using the line element in Eq. (2.9), but can also be converted in terms of the extremal charge Q using Eq. (3.5).
The expression is,

R ¼ A=B;

A ¼ −27kð8πμ20 − 1Þð8π2ð128π3μ60 þ 96π2μ40 − 46πμ20 − 1ÞL2T2 − 3ð1 − 8πμ20Þ4Þ − 48
ffiffiffi
3

p
π2

× ð4πμ20 − 1Þ3=2L3Tð4π2ð256π3μ60 þ 128π2μ40 − 44πμ20 − 1ÞL2T2 − 3ð1 − 8πμ20Þ4Þ;
B ¼ ð8πμ20 − 1Þ3ð9kð8πμ20 − 1Þ þ 8

ffiffiffi
3

p
π2ð4πμ20 − 1Þ3=2L3TÞ2: ðA2Þ
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