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It remains unclear in general how the pole skipping appears as a physical phenomenon, and we study the
issue in the context of the anti–de Sitter soliton. The pole skipping has been discussed in black hole
backgrounds, but the pole skipping occurs even in the anti–de Sitter soliton background. The geometry has
a compact S1 direction, and we compute the mass spectrum for the bulk scalar field, the bulk Maxwell field,
and the gravitational perturbations with S1 momentum. We show that the pole skipping leaves its
fingerprint in the normal mode spectrum. The spectrum has some puzzling features because the wouldbe
states are missing at pole-skipping points. The puzzling features disappear once one takes into account
these pole-skipping points that we call “missing states.”
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I. INTRODUCTION

The pole skipping is a new universal property of Green’s
functions [1–5].1 According to the AdS=CFT duality
or the holographic duality [32–35], there are special points
called “pole-skipping points” in the complex momentum
space ðω; qÞ, where ω is the frequency and q is the wave
number. At a pole-skipping point, the Green’s function has
the structure GR ¼ 0=0, namely the residue of a pole
vanishes so that the wouldbe pole is skipped.
This is a universal property in the sense that the pole-

skipping points ω are always located at Matsubara frequen-
cies w ≔ ω=ð2πTÞ ¼ ðs − 1Þi (s is the spin of the bulk
field) and continue town ¼ ðs − 1 − nÞi for a non-negative
integer n.
In the gravitational scalar mode (sound mode), they start

from w−1 ¼ þi. It is argued [1,2] that the w−1 ¼ þi point
is related to many-body quantum chaos [36–40].

However, it remains unclear in general how the pole
skipping appears as a physical phenomenon. This is
because pole-skipping points are typically located in
the complex momentum space ðω; qÞ that is outside the
physical region. In this paper, we study the issue in the
context of the anti–de Sitter (AdS) soliton [41] and show
that the pole skipping leaves its fingerprint in the normal
mode spectrum.
Namely, the normal mode appears as a pole in the

Green’s function, but the Green’s function has the structure
GR ¼ 0=0 at a pole-skipping point so that some normal
modes are actually skipped, i.e., they do not appear in the
spectrum. We call them “missing states.”
The AdS soliton is obtained by the double Wick rotation

from the AdS black hole (Sec. II). The AdS soliton is
not a black hole. The geometry has a compact S1 direction z
with periodicity l, and the geometry ends smoothly at the
“horizon.”
The pole skipping is often discussed in a black hole

background, but the pole skipping occurs even in the AdS
soliton background [30]. Because of the double Wick
rotation, there exist pole-skipping points at integer qz
where qz ≔ qz=ð2π=lÞ and qz is the S1 momentum.
The AdS soliton describes the confining phase of the

dual gauge theory whereas the AdS black hole describes the
plasma phase. Soon after the holographic duality was
proposed, the normal modes in the AdS soliton background
were computed [42,43]. The results are compared with
lattice computations of the pure Yang-Mills (YM) theory.
The normal mode computation in Refs. [42,43] uses the
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1Since then, various aspects of the pole skipping have been
investigated (see, e.g., Refs. [6–31]).
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bulk massless scalar perturbation, but it was extended to the
other bulk perturbations [44,45].2

However, normal modes with qz ≠ 0 are little discussed
in the literature. When one computes normal modes in the
AdS soliton background, one typically ignores all S1 modes
and S5 modes. This is because one would like to compare
with the spectrum of the pure (2þ 1)-dimensional YM
theory. The S1 mode and S5 modes carry Uð1ÞKK charge
and the R charges, respectively. The pure YM theory does
not have such states.
One hopes that they decouple in the R → 0 limit, where

l ¼ 2πR. However, the AdS soliton has the only 1 scale, the
Kaluza-Klein scale 1=R, so all states have the massOð1=RÞ.
In any case, the AdS black hole and the AdS soliton are dual
to the N ¼ 4 super-Yang-Mills (SYM) theory, not the pure
YM theory. So, presumably theN ¼ 4 SYMwith S1 should
have the states from S1 modes and S5 modes.
Recently, we derive the master equations in the AdS

soliton background for various bulk perturbations such as the
Maxwell perturbations and the gravitational perturbations
[30]. In this paper, we compute the spectrumof theS1modes.
It turns out that the spectrum has some puzzling features
(Sec. III). This is because the pole skipping is not taken into
account: the wouldbe states are missing at the pole-skipping
points (Sec. IV). The puzzling features are absent once one
takes into account these pole-skipping points.

II. PRELIMINARIES

A. The AdS soliton

The Schwarzschild-AdS5 (SAdS5) black hole is given by

ds25 ¼ r2ð−fdt2 þ dx2 þ dy2 þ dz2Þ þ dr2

r2f
; ð2:1aÞ

¼ r20
u
ð−fdt2 þ dx2 þ dy2 þ dz2Þ þ du2

4u2f
; ð2:1bÞ

f ¼ 1 −
�
r0
r

�
4

¼ 1 − u2; ð2:1cÞ

where u ≔ r20=r
2. For simplicity, we set the AdS radius

L ¼ 1 and the horizon radius r0 ¼ 1. The Hawking
temperature is given by πT ¼ r0=L2.
We compactify the z direction as 0 ≤ z < l. The AdS

soliton is obtained by the double Wick rotation from the
SAdS5 black hole:

t ¼ iẑ; t̂ ¼ iz: ð2:2Þ

Then the metric becomes

ds25 ¼
r20
u
ð−dt̂2 þ dx2 þ dy2 þ fdẑ2Þ þ du2

4u2f
; ð2:3Þ

with f ¼ 1 − u2.
For theSAdS5 black hole, the imaginary time direction has

the periodicity β ¼ π=r0 to avoid a conical singularity.
Similarly, for the AdS soliton, ẑ has the periodicity
l ¼ π=r0. The AdS soliton is not a black hole. Rather, it
has a cigarlike geometry, and the geometry ends smoothly at
u ¼ 1 because of the factor f just like the Euclidean black
hole.We focus on the asymptotically AdS5 geometry, but the
generalization to the other dimensions is straightforward.
In order to distinguish the SAdS5 and the AdS soliton,

we use variables such as t̂, but we omit “̂ ” in the rest of
our paper.

B. Boundary condition

Let us consider perturbations in the background. For the
SAdS5, there is a SOð3Þ invariance for the boundary
direction ðx; y; zÞ, so one can set the perturbation of the
form

ZðuÞe−iωtþiqx ð2:4Þ

without loss of generality. The field equation typically takes
the form

0 ∼ Z00 þ 1

u − 1
Z0 þ w2

4ðu − 1Þ2 Z; ðu → 1Þ; ð2:5Þ

where 0 ¼ ∂u and w ≔ ω=ð2πTÞ ¼ ω=2. One imposes the
incoming-wave boundary condition near the horizon,
namely

Z ∝ ðu − 1Þ−iw=2: ð2:6Þ

Because a perturbation is absorbed by the black hole, one
obtains quasinormal modes, namely poles are located in the
complex ω plane.
For the AdS soliton, the SOð3Þ invariance is broken due

to the S1 direction z, so we consider the perturbation of the
form

ZðuÞe−iωtþiqxxþiqzz ¼ ZðuÞeipixiþiqzz; ð2:7Þ

where pi ¼ ð−ω; qx; 0Þ. However, there is a remaining
SOð1; 2Þ invariance for ðt; x; yÞ, so ω and qx appears only
in the combination p2 ≔ −ω2 þ q2x. Also, the z direction is
compact, so qz takes only a discrete value:

2One would say that the normal mode computation provides
the first example of the real-world applications of the holographic
duality. Since then, the duality has been applied to various areas
such as QCD, condensed-matter physics, nonequilibrium phys-
ics, nonlinear physics, and quantum information (see, e.g.,
Refs. [46–51]).
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qz ¼
2πn
l

or qz ≔
qz
2π
l

¼ n ð2:8Þ

for an integer n.
The AdS soliton does not have a horizon, and the

geometry smoothly ends at u ¼ 1, so one obtains normal
modes instead of quasinormal modes. The field equation
typically takes the form

0 ∼ Z00 þ 1

u − 1
Z0 −

q2z
4ðu − 1Þ2 Z; ðu → 1Þ ð2:9Þ

near the tip of cigar, where qz ≔ qz=ð2π=lÞ ¼ qz=2, so
there are two solutions:

Z ∝ ðu − 1Þλ; λ ¼ �qz=2: ð2:10Þ

In Ref. [30], we propose the boundary condition as

Z ∝ ðu − 1Þqz=2; ðqz > 0Þ: ð2:11Þ

Note that the above choice is the analytic continuation from
the black hole case (2.6), but this is not the reason why we
choose the boundary condition. We impose the boundary
condition that the perturbations are regular at the tip of
cigar u ¼ 1. The mode ðu − 1Þqz=2 is regular, but the mode
ðu − 1Þ−qz=2 diverges at the tip. Another way to justify the
boundary condition comes from quantum mechanics. The
field equation can be rewritten as a Schrödinger problem
with angular momentum, and this is the choice in the
standard textbook treatment of quantum mechanics
(Chapter 35 of [52]).
Because qz is the S1 momentum, qz < 0 is also possible.

In this case, one chooses Z ∝ ðu − 1Þ−qz=2. We set qz > 0
for simplicity.
Now, consider the boundary condition at u ¼ 0. The

asymptotic behavior depends on the field one considers.
For example, consider the massless scalar field 0 ¼ ∇2ϕ.
The field has the asymptotic behavior

ϕ ∼ Aþ Bu2; ðu → 0Þ: ð2:12Þ

According to the standard AdS=CFT dictionary, the
Green’s function is given by

GR ∝
B
A
: ð2:13Þ

So, a pole corresponds to A ¼ 0 (if B ≠ 0). Then, if one is
interested in the spectrum, it is enough to solve the
perturbation equation under the boundary condition
A ¼ 0. We take this boundary condition and compute
the poles of the Green’s function instead of the entire
Green’s function.

C. Tensor decomposition

In this paper, we consider the scalar field, the Maxwell
field,3 and gravitational perturbations. In the SAdS5 back-
ground, one decomposes perturbations under the SOð2Þ
transformation ðy; zÞ. The scalar (vector) mode transforms
as a scalar (vector) under the transformation. For example,
the Maxwell perturbations AM are decomposed as

scalar mode ðdiffusive modeÞ : At; Au; Ax; ð2:14aÞ

vector mode : Ay; Az: ð2:14bÞ

One would fix the gauge Au ¼ 0, but we do not fix the
gauge and carry out analysis in a fully gauge-invariant
manner [both under the Uð1Þ gauge transformation and
under the diffeomorphism]. This is the formalism devel-
oped by Kodama and Ishibashi [53]. Similarly, gravita-
tional perturbations are decomposed as the scalar mode
(sound mode), the vector mode (shear mode), and the
tensor mode.
The vector mode Ay, Az is gauge invariant by themselves.

The scalar mode has three perturbations, but one is
redundant due to the gauge symmetry. One can define
two gauge-invariant variables Aa where xa ¼ ðt; uÞ.
Similarly, in the AdS soliton background, we decompose

perturbations under the SOð1; 2Þ transformation yi¼ðt;x;yÞ.
The scalar (vector)mode transforms as a scalar (vector) under
the transformation. For example, the Maxwell perturbations
AM are decomposed as

scalar mode : Az; Au; AL; ð2:15aÞ

vector mode : Ay; ð2:15bÞ

where AL is the longitudinal mode.

III. THE SPECTRUM

A. Master equations

In Ref. [30], we derive the master equations in the AdS
soliton background for various bulk perturbations. It turns
out that the master equations coincide with the master
equations for the SAdS5 black hole [54] after the double
Wick rotation. Below we summarize the master equations
for reader’s convenience.

3One can regard the Maxwell field as the one which couples to
the Uð1Þ subgroup of the SUð4ÞR R symmetry of the N ¼ 4
SYM. In general, the R symmetry is anomalous, but one can
choose a Uð1Þ subgroup which is not anomalous.
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1. Massless scalar field (gravitational tensor)

The field equation is given by

0 ¼ ϕ00 þ
�
f0

f
−
1

u

�
ϕ0 −

q2z þ p2f
uf2

ϕ; ð3:1Þ

where p≔p=ð2π=lÞ¼p=2. Asymptotically, ϕ ∼ Aþ Bu2.
Just like the black hole case, one can show that the
gravitational tensor mode takes the form of the massless
scalar field.

2. Maxwell vector

The field equation is given by

0 ¼ A00
y þ

f0

f
A0
y −

q2z þ p2f
uf2

Ay: ð3:2Þ

Asymptotically, Ay ∼ Aþ Bu.

3. Maxwell scalar

The gauge-invariant variables are given by

Az ¼ Az − iqzAL; ð3:3aÞ

Au ¼ Au − A0
L: ð3:3bÞ

The Maxwell equation becomes

0 ¼ iqz
2uf

Az þ ðfAuÞ0; ð3:4aÞ

0 ¼ ð2q2z þ p2fÞAu þ iqzA0
z: ð3:4bÞ

We choose Az as the master variable. Then, the master
equation is given by

0 ¼ Az
00 þ q2zf0

ðq2z þ p2fÞfA
0
z −

q2z þ p2f
uf2

Az: ð3:5Þ

Asymptotically, Az ∼ Aþ Bu.

4. Gravitational vector

The gauge-invariant variables are given by

hzy ¼ hð1Þzy − iqzh
ð1Þ
y ; ð3:6aÞ

huy ¼ hð1Þuy −
1

u
ðuhð1Þy Þ0: ð3:6bÞ

The Einstein equation becomes

0 ¼ iqz
2uf

hzy þ ðfhuyÞ0; ð3:7aÞ

0 ¼ −
2iu
qz

ðq2z þ p2fÞhuy þ ðuhzyÞ0: ð3:7bÞ

We choose hzy as the master variable. Then, the master
equation is given by

0 ¼ Z00 −
ðq2z þ p2fÞf − q2zuf0

ufðq2z þ p2fÞ Z0 −
q2z þ p2f

uf2
Z; ð3:8Þ

where Z ¼ uhzy. Asymptotically, Z ∼ Aþ Bu2.

5. Gravitational scalar

The field equation is given by

0¼ Z00 −
−3q2zð1þ u2Þ þ p2ð−3þ 2u2 − 3u4Þ

uff−3q2z þ p2ð−3þ u2Þg Z0

þ 3q4z þ p4ð3− 4u2 þ u4Þ þ p2fq2zð6− 4u2Þ− 4u3fg
uf2f−3q2z þ p2ð−3þ u2Þg Z;

ð3:9Þ

where Z ¼ ufhzz − ðf − uf0ÞhLg. Asymptotically,
Z ∼ Aþ Bu2.

B. Methods

All master variables behave as Eq. (2.9):

0 ∼ Z00 þ 1

u − 1
Z0 −

q2z
4ðu − 1Þ2 Z; ðu → 1Þ; ð3:10Þ

near the tip of cigar. Thus, we set the ansatz

Z ¼ ð1 − u2Þqz=2Z̃: ð3:11Þ

To solve the equation for Z̃, there are several methods.
Among them, the popular ones are
(1) Frobenius method
(2) Shooting method

We mainly use Frobenius method but use both in this paper.
In Frobenius method, the solution obeying the boundary

condition at u ¼ 1 is obtained by the power series expan-
sion around u ¼ 1:

Z̃ ¼
X∞
n¼0

anðu − 1Þn: ð3:12Þ

We are interested in normal modes, so we impose the
source-free condition or no slow falloff condition at u ¼ 0
as described in Eq. (2.13):

Z̃ju¼0 ¼
XN
n¼0

ð−Þnan ¼ 0: ð3:13Þ
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One truncates the series after a large number of terms
n ¼ N. One can check the accuracy as one goes to higher
series.
This Frobenius method is actually a little naive because

some master equations have regular singular points in the
region 0 < u < 1 (for the Maxwell scalar, gravitational
vector, and gravitational scalar modes). This means that the
convergence of the power-series solutions is not guaranteed
at u ¼ 0 (Appendix A). In order to check our results,
(1) We use Frobenius method for alternative master

variables where this problem does not occur (for
Maxwell scalar and gravitational vector modes).

(2) We also use the shooting method for all modes.
The results obtained by these methods agree with the naive
Frobenius method.

C. Results

In Table I, we show the results by Frobenius method.
Here, m3 is the mass spectrum in the dual (2þ 1)-dimen-
sional gauge theory, i.e., m2

3 ≔ −p2 ¼ −4p2.
(1) First, note that the tensor mode (massless scalar field)

and theMaxwell scalar mode have the same spectrum
when qz ¼ 0. In fact, field equations are identical
under an appropriate transformation (Sec. VI).

(2) In addition, the spectrum has some puzzling features:
(2a) Let us consider a fixed n. One would expect that

m3 increases as one increases qz:

m3ðqz ¼ 0Þ < m3ðqz ¼ 1Þ
< m3ðqz ¼ 2Þ < � � � : ð3:14Þ

Namely, a Kaluza-Klein state with a larger S1

momentum has a larger mass. This is true for
the Maxwell vector mode and the gravitational
tensor mode, but it is not always the case. For
the Maxwell scalar mode, m3ðqz ¼ 1Þ <
m3ðqz ¼ 0Þ for all n. A similar remark applies
to the gravitational vector and scalar modes.

(2b) Let us compare different spins. One would
expect that m3 increases for a larger spin,
namely for gravitational perturbations,

mS < mV < mT; ð3:15Þ

where mS, mV , mT are the mass of spin 0, 1, 2
states, respectively. This is true for qz ¼ 2, 3, but
it is not always the case: mS < mT < mV for
qz ¼ 0,4 andmV < mS < mT for qz ¼ 1. For the
Maxwell perturbations, mV < mS for qz ¼ 0.

These puzzling features suggest that there may be some
problem in the structure of the table. In next section, we
argue that the puzzling features come from the fact that we
have not taken the pole skipping into account.

IV. POLE SKIPPING

The pole skipping is a new universal property of Green’s
functions. In the black hole case, there are special points
called “pole-skipping points” in the complex momentum
space ðω; qÞ. Near a pole-skipping point, a Green’s
function typically takes the form

GR ∝
δωþ δq
δω − δq

: ð4:1Þ

In this sense, the Green’s function is not uniquely deter-
mined, and it depends on the slope δq=δω how one
approaches the point.
The pole-skipping points ω are always located at

Matsubara frequencies w ≔ ω=ð2πTÞ ¼ ðs − 1Þi (s is the
spin of the bulk field) and continue town ¼ ðs − 1 − nÞi for
a non-negative integer n. In the gravitational scalar mode
(soundmode), they start fromw−1 ¼ þi. It is argued that the
w−1 ¼ þi point is related to many-body quantum chaos.
However, it remains unclear in general how the pole

skipping appears as a physical phenomenon. This is
because pole-skipping points are typically located in the
complex momentum space ðω; qÞ, which is outside the
physical region.
One would take the physical region asω in the lower-half

plane and real q. For the pole-skipping points w ¼ −i,

TABLE I. m2
3 for the first four states obtained by numerical

computations.

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

Maxwell vector qz ¼ 0 5.131 22.48 51.21 91.41
¼ 1 14.44 37.43 71.88 117.8
¼ 2 30.89 59.41 99.52 151.2
¼ 3 54.83 88.63 134.3 191.5

Maxwell scalar qz ¼ 0 11.59 34.53 68.97 114.9
∨ ∨ ∨ ∨

¼ 1 7.162 23.80 52.40 92.55
¼ 2 21.45 43.22 77.33 123.1
¼ 3 43.36 69.96 109.4 160.8

Gravitational tensor qz ¼ 0 11.59 34.53 68.97 114.9
(massless scalar) ¼ 1 23.47 52.25 92.47 144.2

¼ 2 42.36 76.91 122.9 180.3
¼ 3 68.60 108.7 160.3 223.4

Gravitational vector qz ¼ 0 18.68 47.50 87.72 139.4
∨ ∨ ∨ ∨

¼ 1 10.79 33.87 68.29 114.2
¼ 2 28.04 56.20 96.14 147.7
¼ 3 52.47 85.74 131.1 188.2

Gravitational scalar qz ¼ 0 5.457 30.44 65.12 111.1
¼ 1 20.13 48.68 88.85 140.5

≀ ∨ ∨ ∨
¼ 2 20.27 40.32 74.00 119.6
¼ 3 42.27 67.49 106.4 157.5

4This was pointed out previously in Ref. [45].
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(1) The Maxwell scalar and the gravitational vector
modes lie in the physical region (real q).

(2) The Maxwell vector, the gravitational tensor, and
gravitational scalar modes do not lie in the physical
region.

Note that the above physical region would exclude the
chaotic pole skipping at w ¼ þi, so it is subtle to exclude
pole-skipping points outside the physical region.
Now, the pole skipping is often discussed in a black hole

background, but the pole skipping occurs even in the AdS
soliton background [30]. Because of the double Wick
rotation,
(1) The universality of the pole-skipping points ω is

translated to the universality of the pole-skipping
points qz.

(2) The pole-skipping points start from qz ¼ s − 1 and
continue to qz ¼ s − 1 − n ðn ¼ 1; 2;…Þ.

Note that qz takes only discrete values physically qz ∈Z,
which coincide with the pole-skipping points. This is
reminiscent of the fact that pole-skipping points in black
holes are located at Matsubara frequencies.
As a simple example, consider the massless scalar field ϕ

and find the first pole-skipping point qz ¼ 1. The solution
can be written as a power series:

Z̃ðuÞ ¼
X
n¼0

anðu − 1Þn: ð4:2Þ

At the lowest order, one obtains

0 ¼ 1

4
ð2p2 þ 3q2zÞa0 þ ð1þ qzÞa1: ð4:3Þ

Normally, this equation determines a1 from a0. However,
when ðqz; p2Þ ¼ ð−1;−3=2Þ, both a0 and a1 are free
parameters, and the bulk solution is not uniquely deter-
mined. As a result, the dual Green’s function is not
uniquely determined. See Ref. [30] for systematic analysis.
It turns out that most pole-skipping points lie outside the

physical region like the black hole case. We take qz > 0,
but most pole-skipping points are located at qz ¼ −n < 0.
However, some pole-skipping points lie inside the

physical region. For the Maxwell scalar, the gravitational
vector, and the gravitational scalar modes, there is a pole-
skipping point at

ðqz; m2
3Þ ¼ ð0; 0Þ; ð4:4Þ

which corresponds to the “hydrodynamic” pole skipping in
the black hole case. The gravitational scalar mode has
another pole-skipping point at

ðqz; m2
3Þ ¼ ð1; 6Þ; ð4:5Þ

which corresponds to the “chaotic” pole skipping in the
black hole case.

The spectrum in Table I looks more “natural” if one takes
pole-skipping points into account (Table II). The states in
parentheses “( )” are pole-skipping points, and we call them
“missing sates.” In this table,
(1) For a fixed n, m3 always increases as one in-

creases qz.
(2) m3 always increases for a larger spin (Tables III–V).
The “missing states” can be most easily seen by making

qz continuous and approaching pole-skipping points.
Figure 1 shows the result for the gravitational scalar mode:
(1) One can indeed see that states are missing at the

hydrodynamic pole skipping ðqz; m2
3Þ ¼ ð0; 0Þ and

at the chaotic pole skipping ðqz; m2
3Þ ¼ ð1; 6Þ.

(2) The ðqz; m2
3Þ ≈ ð0; 5.457Þ state was part of the n ¼ 0

spectrum in Table I, but it merges with the n ¼ 1
state continuously (the arrow in Fig. 1). This
suggests that the state is actually the part of the

TABLE II. The modified spectrum augmented by pole-skip
points [the states in parentheses “( )”]. The pole-skip points are
not part of the spectrum.

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

Maxwell vector qz ¼ 0 5.131 22.48 51.21 91.41
¼ 1 14.44 37.43 71.88 117.8
¼ 2 30.89 59.41 99.52 151.2
¼ 3 54.83 88.63 134.3 191.5

Maxwell scalar qz ¼ 0 (0) 11.59 34.53 68.97
¼ 1 7.162 23.80 52.40 92.55
¼ 2 21.45 43.22 77.33 123.1
¼ 3 43.36 69.96 109.4 160.8

Gravitational tensor qz ¼ 0 11.59 34.53 68.97 114.9
¼ 1 23.47 52.25 92.47 144.2
¼ 2 42.36 76.91 122.9 180.3
¼ 3 68.60 108.7 160.3 223.4

Gravitational vector qz ¼ 0 (0) 18.68 47.50 87.72
¼ 1 10.79 33.87 68.29 114.2
¼ 2 28.04 56.20 96.14 147.7
¼ 3 52.47 85.74 131.1 188.2

Gravitational scalar qz ¼ 0 (0) 5.457 30.44 65.12
¼ 1 (6.000) 20.13 48.68 88.85
¼ 2 20.27 40.32 74.00 119.6
¼ 3 42.27 67.49 106.4 157.5

TABLE III. The qz ¼ 0 spectrum. For gravitational perturba-
tions, mS < mV < mT if one takes the pole skip into account, but
mS < mT < mV without pole skip. For Maxwell perturbations,
mS < mV with pole skip, but mV < mS without pole skip.

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

Maxwell vector 5.131 22.48 51.21 91.41
scalar (0) 11.59 34.53 68.97

Gravitational tensor 11.59 34.53 68.97 114.9
vector (0) 18.68 47.50 87.72
scalar (0) 5.457 30.44 65.12
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n ¼ 1 spectrum. A similar remark applies to the
ðqz; m2

3Þ ≈ ð1; 20.13Þ state.
In the black hole case, the Green’s function (4.1) depends

on the slope δq=δω how one approaches the pole-skipping
point. In the AdS soliton case, the situation is different
however. In this case, qz is actually discrete, so one first
fixes qz ¼ 0, and so on, so one cannot choose the slope.
Instead, the pole skipping appears as “missing states”5: the
would-be pole is skipped.

V. AT POLE-SKIPPING POINTS

We argued that the pole skipping appears as “missing
states.” A natural question is whether they actually exist as
normal modes or not. In order to answer to the question, we
take the following two issues into account and solve the
field equations directly at pole-skipping points:
(1) The first issue is the master equations. The pole-

skipping limits of master equations are subtle, so we
go back to the Maxwell equation and the Einstein
equation and derive the field equations directly at
pole-skipping points.

(2) The second issue is the boundary condition at the tip.
We impose the boundary condition (2.11), but at
pole-skipping points, the near-horizon behavior of
master equations change, so one has to reexamine
the issue. Also, the boundary condition (2.11)
assumes qz ≠ 0, so we need to specify the boundary
condition when qz ¼ 0.

When qz ¼ 0, one usually imposes the Neumann boundary
condition Z0ju¼1 ¼ 0. But it turns out whether there exist
normal modes or not at pole-skipping points depends
crucially on the boundary condition, so we discuss it a
little carefully.
We are interested in normal modes or source-free

solutions. We show that there is no nontrivial normal mode
at pole-skipping points under our boundary condition.

A. Revisiting the boundary condition at the tip

Near the tip of the cigar u ¼ 1, we take the coordinate
system which is regular at u ¼ 1 and impose the boundary
condition that perturbations are regular in the coordinate
system.
Consider the following metric:

ds2 ¼ dr2

FðrÞ þ FðrÞdz2 þ � � � : ð5:1Þ

Suppose FðrÞ ¼ F0ð1Þðr − 1Þ þ � � � near the tip r ¼ 1. As
is well known, the metric takes the form of polar coor-
dinates:

ds2 ∼ dρ2 þ ρ2dθ2; ð5:2aÞ

ρ ¼
Z

drffiffiffiffi
F

p ∼ 2

�
r − 1

F0

�
1=2

; ð5:2bÞ

θ ¼ F0

2
z: ð5:2cÞ

There is no conical singularity at ρ ¼ 0 when θ has the
periodicity 2π or z has the periodicity l ¼ 4π=F0ð1Þ. For the
AdS soliton, FðrÞ ¼ r2ð1 − r−4Þ, so l ¼ π.

TABLE IV. The qz ¼ 1 spectrum. For gravitational perturba-
tions, mS < mV < mT if one takes the pole skip into account, but
mV < mS < mT without pole skip. For Maxwell perturbations,
mS < mV .

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

Maxwell vector 14.44 37.43 71.88 117.8
scalar 7.162 23.80 52.40 92.55

Gravitational tensor 23.47 52.25 92.47 144.2
vector 10.79 33.87 68.29 114.2
scalar (6.000) 20.13 48.68 88.85

TABLE V. The qz ¼ 2 spectrum. mS < mV < mT .

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3

Maxwell vector 30.89 59.41 99.52 151.2
scalar 21.45 43.22 77.33 123.1

Gravitational tensor 42.36 76.91 122.9 180.3
vector 28.04 56.20 96.14 147.7
scalar 20.27 40.32 74.00 119.6

FIG. 1. The normal modes of the gravitational scalar mode for
continuous qz. One can see the “missing states” at “hydro-
dynamic” and “chaotic” pole-skip points.

5See Ref. [5] for the early interpretation along this line.
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The point ρ ¼ 0 is a coordinate singularity, so we further
make the coordinate transformation:

X ¼ ρ cos θ; Y ¼ ρ sin θ: ð5:3Þ

The coordinates ðX; YÞ are regular coordinates.
For example, consider the Maxwell field AM. Under the

coordinate transformation,

Az ¼
F0

2
Aθ ∼

ffiffiffiffi
F

p
ð−AX sin θ þ AY cos θÞ; ð5:4aÞ

Ar ¼
∂ρ

∂r
Aρ ∼

1ffiffiffiffi
F

p ðAX cos θ þ AY sin θÞ: ð5:4bÞ

Because the coordinates ðX; YÞ are regular at r ¼ 1,
ðAX; AYÞ must be regular there. This implies

Az ∼OðF1=2Þ; Ar ∼OðF−1=2Þ: ð5:5Þ

It is easy to extend the analysis to our metric and extend to
the other perturbations. The boundary condition is A
perturbation with a lower index z (u) has the factor f1=2

(f−1=2). or

Maxwell scalar : Az ∼Oðf1=2Þ; Au ∼Oðf−1=2Þ;
Gravitational vector : hzi ∼Oðf1=2Þ; hui ∼Oðf−1=2Þ;
Gravitational scalar : hzz ∼OðfÞ; hzu ∼Oð1Þ;

huu ∼Oðf−1Þ:
ð5:6Þ

B. “Hydrodynamic” pole skip

The master equations in Sec. III A become singular at
ðqz; p2Þ ¼ ð0; 0Þ, so we go back to the Maxwell equation
and the Einstein equation and derive field equations
directly at pole-skipping points.
(1) Maxwell scalar: When qz ¼ p2 ¼ 0, Az, and Au

decouple, and the Az equation becomes

0 ¼ Z00; Z ¼ Az: ð5:7Þ

The Z equation coincides with the original master
equation by taking the qz ¼ 0 limit first and then
taking the p2 ¼ 0 limit (not the other way around).
The solution is

Z ¼ Aþ Bu: ð5:8Þ

Imposing our boundary condition at the tip, one gets
Z ¼ Að1 − uÞ, but we also impose the source-free
condition A ¼ 0 asymptotically, so there is no
solution. The Au equation is 0 ¼ ðfAuÞ0 whose

solution isAu ∝ ð1 − u2Þ−1, so the solution does not
satisfy the boundary condition.

(2) Gravitational vector: When qz ¼ p2 ¼ 0, hzy and huy
decouple, and the hzy equation becomes

0 ¼ Z00 −
Z0

u
; Z ¼ uhzy: ð5:9Þ

The Z equation coincides with the original master
equation by taking the qz ¼ 0 limit first and then
taking the p2 ¼ 0 limit. The solution is

Z ¼ Aþ Bu2: ð5:10Þ

Imposing our boundary condition at the tip, one gets
Z ¼ Að1 − u2Þ, but we also impose the source-free
condition A ¼ 0 asymptotically, so there is no
solution. The huy equation is 0 ¼ ðfhuyÞ0 whose
solution is huy ∝ ð1 − u2Þ−1, so the solution does not
satisfy the boundary condition.

(3) Gravitational scalar: When qz ¼ p2 ¼ 0, hzu decou-
ples. The master equation is given by

0 ¼ Z0 −
2u

1þ u2
Z; ð5:11aÞ

→ Z ¼ Að1þ u2Þ; ð5:11bÞ

where Z is the original master variable. Imposing the
source-free condition gives A ¼ 0, so there is no
solution.
On the other hand, if one takes the qz ¼ 0 limit

first and then takes the p2 ¼ 0 limit in the original
master equation, one obtains

0¼ Z00 þ 3− 2u2 þ 3u4

ufð−3þ u2Þ Z
0 −

4u2

fð−3þ u2ÞZ: ð5:12Þ

These two equations are related to each other.
Setting

F ¼ Z0 −
2u

1þ u2
Z; ð5:13aÞ

G ¼ −
3 − 5u2 þ 9u4 þ u6

ufð1þ u2Þð3 − u2Þ ; ð5:13bÞ

the equation

0 ¼ F0 þGF ð5:14Þ

reduces to the original master equation (5.12).
Solving the other components gives
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hzu ¼
C

1 − u2
; ð5:15aÞ

hL ¼ C1

u
þ C2; ð5:15bÞ

hzz ¼ ð1þ u2Þ
�
C1

u
þ C2

�
; ð5:15cÞ

huu ¼
C1u − C2

2uð1 − u2Þ : ð5:15dÞ

hzu has no regular solution, and C ¼ 0. From the
boundary condition at u ¼ 1, hzz ∼Oðu − 1Þ, so
C2 ¼ −C1. But we also impose the source-free
condition asymptotically, so C1 ¼ 0, and there is
no solution.

C. “Chaotic” pole skip

The master equation coincides with the original master
equation:

0 ¼ Z00 −
1 − 3u2

uf
Z0 þ 1 − 3u2 þ 8u3

2uf2
Z: ð5:16Þ

Near the tip u → 1,

Z ¼ ð1 − u2ÞλZ̃ → λ ¼ 1=2; 3=2: ð5:17Þ

Note λ ¼ �1=2 for a generic ðqz; p2Þ, and we choose
λ ¼ 1=2. But at the pole-skipping point, the near-horizon
behavior of the master equation changes so that we obtain a
different indicial equation. This is well known for the
chaotic pole skipping for black holes.
Choosing λ ¼ 1=2, one gets

0 ¼ Z̃00 −
1

u
Z̃0 þ 1þ 2u

2uð1þ uÞ2 Z̃: ð5:18Þ

Setting x ¼ 1þ u and

Z̃ ¼ xð1þiÞ=2ZðxÞ; ð5:19Þ

one obtains the hypergeometric differential equation:

0 ¼ xð1 − xÞ∂2xZ þ fc − ð1þ aþ bÞxg∂xZ − abZ;

ð5:20aÞ

a ¼ b ¼ −1þ i
2

; c ¼ 1þ i: ð5:20bÞ

Then, the solution is given by the hypergeometric functions:

Z̃ ¼ c1xð1þiÞ=2
2F1ða; a; c; xÞ þ c2xð1−iÞ=22F1ða�; a�; c�; xÞ:

ð5:21Þ

Asymptotically, Z̃ ∼ Aþ Bu2, where A, B are some
linear combination of c1, c2. From the source-free con-
dition, c2 is written by c1:

c2 ¼ −c1
Γð1þ iÞΓð3−i

2
Þ2

Γð1 − iÞΓð3þi
2
Þ2 : ð5:22Þ

In order to implement our boundary condition at u ¼ 1,
write hzz in terms of Z:

hzz ¼
1þ u2

u
Z0 þ 2ð1 − uþ u2Þ

1 − u2
Z: ð5:23Þ

Then, near u ¼ 1, hzz schematically behaves as

hzz ¼ c1fðu − 1Þ1=2 þ ðu − 1Þ3=2 þ � � �g; ð5:24Þ

where we ignore all numerical coefficients. But this does
not satisfy our boundary condition hzz ∼ ðu − 1Þ. Then,
c1 ¼ 0, and there is no solution.

VI. DISCUSSION

(1) When qz ¼ 0, one obtains the mass spectrum mS <
mT < mV like pure YM theories. In pure YM
theories, the mass spectrum mS < mT < mV is
qualitatively understood in terms of operator dimen-
sions [55]. The lowest dimension operator is a
dimension-four operator trF ijF kl, where F ij is
the gauge field strength. One can form a spin-0
and spin-2 states, but one cannot form a spin-1 state.
The lowest dimension operator with spin-1 comes
from the dimension-five operator trF ijDmF kl.
As pointed out in Ref. [45], the argument does

not really apply to our holographic computation.
We consider the gravitational perturbations, so in
the dual gauge theory, we compute the spectrum of
the energy-momentum tensor Tμν, which is a
dimension-four operator. One can form a spin-0,
-1, and -2 states Tzz; Tzi; Tij. Thus, the same pattern
of the mass spectrum mS < mT < mV needs a
different explanation.
We argue that it is attributed to the pole skipping.

Namely, the mass spectrum mS < mT < mV for
qz ¼ 0 is just a coincidence. The appropriate order
is mS < mV < mT by taking the pole skipping into
account. Then, the relation is valid for all qz.

(2) The massless scalar field and the Maxwell scalar
mode have the same spectrum when qz ¼ 0. In fact,
field equations are identical under an appropriate
transformation. They satisfy
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0 ¼ −
�
f
u
ϕ0
�0

þ k2

u2
ϕ; ð6:1aÞ

0 ¼ −Az
00 þ k2

uf
Az: ð6:1bÞ

Setting Ã ≔ fϕ0 and taking the u derivative of the
scalar field equation gives

0 ¼ −Ã00 þ k2

uf
Ã; ð6:2Þ

which agrees with Eq. (6.1b). The boundary con-
ditions are also identical. As u → 0,

ϕ ∼ Aþ Bu2; Az ∼ Aþ Bu: ð6:3Þ

Impose the source-free condition A ¼ 0 for the
scalar. This implies Ã ¼ fϕ0 ∼ Bu, which reduces
to the boundary condition for Az (A ¼ 0). The
u → 1 behavior is schematically written as

ϕ ∼ c1f1þ ðu − 1Þ þ � � �g þ c2flnðu − 1Þ þ � � �g;
ð6:4aÞ

Az ∼ c1ðu − 1Þf1þ � � �g þ c2f1þ � � �g: ð6:4bÞ

Impose the Neumann boundary condition c2 ¼ 0 for
the scalar. This implies Ã ¼ fϕ0 ∼ c1ðu − 1Þ, which
reduces to the boundary condition for Az (c2 ¼ 0).
Because the field equation and the boundary con-
dition for ϕ reduces to the ones forAz, they have the
same spectrum.

(3) The Maxwell scalar mode, gravitational vector and
scalar modes have “hydrodynamic” modes when
qz; p ≪ 1 just like black hole cases. In the limit,
one can find analytic solutions and can obtain
dispersionlike relations which give mass spectrum
(AppendixB). Of course, qz is actually discrete, so the
dispersion relation gives only the approximate
spectrum.

(4) Reference [45] computes normal modes for gravi-
tational perturbations when qz ¼ 0. Our results
agree with Table 4 of Ref. [45]. The relation between
our convention and their convention is as follows:

Ours Ref: ½45�
Massless scalar ↔ T3ð0þþÞ

Gravitational tensor ↔ T3ð2þþÞ
Gravitational vector ↔ V3ð1þþÞ
Gravitational scalar ↔ S3ð0þþÞ

(5) We study the pole skipping in the AdS soliton
geometry and argue that the pole skipping has an
interpretation as missing states. The analogous sit-
uation should occur in the black hole case. In the AdS
soliton case, one cannot choose how one approaches a
pole-skipping point in the ðqz; p2Þ plane. In the black
hole case, one can choose how one approaches a pole-
skipping point in the complex ðω; qÞ plane. But if one
chooses a particular slope δq=δω, the pole-skipping
point may not appear as a pole.
For example, near a pole-skipping point, the

Green’s function typically takes the form

GR ∝
δωþ δq
δω − δq

; ð6:5Þ

so it depends on the slope δq=δω how one approaches
the point. However, if one first fixes δq ¼ 0, one gets
GR ¼ ðconstantÞ, so the pole disappears.
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APPENDIX A: LOCATIONS OF REGULAR
SINGULAR POINTS AND ALTERNATIVE

MASTER VARIABLES

1. Alternative master variables

We naively carry out the power-series expansion, but the
power-series expansion is guaranteed to converge only
inside a circle of radius ρ around u ¼ 1 in the complex u
plane, where ρ is the distance to the nearest singular point.
Because wewould like to extract the asymptotic behavior, ρ
should be greater than 1. However, our original master
variables are problematic in this respect. This is pointed
out, e.g., in Ref. [54] in the context of the SAdS black hole,
but it is rarely discussed in the literature.
For the Maxwell scalar mode, the master equation (3.5)

has singular points at

u ¼ 0;�1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2z=p2

q
;∞: ðA1Þ

Note that there is a singular point whose location is ðqz; p2Þ
dependent. The singular point appears in the form
1þ q2z=p2 < 1, so the singular point lies in the region
0 < u < 1,6 and the radius ρ becomes less than 1. The
power-series results indeed lie in this region. For the lowest
m2

3, the singular point lies at

6The singular point may be pure imaginary when
1þ q2z=p2 < 0.
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ðqz; uÞ ∼ ð1; 0.79Þ; ð2; 0.67Þ; ð3; 0.56Þ; � � � ðA2Þ

The gravitational vector mode (3.8) has the same singu-
larity structure as the Maxwell scalar mode.
For the gravitational scalar mode, the master equa-

tion (3.9) has singular points at

u ¼ 0;�1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ q2z=p2Þ

q
;∞: ðA3Þ

The radius ρ becomes less than 1 when 1þ q2z=p2 < 1=3.
The power-series results indeed lie in this region.
This issue is not special to Frobenius method. Because

the singular point lies in the region 0 < u < 1, the shooting
method also crosses the singular point which may be
problematic.
However, the choice of the master variable is not unique.

One can choose an alternative master variable, where this
problem does not occur. In principle, one should use such
variables if one uses Frobenius method. However, it turns out
that the results obtained by Frobenius method using an
alternative master variable agree with the ones obtained by
the naiveFrobeniusmethodusing the originalmaster variable.
(1) Maxwell scalar: we choose Az as a master variable,

but one can choose Au as a master variable:

0 ¼ Z00
2 þ

�
f0

f
þ 1

u

�
Z0
2 −

q2z þ p2f
uf2

Z2; ðA4Þ

where Z2 ≔ fAu. Asymptotically, Z2 ∼ A ln uþ B.
The master equation has singular points at
u ¼ 0;�1;∞, and one can safely use the power-
series expansion.
For the master variable Az, one imposes the

Dirichlet boundary condition at asymptotic infinity.
One needs to determine the boundary condition for
the master variable Z2. From Eq. (3.4), the boundary
condition Az ¼ 0 is translated as

0 ¼ uðfAuÞ0 ¼ uZ0
2 ðA5Þ

for Z2. Since Z2 ∼ A ln uþ B, the boundary con-
dition reduces to A ¼ 0.

(2) Gravitational vector: we choose hzy as a master
variable, but one can choose huy as a master variable:

0 ¼ Z00
2 þ

�
f0

f
þ 2

u

�
Z0
2 −

q2z þ p2f
uf2

Z2; ðA6Þ

where Z2 ≔ fhuy. Asymptotically, Z2 ∼ Au−1 þ B.
For the master variable hzy, one imposes the

Dirichlet boundary condition at asymptotic infinity.
One needs to determine the boundary condition for
the master variable Z2. From Eq. (3.7), the boundary
condition huy ¼ 0 is translated as

0 ¼ uðfhuyÞ0 ¼ uZ0
2 ðA7Þ

for Z2. Since Z2 ∼ Au−1 þ B, the boundary condi-
tion reduces to A ¼ 0.

2. Middle-point prescription

For the Maxwell scalar mode, the alternative master
variable behaves as Z2 ∼ A lnuþ B, and some care is
necessary for numerical computations. First, impose the
ansatz Z2 ¼ ð1 − u2Þqz=2Z̃. We carry out the power-series
expansion both at u ¼ 0 and u ¼ 1. Denote the u ¼ 1
expansionwhich satisfies the boundary condition atu ¼ 1 as

Z̃A ¼ 1þ � � � ; ðu → 1Þ: ðA8Þ
Denote the u ¼ 0 expansion which satisfies the boundary
condition at u ¼ 0 as

Z̃B ¼ b0 þ � � � ; ðu → 0Þ: ðA9Þ

We match Z̃A; Z̃B at u ¼ u0 (e.g., u0 ¼ 1=2). Namely,
demand that Z̃ and Z̃0 be continuous at u ¼ u0:

Z̃Aðu0Þ ¼ Z̃Bðu0Þ; Z̃Aðu0Þ0 ¼ Z̃Bðu0Þ0: ðA10Þ

Because there are two constants b0 and k2, these conditions
uniquely determine them.
Finally, alternative variables are suitable for normal

mode analysis, but the original master variables are suitable
for the boundary interpretation and for the pole-skipping
analysis [30].

3. Gravitational scalar

For this mode, we are unable to find such an alternative
master variable, and we use the shooting method. In the
shooting method, one numerically integrates a differential
equation.
(1) Since the point u ¼ 1 is a regular singular point, one

starts from u ¼ 1 − ϵ, where ϵ is a small number and
impose a boundary condition there.

(2) Then, one numerically integrates the equation from
u ¼ 1 − ϵ to u ¼ ϵ. (The point u ¼ 0 is a regular
singular point as well.)

(3) In order to obtain normal modes, one imposes the
source-free condition at u ¼ ϵ by adjusting m2

3.
However, as pointed above, the issue of the singular

point may be problematic for the shooting method as well.
Thus, we choose the integration path in the complex u
plane to avoid the singular point. We define

u ¼ 1þ eiθ

2
; ðA11Þ

and integrate θ∶0 → π. Namely, we choose the integration
path as the semicircle in the complex u plane connecting
u ¼ 0 and 1. The result agrees with the naive Frobenius
method.
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4. Interpretation

All results agree with the ones by the naive Frobenius
method using the original variable, so the singular point is
not really problematic. We do not have a complete answer.
But recall the construction of master equations. There are
two gauge-invariant variables, and both obey first-order
differential equations. These equations have singular points
only at u ¼ 0;�1;∞, and there is no ðqz; p2Þ-dependent
singular point. This additional singular point appears when
one combines these two equations to obtain master equa-
tions. But one could apply Frobenius method in the coupled
equations, where this issue does not arise. Probably, one
needs to take into account only the singular points that
appear in coupled equations.

APPENDIX B: “HYDRODYNAMIC” LIMIT

For the SAdS5 black hole, hydrodynamic polesw; q ≪ 1
appear in the Maxwell scalar, gravitational vector, and
scalar modes. Because the master equations for the AdS
soliton are obtained from the black hole by the double Wick
rotation, one expects “hydrodynamic” modes when
qz; p ≪ 1. Of course, qz is actually discrete, so there is
really no hydrodynamic mode.
In the hydrodynamic limit p ≪ 1 and qz ≪ 1, one can

find analytic solutions. Set p → ϵp; qz → ϵqz and expand
the master variables Z̃ as a series in ϵ:

Z̃ ¼ Zð0Þ þ ϵZð1Þ þ � � � : ðB1Þ

We impose the boundary conditions (1) regular at u ¼ 1

[and Zð1Þð1Þ ¼ 0] and (2) the source-free condition
at u ¼ 0.
For the Maxwell scalar mode, the solution is given by

(ϵ → 1)

Z̃ ¼ C0

�
1þ p2ð1 − uÞ

qz
− qz ln

1þ u
2

þ � � �
�
: ðB2Þ

The asymptotic behavior is given by

Z̃ ∼
C0

qz
ðqz þ p2 þ q2z ln 2Þ þOðuÞ; ðu → 0Þ: ðB3Þ

The source-free condition then gives a “dispersion relation”

qz ¼ −p2 þ � � � : ðB4Þ

This corresponds to the diffusion pole in the SAdS5 case:

w ¼ −iq2 þ � � � ; ðB5Þ

where w ≔ ω=ð2πTÞ; q ≔ q=ð2πTÞ. To obtain the spec-
trum, rewrite the dispersion relation in terms of mass:

m2
3 ≔ −p2 ¼ 4qz þ � � � : ðB6Þ

The dispersion relation for the AdS soliton should not be
taken literally because qz is actually discrete. One should
regard the dispersion relation as an approximate relation of
the spectrum given an integer qz. For example, the
dispersion relation gives m2

3 ≈ 4 for qz ¼ 1. On the other
hand, the computation in Sec. III gives m2

3 ≈ 7.16. Because
qz is Oð1Þ, the dispersion relation does not give a very
reliable result. See Table VI for the other modes.
For the gravitational vector mode, the solution is given by

Z̃ ¼ C0

�
1þ p2

2qz
ð1 − u2Þ þ � � �

�
ðB7aÞ

∼C0

2qz þ p2

2qz
þOðu2Þ; ðu → 0Þ: ðB7bÞ

Then, the dispersion relation is

qz ¼ −
1

2
p2 þ � � � ; ðB8Þ

or m2
3 ¼ −p2 ¼ 8qz þ � � �. This corresponds to the shear

pole in the SAdS5 case: w ¼ −iq2=2þ � � �.
For the gravitational scalar mode, the solution is given by

Z̃ ¼ C0

�
3q2z þ p2f1þ u2 þ 2qzð1 − u2Þg

3q2z þ 2p2
þ � � �

�
; ðB9aÞ

∼C0

3q2z þ p2 þ 2qzp2

3q2z þ 2p2
þOðu2Þ; ðu → 0Þ; ðB9bÞ

and the dispersion relation is

0 ∼ 3q2z þ p2 þ 2qzp2; ðB10aÞ

→ qz ¼ �
ffiffiffiffiffiffiffiffi
−p2

3

r
−
1

3
p2 þ � � � ; ðB10bÞ

or m2
3 ¼ 12q2z þ � � �. This corresponds to the sound pole in

the SAdS5 case: w ¼ �q=
ffiffiffi
3

p
− iq2=3þ � � �.

TABLE VI. The lowest m2
3 obtained by the extrapolation of the

hydrodynamic dispersion relation and by numerical computa-
tions.

“Hydrodynamic” Numerical

Maxwell scalar qz ¼ 1 4 7.162
¼ 2 8 21.45

Gravitational vector qz ¼ 1 8 10.79
¼ 2 16 28.04

Gravitational scalar qz ¼ 1 12 (6.000)
¼ 2 48 20.27
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