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We propose a doubly holographic version of the semiclassical island formula for the entanglement
negativity in the framework of the defect AdS/BCFT correspondence where the anti–de Sitter (AdS) bulk
contains a defect conformal matter theory. In this context, we propose a defect extremal surface (DES)
formula for computing the entanglement negativity modified by the contribution from the defect matter
theory on the end-of-the-world brane. The equivalence of the DES proposal and the semiclassical island
formula for the entanglement negativity is demonstrated in AdS3=BCFT2 framework. Furthermore, in the
time-dependent AdS3=BCFT2 scenarios involving eternal black holes in the lower dimensional effective
description, we investigate the time evolution of the entanglement negativity through the DES and the
island formulas and obtain the analogs of the Page curves.
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I. INTRODUCTION

From the past few decades, the study of the black hole
information loss paradox has led to several key insights
about semiclassical and quantum gravity. Recently, tremen-
dous progress has been made towards a possible resolution
of this paradox which involves the appearance of regions
termed “islands” in the black hole geometry at late times
[1–6]. This leads to the Page curve [7–9], which indicates
that the process of black hole formation and evaporation
follows a unitary evolution. The appearance of the islands
stems from the late time dominance of the replica wormhole
saddles in the gravitational path integral for the Rényi
entanglement entropy. The resultant island formula was
inspired by the advent of quantum extremal surfaces (QES)
introduced earlier, to compute the quantum corrections to
the holographic entanglement entropy [10–13]. In this
connection, in [1,3,5,6] a quantum dot [e.g. the Sachdev-
Ye-Kitaev (SYK) model] coupled to a CFT2 on a half line
was regarded as the holographic dual to a 2-dimensional
conformal field theory (CFT) coupled to semiclassical
gravity on a hybrid manifold.1 For such 2-dimensional

conformal field theories coupled to semiclassical gravity,
the island formula involves the fine-grained entropy of the
Hawking radiation in a region R, obtained through the
extremization over the entanglement entropy island region
IðRÞ and is expressed as follows:

S½R� ¼ min ext
IðRÞ

�
Area½∂IðRÞ�

4GN
þ SeffðR ∪ IðRÞÞ

�
; ð1:1Þ

whereGN is the Newton’s constant and SeffðXÞ corresponds
to the effective semiclassical entanglement entropy of
quantum matter fields located on X. For recent related
works, see Refs. [14–121].
A natural description for the island formulation was

provided through a double-holographic framework [1]where
the d-dimensional conformal field theory coupled to semi-
classical gravity may be interpreted as a lower-dimensional
effective description of a bulk (dþ 1)-dimensional theory of
gravity. In this scenario, the d-dimensional conformal field
theory is considered to possess a dual bulk (dþ 1)-dimen-
sional gravitational theory in the AdSdþ1=CFTd framework.
In the double holographic picture the computation of the
entanglement entropy through the island formula in the
lower-dimensional theory reduces to its holographic charac-
terization through the Ryu-Takayanagi (RT) formula [10,11]
in the bulk dualAdSdþ1 geometry. Thismay be understood as
a realization of the ER ¼ EPR proposal [122] where the
island region in the black hole interior is contained within the
entanglementwedge of the radiation bath through the double-
holographic perspective.
On a separate note, CFT2s on amanifold with a boundary,

termed as boundary conformal field theories (BCFT2s)
[123] have received considerable attention in the recent
past. The holographic dual of such BCFT2s [124–128]
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1In such holographic dual theories, the hybrid manifold on
which the CFT is defined consists of a flat bath along with a
curved geometry with dynamical gravity.

PHYSICAL REVIEW D 108, 106005 (2023)

2470-0010=2023=108(10)=106005(32) 106005-1 Published by the American Physical Society

https://orcid.org/0000-0003-3315-2708
https://orcid.org/0000-0003-4060-3175
https://orcid.org/0000-0003-3577-8712
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.106005&domain=pdf&date_stamp=2023-11-07
https://doi.org/10.1103/PhysRevD.108.106005
https://doi.org/10.1103/PhysRevD.108.106005
https://doi.org/10.1103/PhysRevD.108.106005
https://doi.org/10.1103/PhysRevD.108.106005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


involves an asymptotically AdS3 spacetime truncated by an
end-of-the-world (EOW) brane Q with Neumann boundary
condition. An extension of this AdS3=BCFT2 duality
studied in [45], involved additional defect conformal matter
on the EOW brane Q which resulted in the modification of
the Neumann boundary condition. The entanglement
entropy of an interval in this defect BCFT2 was also
computed in [45,94] through a modification of the quantum
corrected RT formula. This was termed as the defect
extremal surface (DES) formula as it involved contributions
from the defect conformal matter fields. Interestingly, this
DES formula has been proposed to be the doubly holo-
graphic counterpart of the island formula in the context of
the defect AdS3=BCFT2 scenario [45]. The authors in [45]
compared the entanglement entropy computed through the
DES formula in the 3d bulk geometry with that computed
through the island formula in the effective 2d description
and found an exact agreement. Subsequently, the time
dependent AdS3=BCFT2 scenario was studied in [94],
where in the effective 2d description, an eternal black hole
emerges on the EOW brane. The entanglement entropy for
the Hawking radiation from the eternal black hole, obtained
through the DES formula reproduced the Page curve and
was consistent with the island proposal.
The fine grained entanglement entropy is a viable

measure of entanglement for bipartite pure states. For
configurations involving bipartite pure states in black hole
geometries, the island proposal in the effective picture or
the DES formula in the doubly holographic scenario
correctly encode the entanglement structure of the
Hawking radiation. However, entanglement entropy fails
to characterize the structure of entanglement for bipartite
mixed states as it receives contributions from irrelevant
classical and quantum correlations. For such cases involv-
ing bipartite mixed states, it is required to consider
alternative mixed-state correlation or entanglement mea-
sures. Several of such correlation and entanglement mea-
sures like the reflected entropy [129,130], the entanglement
negativity [131,132], the entanglement of purification
[133,134] and the balanced partial entanglement entropy
[135,136] have been studied in the literature.
In this context, the crucial issue of characterization of the

entanglement structure of bipartite mixed states was
addressed in [63] through the computation of the reflected
entropy in the time dependent framework involving an
eternal black hole in the AdS3=BCFT2 scenario. The
authors proposed a 3d bulk DES formula for the reflected
entropy and compared their results with the 2d effective
field theory computations involving islands. They obtained
the analogs of the Page curves for the reflected entropy and
demonstrated the appearance of islands at late times.
The above developments bring into sharp focus the

crucial issue of the characterization of the mixed-state
entanglement structure of the Hawking radiation from
black holes. In this context, the nonconvex entanglement

monotone termed the entanglement negativity [131,132]
serves as a natural candidate to investigate the entangle-
ment structure of such mixed states. The entanglement
negativity has been explored in conformal field theories
[137–139] through appropriate replica techniques.2

Subsequently several holographic constructions for com-
puting the entanglement negativity in the context of the
AdS=CFT correspondence was advanced in a series
of interesting works3 in [143–156] which reproduced the
field theoretic results in the large central-charge limit
[141,157,158]. Interestingly, in [159–163], an alternative
holographic proposal based on the bulk entanglement
wedge cross section (EWCS) was also investigated. In
this connection, an island formulation for the entanglement
negativity was recently established in [164] following a
similar island construction for the reflected entropy devel-
oped in [26,27].4 Furthermore, a geometric construction
based on the double holographic framework was discussed
qualitatively in [164] and subsequently investigated in
[165] through a partial dimensional reduction [103] of
the 3d bulk space time. In this article, we generalize these
doubly holographic scenarios to the framework of AdS/
BCFTwith defect conformal matter on the EOW brane. We
propose a DES formula for computing the bulk entangle-
ment negativity in asymptotically AdS3 geometries trun-
cated by an EOW brane. Furthermore, we demonstrate the
equivalence of the DES results with the corresponding
island computations for the entanglement negativity of
bipartite mixed states in both static and time-dependent
configurations involving black hole/bath systems in the
effective lower dimensional theory.
The rest of the article is organized as follows. In Sec. II,

we recollect various aspects of the DES formula for the
entanglement entropy and the corresponding effective
lower dimensional picture involving the entanglement
islands. In Sec. III, we provide the island construction
for the entanglement negativity [164], and propose the DES
formulas for computing the bulk entanglement negativity
for disjoint and adjacent subsystems on the conformal
boundary of asymptotically AdS3 geometries with defect
conformal matter on the EOW brane. In Sec. IV, we
compute the entanglement negativity for disjoint and
adjacent intervals in a static time slice of the conformal
boundary. Beginning with a brief review of the eternal
black hole configuration in the 2d effective semiclassical
picture, we describe DES and island computations for the
entanglement negativity between interior regions of the

2For an extension of this replica technique in the Galilean
conformal field theories, see Ref. [140].

3For analogs of these proposals in the context of flat holog-
raphy, see Refs. [141,142].

4Note that, [164] also provided an alternative island formu-
lation for the entanglement negativity which generalizes the
proposals in [159–163] in terms of the generalized Rényi
reflected entropy of order one half.
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black hole, between the black hole and radiation in the bath
region, and between radiation segments, and demonstrate
the equivalence of the two formulations in Sec. V. In
Sec. VI, we summarize our results and comment on
possible future directions. Additionally, in Appendix, we
have obtained the entanglement negativity in the effective
semiclassical description utilizing the alternative island
proposal (cf. footnote 4) advanced in [164] for certain
bipartite configurations in the static AdS/BCFT model.

II. REVIEW OF EARLIER LITERATURE

In this section, we will briefly recall the salient features
of the holographic model under consideration. We first
review the AdS/BCFT scenario [124] modified through the
inclusion of conformal matter on the end-of-the-world
(EOW) brane which was proposed in [45,94]. Following
this, we describe the defect extremal surface formula [45]
for computing the entanglement entropy in the bulk
AdS geometry truncated by the EOW brane. We will also
briefly elucidate the effective 2d description of the model
and the semiclassical island formula for computing the
entanglement entropy of a subsystem in the effective
description.

A. AdS3=BCFT2

As described in [124,125] the bulk dual of a BCFT2

defined on the half line x ≥ 0 is given by an AdS3 geometry
truncated by an EOW brane Q with Neumann boundary
conditions. The gravitational action of the bulk manifoldN
is given by

I ¼
Z
N

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 2

Z
Q

ffiffiffiffiffiffi
−h

p
ðK − TÞ; ð2:1Þ

where hab is the induced metric, K is the trace of the
extrinsic curvature Kab on the EOW brane Qwith a tension
T. The Neumann boundary condition on the EOW brane is
given as Kab ¼ ðK − TÞhab. The 3d bulk geometry may be
described by two sets of relevant coordinate charts, ðt; x; zÞ
and ðt; ρ; yÞ, which are related through

x ¼ y tanh

�
ρ

l

�
; z ¼ −y sech

�
ρ

l

�
: ð2:2Þ

The bulk metric in these coordinates is given by the
standard Poincaré slicing, as follows:

ds2 ¼ dρ2 þ cosh2
�
ρ

l

�
−dt2 þ dy2

y2

¼ l2

z2
ð−dt2 þ dx2 þ dz2Þ; ð2:3Þ

where l is the AdS3 radius. In the Poincaré slicing5

described by the ðt; ρ; yÞ coordinate chart the EOW brane
is situated at a constant ρ ¼ ρ0 slice and the induced metric
on the brane is given by that of an AdS2 geometry [124].
An extension to this usual AdS3=BCFT2 framework was

proposed in [45] where one essentially begins with an
orthogonal brane with zero tension and through the
addition of conformal matter onto it, turns on a finite
tension. The Neumann boundary condition on the EOW
braneQ is modified by the stress tensor of this defect CFT2.
The EOW brane Q is then treated as a defect in the bulk
geometry.

B. Defect extremal surface

For the modified bulk picture with defect conformal
matter on Q, the entanglement entropy of an interval A in
the original BCFT2 involves contributions from the defect
matter, and the usual RT formula [10] is modified to the
DES formula [45,94] given as

SDESðAÞ ¼ min ext
ΓA;X

�
AðΓAÞ
4GN

þ SdefectðDÞ
�
;

X ¼ ΓA ∩ D; ð2:4Þ

where ΓA is a codimension two extremal surface homolo-
gous to the subsystem A and D is the defect region along
the EOW brane Q as depicted in Fig. 1.
For an interval A ¼ ½0; L� in the BCFT2, the generalized

entanglement entropy corresponding to a defect D ¼
½−a; 0� on the brane CFT2 may be computed through the
DES formula as follows6 [45]:

SgenðaÞ ¼
AðΓAÞ
4GN

þ Sdefectð½−a; 0�Þ

¼ l
4GN

cosh−1
�ðLþ a sin θ0Þ2 þ ða cos θ0Þ2

2ϵ a cos θ0

�

þ c
6
log

�
2l

ϵy cos θ0

�
; ð2:5Þ

Note that the defect contribution to the generalized entropy
is a constant which implies that the defect extremal surface
is same as the RT surface for the subsystem A.
Extremization with respect to the position a of the defect
leads to the entanglement entropy of the subsystem A as
follows:

5A convenient choice for a polar coordinate is θ ¼
arccos ½sechðρlÞ�, which determines the angular position of the
brane from the vertical as shown in Fig. 1.

6Note that we are using the standard geodesic length formula
for Poincaré AdS3 instead of the AdS/BCFT techniques em-
ployed in [45,94] as both the procedures lead to the same answer
and are therefore complementary.
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SDESð½0; L�Þ ¼
c
6

�
log

�
2L
ϵ

�
þ tanh−1ðsin θ0Þ

þ log

�
2l

ϵy cos θ0

��
; ð2:6Þ

where both the central charges of the original BCFTand the
defect CFT2 are taken to be equal7 to c.
We would like to note that the model discussed in this

article differs from the typical Karch-Randall (KR) models.
In the usual KR braneworld models, the EOW brane has a
high tension and is therefore pushed towards the asymptotic
boundary of the bulk spacetime, causing the AdS isome-
tries on the brane to act as conformal transformations
[35,36,51]. For such cases, the brane contains a copy of the
same CFT (defined by the Polyakov action for the gravity
theory on the brane) as that on the asymptotic boundary. In
the present work, we have instead maintained the EOW
brane at a finite tension, and as a result, it has no inherent
CFT. The defect conformal matter has been incorporated on
the EOW brane, to provide a 2d perspective consistent with
the QES formulation. Subsequently, the effective 2d brane-
world description is achieved by combining a partial
Randall-Sundrum reduction and the typical AdS/BCFT
duality [45], which leads to a BCFT on a half line coupled
to a dynamical EOW brane containing defect matter.

C. Effective description and boundary
island formula

The lower-dimensional effective semiclassical theory for
the bulk configuration described above may be obtained
through a combination of a partial Randall-Sundrum

reduction [166,167] and the usual AdS/BCFT duality
[168]. As described in [45,63,94], this is implemented
by dividing the AdS3 bulk into two parts through the
insertion of an imaginary codimension one surface Q0
orthogonal to the asymptotic boundary, with transparent
boundary conditions. The portion of the bulk enclosed
between Q and Q0 is dimensionally reduced along the ρ
direction using a partial Randall-Sundrum reduction
thereby obtaining a effective 2d gravitational theory
coupled with the matter CFT2 on Q. On the other hand,
the rest of the bulk is dual to the original BCFT2 on the half
line x ≥ 0 from the usual AdS/BCFT duality. The trans-
parent boundary conditions along Q0 naturally glues the
gravity theory on Q and the BCFT2 on the half line x ≥ 0,
leading to an effective 2d semiclassical theory on a hybrid
manifold, similar to that considered in [1,3].
In the effective semiclassical description described

above, one may utilize the island formula [1,3] to compute
the entanglement entropy. For a subsystem A ¼ ½0; L� in the
flat CFT2 on the asymptotic boundary, an island region
IA ¼ ½−a; 0� appears in the gravitational sector on the EOW
brane Q. The entanglement entropy is obtained by extrem-
izing the generalized entropy functional as

Sbdy ¼ ext
a
SgenðaÞ ¼ ext

a
½Aðy ¼ −aÞ þ Smatterð½−a; L�Þ�

¼ c
6
tanh−1ðsin θ0Þ þ

c
6
log

�
4Ll

ϵ ϵy cos θ0

�
: ð2:7Þ

The first term in the above expression is due to the constant
area of the quantum extremal surface in the AdS3=BCFT2

framework, given as [45]

Að∂IAÞ≡ ρ0
4GN

¼ l
4GN

tanh−1ðsin θ0Þ; ð2:8Þ

where θ0 is the angle of the EOW brane with the vertical. It
is observed from the above that the island formula leads to
the same expression for the entanglement entropy as the
DES result in Eq. (2.6). In other words, the DES formula
may be considered as the doubly holographic counterpart
of the island formula in the defect AdS/BCFT framework.

D. Entanglement negativity

In this subsection, we will briefly review the salient
features of the mixed-state entanglement measure termed
the entanglement negativity and its holographic characteri-
zation in the context of AdS3=CFT2 scenario. In a seminal
work [131], Vidal and Werner introduced the computable
mixed-state entanglement measure, the entanglement neg-
ativity which is defined as the trace norm of the density
matrix partially transposed with respect to one of the
subsystems. In [137–139], replica techniques were devel-
oped to obtain the entanglement negativity for subsystems
in CFT2 s which involved the even parity ne of the replica

FIG. 1. Schematics of the defect extremal surface for the
entanglement entropy of a subsystem A. Figure modified
from [45].

7Note that the equality of the two central charges is essential to
relate the present bulk description to the effective 2d island
scenario which involves a single CFT2 on the complete hybrid
manifold. On the other hand, for different central charges of the
BCFT on the asymptotic boundary and the defect CFT2 on the
brane, a generalization of the island formula will be required even
when two interacting CFTs are considered.
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index. The entanglement negativity was obtained through
the analytic continuation of the replica index ne → 1 as
follows:

E ¼ lim
ne→1

log TrðρTB
ABÞne ; ð2:9Þ

where the superscript TB denotes partial transposition with
respect to the subsystem B. The trace TrðρTB

ABÞne may be
expressed as a twist-field correlator in the CFT2, corre-
sponding to the bipartite state under consideration. As an
example, we consider the generic bipartite mixed state of
two disjoint intervals A ¼ ½u1; v1� and B ¼ ½u2; v2� in a
CFT2. The trace TrðρTB

ABÞne is then given by the following
four-point correlator of twist fields,

TrðρTB
ABÞne

¼ hT neðu1ÞT̄ neðv1ÞT̄ neðu2ÞT neðv2ÞiCFT⊗ne ; ð2:10Þ
where the twist fields T ne and T̄ ne are primary fields with
conformal dimensions

Δne ¼
c
12

�
ne −

1

ne

�
: ð2:11Þ

Subsequently, in a series of works [144–146,151], several
holographic proposals for the entanglement negativity were
proposed for specific bipartite mixed states. These propos-
als involved appropriate algebraic sums of the lengths of
codimension two bulk-static minimal surfaces homologous
to various subsystems describing the mixed state. In
particular, for two disjoint intervals A and B sandwiching
another interval C in a CFT2, the holographic entanglement
negativity may be obtained geometrically in the context of
the AdS3=CFT2 correspondence as follows [151]:

EðA∶BÞ ¼ 3

16GN
ðLAC þ LBC − LC − LABCÞ; ð2:12Þ

where LX denotes the length of the extremal curve
homologous to subsystem X. The configuration of two
adjacent intervals A and B may be obtained through the
limit C → ∅ of the above, and the holographic entangle-
ment negativity is given as [146]

EðA∶BÞ ¼ 3

16GN
ðLA þ LB − LABÞ: ð2:13Þ

Note that, these proposals have further been extended to
various other holographic frameworks including flat holog-
raphy [141], anomalous AdS=CFT [156] as well as higher-
dimensional scenarios [147,153–155].
We would also like to mention here that an alternative

holographic proposal for entanglement negativity was
forwarded by the authors of [159] based on the bulk
entanglement wedge cross section. This proposal was

further refined and was stated in terms of the Rényi
reflected entropy as follows [160]:

ẼðA∶BÞ ¼ 1

2
Sð1=2ÞR ðA∶BÞ: ð2:14Þ

For the special class of subsystems in holographic CFTds
involving spherical entangling surfaces, the backreaction
on the geometry is accounted for by a dimension dependent
constant Xd, which for a 3-dimensional bulk is given by
X2 ¼ 3

2
.

On a related note, the authors in [169] established an
inequality between the reflected entropy and the mutual
information in terms of the fidelity of a Markov recovery
process related to the purification of the mixed state under
consideration. This difference between the reflected
entropy and the mutual information was termed as the
Markov gap which turned out to be constant at the leading
order. It was geometrically shown to be described in terms
of the numbers of nontrivial boundaries8 of the EWCS. In
several earlier works [145,146,151], the holographic entan-
glement negativity has also been related to the holographic
mutual information which implies that the above alternative
proposal for the holographic entanglement negativity in
terms of the Rényi reflected entropy should also be
modified to incorporate this Markov gap.

III. DEFECT EXTREMAL SURFACE
FOR ENTANGLEMENT NEGATIVITY

In this section, we propose the defect extremal surface
formula for the entanglement negativity in the AdS/BCFT
models which include defect conformal matter on the EOW
brane [45,63,94]. To begin with, we recall the semiclassical
QES formula for the entanglement negativity involving
entanglement islands in the lower-dimensional effective
picture discussed earlier. As described in [164,165], the
QES proposal for the entanglement negativity between two
disjoint intervals in the effective boundary description is
given by9,10

EbdyðA∶BÞ

¼ min ext
Γ¼∂IA∩∂IB

�
3

16GN
ðAð∂IAÞ þAð∂IBÞ −Að∂IABÞÞ

þ EeffðA ∪ IA∶ B ∪ IBÞ
�
; ð3:1Þ

8Note that trivial boundaries of the bulk EWCS are those
which end on the boundary of the spacetime [169].

9Note that, in this article, we use the nomenclature boundary
description and lower-dimensional effective description inter-
changeably.

10See Appendix for discussion about the island prescription for
entanglement negativity through the alternative proposal de-
scribed in Eq. (2.14).

DEFECT EXTREMAL SURFACES FOR ENTANGLEMENT … PHYS. REV. D 108, 106005 (2023)

106005-5



where IA and IB are the entanglement negativity islands
corresponding to subsystems A and B, respectively. The
entanglement negativity islands obeys the condition
IA ∪ IB ¼ IðA ∪ BÞ, where IðA ∪ BÞ denotes the entangle-
ment entropy island for A ∪ B, as illustrated in Fig. 2.
Furthermore, the extremization in the QES formula is
performed over the location of the island cross section
Γ≡ ∂IA ∩ ∂IB. In this context, utilizing the constraint
IA ∪ IB ¼ IðA ∪ BÞ, the algebraic sum of the area con-
tributions in Eq. (3.1) may be reduced to that corresponding
to the island cross section Γ. Hence, the QES formula may
be expressed as [164]

EbdyðA∶BÞ ¼ min Ext
Γ

�
3

8GN
AðΓ ¼ ∂IA ∩ ∂IBÞ

þ EeffðA ∪ IA∶ B ∪ IBÞ
�
: ð3:2Þ

Inspired by the holographic characterizations for the
entanglement negativity described earlier, we now propose
DES formulas to obtain the entanglement negativity in the
doubly holographic framework of the defect AdS3=BCFT2

scenario. In the presence of the bulk defect theory, the
entanglement negativity for a bipartite mixed state ρAB in
the dual BCFT2 involves corrections from the bulk matter
fields. Following [12,13], the effective matter contribution
is given by the bulk entanglement negativity between the
regions A and B which are obtained by splitting the
codimension one region dual to ρAB via the entanglement
wedge cross section.11 For the bipartite mixed-state

configuration described by two disjoint intervals A and
B in the dual CFT2, the 3d bulk dual DES formula for the
entanglement negativity is therefore given by

EbulkðA∶BÞ ¼ min Ext
Γ

�
3

16GN
ðLðγACÞ þ LðγBCÞ

− LðγCÞ − LðγABCÞÞ þ EeffðA∶BÞ
�
; ð3:3Þ

where LðγXÞ is the length of the bulk extremal curve
homologous to the interval X on the boundary CFT2 as
illustrated in Fig. 3 and EeffðA∶BÞ denotes the effective
entanglement negativity between the quantum matter fields
inside the bulk regions A and B. The bulk effective term in
Eq. (3.3) reduces to the effective entanglement negativity
between the entanglement negativity islands IA and IB on
the EOW brane as the conformal matter is present only on
the EOW brane.12 Note that if the intervals are far away
such that their entanglement wedges are disconnected, the
contributions coming from the combination of bulk
extremal curves vanishes identically due to phase transi-
tions to other entropy saddles [152].
The DES formula for two adjacent intervals A and B in

the bulk description may be obtained from Eq. (3.3)
through the limit C → ∅ as follows:

EbulkðA∶BÞ ¼ min Ext
Γ

�
3

16GN
ðLðγAÞ þ LðγBÞ − LðγABÞÞ

þ EeffðA∶BÞ
�
: ð3:4Þ

FIG. 2. Schematics of the quantum extremal surface for the
entanglement negativity between two disjoint intervals A and B,
where IA and IB are the entanglement negativity islands satisfying the
constraint IA ∪ IB ¼ IðA ∪ BÞ. The island cross section is given by
Γ≡ ∂IA ∩ ∂IB. In the double holographic picture described in [164],
the 3d bulk entanglement wedge cross section ending at the point Γ
on theEOWbraneQ splits the entanglementwedge corresponding to
A ∪ B into two parts A and B. Figure modified from [63].

FIG. 3. Schematics of the defect extremal surfaces for the
entanglement negativity between two disjoint intervals A and B.
IA and IB denote the entanglement negativity islands correspond-
ing to A and B, respectively. The interval C sandwiched between
A and B does not have an island.

11Note that a defect extremal surface formula for the reflected
entropy was developed in [63] utilizing a similar construction.
Furthermore, the authors in [63] demonstrated the equivalence of
the DES and QES formulas for the reflected entropy in the
framework of defect AdS3=BCFT2.

12Note that due to the localization of the quantum matter only
on the EOW brane for the present scenario of defect
AdS3=BCFT2, the choice of the bulk regions A and B is not
unique. However any difference with the present proposal is only
expected to be observed at the subleading order in c. See also the
discussion in Sec. VI.
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In the following we will compute the entanglement
negativity for various bipartite mixed states in a defect
BCFT2 through the island and the DES formulas and find
exact agreement between the bulk and the boundary
results.

IV. ENTANGLEMENT NEGATIVITY
ON A FIXED TIME SLICE

A. Two disjoint intervals

In this subsection we focus on the computation of the
entanglement negativity for the bipartite mixed state of two
disjoint intervals A ¼ ½b1; b2� and B ¼ ½b3;∞� on a static
time slice in the defect AdS3=BCFT2 framework. There are
three possible phases for the entanglement negativity for

this mixed-state configuration based on the subsystem
sizes, which we investigate below.

1. Phase-I

Boundary description. In this phase, the interval C sepa-
rating the two disjoint intervals A and B is large13 and the
interval A is small enough such that it does not possess an
entanglement entropy island. Consequently, there is no
nontrivial island cross section on the EOW brane as shown
in Fig. 4. Hence Γ ¼ ∅, and the area term in the QES
formula Eq. (3.2) vanishes, namely AðΓÞ ¼ 0.
The effective semiclassical entanglement negativity in

this phase may be obtained through a correlation function
of twist operators located at the endpoints of the intervals as
follows:

EeffðA∶B ∪ IBÞ ¼ lim
ne→1

log½ðϵyΩð−b3ÞÞΔne hT neðb1ÞT̄ neðb2ÞT̄ neðb3ÞT neð−b3ÞiCFT⊗ne �

≈ lim
ne→1

log ½ðϵyΩð−b3ÞÞΔne hT neðb1ÞT̄ neðb2ÞinehT̄ neðb3ÞT neð−b3Þine �

¼ 0; ð4:1Þ

where ϵy is the UV cutoff on the EOW brane Q and the
warp factor Ω is given by [45]

ds2brane ¼ Ω−2ðyÞds2flat; Ωð−b3Þ ¼
���� b3 cos θ0l

����: ð4:2Þ

In the second equality of Eq. (4.1), we have factorized the
given four-point function utilizing the corresponding oper-
ator product expansion (OPE) channels. Consequently, in
this phase the total entanglement negativity for the two
disjoint intervals in the boundary description is vanishing.

Bulk description. The dual bulk description for this phase
has a disconnected entanglement wedge and hence we have
Γ ¼ ∅ similar to the boundary description. Furthermore, as
the bulk matter fields are only localized on the EOW brane
Q and A has no corresponding island, the effective
entanglement negativity between bulk quantum matter
fields also vanishes as follows:

EeffðA∶BÞ ¼ Eeffð∅∶IBÞ≡ 0: ð4:3Þ

Hence, in the bulk description the holographic entangle-
ment negativity is entirely given by the contribution from
the areas of the defect extremal surfaces. The lengths of the
bulk DES homologous to various subsystems are given by

LAC ¼ L1 þ L3; LBC ¼ L2 þ L4;

LC ¼ L2 þ L3; LABC ¼ L1 þ L4: ð4:4Þ

Now utilizing the bulk DES formula for the entanglement
negativity for two disjoint intervals in Eq. (3.3), we obtain

EbulkðA∶BÞ¼ 3

16GN
ðLACþLBC−LC−LABCÞ¼ 0: ð4:5Þ

Therefore, the boundary and bulk description match trivi-
ally, leading to a vanishing entanglement negativity in this
phase. Disconnected entanglement wedge for this configu-
ration consequently implies a perfect Markov recovery
process and a vanishing Markov gap.

2. Phase-II

Boundary description. Next we turn our attention towards
the phase where the interval A is small and still does not
possess an island, but unlike earlier the interval C sand-
wiched between A and B is also small and therefore does not
lead to an entanglement entropy island as well (cf. foot-
note 13). Consequently, the entanglement wedge for A ∪ B
is connected and the boundary of the semi-infinite island
region is determined by the endpoint b1 of the interval A. In
this phase, there is no nontrivial island cross section as
depicted in Fig. 5 and hence the area term in Eq. (3.2)
vanishes identically. On the other hand, the effective
semiclassical entanglement negativity is given by

13Note that, in this phase the interval C has an entanglement
island. In the bulk description, this corresponds to a disconnected
entanglement wedge for A ∪ B.
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EeffðA∶B ∪ IBÞ ¼ lim
ne→1

log½ðϵyΩð−b1ÞÞΔne hT neð−b1ÞT neðb1ÞT̄ neðb2ÞT̄ neðb3ÞiCFT⊗ne �: ð4:6Þ

As described in [151,152,157], for the t-channel where the
intervals A and B are in proximity of each other (cross-ratio
x → 1), in the large central-charge limit the above four-
point correlation function of the twist operators has the
following form:

hT neð−b1ÞT neðb1ÞT̄ neðb2ÞT̄ neðb3ÞiCFT⊗ne ¼ ð1 − xÞΔ̂;
ð4:7Þ

where the conformal dimension Δ̂ corresponding to the
dominant Virasoro conformal block, and the cross-ratio x
are given as

Δ̂ ¼ c
6

�
ne
2
−

2

ne

�
; x ¼ ðb2 − b1Þðb3 þ b1Þ

ðb2 þ b1Þðb3 − b1Þ
: ð4:8Þ

We may now obtain the entanglement negativity for this
phase in the boundary description by substituting Eqs. (4.7)
and (4.8) in Eq. (4.6) to be

EbdyðA∶BÞ ¼ c
4
log

�ðb1 þ b2Þðb3 − b1Þ
2b1ðb3 − b2Þ

�
: ð4:9Þ

Bulk description. From the bulk perspective, in this phase
the entanglement wedge corresponding to A ∪ B is con-
nected. However, as the interval A does not have an island,
the minimal entanglement wedge cross section does not
meet the EOW brane Q resulting in a trivial island cross
section Γ ¼ ∅. Hence, the effective entanglement nega-
tivity between the bulk quantum matter fields vanishes
similar to Eq. (4.3). The bulk entanglement negativity
consists of the contributions from the combination of the
defect extremal surfaces as depicted in Fig. 5(b). Now
utilizing Eq. (3.3), we may obtain the entanglement
negativity between A and B in this phase as follows:

EbulkðA∶BÞ ¼ 3

16GN
½L3 þ ðL2 þ L5Þ − L4 − ðL1 þ L5Þ�

¼ 3

16GN
ðL2 þ L3 − L1 − L4Þ: ð4:10Þ

FIG. 4. Schematics of the (a) QES and (b) DES perspective for the defect extremal surface for the entanglement negativity between
two disjoint intervals A and B in phase-I.

FIG. 5. Schematics of the (a) QES and (b) DES perspective for the defect extremal surface for the entanglement negativity between
two disjoint intervals A and B in phase-II.
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In the framework of defect AdS3=BCFT2 [45,63,94], it was
observed that the defect extremal surfaces have the same
structure as the corresponding RT surfaces since the
contribution from the defect matter fields turned out to
be constant. The lengths of the defect extremal surfaces L3

and L4 in Eq. (4.10) are given by [10,124]

L3¼ 2l log

�
b3−b1

ϵ

�
; L4¼ 2l log

�
b3−b2

ϵ

�
; ð4:11Þ

where ϵ is a UV cutoff in the dual BCFT2. As described
in [45,94], the length of the defect extremal surface L1

ending on the brane Q is given by

L1 ¼ l log

�
2b1
ϵ

�
þ l tanh−1ðsin θ0Þ: ð4:12Þ

Furthermore, the length of the defect extremal surface L2

may be obtained as follows [10]:

L2 ¼ l cosh−1
�ðb2 þ b1 sin θ0Þ2 þ ðb1 cos θ0Þ2

2ϵðb1 cos θ0Þ
�
: ð4:13Þ

Note that, in this phase the interval A is very small and
therefore we may approximate the above length in the
following way:

L2 ¼ l cosh−1
�
b22 þ b21 þ 2b1b2 sin θ0

b22 − b21

�

þ l log
�
b22 − b21
ϵb1

�
: ð4:14Þ

Now utilizing the identity cosh−1 xþ cosh−1 y ¼ cosh−1

ðxyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − 1Þðy2 − 1Þ

p
Þ we finally obtain

L2 ¼ l
�
cosh−1

�
b22 þ b21
b22 − b21

�
þ log

�
b22 − b21
ϵb1

�

þ cosh−1
�

1

cos θ0

��

¼ l log

�ðb1 þ b2Þ2
ϵb1

�
þ l tanh−1ðsin θ0Þ: ð4:15Þ

Substituting Eqs. (4.11) and (4.15) in Eq. (4.10) we may
now obtain the entanglement negativity between A and B in
the bulk description as follows:

EbulkðA∶BÞ ¼ 3l
4GN

log

�ðb1 þ b2Þðb3 − b1Þ
2b1ðb3 − b2Þ

�
: ð4:16Þ

Upon employing the Brown-Henneaux formula [170], we
observe an exact matching with the island result in Eq. (4.9).
Note that the above result is consistent with the geo-
metric interpretation of the Markov gap as has explicitly
been shown in Appendix A 1 through computation of the

entanglement negativity by utilizing the alternative proposal
in Eq. (2.14).

3. Phase-III

Boundary description. In the final phase both the intervals
A and B are large enough to posses entanglement islands
IA ≡ ½−a;−a0� and IB ≡ ½−a0;−∞�, respectively. They are
also considered to be in proximity such that they have a
connected entanglement wedge as shown in Fig. 6.
The area term in Eq. (3.2) for the island cross section
Γ≡ ∂IA ∩ ∂IB is then given as [45,63,94]

AðΓÞ ¼ l
4GN

tanh−1ðsin θ0Þ: ð4:17Þ

The semiclassical effective entanglement negativity may
be obtained in terms of the following five-point twist
correlator

EeffðA ∪ IA∶ B ∪ IBÞ
¼ lim

ne→1
log½ðϵyΩð−aÞÞΔne ðϵyΩð−a0ÞÞΔ

ð2Þ
ne

× hT neðb1ÞT̄ neð−aÞT̄ neðb2ÞT 2
neð−a0ÞT̄ neðb3ÞiCFT⊗ne �;

ð4:18Þ

where ϵy is a UV regulator on the AdS2 brane Q and the
warp factor Ωð−a0Þ is given in Eq. (4.2). The five-point
twist correlator in Eq. (4.18) has the following factorization
[164] in the corresponding OPE channel

hT neðb1ÞT̄ neð−aÞT̄ neðb2ÞT 2
neð−a0ÞT̄ neðb3Þi

≈ hT neðb1ÞT̄ neð−aÞihT̄ neðb2ÞT 2
neð−a0ÞT̄ neðb3Þi

¼ 1

ðaþb1Þ2Δne

CT̄ neT
2
ne T̄ ne

ðb3þa0ÞΔð2Þ
ne ðb2þa0ÞΔð2Þ

ne ðb3−b2Þ2Δne−Δ
ð2Þ
ne

;

ð4:19Þ

FIG. 6. Schematics of the quantum extremal surface for the
entanglement negativity between two disjoint intervals A and B in
phase-III. In this phase, we have a nontrivial island cross section
on the brane at coordinate a0.
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where Δne and Δð2Þ
ne are the conformal dimensions of the

twist operators T ne and T 2
ne , respectively, and are given as

[137,138]

Δne ¼
c
12

�
1 −

1

ne

�
; Δð2Þ

ne ¼ c
6

�
ne
2
−

2

ne

�
: ð4:20Þ

Note that the point a on the brane is determined by the DES
for the subsystem A to be a ¼ b1 [45]. Therefore, by
utilizing the contractions in (4.19) along with the areas term
in Eq. (4.17), we may obtain the generalized negativity in
the boundary description from Eq. (3.1) to be

Ebdy
genðA∶BÞ ¼ c

4

�
tanh−1ðsin θ0Þ þ log

lðb2 þ a0Þðb3 þ a0Þ
a0ðb3 − b2Þϵy cosθ0

�
:

ð4:21Þ

The extremization with respect to the island cross section Γ
with the coordinate a0 on the brane leads to

∂a0E
bdy
gen ¼ 0 ⇒ a0 ¼

ffiffiffiffiffiffiffiffiffiffi
b2b3

p
: ð4:22Þ

Substituting this into Eq. (4.21), we may obtain the total
entanglement negativity between A and B in phase-III from
the boundary description to be

EbdyðA∶BÞ ¼ c
4

�
tanh−1ðsin θ0Þ þ log

� ffiffiffiffiffi
b3

p þ ffiffiffiffiffi
b2

p
ffiffiffiffiffi
b3

p
−

ffiffiffiffiffi
b2

p
�

þ log
�

l
ϵy cos θ0

��
: ð4:23Þ

Bulk description. The bulk description in phase-III consists
of a connected entanglement wedge and the minimal cross
section ends on the EOW brane. The configuration is
sketched in Fig. 7. Since the bulk quantum matter is
entirely situated on the EOW brane, the effective

entanglement negativity between the bulk quantum matter
fields in the bulk regions A and B reduces to the effective
matter negativity between the corresponding island regions
IA and IB,

EeffðA∶BÞ
≡ EeffðIA∶ IBÞ
¼ lim

ne→1
log ½ðϵyΩð−a0ÞÞΔ

ð2Þ
ne hT neð−b1ÞT̄ 2

neð−a0ÞiBCFT⊗ne �;

ð4:24Þ

where ϵy is the UV cutoff on the EOW brane and Ω is the
conformal factor as given in Eq. (4.2). Utilizing the
doubling trick [123,127] the above two-point function in
the defect BCFT2 may be reduced to a four-point correlator
of chiral twist fields in a CFT2 defined on the whole
complex plane. As described in [127], the four-point
correlator in the chiral CFT2 has two dominant channels
depending on the cross-ratio as follows:

(I) BOE channel: In this channel the two point corre-
lator factorizes into two one-point functions in the
BCFT2 as follows:

hT neðb1ÞT̄ 2
neð−a0ÞiBCFT⊗ne

¼ hT neð−b1ÞiBCFT⊗ne hT̄ 2
neð−a0ÞiBCFT⊗ne

¼ ϵ
ΔneþΔð2Þ

ne
y

ð2b1ÞΔne ð2a0ÞΔð2Þ
ne

: ð4:25Þ

Therefore, the effective bulk entanglement negativ-
ity in this phase is given by

EeffðIA∶ IBÞ ¼
c
4
log

2l
ϵy cos θ0

: ð4:26Þ

Note that this effective entanglement negativity is
equal to the Rényi entropy of order one half for the
interval IA (or IB) which is consistent with the
expectations from quantum information theory.

(II) OPE channel: In this channel, the two-point corre-
lator of twist fields on the BCFT2 reduces to a three-
point correlator of chiral twist fields on the full
complex plane as follows [63,123,127]:

hT neð−b1ÞT̄ 2
neð−a0ÞiBCFT⊗ne

¼ hT̄ neð−b1ÞT neðb1ÞT̄ 2
neð−a0ÞiCFT⊗ne

¼
CT̄ neT

2
ne T̄ ne

ða02 − b21ÞΔ
ð2Þ
ne ð2b1ÞΔ

ð2Þ
ne −2Δne

: ð4:27Þ

Therefore, the effective bulk entanglement negativ-
ity in this channel is given by

FIG. 7. Schematics of the defect extremal surface for the
entanglement negativity between two disjoint intervals A and
B in phase-III. In this phase, the EWCS ends on the island cross
section Γ on the EOW brane.
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EeffðIA∶ IBÞ ¼
c
4
log

�
lða02 − b21Þ
a0b1ϵy cos θ0

�
: ð4:28Þ

As shown in Fig. 7, the contribution to the bulk
entanglement negativity from the defect extremal surfaces
homologous to different combinations of subsystems is
given by

3

16GN
ðL2 þ L4 − L3Þ

¼ 3l
16GN

�
cosh−1

�ðb2 þ a0 sin θ0Þ2 þ ða0 cos θ0Þ2
2ϵða0 cos θ0Þ

	

þ cosh−1
�ðb3 þ a0 sin θ0Þ2 þ ða0 cos θ0Þ2

2ϵða0 cos θ0Þ
	

− 2 log

�
b3 − b2

ϵ

��
: ð4:29Þ

The entanglement negativity between the disjoint intervals
A and B is obtained by extremizing the generalized
negativity over the position of the island cross section Γ.
For the OPE channel of the effective bulk entanglement
negativity there is no extremal solution while for the BOE
channel we obtain

∂a0Ebulk
gen ¼ 0 ⇒ a0 ¼

ffiffiffiffiffiffiffiffiffiffi
b2b3

p
: ð4:30Þ

Substituting this and utilizing the proximity limit b3 → b2
in the intermediate step, we obtain the entanglement
negativity between A and B in the bulk description as
follows:

Ebulk ¼ 3l
16GN

�
cosh−1

�
b2 þ b3 þ 2

ffiffiffiffiffiffiffiffiffiffi
b2b3

p
sin θ0

ðb3 − b2Þ cos θ0

��

þ c
4
log

�
l

ϵy cos θ0

�

¼ 3l
16GN

�
log

� ffiffiffiffiffi
b3

p þ ffiffiffiffiffi
b2

p
ffiffiffiffiffi
b3

p
−

ffiffiffiffiffi
b2

p
�
þ cosh−1

�
1

cos θ0

��

þ c
4
log

�
l

ϵy cos θ0

�
: ð4:31Þ

The above expression for the holographic entanglement
negativity matches exactly with the QES result in Eq. (4.23)
obtained through the island formula Eq. (3.1). This pro-
vides yet another consistency check of our holographic
construction for the entanglement negativity in the defect
AdS3=BCFT2 scenario. We should also note that Eq. (4.31)
is consistent with the geometric computation of the Markov
gap as demonstrated in Appendix A 1.

B. Two adjacent intervals

Having computed the entanglement negativity for con-
figurations involving two disjoint intervals, we now turn
our attention to the mixed state of two adjacent intervals
A ¼ ½0; b1� and B ¼ ½b1; b2� on a fixed time slice in the
AdS3=BCFT2 model. The interval A in this case always
possess an entanglement island as it starts from the inter-
face between the EOW brane and the asymptotic boundary.
We however, have two possible phases for this case based
on the size of the interval B which are described below.

1. Phase-I

Boundary description. For this phase, we consider that the
interval B is large enough to posses an entanglement island
described as IB in Fig. 8. The area term in Eq. (3.2) for the
point Γ ¼ ∂IA ∩ ∂IB is as given in Eq. (2.8). The effective
semiclassical entanglement negativity is given by the
following two-point twist correlator

EeffðA ∪ IA∶ B ∪ IBÞ
¼ lim

ne→1
log ½ðϵyΩð−aÞÞΔ

ð2Þ
ne hT 2

neðb1ÞT̄ 2
neð−aÞiCFT⊗ne �

¼ c
4
log

�
lðb1 þ aÞ2
ϵ ϵya cos θ0

�
; ð4:32Þ

where ϵ and ϵy are the UV cutoffs on the asymptotic
boundary and the EOW braneQ, respectively, and the warp
factorΩðaÞ is as given in Eq. (4.2). The point a ¼ b1 on the
brane is determined through the entanglement entropy
computation of the interval A. Using this in Eq. (4.32)
along with the area term, we may obtain the total entan-
glement negativity in the boundary description to be

EbdyðA∶BÞ ¼ c
4

�
log

�
2b1
ϵ

�
þ log

�
2l

ϵy cos θ0

�

þ tanh−1ðsin θ0Þ
�
; ð4:33Þ

FIG. 8. Schematics of the defect extremal surface for the
entanglement negativity between two adjacent intervals A and
B in phase-I. IA and IB on the EOW brane describe the entangle-
ment island corresponding to intervals A and B, respectively.
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where we have used the Brown-Henneaux formula in the
area term [170].

Bulk description. In the double holographic description, the
entanglement wedge corresponding to the subsystem A ∪
B is connected in the bulk. The contribution to the effective
entanglement negativity between the bulk matter fields in
regions A and B arises solely from the quantum matter
fields situated on the EOW brane as follows:

EeffðA∶BÞ
¼ EeffðIA∶ IBÞ
¼ lim

ne→1
log ½ðϵyΩð−aÞÞΔ

ð2Þ
ne hT neð−a0ÞT̄ 2

neð−aÞiBCFT⊗ne �

¼ c
4
log

�
2l

ϵy cos θ0

�
: ð4:34Þ

Utilizing Eq. (3.4), the total entanglement negativity for
this case including the contribution from the combinations
of the bulk extremal curves is obtained to be

EbulkðA∶BÞ¼ EeffðA∶BÞþ 3

16GN
2L1

¼ c
4
log

�
2l

ϵy cosθ0

�

þ 3l
8GN

�
log

�
2b1
ϵ

�
þ tanh−1ðsinθ0Þ

�
; ð4:35Þ

where we have used the fact that the entanglement entropy
computation for the interval A fixes a ¼ b1. On utilization
of the Brown-Henneaux formula [170], the above expres-
sion matches exactly with the result obtained from the
boundary perspective in Eq. (4.33). Also note that for the
configuration under consideration, the Markov recovery
process is perfect as there are no nontrivial boundaries of
the corresponding EWCS which has also been shown in
Appendix A 2.

2. Phase-II

Boundary description. For this phase, we now consider the
case where the interval B is small such that it lacks an
entanglement entropy island as shown in Fig. 9. This implies
that the island cross section Γ is a null set. The remaining
effective semiclassical entanglement negativity is obtained
through the following three-point twist correlator

EeffðA∪IA∶B∪ IBÞ
¼ lim

ne→1
log½ðϵyΩð−aÞÞΔne hT neð−aÞT̄ 2

neðb1ÞT neðb2ÞiCFT⊗ne �

¼c
4
log

�ðb1þaÞðb2−b1Þ
ðb2þaÞϵ

�
: ð4:36Þ

Again, the point on the AdS2 brane Q is fixed to be a ¼ b1
through the entanglement entropy computation of the inter-
val A. Utilizing this value of a, we may obtain the total
entanglement negativity for this phase in the boundary
description to be

EbdyðA∶BÞ ¼ c
4
log

�
2b1ðb2 − b1Þ
ðb2 þ b1Þϵ

�
: ð4:37Þ

Bulk description. For the bulk description of this phase, we
observe in Fig. 9 that the entanglement wedge for the
subsystem A ∪ B is connected. However, since the interval
B does not have an entanglement island, the effective
entanglement negativity term in Eq. (3.4) vanishes. The
only contribution to the total entanglement negativity
comes from the lengths of the extremal curves labeled
as Li (i ¼ 1, 2, 3) in Fig. 9. To this end, we note that the
lengths of the extremal curves L1 and L2 have the same
form as given in Eqs. (4.12) and (4.11), respectively. Using
similar approximations as were employed for the bulk
description in Sec. IVA 2, the length of the extremal curve
L3 may be computed to be

L3 ¼ l log

�ðb1 þ b2Þ2
ϵb1

�
þ l tanh−1ðsin θ0Þ; ð4:38Þ

where we have used a ¼ b1. We may now obtain the total
entanglement negativity for this phase using Eq. (3.4) to be

EbdyðA∶BÞ ¼ 3l
8GN

log

�
2b1ðb2 − b1Þ
ðb2 þ b1Þϵ

�
; ð4:39Þ

which on utilization of the usual Brown-Henneaux formula
[170] matches exactly with the result obtained through the
boundary description in Eq. (4.37). We also note here that
the above result differs from the corresponding reflected

FIG. 9. Schematics of the defect extremal surface for the
entanglement negativity between two adjacent intervals A and
B in phase-II. In this phase, the island of the interval B is an
empty set.
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entropy by an additive constant described by the Markov
gap. This has also been discussed in Appendix A 2.

V. TIME-DEPENDENT ENTANGLEMENT
NEGATIVITY IN BLACK HOLES

In this section we investigate the nature of mixed-state
entanglement through the entanglement negativity in a
time-dependent defect AdS3=BCFT2 scenario involving an
eternal black hole in the effective two-dimensional descrip-
tion [63,94]. The lower-dimensional effective model
involves the appearance of entanglement islands during
the emission of the Hawking radiation from the eternal
black hole.

A. Review of the eternal black hole in AdS/BCFT

As described in [63,94], we consider a BCFT2

defined on the half-plane ðx; τ ≥ 0Þ. The correspon-
ding bulk dual is described by the Poincaré-AdS3
geometry truncated by an end-of-the-world brane
located at the hypersurface τ ¼ −z tan θ0. Here θ0 is
the angle made by the EOW brane with the vertical,
and τ and z are the timelike14 and holographic
coordinates, respectively.
Utilizing a global conformal map, the boundary of the

BCFT2 is then mapped to a circle

x02 þ τ02 ¼ 1: ð5:1Þ

The bulk dual of such a global conformal transformation is
given by the following Banados map [63,94,124]

τ0 ¼ 1þ τ − 1
2
ðτ2 þ x2 þ z2Þ

1 − τ þ 1
4
ðτ2 þ x2 þ z2Þ ;

x0 ¼ x
1 − τ þ 1

4
ðτ2 þ x2 þ z2Þ ;

z0 ¼ z
1 − τ þ 1

4
ðτ2 þ x2 þ z2Þ : ð5:2Þ

The EOW brane is mapped to a portion of a sphere under
these bulk transformations,

x02 þ τ02 þ ðz0 þ tan θ0Þ2 ¼ sec2θ0: ð5:3Þ

Note that, as the above transformation is a global conformal
map, the metric in the bulk dual spacetime as well as the
metric induced on the EOW brane are preserved under the
Banados map Eq. (5.2). The schematics of this time-
dependent AdS/BCFT scenario is depicted in Fig. 10(a).
Finally employing the partial Randall-Sundrum reduc-

tion combined with the AdS3=BCFT2 correspondence
discussed in [45,63,94], one obtains a two-sided (1þ 1)-
dimensional eternal black hole on the EOW brane which is
coupled to the BCFT2 outside the circle [Eq. (5.1)] in the 2d
effective description. The schematics of the configuration is
depicted in Fig. 10(b). The hybrid manifold consisting of a
2d eternal black hole with a fluctuating geometry coupled
to the flat BCFT2 may conveniently be described in terms
of the Rindler coordinates ðX; TÞ defined through

x0 ¼ eX coshT; t0 ≡ −iτ0 ¼ eX sinhT: ð5:4Þ

These Rindler coordinates naturally capture the near-
horizon geometry of the 2d black hole [94].
In the following, we will compute the entanglement

negativity for various bipartite states involving two disjoint
and two adjacent intervals in the time-dependent scenario
of defect AdS/BCFT discussed above. In this regard, we

FIG. 10. (a) Euclidean AdS/BCFT with the BCFT defined outside the circle. (b) 2d eternal black hole in Lorentzian signature.

14Note that in the Euclidean signature, there is no essential
difference between the timelike and spacelike coordinates and
the present parametrization is a convenient choice adapted in
[63,94].
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will employ the semiclassical island formula Eq. (3.2) in
the lower-dimensional effective description as well as the
doubly holographic defect extremal surface proposals in
Eqs. (3.3) and (3.4) and find exact agreement between
the two.

B. Entanglement negativity between
black hole interiors

In this subsection, we compute the time-dependent
entanglement negativity between different regions of the
black hole interior. As described in [63,94] the black hole
region B is defined as the spacelike interval from Q≡
ðt00;−x00Þ toP≡ ðt00; x00Þ as shown in Fig. 11.We perform the
computations in the Euclidean signature with τ00 ¼ it00 and
subsequently obtain the final result in Lorentzian signature
through an analytic continuation. Depending on the con-
figuration of the extremal surface for the entanglement
entropy of B, there are two possible phases for the extremal
surfaces corresponding to the entanglement negativity
between the black hole subsystems BL and BR.

1. Connected phase

The connected phase corresponds to the scenario where
there is no entanglement island for the radiation bath in the
effective boundary description as shown in Fig. 11. From
the bulk perspective, this corresponds to a connected
extremal surface for BL ∪ BR. In this phase, it is required
to compute the entanglement negativity between the two
adjacent intervals BL ≡ jO0Qj and BR ≡ jO0Pj, where the
pointO0 is dynamical as it resides on the EOW brane with a
gravitational theory.

Boundary description. In the 2d boundary description, the
effective semiclassical entanglement negativity between BL
and BR may be computed through the three-point corre-
lation function of twist operators as follows:

EeffðBL∶ BRÞ
¼ lim

ne→1
log ½ðϵyΩO0 ÞΔð2Þ

ne hT neðQÞT̄ 2
neðO0ÞT neðPÞi�: ð5:5Þ

It is convenient to perform the computations in the unprimed
coordinates ðy; xÞ given in Eq. (2.2), where y measures the
distance along the EOWbrane and x is the spatial coordinate

describing the BCFT2. In these coordinates, the conformal
factor associated with the dynamical point O0 on the EOW
brane Q is given by [45,63,94]

ΩO0 ðyÞ ¼
���� y cos θ0l

����: ð5:6Þ

wherel is the AdS3 radius inherited from the bulk geometry.
The form of the CFT2 three-point function in Eq. (5.5) is
given by

hT neðQÞT̄ 2
neðO0ÞT neðPÞi

¼ CT neT
2
neT ne

jO0Pj−Δð2Þ
ne jO0Qj−Δð2Þ

ne jPQj−2ΔneþΔð2Þ
ne ; ð5:7Þ

where CT neT
2
neT ne

is the constant OPE coefficient which is
neglected henceforth. Substituting Eqs. (5.6) and (5.7) in
Eq. (5.5), we may obtain the following expression for the
generalized entanglement negativity between BL and BR in
the boundary description

Ebdy
genðBL∶ BRÞ ¼

c
4
log

�ðτ0þ yÞ2þ x20
2x0

�
þ c
4
log

�
l

ϵyycosθ0

�

þ c
4
tanh−1ðsinθ0Þ; ð5:8Þ

wherewehave added the area termEq. (2.8) corresponding to
the point O0 on the EOW brane in the QES formula. The
above expression is extremized over the position y of the
dynamical point O0 to obtain

y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ x20

q
: ð5:9Þ

Substituting the above expression in Eq. (5.8), the semi-
classical entanglement negativity in the 2d effective boun-
dary description is obtained as follows:

EbdyðBL∶ BRÞ ¼
c
4
log

�
τ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ x20

p
x0

�
þ c
4
log

�
l

ϵy cosθ0

�

þ c
4
tanh−1ðsinθ0Þ: ð5:10Þ

Now transforming back to the primed coordinates using
Eq. (5.2) and analytically continuing to the Lorentzian
signature, the above expression reduces to

EbdyðBL∶BRÞ¼
c
4
log

�
x020 − t020 −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x020 þðx020 − t020 −1Þ2

p
2x00

�

þc
4
log

�
l

ϵycosθ0

�
þc
4
tanh−1ðsinθ0Þ:

ð5:11Þ

In terms of the Rindler coordinates ðX; TÞ, the final result for
the entanglement negativity between the black hole interiors
becomes

FIG. 11. Schematics of the quantum extremal surface for the
entanglement negativity between black hole interiors in the
connected phase at a constant time slice.
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EbdyðBL∶BRÞ ¼
c
4
log

�
e2X0 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2X0cosh2T þ ðe2X0 − 1Þ2

p
2eX0 coshT

�
þ c
4
log

�
l

ϵy cos θ0

�
þ c
4
log

�
cos θ0

1 − sin θ0

�
; ð5:12Þ

whereX0 describes the boundary of the black hole region at a
fixed Rindler time T. Note that the above expression for the
entanglement negativity between BL and BR is a decreasing
function of the Rindler time T in this phase.

Bulk description. Next we focus on the three-dimensional
bulk description for the connected phase of the entangle-
ment negativity between the black hole interiors. To
compute the holographic entanglement negativity, we note
that the mixed-state configuration described by BL and BR
corresponds to the case of two adjacent intervals jO0Pj and
jO0Qj. The configuration of the bulk extremal curves
homologous to various subsystems under consideration
is depicted in Fig. 12. Now employing the DES formula
given in Eq. (3.4), we may obtain

Ebulk
gen ðBL∶ BRÞ ¼

3

16GN
ðL1 þ L2 − L3Þ

þ EeffðBL∶BRÞ; ð5:13Þ
where L1, L2 and L3 are the lengths of the bulk extremal
curves homologous to jO0Pj, jO0Qj and jPQj, respectively,
and EeffðBL∶ BRÞ denotes the effective entanglement neg-
ativity between bulk quantum matter fields residing on the
EOW brane.
In the unprimed coordinates, the Cauchy slice on the

EOW brane is in a pure state as described in [63]. Hence,
the effective entanglement negativity in Eq. (5.13) may be
obtained through the Rényi entropy of order one half for a
part of matter fields on the EOW brane. Consequently,
similar to Eq. (4.26), the effective entanglement negativity
is a constant given by

EeffðBL∶BRÞ ¼
c
4
log

2l
ϵy cos θ0

: ð5:14Þ

As the effective entanglement negativity turns out to be a
constant, the entanglement negativity in this phase is
determined entirely through the algebraic sum of the
lengths of the extremal curves in Eq. (5.13). To obtain
the lengths of these extremal curve, we employ the
unprimed coordinate system with the Poincaré-AdS3 metric
[63]. Under the bulk map in Eq. (5.2), the coordinates of P
and Q may be mapped to ðτ0; x0; 0Þ and ðτ0;−x0; 0Þ where

τ0 ¼
2ðx020 þ τ020 − 1Þ
ðτ00 þ 1Þ2 þ x020

; x0 ¼
4x00

ðτ00 þ 1Þ2 þ x020
: ð5:15Þ

Utilizing the left-right Z2 symmetry of the configuration,
we may set the coordinates of the dynamical pointO0 on the
brane as O0∶ ð−z tan θ0; 0; zÞ, where z is determined
through the extremization of the generalized negativity
functional in Eq. (5.13). The lengths of the extremal curves
may now be obtained in the unprimed coordinates through
the standard Poincaré-AdS3 result as follows [10,11]:

L1 ¼ lcosh−1
�ðτ0 þ z tan θ0Þ2 þ x20 þ z2

2z

�

− l log

�
4ϵ

ðτ00 þ 1Þ2 þ x020

�
¼ L2;

L3 ¼ 2l logð2x0Þ − 2l log

�
4ϵ

ðτ00 þ 1Þ2 þ x020

�
: ð5:16Þ

In the above expression, ϵ is the UV cutoff for the original
BCFT2 in the primed coordinates and the second loga-
rithmic term arises due to the cutoff in the unprimed
coordinates [cf. the Banados map in Eq. (5.2)]. Now
extremizing the generalized negativity with respect to z
we may obtain the position of O0 to be

∂zEbulk
gen ¼ 0 ⇒ z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ τ20

q
cos θ0: ð5:17Þ

Substituting the above value of z in Eq. (5.13), we may
obtain the bulk entanglement negativity between BL and
BR as follows:

EbulkðBL∶ BRÞ ¼
c
4

�
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ τ20

p þ τ0 sin θ0
x0 cos θ0

�

þ log
l

ϵy cos θ0

�
; ð5:18Þ

where the effective contribution from the quantum matter
fields given in Eq. (5.14) has been included. Now utilizing
the hyperbolic identity

FIG. 12. Schematics of the defect extremal surface for the
entanglement negativity between black hole interiors in the
connected phase. The bulk extremal curves homologous to BL,
BR and BL ∪ BR are given by L1, L2 and L3 respectively.
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cosh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20 þ τ20
p þ τ0 sin θ0

x0 cos θ0

�

¼ log

�
τ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ τ20

p
x0

�
þ cosh−1ðsec θ0Þ; ð5:19Þ

Eq. (5.18) may be expressed as

EbulkðBL∶BRÞ ¼
c
4

�
log

�
τ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ τ20

p
x0

�
þ log

l
ϵy cos θ0

þ log
cos θ0

1 − sin θ0

�
: ð5:20Þ

Transforming to the primed coordinates using Eq. (5.2) and
subsequently to the Rindler coordinates Eq. (5.4) via the
analytic continuation τ0 ¼ it0, we may obtain the bulk
entanglement negativity between BL and BR to be

EbulkðBL∶ BRÞ

¼ c
4
log

�
e2X0 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2X0 cosh2T þ ðe2X0 − 1Þ2

p
2eX0 coshT

�

þ c
4
log

�
l

ϵy cos θ0

�
þ c
4
log

�
cos θ0

1 − sin θ0

�
: ð5:21Þ

The above expression matches identically with the boun-
dary QES result in Eq. (5.12) which provides a strong
consistency check of our holographic construction. Also
note that the above result for the entanglement negativity
differs from the corresponding reflected entropy computed
earlier in [63] by a constant factor of c

4
log 2 which is

consistent with the geometric interpretation of the Markov
gap as discussed in Sec. II D.

2. Disconnected phase

In this subsection, we concentrate on the disconnected
phase for the extremal surface for BL ∪ BR, depicted in
Fig. 13. In this case, there are entanglement islands
corresponding to the radiation bath on the EOW brane,
and a part of the entanglement wedge for the radiation bath
is subtended on the brane. This splits the black hole regions
into two disjoint subsystems, namely BR ≡ jPP0j and
BL ≡ jQQ0j, where the points P0 and Q0 are determined
by the extremal surface for BL ∪ BR.

Boundary description. In the two-dimensional effective
boundary description, the area term for the generalized
entanglement negativity vanishes since there is no non-
trivial island cross section, ∂BL ∩ ∂BR ¼ ∅. The effective
semiclassical entanglement negativity between BL and BR
may be computed through the following four-point corre-
lator of twist operators placed at the endpoints of the
intervals,

EeffðBL∶ BRÞ ¼ lim
ne→1

log½ðϵyΩP0 ÞΔne ðϵyΩQ0 ÞΔne

× hT neðQÞT̄ neðQ0ÞT̄ neðP0ÞT neðPÞi�:
ð5:22Þ

As indicated by the disconnected extremal surfaces shown
in Fig. 13, the above four-point correlator factorizes into the
product of two 2-point correlators as follows:

hT neðQÞT̄ neðQ0ÞT̄ neðP0ÞT neðPÞi
≈ hT neðQÞT̄ neðQ0ÞihT neðPÞT̄ neðP0Þi: ð5:23Þ

Now utilizing Eq. (4.20), we may observe that, in the
replica limit ne → 1, the above correlation function van-
ishes identically. Hence, in this phase the total entangle-
ment negativity between the black hole interiors is also
vanishing.

Bulk description. As depicted in Fig. 14, the entanglement
wedges corresponding to the subsystems BL and BR are
naturally disconnected and hence, the configuration corre-
sponds to two disjoint intervals on the boundary which are
far away from each other. In this case, the area contribution
to the bulk entanglement negativity vanishes [151,152].
The effective entanglement negativity between portions of
bulk quantum matter on the EOW brane is given by the
BCFT correlation function of twist fields inserted at P0 and
Q0 as follows:

Eeff ¼ lim
ne→1

log hT neðP0ÞT̄ neðQ0ÞiBCFT⊗ne : ð5:24Þ

FIG. 13. Schematics of the quantum extremal surface for the
entanglement negativity between black hole interiors in the
disconnected phase.

FIG. 14. Schematics of the defect extremal surface for the
entanglement negativity between black hole interiors in the
disconnected phase.
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The coordinates of P0 and Q0 are obtained via extremizing
the generalized entropy functional for BL ∪ BR which,
in the ðy; xÞ coordinates, are given by ðτ0; x0Þ and ðτ0;−x0Þ
respectively [94]. Now employing the doubling trick
[123,127], the correlation function in Eq. (5.24) may be
expressed as a chiral four-point function on the full
complex plane as

hT neðP0ÞT̄ neðQ0ÞiBCFT⊗ne

¼ hT neðP0ÞT̄ neðQ0ÞT̄ neðQ00ÞT neðP00ÞiCFT⊗ne ; ð5:25Þ

where P00∶ ð−τ0; x0Þ and Q00∶ ð−τ0;−x0Þ are the image
points of P0 andQ0 upon reflection through the boundary at
τ ¼ 0. The above four-point correlator is again factorized
into two two-point functions in the dominant channel and
similar to the previous subsection, the effective semi-
classical entanglement negativity vanishes. Hence, the
boundary QES result is reproduced through the bulk
computations. Note that for this disconnected phase, we
observe a perfect Markov recovery process as the bulk
entanglement wedge is disconnected.

3. Page curve

From the results of the last two subsections, we may infer
that the time evolution of the entanglement negativity
between the black hole interiors is governed by the two
phases of the extremal surfaces corresponding to the
entanglement entropy of BL ∪ BR. It is well-known that
the unitary time evolution of the entanglement entropy for a
subsystem in the Hawking radiation flux from a black hole
is governed by the Page curve [7–9]. Hence the transition

between the two different phases of the entanglement
negativity between BL and BR occurs precisely at the
Page time TP, given by [63,94]

TP ¼ cosh−1
�
sinh X0 etanh

−1ðsin θ0Þ 2l
ϵy cos θ0

�
: ð5:26Þ

In the first phase the entanglement negativity is a decreas-
ing function of the Rindler time given by Eq. (5.12). At the
Page time TP the extremal surface for the entanglement
entropy transits to the disconnected phase and an entan-
glement entropy island corresponding to the radiation bath
appears inside the gravitational regions on the EOW brane
Q. At this time, the entanglement negativity also transits to
the corresponding disconnected phase and vanishes iden-
tically. The variation of the entanglement negativity
between black hole interiors with the Rindler time T is
plotted in Fig. 15.

C. Entanglement negativity between the black hole
and the radiation

In this subsection, we now proceed to the computation of
the entanglement negativity between the black hole region
and the radiation region in the time-dependent scenario of
defect AdS3=BCFT2 framework. To this end, we consider
the black hole region to be described by a spacelike interval
BL on the left half of the two-sided eternal black hole and
the radiation region to be described by a semi-infinite
interval RL adjacent to BL as shown in Fig. 16. Similar to
the previous case, there are two phases possible in this case
which are investigated below.

FIG. 15. The Page curve for entanglement negativity between black hole interiors for three different values of the EOW brane angle θ0.
Here the variation of the entanglement negativity with respect to the Rindler time T is shown in units of c

4
with X0 ¼ 1, ϵy ¼ 0.1, l ¼ 1

and θ0 ¼ π
3
; π
4
; π
6
.
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1. Connected phase

The connected phase corresponds to the case where RL
does not posses an entanglement island and thus BL covers
the complete left black hole region on the EOW brane as
shown in Fig. 16. From the doubly holographic perspective,
this corresponds to an extremal surface for RL ∪ BL
extending from the dynamical endpoint O0 of BL on the
EOW brane to spatial infinity. We compute the entangle-
ment negativity between the two adjacent intervals BL ≡
jO0Qj and RL ≡ jQAj in this phase where we have
regularized the semi-infinite interval RL to end at some
point A∶ðτ00;−x0∞Þ which is later taken to infinity.

Boundary description. For the connected phase, the
absence of the entanglement island for the radiation region
RL implies that the generalized entanglement negativity
does not receive any area contribution in the 2d effective
boundary description. The remaining effective semiclass-
ical entanglement negativity between BL and RL may be
computed through the following three-point twist correlator

EeffðBL∶RLÞ
¼ lim

ne→1
log½ðϵyΩO0 ÞΔne hT neðO0ÞT̄ 2

neðQÞT neðAÞi�; ð5:27Þ

where ϵy is a UV cutoff on the dynamical EOW Q and ΩO0

is the warp factor as given in Eq. (5.6). In the unprimed
coordinates, the points O0 and Q are located at ð−y; 0Þ and
ðτ0;−x0Þ, respectively. Using Eq. (5.2), we may locate
the spatial infinity A in the unprimed coordinates at
ðτ; xÞ ¼ ð2; 0Þ. Now, by utilizing the usual form of a
CFT2 three-point twist correlator given in Eq. (5.7), we
may obtain the total generalized entanglement negativity in
the boundary description for this case to be

Ebdy
gen ¼ c

8

�
log

ððτ0 þ yÞ2 þ x20Þðx20 þ ð2 − τ0Þ2Þ
ðyþ 2Þ2

− 2 log
4ϵ

ðτ00 þ 1Þ2 þ x020

�
; ð5:28Þ

where ϵ is the UV cutoff in the primed coordinates. The
above expression is then extremized over the position y of
the dynamical point O0 on the EOW brane to obtain

y ¼ x20
2 − τ0

− τ0: ð5:29Þ

It may be checked through Eqs. (5.2) and (5.4) that τ < 2
for the Rindler time T > 0 which guarantees the non-
negativity of y for large x0. We may now compute the
entanglement negativity by substituting the above value of
y in Eq. (5.28) to be

Ebdy ¼ c
4
log x0 −

c
4
log

4ϵ

ðτ00 þ 1Þ2 þ x020
: ð5:30Þ

Transforming this result to the Rindler coordinates ðX; TÞ
through Eqs. (5.2) and (5.4), we may obtain the final
expression for the entanglement negativity between the
black hole region BL and the radiation region RL in the
boundary description to be

EbdyðBL∶ RLÞ ¼
c
4
log

coshT
ϵ

þ X0; ð5:31Þ

where X0 corresponds to the endpoint Q of the black hole
region BL at the fixed Rindler time T. We note here that the
entanglement negativity in the above expression is an
increasing function of the Rindler time T in this connected
phase.

Bulk description. In the bulk description for this phase as
depicted in Fig. 17, the generalized entanglement negativity
between the black hole region BL ≡ jO0Qj and the radi-
ation region RL ≡ jQAj is computed by employing the
following formula

Ebulk
gen ðBL∶ RLÞ

¼ 3

16GN
ðLRL

þ LBL
− LBL∪RL

Þ

¼ c
8

�
log

½ðτ0 þ z tan θ0Þ2 þ x20 þ z2�ðx20 þ ð2 − τ0Þ2Þ
½ð2þ z tan θ0Þ2 þ z2�

− 2 log
4ϵ

ðτ00 þ 1Þ2 þ x020

�
; ð5:32Þ

FIG. 17. Schematics of the defect extremal surface for the
entanglement negativity between the black hole and the radiation
in the connected phase.

FIG. 16. Schematics of the defect extremal surface for the
entanglement negativity between the black hole and the radiation
in the connected phase.
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where O0∶ ð−z tan θ0; 0; zÞ and Q∶ðτ0;−x0; 0Þ are the
endpoints of BL, and A∶ð2; 0; 0Þ is the regularized endpoint
of the semi infinite radiation region RL in the unprimed
coordinates. We have also used the Brown-Henneaux
formula [170] in the second equality of the above expres-
sion. Note that the semiclassical effective entanglement
negativity appearing as the second term in Eq. (3.4)
vanishes in this case as RL does not posses an entanglement
island. We may extremize Eq. (5.32) over the position of
the dynamical point O0 to obtain

∂zEbulk
gen ¼ 0 ⇒ z ¼ x20 cot θ0

2 − τ0
; ð5:33Þ

where we have used the approximation that x0 is large. The
total entanglement negativity between the black hole region
BL and the radiation region RL in the Rindler coordinates
ðX; TÞ for this phase may now be obtained by utilizing
Eqs. (5.33), (5.32), (5.2), and (5.4) to be

EbulkðBL∶ RLÞ ¼
c
4
log

coshT
ϵ

þ X0; ð5:34Þ

where X0 corresponds to the point Q at the fixed Rindler
time T. Remarkably, the above expression for the entan-
glement negativity matches exactly with the boundary
description result in Eq. (5.31). We should also note here
that the above result for the entanglement negativity is
exactly same as the corresponding reflected entropy [63]
and is consistent with the geometric interpretation of the
Markov gap as the EWCS has trivial boundaries in
this case.

2. Disconnected phase

The disconnected phase is described by the case where
the semi-infinite radiation region RL has an entanglement
island labeled as IL ≡ jO0Q0j as depicted in Fig. 18. From
the bulk perspective, this corresponds to an extremal
surface for RL to end on some point Q0 on the EOW
brane. The entanglement negativity between the black hole
region BL and the radiation region RL for this case will thus
receive contribution from the island region IL on the
EOW brane.

Boundary description. In the boundary description, the area
contribution to the entanglement negativity corresponding

to the point Q0 ¼ ∂BL ∩ ∂IL is as given in Eq. (2.8). The
remaining effective semiclassical entanglement negativity
between BL and RL may be computed through the
following four-point twist correlator,

EeffðBL∶ RL ∪ ILÞ
¼ lim

ne→1
log½ðϵyΩQ0 ÞΔð2Þ

ne ðϵyΩO0 ÞΔne

× hT neðAÞT̄ 2
neðQÞT 2

neðQ0ÞT̄ neðO0Þi�; ð5:35Þ

where Ω are the warp factors as given in Eq. (5.6), A is the
regularized endpoint of the semi-infinite interval RL and the
point Q0 and Q are at position ð−y;−xÞ and ðτ0;−x0Þ,
respectively in the unprimed coordinates. For the bipartite
configuration under consideration, the above four-point
twist correlator factorizes into two two-point twist corre-
lators in the following way:

hT neðAÞT̄ 2
neðQÞT 2

neðQ0ÞT̄ neðO0Þi
≈ hT neðAÞT̄ neðO0ÞÞihT̄ 2

neðQÞT 2
neðQ0Þi: ð5:36Þ

Utilizing the above factorization in Eq. (5.35) along with
the area term in Eq. (2.8), the generalized entanglement
negativity for this case may be expressed as

Ebdy
gen ¼ c

4

�
tanh−1ðsin θ0Þ þ log

l
ϵyy cos θ0

þ logððyþ τ0Þ2 þ ðx − x0Þ2Þ

− log
4ϵ

ðτ00 þ 1Þ2 þ x020

�
; ð5:37Þ

where again ϵ is the UV cutoff in the primed coordinates.
Interestingly, the regularized point A does not enter the
computation in this case. We may now extremize the above
generalized entanglement negativity over the position of
the dynamical point Q0 i.e., ∂yE

bdy
gen ¼ 0 and ∂xE

bdy
gen ¼ 0

to obtain

y ¼ τ0; x ¼ x0: ð5:38Þ

Using the above values of the coordinates y and x in
Eq. (5.37) and transforming the result to the primed
coordinates Eq. (5.2) and subsequently to the Rindler
coordinates (5.4) via the analytic continuation τ ¼ it0,
we may obtain the total entanglement negativity between
the black hole region BL and the radiation region RL to be

EbdyðBL∶ RLÞ

¼ c
4

�
tanh−1ðsin θ0Þ þ log

e2X0 − 1

ϵ
þ log

2l
ϵy cos θ0

�
:

ð5:39Þ
FIG. 18. Schematics of the defect extremal surface for the
entanglement negativity between the black hole and the radiation
in the disconnected phase.
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Here X0 corresponds to the endpoint Q of the black hole
region BL. Note that the above expression for the entan-
glement negativity is independent of the Rindler time T and
only depends on the position of the point Q.

Bulk description. In the 3d bulk description for the
disconnected phase, the entanglement negativity between
the black hole region BL and the radiation region RL is
computed by employing the DES formula in Eq. (3.4) as
follows:

Ebulk
gen ðBL∶ RLÞ ¼

3

16GN
ðLBL

þ LRL
− LBL∪RL

Þ

þ EeffðBL∶RLÞ

¼ 3

8GN
L2 þ EeffðBL∶ILÞ; ð5:40Þ

where L2 is the extremal curve between points
Q0∶ ð−z tan θ0;−x1; zÞ and Q∶ðτ0;−x0; 0Þ and IL is the
island region corresponding to the radiation region RL as
depicted in Fig. 19. In the second term of the above
expression we have also utilized the fact that bulk matter
fields are only localized on the EOW braneQ. We note here
that, consistent with the boundary description, the regu-
larized point A does not enter the computation in this phase.
The length of the extremal curve L2 in the unprimed
coordinates may be expressed as [10,11]

L2 ≡ LQQ0

¼ l log
�ðτ0 þ z tan θ0Þ2 þ ðx0 − x1Þ2 þ z2

z

�

− l log

�
4ϵ

ðτ00 þ 1Þ2 þ x020

�
: ð5:41Þ

The semiclassical effective entanglement negativity appear-
ing as the last term in Eq. (5.40) may be obtained to be

EeffðBL∶ ILÞ ¼
c
4
log

2l
ϵy cos θ0

; ð5:42Þ

where ϵy is the UV cutoff on the dynamical EOW brane.
Extremizing the generalized entanglement negativity
obtained by substituting Eqs. (5.41) and (5.42) in
Eq. (5.40), with respect to the position of Q0 i.e.,
∂zEbulk

gen ¼ 0 and ∂x1E
bulk
gen ¼ 0, we may obtain

z ¼ τ0 cos θ0; x1 ¼ x0: ð5:43Þ

The total entanglement negativity between the black hole
region BL and the radiation region RL in the primed
coordinates may then be obtained through Eqs. (5.43)
and (5.2) to be

EbulkðBL∶ RLÞ ¼
c
4

�
log

�
x020 þ τ020 − 1

ϵ

�
þ tanh−1ðsin θ0Þ

þ log

�
2l

ϵy cos θ0

��
; ð5:44Þ

where the Brown-Henneaux formula [170] has been used.
On transformation to the Rindler coordinates Eq. (5.4) via
the analytic continuation τ0 ¼ it0, the above expression
matches exactly with the boundary perspective result in
Eq. (5.39) which serves as a strong consistency check for
our proposals. Once again we note that the above result
consistently match with the corresponding reflected
entropy [63] as the Markov gap is vanishing for this
configuration.

3. Page curve

We now analyze the results of the last two subsections
where we have computed the entanglement negativity
between the black hole region BL and the radiation region
RL for the two possible phases. In the connected phase, the
entanglement negativity computed in Eq. (5.31) is an
increasing function of the Rindler time T. In contrast,
for the disconnected phase, the entanglement negativity
given in Eq. (5.39) is independent of T and only depends on
the size of the black hole region BL. A transition from the
connected phase to the disconnected phase is observed at
the Page time for the entanglement entropy given in
Eq. (5.26). In Fig. 20, we show the variation of the time
dependent entanglement negativity between the black hole
region BL and the radiation RL with the Rindler time T for
three different values of the EOW brane angle θ0.

D. Entanglement negativity between subsystems
in the radiation bath

In this subsection, we compute the entanglement neg-
ativity between the right-subsystem RR and the left-sub-
system RL in the radiation region as shown in Fig. 21. In the
Rindler coordinates ðX; TÞ, the right-radiation subsystem
RR extends from ðX0; TÞ to ðX1; TÞ and the left-radiation
subsystem RL extends from ðX0;−TþiπÞ to ðX1;−TþiπÞ.
In the primed coordinates, the subsystems RR ≡ jNQj and

FIG. 19. Schematics of the defect extremal surface for the
entanglement negativity between the black hole and the radiation
in the disconnected phase.
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RL ≡ jPMj are mapped to the intervals ½ðτ00; x00Þ; ðτ01; x01Þ�
and ½ðτ01;−x01Þ; ðτ00;−x00Þ�, respectively. Similar to the earlier
subsections, we perform the computation in the Euclidean
signature and subsequently transform the results to Rindler
coordinates in the Lorentzian signature. Depending on the
phase transition of the extremal surfaces corresponding to
RL ∪ RR, the DES corresponding to the entanglement
negativity between them crosses from a connected phase
to a disconnected phase. In the following, we investigate
the time evolution of the entanglement negativity between
RL and RR from both the bulk and the boundary
perspective.

1. Connected phase

In the connected phase, there are no entanglement
entropy islands corresponding to RL and RR in the effective
boundary description as illustrated in Fig. 21. In this phase,
we compute the entanglement negativity between the
disjoint radiation subsystems RL and RR.

Boundary description. As there are no island contributions
in this phase, we observe from Eq. (3.2) that the entangle-
ment negativity between the radiation subsystems in 2d
effective boundary description reduces to the effective
entanglement negativity between two disjoint intervals as
follows:

EbdyðRL∶ RRÞ
¼ EeffðRL∶RRÞ
¼ lim

ne→1
log½hT neðPÞT̄ neðMÞT̄ neðNÞT neðQÞiCFT⊗ne �:

ð5:45Þ

As described in Sec. IVA 2, for the two disjoint subsystems
in the t-channel, the above four-point twist correlator may be
computed in the large central-charge limit as follows [151]:

EbdyðRL∶RRÞ ¼
c
4
log

�jPNjjMQj
jMNjjPQj

�

¼ c
4
log

ðeX0 þ eX1Þ2 − ðeX0 − eX1Þ2tanh2T
4eX0þX1

:

ð5:46Þ

Note that the entanglement negativity between the radiation
subsystems RL and RR is a monotonically decreasing
function of the Rindler time T in this phase.

Bulk description. In the 3d bulk description, the effective
entanglement negativity in Eq. (3.3) vanishes as the
corresponding entanglement wedges contain no quantum
matter fields as illustrated in Fig. 22. The entanglement
negativity between RL and RR is then given entirely by the
combination of the lengths of the defect extremal surfaces
as follows:

EbulkðRL∶ RRÞ ¼
3

16GN
ðLPN þ LMQ − LMN − LPQÞ

¼ 3l
8GN

�
log

�ðx01 þ x00Þ2 þ ðτ01 − τ00Þ2
ϵ2

�

− log

�
2x00
ϵ

�
− log

�
2x01
ϵ

��
; ð5:47Þ

where we have used the fact that the length of an extremal
curveLab connecting two points ðτ0a; x0aÞ and ðτ0b; x0bÞ on the
boundary is given by [11]

FIG. 20. The Page curve for the entanglement negativity
between the black hole region and the radiation region for three
different values of the EOW brane angle θ0. Here the variation of
the entanglement negativity with respect to the Rindler time T is
shown in units of c

4
with X0 ¼ 1, ϵ ¼ 0.01, ϵy ¼ 0.1, l ¼ 1

and θ0 ¼ π
3
; π
4
; π
6
.

FIG. 21. Schematics of the quantum extremal surface for the
entanglement negativity between intervals in the radiation region
in the connected phase.

FIG. 22. Schematics of the defect extremal surface for the
entanglement negativity between intervals in the radiation region
in the connected phase.

DEFECT EXTREMAL SURFACES FOR ENTANGLEMENT … PHYS. REV. D 108, 106005 (2023)

106005-21



Lab ¼ l log

�ðx0a − x0bÞ2 þ ðτ0a − τ0bÞ2
ϵ2

�
: ð5:48Þ

Now analytically continuing to the Lorentzian signature
and transforming to the Rindler coordinates in Eq. (5.4), we
obtain the entanglement negativity between RL and RR in
the bulk description to be

EbulkðRL∶ RRÞ ¼
c
4
log

ðeX0 þ eX1Þ2 − ðeX0 − eX1Þ2tanh2T
4eX0þX1

;

ð5:49Þ

which matches exactly with the result from the boundary
description, given in Eq. (5.46). Note that in the limit of
large X1 where the two disjoint intervals RL and RR are in
proximity, the above expression reduces to

EbulkðRL∶ RRÞ ¼
c
4
ðX1 − X0 − 2 logðcoshTÞÞ − c

4
log 4:

ð5:50Þ

The last term in the above expression describes the geo-
metric Markov gap as compared to the corresponding
reflected entropy [63].

2. Disconnected phase

For the disconnected phase, the entanglement entropy
corresponding to the radiation subsystems receives island
contributions as depicted in Fig. 23. The entanglement
negativity islands corresponding to the radiation subsys-
tems RL and RR, located on the EOW brane, are denoted as
IL ≡ jM0O0j and IR ≡ jO0N0j, respectively.15 We now
proceed to compute the entanglement negativity between
the radiation subsystems in the boundary and bulk descrip-
tions in this phase.

Boundary description. In the 2d boundary perspective, the
area term corresponding to the point O0 ¼ ∂IL ∩ ∂IR is a
constant given by Eq. (2.8). The remaining effective
semiclassical entanglement negativity in Eq. (3.2) may
be expressed as

EeffðRL ∪ IL∶ RR ∪ IRÞ
¼ lim

ne→1
log½ðϵyΩM0 ÞΔne ðϵyΩN0 ÞΔne ðϵyΩO0 ÞΔð2Þ

ne hT neðPÞT̄ neðMÞT neðM0ÞT̄ 2
neðO0ÞT neðN0ÞT̄ neðNÞT neðQÞine �: ð5:51Þ

In the large central-charge limit, the above twist correlator
may be factorized in the dominant channel as follows:16

hT̄ neðMÞT neðM0ÞihT neðPÞT̄ 2
neðO0ÞT neðQÞi

× hT neðN0ÞT̄ neðNÞi: ð5:52Þ

Now, employing the replica limit ne → 1, the effective
semiclassical entanglement negativity Eq. (5.51) in the
disconnected phase reduces to

EeffðRL ∪ IL∶ RR ∪ IRÞ
≈ lim

ne→1
log ½ðϵyΩO0 ÞΔð2Þ

ne hT neðPÞT̄ 2
neðO0ÞT neðQÞi�

¼ c
4
log

�
l

ϵyy cos θ0

�
þ c
4
log

�ðyþ τ1Þ2 þ x21
2x1

�
; ð5:53Þ

where the coordinates for P, Q and O0 are given by
ðτ1;−x1Þ, ðτ1; x1Þ and ð−y; 0Þ respectively. The generalized
entanglement negativity between RL and RR in the 2d
boundary description may now be obtained using
Eqs. (5.53) and (3.2) as follows:

Ebdy
genðRL∶ RRÞ ¼

c
4
log

�
l

ϵyycosθ0

�
þ c
4
log

�ðyþ τ1Þ2þ x21
2x1

�

þ c
4
tanh−1ðsinθ0Þ: ð5:54Þ

Extremizing the above generalized entanglement negativity
with respect to y we obtain

∂yE
bdy
genðRL∶RRÞ ¼ 0 ⇒ y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 þ x21

q
: ð5:55Þ

Now, substituting the value of y in Eq. (5.54), the
entanglement negativity between the radiation subsystems
for the disconnected phase in the boundary description is
given by

FIG. 23. Schematics of the quantum extremal surface for the
entanglement negativity between intervals in the radiation region
in the disconnected phase. IL and IR denote the entanglement
negativity islands corresponding to RL and RR, respectively.

16The correlators are factorized into their respective contrac-
tions as depicted by the choice of the extremal surfaces in Fig. 24.

15Note that the entanglement negativity islands together
constitute the entanglement entropy island for RL ∪ RR.
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EbdyðRL∶RRÞ ¼
c
4

�
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 þ x21

p
þ τ1

x1
þ log

�
l

ϵy cos θ0

�
þ tanh−1ðsin θ0Þ

�
: ð5:56Þ

Finally, transforming to the primed coordinates in Eq. (5.2), performing the Lorentzian continuation and utilizing Eq. (5.4)
we obtain the entanglement negativity between the radiation subsystems in terms of the Rindler coordinates ðX; TÞ in the 2d
effective boundary description as follows:

EbdyðRL∶RRÞ ¼
c
4

�
log

e2X1 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2X1cosh2T þ ðe2X1 − 1Þ2

p
2eX1 coshT

þ log

�
l

ϵy cos θ0

�
þ log

�
cos θ0

1 − sin θ0

��
: ð5:57Þ

Bulk description. In the disconnected phase, due to the
presence of entanglement islands, a portion of the EOW
brane Q is contained within the entanglement wedge of the
radiation in the 3d bulk description. As depicted in Fig. 24,
jM0N0j denotes the entanglement entropy island corre-
sponding to RL ∪ RR. The bulk EWCS ends on the
EOW brane at the point O0 and splits the entanglement
wedge corresponding to RL ∪ RR into two codimension-
one regions RL and RR, respectively. For this phase, the
entanglement negativity between RL and RR corresponds to
the configuration of disjoint subsystems jPMj ∪ jO0M0j
and jNQj ∪ jO0N0j, sandwiching the region jMM0j ∪ jNN0j
in between. Therefore, we may employ the DES formula in
Eq. (3.3) to obtain

Ebulk
gen ðRL∶ RRÞ ¼

3

16GN
½ðL1 þ L4Þ þ ðL2 þ L3Þ

− ðL3 þ L4Þ − L5� þ EeffðRL∶RRÞ

¼ 3

16GN
ðL1 þ L2 − L5Þ þ EeffðIL∶IRÞ;

ð5:58Þ

where as earlier, the effective entanglement negativity
between bulk matter fields reduces to that between the
adjacent intervals IL ≡ jO0M0j and IR ≡ jO0N0j on the

EOW brane. The lengths of the extremal surfaces in
Eq. (5.58) are given by [10,11,94]

L1 ¼ l log

�ðτ1 þ z tan θ0Þ2 þ x21 þ z2

z

�

− l log

�
4ϵ

ðτ01 þ 1Þ2 þ x021

�
¼ L2;

L5 ¼ 2l logð2x1Þ − 2l log

�
4ϵ

ðτ01 þ 1Þ2 þ x021

�
; ð5:59Þ

where the second logarithmic term corresponds to the UV
cutoff in the unprimed coordinates [63,94]. The effective
entanglement negativity in Eq. (5.58) between the island
regions IL and IR may be computed through a three-point
correlator of twist fields inserted at the endpoints of the
intervals as follows:

EeffðIL∶ IRÞ¼ lim
ne→1

log½ðϵ2yΩM0ΩN0 ÞΔne ðϵyΩO0 ÞΔð2Þ
ne

×hT neðM0ÞT̄ 2
neðO0ÞT neðN0ÞiBCFT⊗ne �: ð5:60Þ

The above three-point twist correlator on the half plane
describing the BCFT may be expressed as a six-point
correlator of chiral twist fields on the whole complex plane
using the doubling trick [123,127] as follows:

hT neðM0ÞT̄ 2
neðO0ÞT neðN0ÞiBCFT⊗ne

¼hT neðM0ÞT̄ neðMÞT̄ 2
neðO0ÞT 2

neðOÞT neðN0ÞT̄ neðN0ÞiCFT⊗ne;

ð5:61Þ

where M, N and O are the image of the points M0, N0 and
O0 on the EOW brane respectively. In the large central-
charge limit, the six-point correlator may be further
factorized in the dominant channel similar to Eq. (5.52)
as follows:

hT̄ neðMÞT neðM0ÞihT̄ 2
neðO0ÞT 2

neðAÞihT neðN0ÞT̄ neðNÞi:
ð5:62Þ

FIG. 24. Schematics of the defect extremal surface for the
entanglement negativity between intervals in the radiation region
in the disconnected phase.
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Now, reversing the doubling trick and subsequently
employing the replica limit ne → 1, we may obtain the
effective entanglement negativity between IL and IR as

EeffðIL∶ IRÞ ¼ lim
ne→1

log ½ðϵyΩO0 ÞΔð2Þ
ne hT̄ 2

neðO0ÞiBCFT⊗ne �

¼ c
4
log

2l
ϵy cos θ0

: ð5:63Þ

We may obtain the generalized entanglement negativity by
substituting Eqs. (5.59) and (5.63) in Eq. (5.58) to be

Ebulk
gen ðRL∶RRÞ ¼

c
4

�
log

�ðτ1 þ z tan θ0Þ2 þ x21 þ z2

2x1z

�

þ log

�
2l

ϵy cos θ0

��
; ð5:64Þ

where we have used the Brown-Henneaux formula [170] in
the first term. The location of the dynamical point O0 in the
above expression is fixed through extremization at

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 þ x21

q
cos θ0: ð5:65Þ

Substituting the above value of z in Eq. (5.64) and
subsequently transforming the result to the Rindler coor-
dinates using Eqs. (5.2) and (5.4), we may obtain the
entanglement negativity between the radiation subsystems
RL and RR to be

EbulkðRL∶ RRÞ

¼ c
4

�
log

e2X1 − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2X1cosh2T þ ðe2X1 − 1Þ2

p
2eX1 coshT

þ log

�
l

ϵy cos θ0

�
þ log

�
cos θ0

1 − sin θ0

��
: ð5:66Þ

We again observe that the above result in the bulk
description matches exactly with the entanglement nega-
tivity from the boundary description in Eq. (5.57) for the
disconnected phase. Also note that the above expression for
the entanglement negativity differs from the corresponding
reflected entropy by a constant amount given by c

4
log 2

which is consistent with the geometric interpretation of the
Markov gap as discussed in Sec. II D.

3. Page curve

We now analyze the behavior of the time-dependent
entanglement negativity between radiation subsystems as
discussed in last two subsections. We observe that the
entanglement negativity decreases with the Rindler time T
in both phases and eventually plateaus out. In the limit
when both the radiation subsystems RL and RR extends to
spatial infinity, namely X1 → ∞, the asymptotic behavior
of the entanglement negativity is given as

EbulkðRL∶RRÞ

¼
8<
:

c
4
ðX1−X0−2 logð2coshTÞÞ T <TP

c
4



X1− log coshTþ log cosθ0

1−sinθ0
þ log l

ϵy cosθ0

�
T >TP;

ð5:67Þ
where TP is the Page time for the entanglement entropy as
given in Eq. (5.26). Hence, the entanglement negativity

FIG. 25. The Page curve for entanglement negativity between the radiation and the radiation with respect to the Rindler time T in units
of c

4
. Here we choose X0 ¼ 1, X1 ¼ 30, ϵy ¼ 0.1, l ¼ 1 and θ0 ¼ π

3
; π
6
.
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shows a sudden jump at TP, and in the limit X1 → ∞ this
jump is given by

ΔE ¼ c
4

�
2 log

�
2l

ϵy cos θ0

�
þ 2 log

�
cos θ0

1 − sin θ0

�

þ logðe2X0 − 1Þ
�
: ð5:68Þ

Note that this jump in the entanglement negativity differs
from a similar jump observed in the context of the reflected
entropy [63] by a constant c

4
log 2 which arises due to

unequal Markov gap between the connected and the
disconnected phase. The analog of the Page curve for
the entanglement negativity for this bipartite configuration
is shown in Fig. 25.

VI. SUMMARY AND DISCUSSION

To summarize, in this article, we have proposed a defect
extremal surface prescription for the entanglement nega-
tivity of bipartite mixed-state configurations in the
AdS3=BCFT2 scenarios which include defect conformal
matter on the EOW brane. Furthermore, we have extended
the island formula for the entanglement negativity to the
framework of the defect AdS3=BCFT2, utilizing the lower
dimensional effective description involving a CFT2

coupled to semiclassical gravity. Interestingly, the bulk
DES formula may be understood as the doubly holographic
counterpart of the island formula for the entanglement
negativity.
To begin with, we computed the entanglement negativity

in the time independent scenarios involving adjacent and
disjoint intervals on a static time slice of the conformal
boundary of the 3d braneworld. To this end, we have
demonstrated that the entanglement negativity for various
bipartite states obtained through the DES formula matches
exactly with the results from the corresponding QES
prescription involving entanglement negativity islands.
Subsequently we obtained the entanglement negativity in
various time-dependent scenarios involving an eternal
black hole coupled to a radiation bath in the effective
lower-dimensional picture. In such time-dependent scenar-
ios, we have obtained the entanglement negativity between
subsystems in the black hole interior, between subsystems
involving black hole and the radiation bath, and between
subsystems in the radiation bath utilizing the island as well
as the bulk DES formulas. In this connection, we have
studied the time evolution of the entanglement negativity
for the above configurations and obtained the analogs of the
Page curves. Interestingly, the transitions between different
phases of the defect extremal surfaces corresponding to the
entanglement negativity for the above configurations occur
precisely at the Page time for the corresponding entangle-
ment entropy. Remarkably, it was observed that the
entanglement negativity from the boundary and bulk

proposals are in perfect agreement for the time-dependent
cases, thus demonstrating the equivalence of both formu-
lations. This serves as a strong consistency check for our
proposals.
We would like to emphasize that the entanglement

negativity for a bipartite mixed state is characterized by
the reduced density matrix ρAB which in the bulk descrip-
tion corresponds to the entanglement wedge of A ∪ B.
Therefore, a prescription for the bulk construction for the
entanglement negativity should naturally involve the com-
plete entanglement wedge of A ∪ B and its subsequent
bipartition. In this work, we propose obtaining this bipar-
tition via the entanglement wedge cross section. The
application of our proposal for all the cases considered
in this article matches with the corresponding QES results
at leading order in c. However, a nontrivial cross-check for
the uniqueness of our proposal will possibly require the
addition of quantum matter fields situated in the interior of
the spacetime in addition to the matter fields located on the
brane. We expect the results to differ only at the sub-leading
orders in c for any alternate choice of the bulk regions A
and B. It is an interesting but nontrivial issue to check this
by the explicit computations and is left for the future.17

There are several possible future directions to investigate.
One such issue would be the extension of our proposals to
higher-dimensional defect AdS/BCFT scenarios. One may
also generalize our doubly holographic formulation for the
entanglement negativity with the defect brane at a constant
tension to arbitrary embeddings of the brane in the 3d bulk
geometry. Furthermore, it would also be interesting to derive
the bulk DES formula for the entanglement negativity
through the gravitational path integral techniques utilizing
the replica symmetry breaking wormhole saddles. We leave
these open issues for future investigations.
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APPENDIX: ISLANDS FOR ENTANGLEMENT
NEGATIVITY THROUGH THE
ALTERNATIVE PROPOSAL

In this appendix we will investigate the entanglement
negativity for various bipartite mixed states in the lower-
dimensional effective picture through the alternative pro-
posal involving Rényi reflected entropy of order one half
described in [160,164] and briefly reviewed in Sec. II D. To
proceed, we recall that the QES formula for the Rényi
reflected entropy of order one half between two subsystems
A and B may be written as [27,164]

17We thank the anonymous referee for raising this crucial
point.
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Sð1=2ÞR ðA∶BÞ

¼ minExt
ΓR

�
Að1=2ÞðΓRÞ

2GN
þ Sð1=2ÞR eff ðA ∪ IRðAÞ∶B ∪ IRðBÞÞ

�
;

ðA1Þ

where IRðAÞ and IRðBÞ denote the reflected entropy islands
for A and B respectively, and the extremization is per-
formed over the reflected entropy island cross section
ΓR ¼ ∂IRðAÞ ∩ ∂IRðBÞ. Furthermore, as described in
[164], the order one half area contribution from the
island cross section ΓR may be rewritten as follows
[cf. Eq. (4.17)]:

Að1=2ÞðΓRÞ ¼
3

2
AðΓRÞ ¼

3l
8GN

tanh−1ðsin θ0Þ: ðA2Þ

In the following,wewill compute theRényi reflected entropy
of order one half for various bipartite mixed states involving
two disjoint and two adjacent intervals on a static time slice in
the defect AdS3=BCFT2 model. Subsequently, we will

compute the entanglement negativity for such bipartite states
by utilizing the alternative proposal in Eq. (2.14) and
comment on the corresponding Markov gaps.

1. Two disjoint intervals

We consider two disjoint intervals A ¼ ½b1; b2� and B ¼
½b3;∞� in the bath CFT2 coupled to the gravity theory on
the EOW brane Q. Similar to the discussion of the
entanglement negativity in Sec. IVA, there are three
possible phases for the Rényi reflected entropy.

a. Phase-I

When the two disjoint intervals A and B are far apart,
there is no nontrivial island cross section for reflected
entropy and the area term in Eq. (A1) vanishes. The
schematics of the configuration in sketched in Fig. 4(a).
The effective Rényi reflected entropy of order one half is
computed in terms of a correlation function of twist
operators σgA and σgB at the endpoints of the intervals as
follows:

Sð1=2ÞR eff ðA∶B ∪ IRðBÞÞ ¼ lim
m→1

lim
n→1

2

1

1 − n
log

hσgAðb1Þσg−1A ðb2ÞσgBðb3Þσg−1B ð−b3Þimn

ðhσgmðb1Þσg−1m ðb2Þσgmðb3Þσg−1m ð−b3ÞimÞn

≈ lim
m→1

lim
n→1

2

1

1 − n
log

hσgAðb1Þσg−1A ðb2Þimn
hσgBðb3Þσg−1B ðb4Þimn

ðhσgmðb1Þσg−1m ðb2Þimhσgmðb3Þσg−1m ðb4ÞimÞn
¼ 0: ðA3Þ

As a result, the Rényi reflected entropy of order one half
and consequently the entanglement negativity is vanishing
in this phase. This is consistent with the geometric
description of the Markov gap as the bulk entanglement
wedge is disconnected.

b. Phase-II

In this phase, A still does not acquire an island while the
bulk entanglement wedge is connected and the correspond-
ing wedge cross section lands on the extremal surface of
A ∪ B [63]. As depicted in Fig. 5(a), in this phase, once
again there is no nontrivial reflected island cross section.
The effective Rényi reflected entropy of order one half is
given by [27,164]

Sð1=2ÞReff ðA∶B∪IRðBÞÞ

¼ lim
m→1

lim
n→1

2

1

1−n
log

hσgAð−b1Þσg−1A ðb1ÞσgBðb2Þσg−1B ðb3Þimn

ðhσgmð−b1Þσg−1m ðb1Þσgmðb2Þσg−1m ðb3ÞimÞn
;

ðA4Þ

where the conformal weights of the twist fields σgA , σgB and
σgm are given by

hgA ¼ hgB ¼
nc
24

�
m−

1

m

�
; hgm ¼

c
24

�
m−

1

m

�
: ðA5Þ

The computation is similar to [27,164], and in the prox-
imity limit b2 → b3 we obtain

Sð1=2ÞReff ðA∶B∪ IRðBÞÞ¼
c
2
log

�
2ðb1þb2Þðb3−b1Þ

b1ðb3−b2Þ
�
; ðA6Þ

and correspondingly the entanglement negativity between
A and B, obtained through the alternative proposal in
Eq. (2.14), reads

ẼðA∶BÞ ¼ c
4
log

�
2ðb1 þ b2Þðb3 − b1Þ

b1ðb3 − b2Þ
�
: ðA7Þ

Note that, the above expression differs from Eq. (4.16) by
an additive constant c

4
log 4 ¼ 3

2
log 4
4GN

, which is reminiscent of
the imperfect Markov recovery process. Furthermore, this
constant gap is consistent with the geometric interpretation
of the Markov gap in terms of the number of nontrivial
boundaries of the bulk EWCS.
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c. Phase-III

In this phase, we consider A to be large enough to
possess its own entanglement island and the bulk entan-
glement wedge is once again connected. As sketched in
Fig. 6, there is a nontrivial island cross section denoted by

the point a0 and hence the area contribution for the reflected
entropy island cross section in Eq. (A1) is given by
Eq. (A2). On the other hand, the effective Rényi reflected
entropy is given by [27,164]

Sðm;nÞ
R eff ðA ∪ IRðAÞ∶B ∪ IRðBÞÞ

¼ 1

1 − n
log

ðϵyΩð−a0ÞÞ
2hg−1

A
gB hσg−1A ð−b1ÞσgAðb1ÞσgBðb2Þσg−1B ðb3Þσg−1A gBð−a0Þimn

ðhσgmð−b1Þσg−1m ðb1Þσgmðb2Þσg−1m ðb3ÞimÞn
; ðA8Þ

where ϵy is a UV regulator on the AdS2 braneQ andΩð−a0Þ
is given in Eq. (4.2). In the above equation, the composite-
twist operator σg−1A gB gives the dominant contribution to the
OPE of σg−1A and σgB and has the conformal dimension

hg−1A gB ¼ c
12

�
n −

1

n

�
≡ 2hn: ðA9Þ

The correlation functions of the twist operators appearing in
Eq. (A8) may be factorized in the respective channel in the
large central-charge limit [27,164]. In the replica limitm → 1;
n → 1

2
we obtain the generalized reflected entropy as

Sð1=2ÞRgen ðA∶BÞ

¼ c
2

�
log

2lðb3þa0Þðb2þa0Þ
a0ðb3−b2Þϵy cosθ0

þ tanh−1ðsinθ0Þ
�
: ðA10Þ

Extremizing over the island cross section a0, we obtain
a0 ¼ ffiffiffiffiffiffiffiffiffiffi

b2b3
p

and the corresponding Rényi reflected entropy
of order one half is given by

Sð1=2ÞR ðA∶BÞ ¼ c
2

�
tanh−1ðsin θ0Þ þ log

� ffiffiffiffiffi
b3

p þ ffiffiffiffiffi
b2

p
ffiffiffiffiffi
b3

p
−

ffiffiffiffiffi
b2

p
�

þ log

�
2l

ϵy cos θ0

��
: ðA11Þ

The entanglement negativity between A and B in this phase,
computed through the alternative proposal in Eq. (2.14),
differs from the expression in Eq. (4.31) in the main body by
an additive Markov gap c

4
log 2 owing to a single nontrivial

boundary of the bulk EWCS.

2. Two adjacent intervals

Next we consider the mixed-state configuration of two
adjacent intervals A ¼ ½0; b1� and B ¼ ½b1; b2� in the bath
CFT2 coupled to the gravity theory on the EOW brane Q.
Similar to the discussion of the entanglement negativity in
Sec. IV B, there are two possible phases for the Rényi
reflected entropy which we investigate below.

a. Phase-I

As the interval A is adjacent to the interface of the bath
and the brane CFT2 it always possess an entanglement
island. In phase-I, the interval B is large enough to acquire
its entanglement island as depicted in Fig. 8. There exists a
nontrivial reflected island cross section18 ΓR at the point
a ¼ b1 and the corresponding area contribution to the
generalized Rényi reflected entropy of order one half is
given in Eq. (A2). The effective semiclassical Rényi
reflected entropy of order one half may be obtained through
correlators of twist operators as follows:

Sð1=2ÞR eff ðA ∪ IRðAÞ∶B ∪ IRðBÞÞ ¼ lim
m→1

lim
n→1

2

1

1 − n
log

ðϵyΩð−aÞÞ
2hg−1

A
gB hσg−1A gBðb1ÞσgBðb2Þσg−1B ð−a0ÞσgBgA−1 ð−b1Þimn

ðhσgmðb2Þσgmð−a0ÞimÞn
: ðA12Þ

In the large central-charge limit, the twist correlator in the numerator factorizes in the corresponding OPE channel as
follows [27,164]:

hσg−1A gBðb1ÞσgBðb2Þσg−1B ð−a0ÞσgBgA−1 ð−b1Þimn
≈ hσg−1A gBðb1ÞσgBgA−1 ð−b1Þimn

hσg−1B ð−a0ÞσgBðb2Þimn
: ðA13Þ

18Note that, in this phase the island cross section is determined solely thorough the entanglement entropy computation of the interval
A, which fixes its location at a ¼ b1.
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After taking the replica limitsm → 1; n → 1
2
and adding the area contribution, the total Rényi reflected entropy of order one

half may be written as follows:

Sð1=2ÞR ðA∶BÞ ¼ c
2

�
log

�
2b1
ϵ

�
þ log

�
2l

ϵy cos θ0

�
þ tanh−1ðsin θ0Þ

�
: ðA14Þ

The entanglement negativity obtained through the proposal in Eq. (2.14) matches exactly with Eq. (4.33) since there are no
nontrivial boundaries of the bulk EWCS and the corresponding Markov gap vanishes.

b. Phase-II

In phase-II, the interval B is so small to possess an entanglement island and correspondingly there is no island cross
section of the brane, as depicted in Fig. 9. In this phase, the bulk EWCS ends on the extremal surface for A ∪ B. The
effective semiclassical Rényi reflected entropy of order one half is given by

Sð1=2ÞR eff ðA∶B ∪ IRðBÞÞ ¼ lim
m→1

lim
n→1

2

1

1 − n
log

hσgAð−b1Þσg−1A gBðb1Þσg−1B ðb2Þimn

ðhσg−1m ð−b1Þσgmðb2ÞimÞn

¼ lim
m→1

lim
n→1

2

1

1 − n
log

�ð2mÞ−4hnð2b1ðb2 − b1ÞÞ−4hnðb1 þ b2Þ4hn−4hgA
ðb1 þ b2Þ−4nhgm

�

¼ c
2
log

�
4b1ðb2 − b1Þ
ðb2 þ b1Þϵ

�
; ðA15Þ

where hn is defined in Eq. (A9) and we have used the usual form of the three-point correlator in the numerator [129]. The
entanglement negativity between A and B in this phase may now be obtained through Eq. (2.14) as follows:

ẼðA∶BÞ ¼ c
4
log

�
2b1ðb2 − b1Þ
ðb2 þ b1Þϵ

�
þ c
4
log 2: ðA16Þ

Note that the above expression involves an additive constant c
4
log 2 compared to Eq. (4.37) in the main text. Once again, this

constant Markov gap is consistent with the geometric interpretation described in [169].
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