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A common way to avoid divergent integrals in homogeneous spatially noncompact gravitational
systems, as e.g. cosmology, is to introduce a fiducial cell by cutting off the spatial slice at a finite region Vo.
This is usually considered as an auxiliary integral regulator to be removed after performing computations
by sending Vo → ∞. In this paper, we analyze the dependence of the classical and quantum theory of
homogeneous, isotropic, and spatially flat cosmology on this fiducial cell. We show that each fixed Vo

regularization leads to a different canonically independent theory. At the classical level, the dynamics of
observables is not affected by the regularization choice on-shell. For the quantum theory, however, this
leads to a family of regulator dependent quantum representations labeled by Vo, and the limit Vo → ∞
becomes then more subtle. First, we construct a novel isomorphism between different Vo-regularizations,
which allows us to identify states in the different Vo-labeled Hilbert spaces to ensure equivalent dynamics
for any value of the regulator. The Vo → ∞ limit would then correspond to choosing a state for which the
volume assigned to the fiducial cell becomes infinite as appropriate in the late-time regime. As the second
main result of our analysis, quantum fluctuations of observables smeared over subregions V ⊂ Vo, unlike
those smeared over the full Vo, explicitly depend on the size of the fiducial cell through the ratio V=Vo

interpreted as the (inverse) number of subcells V homogeneously patched together into Vo. Physically
relevant fluctuations for a finite region, as e.g. in the early-time regime, which would be unreasonably
suppressed in a naïve Vo → ∞ limit, become appreciable at small volumes. Our results suggest that the
fiducial cell is not playing the role of a mere regularization but is physically relevant at the quantum level
and complements previous statements in the literature.

DOI: 10.1103/PhysRevD.108.106004

I. INTRODUCTION

Symmetry reduced models as cosmological or black
hole spacetimes play an important role in the context of
(canonical) quantum gravity approaches as e.g. loop
quantum gravity (LQG) [1–3]. On the one hand, these
models have a large amount of symmetries and are thus
simple enough to allow for explicit quantum gravity
computations. On the other hand, they describe physically
interesting systems containing gravitational singularities,
whose understanding and ultimate fate in a theory surpass-
ing general relativity are among the key questions that any
quantum gravity theory aims to address (see e.g. [4,5] and
references therein). Last but not least, the study of sym-
metry-reduced systems and their quantum aspects may
open the way to potentially test possible phenomenological
predictions of quantum gravity models [see e.g. [6–9] for a
small sample of quantum cosmological models in the
framework of loop quantum cosmology (LQC)].

However, a main conceptual and technical challenge lies
in the fact that homogeneous gravitational systems such as
cosmology with noncompact spatial topology lead to
diverging actions and Hamiltonians. In the LQC literature
[6,10–16], it is thus common to introduce a fiducial cell to
restrict the considered volume to a finite patch, labeled by
the coordinate volume Vo. The physical interpretation of
such a fiducial cell has, however, been debated since then.
One point of view [6,7,10,17] is to consider the fiducial cell
as an infrared regulator and of purely auxiliary nature.
Physical results should not depend on the choice of the
fiducial cell, and the regulator can then be removed by
sending Vo → ∞ after Poisson brackets are evaluated to get
back a noncompact space. Another viewpoint based on
effective quantum field theory (effective QFT) [16,18–21]
consists instead in interpreting it as the physical scale of
homogeneity, which should evolve along with the evolution
of the universe, thus being subject to an infrared renorm-
alization. In particular, close to the classical singularity, this
scale is actually microscopic [16,20] due to the Belinskii-
Khalatnikov-Lifshitz (BKL) scenario [22]. From this point
of view, the limit Vo → ∞, if possible, should be related to
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a renormalization group flow, and the size of the fiducial
cell acquires physical relevance as a renormalization scale.
The question about how to interpret this fiducial structure
has in turn profound consequences on the interpretation and
validity of the effective approximation, where the quantum
physics is approximated by a smooth spacetime obeying
effective modified dynamics. The common belief in the
literature is that the effective dynamics is applicable and
quantum fluctuations are negligible even close to the
resolved classical singularity [23–27] (see, however,
[28,29] for a recent review of further issues originating
in effective models due to general covariance).
In this paper, we contribute to this discussion by

analyzing the role of the fiducial cell in detail. We first
recall the classical framework of cosmology and the
necessity to introduce a fiducial cell at the off-shell level
(Sec. II). Physically relevant observables and their depend-
ence on the regularization are then discussed. The classical
part closes by arguing that indeed the classical physics,
which means the dynamics of observables, is not altered by
the choice of fiducial cell and the regulator can be removed
by sending it to infinity at the on-shell level. However, as
the canonical structure depends on Vo, each cosmological
theory regularized with a different fiducial cell is actually a
canonically inequivalent theory.
This becomes relevant when moving to the quantum

level in the second part of the paper (Sec. III), where there is
not a single quantum theory but rather a family of LQC
quantum representations each corresponding to a different
region Vo. The Vo-rescaling symmetry of classical dynam-
ics thus might or might not be broken at the quantum level.
Our main focus then lies on investigating how the quantum
representations of differently regularized classical theories
can be related. More specifically, we ask the following:
(1) How do we phrase the question about changing Vo in
the quantum theory so that it comes to be as close as
possible to the situation at the classical level? In other
words, is it possible to implement a change of Vo, hence of
the quantum theory, while keeping quantum dynamics the
same? (2) What would then be the consequences for other
quantum features such as uncertainty relations and fluctu-
ations? In Sec. III A, we answer (1) in the affirmative by
constructing a mapping between states in the different
Vo-regularized Hilbert spaces with the same dynamics. In
Sec. III B we then study the consequences for expectation
values, higher statistical moments, and quantum fluctua-
tions of both nonsmeared and smeared operators. In
particular, the mapping between the different Vo-labeled
Hilbert spaces allows us to study how these quantities scale
in the different quantum representations associated with
different fiducial cell sizes. We find that moments and
fluctuations of nonsmeared elementary operators depend
on the value of Vo, while those of the volume operator
smeared over the entire fiducial cell do not, compatible with
previous work. However, we further show that quantum

fluctuations and uncertainty relations of canonically con-
jugate observables smeared over a subregion V ⊂ Vo of the
fiducial cell do depend explicitly on the size of the fiducial
cell through the ratio V=Vo interpreted as the (inverse)
number of subcells V homogeneously patched into Vo.
Given then a small region V that one is interested in
tracking within a homogeneous model, its size can be
operationally thought of as e.g. given by the scale resolved
by a detector. Quantum fluctuations over the probe region
V become relevant in the early-time universe where also the
size of the region Vo over which homogeneity is imposed
becomes small. In the late-time universe, where homo-
geneity can be imposed over large scales, quantum fluc-
tuations are instead suppressed the more subcells are
patched together into a large region Vo.
Some concluding remarks and future directions are

reported in Sec. IV. More details will be worked out in
a companion paper [30], where a systematic symmetry
reduction at the classical level and a full theory interpre-
tation of the fiducial cell as the scale of the homogeneous
truncation in field modes is also provided.

II. CLASSICAL COSMOLOGY
AND THE FIDUCIAL CELL

We restrict ourselves to the simplest cosmological
setting, that is, homogeneous, isotropic, and spatially flat
cosmology. The metric

ds2 ¼ −NðtÞ2dt2 þ qabdxadxb

¼ −NðtÞ2dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ ð2:1Þ

is thus used as starting ansatz (see e.g. [15]). In a classical
treatment, it is possible to insert this ansatz into the Einstein
equations coupled to a matter source and solve the differ-
ential equations for the scale factor aðtÞ, while the lapse
NðtÞ is a pure gauge choice and determines the interpre-
tation of the coordinate t.
In view of quantization, it is, however, necessary to

understand the off-shell structures such as action,
Hamiltonian, and Poisson structure first. For this purpose,
we fix the matter content of the universe to be a massless
real scalar field ϕ, which will play the role of physical clock
later on. Inserting the ansatz (2.1) and ϕðt; xÞ ¼ ϕðtÞ into
the Einstein-Hilbert action coupled to a massless scalar
field yields

S ¼ SEH þ SM ¼
Z

dtLþ boundary terms;

L ¼
Z
Σ
d3xL ¼

Z
Σ
d3x

�
−
3

κ

a ȧ2

N
þ a3ϕ̇2

2N

�
; ð2:2Þ

where κ ¼ 8πG (c ¼ 1), dots refer to derivativeswith respect
to the t-coordinate, SEH ¼ 1

2κ

R
M d4x

ffiffiffi
g

p
R is the Einstein-

Hilbert action, and SM ¼ − 1
2

R
M d4x

ffiffiffi
g

p
gμν∂μϕ∂νϕ is the
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matter action. The four-dimensional integral was split into a
timelike integral and an integral over a spatial slice Σ. An
immediate problem appears in the spatial integral, that is,R
Σ d

3x → ∞ as all fields are independent of the spatial point
and thus do not satisfy proper falloff conditions. The usual
remedy provided in the literature (see e.g. [6,10–16]) is to
restrict the spatial integral to a finite domain Vo ⊂ Σ by
introducing a so-called fiducial cell, the latter being at this
level a purely auxiliary topological construction to regularize
the divergent integral. The region Vo is described by the
coordinates x; y; z∈ ½0; Lo� so that its coordinate volume1 isR
Vo

d3x ¼ L3
o ≕Vo. An important question concerns now

boundary conditions at ∂Vo, which arise when Σ is assumed
to be noncompact. To avoid this problem, we topologically
compactify Vo by equipping it with a 3-torus topology
Vo ≃top T 3 so that ∂Vo ¼ ∅ (cf. Fig. 1).
As this construction is purely auxiliary at first sight, it is

usually expected to not enter any physical results in the end.
However, it should be kept in mind that already at this stage
two main approximations have been done: First, the
boundaries are neglected here; i.e. we impose periodic
boundary conditions, which amounts to ignoring all the
interactions of the region Vo with the surrounding envi-
ronment given by its complementary region in the spatial
slice. Second, all other regions ΣnVo are ignored and Vo is
simply extended by homogeneity. This excludes the pos-
sibility of changes in the spatial geometry from one fiducial
cell to another, thus ignoring inhomogeneities with

wavelengths larger than Lo. The latter can be safely
neglected at large volumes, far from the bounce or classical
singularity. However, it remains to be examined how
important these modes are to the total dynamics at small
volumes. In fact, changing the size of Vo makes these
approximations more or less restrictive. In a follow-up
paper [30], it will be presented how to do a systematic
symmetry reduction at the Hamiltonian level by imple-
menting spatial homogeneity via second-class constraints
and using Dirac brackets. In this framework, the fiducial
cell can be interpreted as the scale on which the spacetime
is actually homogeneous, which is thus a physical require-
ment. Further, as we assume x; y; z∈ ½0; Lo�3 and the torus
topology here, this is the scale on which periodic boundary
conditions are imposed. Using the metric (2.1), this
amounts to say that the spacetime is homogeneous and
satisfies periodic boundary conditions on a length scale
given by

Lphys ¼
Z

Lo

0

dx
ffiffiffiffiffiffi
gxx

p ¼ LoaðtÞ: ð2:3Þ

Its actual value thus depends on the solution and the
initial conditions for aðtÞ. The length Lo then enters directly
the physical quantity Lphys. Let us emphasize here now an
important difference between the coordinate size Lo and the
region Vo ⊂ Σ. While a coordinate transformation x ↦ βx
changes the value Lo ↦ Lo=β, Lphys is not changed as
a ↦ βa [6]. The geometry of Vo as described by a given
solution aðtÞ of the Einstein equations is not changed by
this transformation, as this only amounts to describe it
by means of different coordinates. However, it is also
possible to simply make the scale of homogeneity/perio-
dicity larger by mapping Lo ↦ αLo, which is not a
coordinate transformation, but really physically rescales
Vo as a subset of Σ (see Fig. 1), when referring to the same

FIG. 1. (a) A compact fiducial cell Vo ⊂ Σ of the noncompact spatial slice Σ is chosen. It is equivalently possible to choose another,
larger fiducial cell Vo ⊂ αVo ⊂ Σ, which is a coordinate independent choice of a larger subregion. (b) To avoid boundary conditions the
fiducial cell is equipped with a 3-torus topology, by identifying the blue lines and closing the red circle. The edge length of the fiducial
cell Vo and the circumference of the red circle are Lo in the x-chart. This is coordinate dependent, and it reads as Lo=β in the βx-chart.
The physical size is coordinate independent, but depends on initial conditions of a. On the spatial slice, we can consider finite volumes
V, independent on the choice of Vo, as long as V ⊂ Vo.

1More precisely, the fiducial volume is computed with respect
to a fiducial metric q̊ab whose coordinate axes are associated with
the local triads along the edges of the cell, say q̊abdxadxb ¼
dx21 þ dx22 þ dx23 (see e.g. [6] for details). Moreover, to simplify
the notation, we use the same notation Vo for both the set Vo ⊂ Σ
and its coordinate volume Vo ¼ L3

o. Their distinction should be
clear from the context.
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fixed solution.2 In this case, we find Lphys ↦ αLphys, which
affects the physical length (2.3). From now on, we keep the
coordinates fixed and only consider transformations of the
second kind, where the actual physical scale of periodicity,
i.e. the physical volume of Vo, is changed.
In the following, we analyze the classical theory and its

dependence on this fiducial cell and the topological com-
pactification. A Legendre transform of the Lagrangian (2.2),
restricted to Vo, leads to the Hamiltonian (see e.g. [6,15])

HT ¼ Vo · NH; H ¼ −
κ

12

p2
a

a
þ p2

ϕ

2a3
≈ 0; ð2:4Þ

where the momenta are defined as pa ¼ ∂L =∂ȧ, pϕ ¼
∂L =∂ϕ̇ with L ¼ R

Vo
d3xL ¼ VoL , and satisfy the

Poisson brackets

fa; pag ¼ 1

Vo
; fϕ; pϕg ¼ 1

Vo
: ð2:5Þ

For the purposes of quantization later, it is useful to
perform the canonical transformation to the variables
v ¼ a3 and b ¼ −pa=ð3a2Þ, leading to

HT ¼ Vo · NH; H ¼ −
3κ

4
vb2 þ p2

ϕ

2v
≈ 0; ð2:6aÞ

fb; vg ¼ 1

Vo
; fϕ; pϕg ¼ 1

Vo
: ð2:6bÞ

The above Vo factors can be understood from a field theory
viewpoint where all the quantities involved in the above
equations are given by the integrals over the spatial slice of
the corresponding densities. More precisely, a systematic
study of the reduction procedure [30] reveals that the
canonical brackets (2.6b) can actually be understood as the
Dirac brackets resulting from implementing homogeneity
over the region Vo via second-class constraints for the full
theory variables.
The interpretation of these variables becomes clear once

smeared physical quantities are constructed. In the full
theory, the volume of a given region V ⊂ Vo is given by

volðVÞ ¼
Z
V
d3x

ffiffiffi
q

p ¼
Z
V
d3xv ¼ V · v: ð2:7Þ

Similarly, the variable b can be interpreted as the rate at
which (any) volume changes as3

1

NvolðVÞ
dvolðVÞ

dt
¼ 1

NvolðVÞfvolðVÞ;HTg¼
3κ

2
b; ð2:8Þ

which is independent of the particular volume V. Similarly,
the observable pϕðVÞ ¼

R
V d

3xpϕ ¼ Vpϕ gives the total
matter energy of the region V ⊂ Vo. These are observables
which have counterparts in the full theory and are inde-
pendent of the choice of spatial coordinates. They reduce to
the above simple expressions after imposing homogeneity
and isotropy. In the full theory they are independent for
each possible choice of V ⊂ Vo, but after imposing
homogeneity and isotropy, they are all related by a linear
factor. For instance, we have

volðVÞ ¼ V
Vo

volðVoÞ; ð2:9Þ

where V=Vo is simply a topological ratio (i.e. indepen-
dent of the metric) determining how many times V fits into
Vo. The quantities volðVÞ and pϕðVÞ are extensive as
volðV1ÞþvolðV2Þ¼volðV1∪V2Þ for any disjoint regions
V1 and V2 (V1 ∩ V2 ¼ ∅). On the other hand, b and ϕ are
intensive and can be interpreted as averaged values of local
quantities over the compact region Vo. More details can be
found in the follow-up paper [30].
Having this set up, we can study how the classical theory

depends on the fiducial cell. To this aim, let us consider a
physical rescaling Vo ↦ αVo (cf. Fig. 1), i.e. volðVoÞ ¼R
Vo

d3xv ↦ αvolðVoÞ. Again, this is independent of coor-
dinates and fixes the size of the fiducial torus Vo. It is easy
to see that the Hamiltonian (2.6a) is extensive and thus
scales as

HT ↦ αHT: ð2:10Þ

Moreover, we have the following scaling behaviors:

volðVÞ ↦ volðVÞ; volðVoÞ ↦ αvolðVoÞ; ð2:11aÞ

pϕðVÞ ↦ pϕðVÞ; pϕðVoÞ ↦ αpϕðVoÞ; ð2:11bÞ

b ↦ b; ϕ ↦ ϕ; ð2:11cÞ

from which we see that volðVÞ, pϕðVÞ, b, and ϕ are
independent of the size of the fiducial cell Vo. Keeping this
in mind, it becomes evident that the Poisson structure itself
has to be dependent on Vo. Indeed, we have [cf. Eqs. (2.6b)
and (2.7)]

fb; volðVÞg ¼ V
Vo

⟼
1

α
fb; volðVÞg;

fϕ; pϕðVÞg ¼ V
Vo

⟼
1

α
fϕ; pϕðVÞg; ð2:12Þ

2Note that this is a kinematical interpretation. Taking a closer
look at the Einstein equations leads to the well-known fact that
they are diffeomorphism invariant. Consequently, the metric with
a=α has the same initial conditions for Lphys ¼ αLoa=α and leads
to equivalent physics.

3Comparing with [31], this variable has a full theory counter-
part corresponding to − 1

volðVÞ
R
V d

3xqabPab, with Pab the con-
jugate momentum to the spatial metric qab which can be written
in terms of the extrinsic curvature.
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and, since the quantities entering the arguments of the
Poisson bracket are independent of Vo, this scaling
behavior has to be a property of the bracket itself, namely

f·; ·g ⟼
1

α
f·; ·g; ð2:13Þ

where the arguments are also scaled. Summarizing, chang-
ing the size of the scale of homogeneity (or in other words
the periodic boundary conditions)

(i) is not a canonical transformation as the Poisson
bracket and Hamiltonian are not preserved (the
Hamiltonian rescales linearly, while the Poisson
bracket rescales inversely linearly);

(ii) does not affect physical observables that do not
explicitly refer to the fiducial cell.

Therefore, the choice of Vo and its compactification affects
the canonical theory. Specifically, there are infinitely many
canonically inequivalent cosmological theories all labeled
by the value of Vo ¼

R
Vo

d3x and the choice of the fiducial
cell Vo ⊂ Σ. Still, the theories labeled by different values of
the fiducial cell, say Vð1Þ

o and Vð2Þ
o , can be related to each

other in a well-defined manner. In particular, it is possible
to show that the dynamics of classical observables is

independent of the specific value of Vo. Indeed, let H
ð1Þ
T ,

Hð2Þ
T , and f·; ·gð1Þ, f·; ·gð2Þ be the Hamiltonians and Poisson

brackets of the two theories with fiducial cells Vð1Þ
o and

Vð2Þ
o , respectively. For any observableO, the time evolution

is determined by

Ȯ ¼ fO; Hð1Þ
T gð1Þ

¼ Vð2Þ
o

Vð1Þ
o

�
O;

Vð1Þ
o

Vð2Þ
o

·Hð2Þ
T

�
ð2Þ

¼ fO; Hð2Þ
T gð2Þ; ð2:14Þ

which does not depend on the chosen value of Vo.
Explicitly, this can be seen as the Poisson bracket
depends on 1=Vo, while the Hamiltonian is linear in Vo
[cf. Eqs. (2.6)].
This result is not surprising, neither new [6,10,12], as we

could have worked with the Einstein equations from the
very beginning, which does not refer to Vo-dependent
quantities such as an action, Hamiltonian or Poisson
brackets. The Einstein equations are local and as such
do not depend on the global topology4 so that no reference
to the fiducial cell Vo is needed. In particular, it is possible
to track the evolution of a finite volume volðVÞ and perform
the limit Vo → ∞ after evaluating the Poisson brackets.

As a classical theory only predicts dynamics, which is
local, Vo is really fiducial at the classical level, and any
reference to it can be removed afterwards by performing
this limit (as required in e.g. [6]), at least in principle, as
long as the homogeneous approximations remains trust-
able.5 However, in the next section, we will see how this
situation changes in the case of a quantum theory.

III. IMPLICATIONS FOR QUANTUM
COSMOLOGY

A. Quantization of the symmetry-reduced theory

Let us proceed now to quantize the family of classical
theories labeled by Vo using LQG techniques. Note that the
quantum theory can only be well defined for a finite Vo as
otherwise the Poisson bracket, and thus the commutator,
would be trivial. Consequently, it is unavoidable to con-
struct a theory at finite Vo and then examine the scaling
behavior of the relevant quantities. As the classical Poisson
bracket depends on the fiducial cell volume Vo [see
Eqs. (2.6b) and (2.13)] but the commutator cannot have
this scaling property (it is just the composition of linear
operators), each value of Vo requires a separate quantum
representation [6,12], i.e. different Hilbert spaces and
operators.
As a first step, the system is deparametrized with the

scalar field used as a clock for the quantum dynamics. The
corresponding true Hamiltonian generating the evolution in
ϕ-time is obtained by solving the Hamiltonian constraint
Eq. (2.6a) for the canonical momentum pϕðVoÞ conjugate
to ϕ. This leads to

pϕðVoÞ ¼
ffiffiffiffiffi
3κ

2

r
Vovb≕Htrue; ð3:1Þ

where we have only chosen the positive sign of the square
root which is equivalent to consider only positive frequency
modes. This is a suitable simplification as the aim here is
only to study the dependence on Vo. The considerations in
the following straightforwardly extend to the case in which
both positive and negative frequency modes are considered.
The next step consists of representing the operators Ĥtrue,

v̂, and a regularization of b on the LQC-Hilbert space
H LQC given by [6,10,12,15]

4Indirectly they do for a field theory due to boundary
conditions, but these are already imposed by choosing a homo-
geneous metric ansatz.

5Some care is in fact still needed even at the classical level
when one takes into account the fact that, after all, the homo-
geneous mini-superspace theory results from a mode truncation
of dynamical fields in the full theory. From this perspective, the
homogeneous description can be trusted as long as such a
truncation provides us with a good approximation. In particular,
as discussed in the follow-up paper [30], the fiducial cell sets the
scale of a wavelength cutoff for the field modes, and the error
committed in the truncation of the inhomogeneous modes does
depend on (inverse powers of) Vo.
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H LQC¼L2ðRBohr;dμBohrÞ; jψi¼
X
ν∈R

ψðνÞjνi; ð3:2aÞ

hνjν0i ¼ δν;ν0 ; hbjνi ¼ eiλbν; ψðνÞ ¼ hνjψi; ð3:2bÞ

where jνi and jbi are, respectively, eigenstates of v̂ and ofde−iλb (see below). Here, RBohr denotes the Bohr compacti-
fication of the real line [6,12,32], a compact Abelian group
which roughly speaking corresponds to the real line
equipped with discrete topology. Note the discrete sum
in (3.2a) and the Kronecker-delta rather than a Dirac-delta
normalization in (3.2b). This is where the main difference
between the weakly discontinuous LQC polymer repre-
sentation, motivated by the discreteness of spatial geometry
at a fundamental scale, and the inequivalent Schrödinger
representation can be traced back [6,12,33]. As a conse-

quence, only de−iλb and not b̂ comes to be a well-defined
operator on the LQC Hilbert space in analogy with the use
of holonomies in LQG.6

The core issue is now the dependence of the quantum
theory onVo. Different choices ofVo correspond to different
Hilbert spaces, although they are isomorphic and the differ-
ence is not explicitly visible. It becomes visible in the
operator representations. In fact, the Vo-dependence of the
Poisson bracket between v and e−iμb necessarily implies that
the representations of the corresponding quantum operators
will depend on it as well. Specifically, the action of the
elementary operators can be generically written as

v̂jνi ¼ ηγ

Vγ
o
νjνi; de−iλμbjνi ¼����ν − λμ

ηγVδ
o

�
; ð3:3Þ

with arbitrary powers γ, δ such that γ þ δ ¼ 1, η ¼ κ3=2,
and units ℏ ¼ 1, ½κ� ¼ length2, ½ν� ¼ ½v̂� ¼ ½μ� ¼ 1, ½b� ¼
½λ−1� ¼ length−3. μ∈R is an arbitrary dimensionless num-
ber, and λ is the so-called polymerization scale. The powers
of γ and δ are just a notation we introduced to reflect the
freedom in incorporating the Vo factors in the representa-
tion of the quantum operators to ensure the Poisson
brackets to be correctly represented as commutation rela-
tions. The Vo-factors in (3.3) are in fact unavoidable for the
commutator to match the correspondence principle with the
classical Poisson bracket, i.e.

½ de−iλμb; v̂�jνi ¼ λμ

Vo

de−iλμbjνi; ∀ jνi; ð3:4Þ

so that [cf. (2.6b)]

½ de−iλμb; v̂� ¼ i dfe−iλμb; v̂g: ð3:5Þ

At the quantum level, the scaling property of the Poisson
bracket [cf. Eq. (2.13)] is thus shifted into the quantization
map for the representations of the operators associated
with phase space quantities. Consequently, although the
classical phase space function v is independent of Vo, its
quantum representation does depend on it and, for any two

distinct values Vð1Þ
o and Vð2Þ

o , we have

v̂j
Vð1Þ
o

¼
�
Vð2Þ
o

Vð1Þ
o

�γ

v̂j
Vð2Þ
o
; ð3:6Þ

and

de−iλμ
ð1Þbj

Vð1Þ
o

¼ de−iλμ
ð2Þbj

Vð2Þ
o
; μð1Þ ¼

�
Vð2Þ
o

Vð1Þ
o

�δ

μð2Þ:

Finally, standard LQC ordering and regularization pre-
scriptions for the Hamiltonian [34] lead to

Ĥtrue ¼
ffiffiffiffiffi
3κ

2

r
Vo

ffiffiffiffiffiffi
jv̂j

p � dsin ðλbÞ
2λ

signðv̂Þ

þ signðv̂Þ
dsin ðλbÞ
2λ

� ffiffiffiffiffiffi
jv̂j

p
; ð3:7Þ

whose action, after defining

ν ¼ λ

ηγVδ
o
n; n∈R; θ ¼ λ

ηγVδ
o
; ð3:8Þ

can be recast into the following finite difference equation:

ĤtrueψðνÞ ¼ hνjĤtruejψi

¼ i
4

ffiffiffiffiffi
3κ

2

r 	
sþðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjjnþ 1j

p
ψðθ · ðnþ 1Þ



− s−ðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjjn − 1j

p
ψðθ · ðn − 1ÞÞÞ; ð3:9Þ

with s�ðnÞ ¼ signðn� 1Þ þ signðnÞ. As usual the zero
volume state ν ¼ 0 is annihilated and positive and negative
branches are preserved. The quantity θ entering Eq. (3.9)
can be thought of as an “effective” polymerization scale,
which is explicitly Vo-dependent [cf. Eq. (3.8)]. Moreover,
we note that the linear scaling behavior of the classical
Hamiltonian [cf. Eq. (2.10)] is again changed by the
Vo-quantum representation and is rather undetermined.
However, to have a well-defined dynamics given by the
Schödinger equation generated by Ĥtrue

i
∂

∂ϕ
jψi ¼ Ĥtruejψi; jψ ;ϕi ¼ eiϕĤtrue jψi; ð3:10Þ

such a scaling behavior has to be determined. In this
respect, it is possible to identify states in the different

6The classical variable b is in fact directly related to the
symmetry-reduced homogeneous and isotropic Ashtekar con-
nection [6,14].
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Vo-quantum theories which have the same evolution
behavior. Let us emphasize that, in principle, it might be
possible to allow Vo dependent dynamics and forget about
the following identification. However, as the classical
dynamics is independent of Vo, it seems reasonable to
demand the same for quantum dynamics.
For this construction, we make use of the fact that

there exists [34,35] an analytic expression for a function
ΨE∶ R → C satisfying

−
i
2

ffiffiffiffiffi
3κ

2

r
·
	
sþðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjjnþ 1j

p
ΨEðnþ 1Þ

− s−ðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjjn − 1j

p
ΨEðn − 1Þ



¼ EΨEðnÞ: ð3:11Þ

Consequently, the states ψEðνÞ ¼ ψEðθ · nÞ ¼ ΨEðnÞ are
eigenstates of the Hamiltonian (3.9) with eigenvalue E. As
shown in [34], the operator (3.7) is essentially self-adjoint
with an absolutely continuous, nondegenerate spectrum
equal to the real line. The explicit expression of the
corresponding eigenfunctions can be found in [34,35]
but is not relevant for the considerations that follow.
Consider now two quantum representations resulting from
quantizing the classical theories associated with two dis-

tinct values of Vo, say Vð1Þ
o and Vð2Þ

o , respectively. In both
representations one could find the eigenstates of the
corresponding Hamiltonian according to the same identi-
fication (3.11) (Vo and thus θ are different). It follows
that in both quantum representations one finds the same
spectrum for Ĥtrue and, recalling Eq. (3.8), the eigenstates
can be related by

ψ ð1Þ
E ðνÞ ¼ ψ ð2Þ

E

��
Vð1Þ
o

Vð2Þ
o

�δ

ν

�
; ð3:12Þ

where the superscripts (1) and (2) denote the eigenstates in
the corresponding Vo-quantum theory. Let us stress that
a priori the carrier Hilbert spaces for the different quantum
representations are different, and it is only due to the
simplicity of the model under consideration that they can
easily be identified as above. As anticipated above, it is
a priori not necessary to identify the states in the different
quantum theories as in (3.12) and, depending on the aims
and/or the physical situation to be described, one could in
principle find different arguments leading to a different
identification. Here, the relation (3.12) is to ensure the
dynamics to be the same in the two quantum theories,
similar to the classical case. To see this, we note that the
above identification of eigenstates allows one to define a
well-defined transformation behavior of the Hamiltonian
operator according to

ĤtruejVð1Þ
o

¼
Z

dEEhψ ð1Þ
E j·iψ ð1Þ

E ↦ ĤtruejVð2Þ
o

¼
Z

dEEhψ ð2Þ
E j·iψ ð2Þ

E ; ð3:13Þ

from which it is evident that two states ψ ð1Þ ∈H
ð1Þ
LQC and

ψ ð2Þ ∈H
ð2Þ
LQC have the exact same ϕ-time evolution as

long as hψ ð1Þ
E jψ ð1Þið1Þ ¼ hψ ð2Þ

E jψ ð2Þið2Þ for all E. This in turn
induces, under the demanding of dynamics to remain
Vo-independent, the following dynamics-preserving iso-
morphism between the two different quantum theories

I∶H ð1Þ
LQC → H

ð2Þ
LQC

by

ψ ð1Þ ⟼ ψ ð2Þ ¼ I ðψ ð1ÞÞ

ψ ð2ÞðνÞ ¼ ψ ð1Þ
��

Vð2Þ
o

Vð1Þ
o

�δ

ν

�
: ð3:14Þ

Therefore, it is possible to make the whole families of
quantum theories labeled by the values of Vo dynamically
equivalent, as it was the case for the classical theory.
However, a quantum theory is more than just dynamics, but
also includes quantum uncertainty relations and fluctua-
tions. Their dependence on Vo is discussed in the next
subsection. In this respect, let us notice that the above
isomorphism implementing a notion of fiducial cell rescal-
ing at the quantum level is in fact the sought mapping e.g.
in [26] and, as we shall see in the next subsection, can be
used for a detailed analysis of expectation values and higher
moments [see Eq. (3.17) below]. The present results can in
particular be used to study the scaling properties of semi-
classical states as e.g. those considered in [26,36,37]. We
refer the interested reader to the companion paper [30] for
details.

B. Uncertainty relations and quantum fluctuations

Having determined the mapping (3.14) between the
Hilbert spaces associated with different Vo-valued quantum
representations, we can now study whether and how
expectation values and higher statistical moments change
from one Vo value to the other. Note that all the expectation
values in what follows are ϕ-time dependent and, since the
isomorphism preserves time evolution, the following state-
ments hold in a fully dynamical sense. However, to ease the
notation, we shall suppress the explicit ϕ-time dependence
and write ψðϕÞ ¼ ψ , jψ ;ϕi ¼ jψi.
As for the operator v̂, recalling the action Eq. (3.3)

together with the definitions Eq. (3.8), we find
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hv̂j
Vð1Þ
o
i
ψ ð1Þ ≔hψ ð1Þjv̂j

Vð1Þ
o
jψ ð1Þi¼

X
ν∈R

ψ ð1Þ�ðνÞ ηγ

ðVð1Þ
o Þγ

νψ ð1ÞðνÞ

¼
X
ν∈R

ψ ð2Þ�
��

Vð1Þ
o

Vð2Þ
o

�δ

ν

�
ηγ

ðVð1Þ
o Þγ

νψ ð2Þ
��

Vð1Þ
o

Vð2Þ
o

�δ

ν

�

¼Vð2Þ
o

Vð1Þ
o

X
ν0∈

	
V
ð1Þ
o

V
ð2Þ
o



δ

R

ψ ð2Þ�ðν0Þ ηγ

ðVð2Þ
o Þγ

ν0ψ ð2Þðν0Þ

¼Vð2Þ
o

Vð1Þ
o

hv̂j
Vð2Þ
o
i
ψ ð2Þ ; ð3:15Þ

where ν0 ¼ ðVð1Þ
o =Vð2Þ

o Þδν in the second to last line. By
construction of (3.14), we further have that

hĤtruejVð1Þ
o
i
ψ ð1Þ ¼ hĤtruejVð2Þ

o
i
ψ ð2Þ ; ð3:16Þ

and it is straightforward to verify the following relations:

hv̂jn
Vð1Þ
o
i
ψ ð1Þ

¼
�
Vð2Þ
o

Vð1Þ
o

�n

hv̂jn
Vð2Þ
o
i
ψ ð2Þ

; ð3:17aÞ

h de−iλμbjnVð1Þ
o
i
ψ ð1Þ ¼ h de−iλμbjnVð2Þ

o
i
ψ ð2Þ ; ð3:17bÞ

Δψ ð1Þ v̂jVð1Þ
o

¼ Vð2Þ
o

Vð1Þ
o

Δψ ð2Þ v̂jVð2Þ
o
; ð3:17cÞ

Δψ ð1Þ de−iλμbj
Vð1Þ
o

¼ Δψ ð2Þ de−iλμbj
Vð2Þ
o
; ð3:17dÞ

for the higher moments and variances of the operators in
Eq. (3.3). With this transformation behavior at our disposal,
we can then investigate possible physical effects on the
observables

dvolðVoÞ ¼ Vov̂; dvolðVÞ ¼ Vv̂ ¼ V
Vo

dvolðVoÞ; ð3:18Þ

corresponding to the integrated volume of the fiducial cell
Vo ⊂ Σ or any region V ⊆ Vo (see Fig. 1). According to the
results in Eqs. (3.17), we have

h d
volðVð1Þ

o Þj
Vð1Þ
o
i
ψ ð1Þ ¼ h d

volðVð2Þ
o Þj

Vð2Þ
o
i
ψ ð2Þ ð3:19Þ

i.e. in contrast to the classical theory [cf. Eq. (2.11a)], the
expectation value of the operator for the integrated volume
of the cell is independent of the value of its coordinate
volume. Note that changing Vo actively changes the subset
in the spatial slice Σ and the region on which periodic
boundary conditions are imposed.

Similarly, using the relations (3.5), (3.17), and (3.19), the
uncertainty relations read as7

1

2
jh dcos ðλbÞj

Vð1Þ
o
i
ψ ð1Þ j ≤ Δψ ð1Þ

d
volðVð1Þ

o Þj
Vð1Þ
o
Δψ ð1Þ

dsin ðλbÞ
λ

����
Vð1Þ
o

¼ Δψ ð2Þ
d

volðVð2Þ
o Þj

Vð2Þ
o
Δψ ð2Þ

dsin ðλbÞ
λ

����
Vð2Þ
o

≥
1

2
jh dcos ðλbÞj

Vð2Þ
o
i
ψ ð2Þ j: ð3:20Þ

Therefore, the expectation values and fluctuations of the
elementary operators depend on the value of Vo as per
Eqs. (3.17), while those for the observable measuring the
size of the full fiducial cell are independent of the specific
value of Vo. Independently of which subset Vo ⊂ Σ is
chosen, the expectation values and uncertainty relations
involving the volume operator smeared over the entire Vo

are only state dependent. Moreover, if the state ψ ð1Þ

saturates the uncertainty relation, then ψ ð2Þ does too.
Similar is true for the energy density

ρψðϕÞ ≔
h dpϕðVoÞi2ψ
h dvolðVoÞi2ψ

¼ hĤtruei2ψ
h dvolðVoÞi2ψ

; ð3:21Þ

which due to Eqs. (2.10) and (3.19) is independent of the
Vo-representation. Further, as the isomorphism Eq. (3.14)
preserves dynamics, the energy 1=2λ2 at the bounce is
independent, too. This works also for a subregion V ⊂ Vo
as both quantities at the numerator and denominator of
(3.21) are extensive so that the multiplicative factors would
cancel yielding an intensive ratio.
It is then insightful to evaluate the expectation value of

the total volume for an eigenstate of v̂, i.e. ψ ¼ δν;νo , which
reads as

h dvolðVoÞiδν;νo ¼ Vo
ηγ

Vγ
o
νo ¼γþδ¼1

Vδ
oη

γνo ¼ð3.8Þλno: ð3:22Þ

Consequently, for any choice of Vo, it is only possible to
assign to this region the volume λno, where no ∈N after
imposing the Hamiltonian constraint (and restricting to
positive volumes). Compatibly with (3.19), this is obvi-
ously independent of Vo; i.e. the (topological) scale on
which homogeneity and periodicity are imposed. This is

plausible as Vð1Þ
o or Vð2Þ

o are purely topological construc-
tions, and there is no reference to any geometry. The
geometry in turn is then specified by the choice of state ψ ,
which is in a sense the quantum equivalent of specifying

7To ease the comparison with existing literature as e.g. [23,24],
we focus here on the operator corresponding to the simplest
regularization for the conjugate momentum b by combination of
point holonomies e�iλb yielding the sin function.
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initial conditions for the classical (coordinate-independent)
observable volðVoÞ. As there is no additional reference

field in the system, there is no way to distinguish Vð1Þ
o

from Vð2Þ
o .

The situation is, however, different for a finite region

V ⊂ Vð1Þ
o ; Vð2Þ

o ⊂ Σ as can be seen by studying the change
of physical volume assigned to it and relating it to the total
fiducial cell. As discussed in Sec. II, changing Vo in the
classical theory is a symmetry of the dynamics and the
limit Vo → ∞, volðVoÞ → ∞ can be taken for any finite
initial conditions on v.8 The quantum case requires more
care. To this aim, let us study the scaling behavior of the

expectation values of the operator dvolðVÞ and the corre-
sponding uncertainty relations. These can be readily
computed to be (for a given value of Vo)

h dvolðVÞiψ ¼ V
Vo

h dvolðVoÞiψ ; ð3:23Þ

Δψ
dvolðVÞΔψ

dsin ðλbÞ
λ

≥
V
2Vo

jh dcos ðλbÞiψ j; ð3:24Þ

from which we have the following relations between the
quantum theories corresponding to two different values

Vð1Þ
o and Vð2Þ

o [cf. (3.18), (3.19), and (3.17)]

h dvolðVÞiψ ð2Þ ¼ Vð1Þ
o

Vð2Þ
o

h dvolðVÞiψ ð1Þ ; ð3:25Þ

Δψ ð2Þ dvolðVÞΔψ ð2Þ
dsin ðλbÞ
λ

¼ Vð1Þ
o

Vð2Þ
o

Δψ ð1Þ dvolðVÞΔψ ð1Þ
dsin ðλbÞ
λ

:

ð3:26Þ

Thus, not only the expectation value and fluctuations of the
elementary operator v̂ in (3.17) but also those for the
volume of V depend on the value of Vo. This is to be
contrasted with Eqs. (3.19) and (3.20) for the entire fiducial
cell which have been the focus of previous work. It is then
worth noticing that Eq. (3.24) extends previous results in
the literature to the case in which one considers a subregion
V of the fiducial cell Vo and, consistently, previous results
are recovered for V ¼ Vo [cf. Eqs. (20) and (34) in [24] ].
Let us discuss the above Vo-dependence in more detail.

The quantum dynamics of the volume dvolðVÞ of the finite
region V is not affected either by the coordinate volume Vo

or the physical volume assigned to the fiducial cell Vo as
long as

h dvolðVÞiψ ¼ V
Vo

h dvolðVoÞiψ ⟶
V
Vo
→0;h dvolðVoÞiψ→∞

finite: ð3:27Þ

The quantity (3.27) might be a proper cosmological
observable as the double scaling limit might be performed

such that h dvolðVÞiψ∼ size of universe today. Consequently,

the state ψ and the observable dvolðVÞ provide a physically
reasonable description of the volume of the universe. Now,
as the (expectation value of the) total volume of the region
Vo in a given state does not depend on the value of Vo
[cf. Eq. (3.19)], the quantum counterpart of a putative
classical Vo → ∞ limit would be to choose a state for

which h dvolðVoÞiψ → ∞; i.e. the region of homogeneity is
enlarged geometrically. This is the case in late-time
cosmology where the homogeneous approximation can
be safely trusted on large scales and, for finite V and
sufficiently large Vo, quantum fluctuations (3.24) are
suppressed by the ratio V=Vo and remain so over different,
yet large sizes of Vo [cf. (3.26)].
The situation is rather different at the small scales of the

early-time universe where the volume of both V and Vo
become sufficiently small so that quantum fluctuations
cannot be neglected. The importance of fluctuations for
finite small cells has already been emphasized e.g. in
[16,20]. Evolving the system backward following the
collapse of an initially large-scale homogeneous universe,
structure forms and inhomogeneities build up within a
comoving volume of given coordinate size Vo. For the
collapse process to be still described using a homogeneous
model, a smaller region over which homogeneity is
imposed should be selected when inhomogeneities become
appreciable so that more and more inhomogeneous modes
with a wavelength larger than the fiducial cell can be
neglected within that region. This would be in particular
required to be eventually consistent with an asymptotic
BKL scenario according to which spacetime dynamics is
locally homogeneous when approaching the spacelike
singularity. From the scaling property (3.26) we thus see

that, in the early-time regime where Vð1Þ
o ∼ Vð2Þ

o ∼ Vo are
comparable and small, not only the quantum fluctuations
for the elementary operators (3.17) but also those for the
smeared volume of a small region V ⊂ Vo are not sup-
pressed by the V=Vo factor in (3.24). The states yielding
small physical volumes are thus very quantum and the
quantum description of V at small scales cannot be made
effectively classical to an arbitrary precision.
Given the region V one is interested in describing

within the homogeneous approximation as e.g. a small
elementary cell inside Vo, and thinking of the latter as been
made of multiple identical elementary cells patched

8Let us remind the reader that, even though the dynamics of
classical observables is not affected in the Vo → ∞ limit, such a
limit would spoil the canonical structure of the classical theory
[cf. Eq. (2.6b)]. A naïve limit which ignores the fact that different
quantum representations and Hilbert spaces are identified by the
different values of Vo, would in turn spoil the (off-shell) starting
point for the canonical commutation relations.
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together homogeneously,9 quantum fluctuations of the
individual cells are present at small scales, and it is only
when going from the early-time small scales to the late-time
large scales that they are suppressed as the number Vo=V of
subcells fitting into a bigger and bigger Vo grows.10

As emphasized in Sec. III A, the mapping between the
different Vo-labeled quantum theories is a priori not
unique. Therefore, one could in principle seek for a
different mapping for which the resulting scaling behaviors
are such that quantum fluctuations remain small when
shrinking Vo. However, if such a mapping exists, the
dynamics of the states will be modified under a change
of the region Vo. In either case, it is clear that the size of the
fiducial cell has a physical significance and is not just a
regulator that can be removed at the end of the day with no
effects at the quantum level.

IV. CONCLUSIONS

In this paper, we analyzed the classical and quantum
relevance of the so-called fiducial cell in homogeneous and
isotropic cosmology, that is, the compact region Vo ⊂ Σ to
which otherwise-divergent integrals over the noncompact
spatial slice Σ are restricted. The assigned coordinate
volume of the latter is Vo and, in the limit Vo → ∞, the
region Vo approaches again the spatial slice Σ. While the
volume Vo is coordinate dependent, the quantity volðVoÞ ¼R
Vo

d3xa3 ¼ Voa3 is not. Such a fiducial cell is commonly
assumed to be a nonphysical auxiliary construction to be
removed later on. A closer inspection initiated in the
present paper and complemented by a companion paper
[30], where also a systematic study of the reduction to the
homogeneous theory is presented, suggests that the fiducial
cell is not so fiducial after all. In agreement with some
previous investigations [16,18–21] based on a different
starting point motivated by analogy with effective QFT, Vo
has a physical interpretation as the scale on which homo-
geneity is imposed or in other words the scale on which
periodic boundary conditions are imposed. However, a
physical length scale to this region can only be assigned
after solving for the dynamical metric.
In the first part of the paper the classical theory was

reviewed with emphasis on the way in which Vo enters its
canonical structure. It was shown that it is possible to
construct observables independent of the fiducial cell.

In particular, their dynamical evolution is also independent
of it so that the on-shell physical predictions for classical
dynamics are not affected by the choice of the fiducial cell.
In other words, changing the size of the homogeneity
region (fiducial cell) is a symmetry of classical dynamics.
This is plausible as the regulator and compactification of
the spatial slice are only relevant off-shell to construct the
action, Lagrangian, Hamiltonian, and Poisson brackets, but
not on-shell at the level of the Einstein equations. As the
local Einstein equations are sufficient to describe the full
classical physics, it is not surprising that the size of Vo does
not affect the dynamics of these observables. Only the off-
shell quantities such as the Hamiltonian and the action
diverge in the limit Vo → ∞ where the regulator is
removed. Furthermore, studying the Vo-dependence of
the canonical structure, it was argued that classically each
fixed value of Vo describes a different canonical theory and
the different theories cannot be related by a canonical
transformation. Therefore, the regularization leads to a
whole family of classical homogeneous and isotropic
theories, all leading to the same classical dynamics.
The fact that Vo labels canonically inequivalent classical

theories has important consequences at the quantum level.
In the second part of the paper, the quantization of these
classical theories was then studied in the framework of
homogeneous and isotropic loop quantum cosmology. It
was argued that each value of Vo corresponds to a different
quantum representation characterized by different Hilbert
spaces labeled by the Vo-values. By relating states and
expectation values within the Hilbert spaces carrying the
different Vo-representations, it was possible to study the
dependence on the change of Vo of quantum operators
which may also exhibit different scaling behaviors from
their classical counterparts. Moreover, it was possible to
find an isomorphism between states of the Hilbert spaces
associated with different Vo-regularizations, which pre-
serves the action of the Hamiltonian and thus dynamics of
quantum observables. As discussed, this is not a necessity,
but leads to a situation similar to the classical theory
where dynamics is not dependent on the particular choice
of fiducial cell and its coordinate volume. In particular,
as we have already noticed, the isomorphism proposed in
this work comes to be the mapping sought in previous
literature [26].
The fact that the states so related have the same

dynamics, however, does not mean that a change of Vo
has no effect in the quantum theory where not only
dynamics but also expectation values, higher moments,
and quantum fluctuations are relevant. In fact, two states
ψ ð1Þ and ψ ð2Þ related as in (3.14) can be physically distinct.
For example, the scaling behaviors (3.17) of the elementary
operators suggest that the point around which semiclassical
states are peaked and their widths will transform under a
change of Vo [30]. This might have consequences for the
effective equations in that the classical trajectory over

9As discussed in the companion paper [30], this is precisely the
picture one gets by explicitly carrying out the homogeneous
reduction of the gravitational field modes where the spatial slice
is partitioned into disjoint cells and homogeneity is imposed only
on a finite number of them Vo ¼⨆n Vn.10This is also in line with some of the discussions about coarse
graining and renormalization with coherent states in LQC [38,39]
according to which, by patching together N cells, the fluctuations
in the large cell grow only as

ffiffiffiffi
N

p
, so that the relative fluctuations

are vanishing in the infinite cell limit.
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which the state is peaked could be rather different in the two

quantum theories depending on the ratio Vð2Þ
o =Vð1Þ

o .
A quantum theory, moreover, also includes predictions

about quantum fluctuations. As we discussed with the help
of the proposed mapping between the different quantum
theories, these have a well-defined scaling behavior when
the Vo-representation is changed, for both the smeared and
nonsmeared relevant operators. It was shown that the
volume of Vo ⊂ Σ in the quantum theory is actually
independent of its coordinate value, which is consistent
with diffeomorphism invariance and the fact that there is no
reference field with respect to which the volume of Vo can
be measured. It was further argued that the quantum analog
of removing the regulator consists in choosing a state for

which h dvolðVoÞiψ → ∞ and thus the physical volume
assigned to the fiducial cell Vo becomes infinite. This is
the case in late-time cosmology where the universe can be
well approximated by the homogeneous model over large
scales. Nonetheless, by looking at observables respectively
smeared over the fiducial cell Vo and a subregion of it
V ⊂ Vo, it was shown that, unlike the former, the quantum
fluctuations of the latter explicitly depend on the size of the
fiducial cell through the ratio V=Vo interpreted as the
(inverse) number of subcells V homogeneously patched
together into Vo. In particular, the uncertainty relations for

smeared physical observables such as dvolðVÞ are affected
as these would vanish in such a limit, leading to a
seemingly classical theory even for a finite region V as
long as homogeneity can be safely imposed over large
scales. This observation is consistent and generalizes the
arguments in [24], where no distinction between V and Vo
was considered. In particular, this is in agreement with the
observations that for large fiducial volumes the effective
equations are valid [23,24,27,36,37]. However, quantum
fluctuations become relevant for a finite region, as e.g. in
the early time regime, so that the fiducial cell is not playing
the role of a mere regularization but comes to be of physical
relevance at the quantum level.
A possible interpretation of this is the fact that a classical

theory is purely local, while a quantum theory is not. The
latter includes the description of nonlocal fluctuations and
correlations. The amount of fluctuations of a finite region
V ⊂ Vo are always measured with respect to the fluctua-
tions of the full fiducial cell Vo. From this point of view, it
is not surprising that the fluctuations for V become
negligible when the volume of Vo becomes sufficiently
large. It should nevertheless be emphasized that V can have
still a finite volume as e.g. the size of our universe, even if
hvolðVoÞiψ → ∞. Thus, classically the fiducial cell has the
physical interpretation as the scale on which homogeneity
and periodic boundary conditions are imposed. Classical
dynamics is independent of it, at least in the large volume
regime where inhomogeneities can be safely neglected and
the homogeneous description provides us with a good

approximation. The situation changes at the quantum level,
where the scale of homogeneity has a physical effect on the
quantum fluctuations. Measuring the quantum fluctuations

of dvolðVÞ allows one to measure in principle the size of Vo,
which is then a physical observable due to quantum effects.
Therefore, one needs to think carefully about the relevant
quantum state which is studied and the volume that is
assigned to Vo in this way. In the follow-up paper [30], we
provide a more detailed analysis to understand these
features form a full theory point of view by imposing
homogeneity constraints systematically for the modes of
classical fields, determining the resulting canonical struc-
ture of the symmetry-reduced classical theory, and studying
its quantization.
As a final note, we remark that changing Vo at the

quantum level also affects the relevant couplings, here the
polymerization scale λ, and forces one to perform a very
precise identification of states in order to be consistent with
the dynamics. This looks very much like a very naïve
renormalization procedure, and in future work it would be
interesting to relate this to previous work in the context of
coarse graining and renormalization in loop quantum
cosmology [38–41]. More specifically, as discussed in
detail in the follow-up paper [30], the classical homo-
geneous minisuperspace theory results from a twofold
procedure consisting in neglecting the inhomogeneous
modes with wavelength larger than the cell size and also
in truncating those remaining inhomogeneous modes inside
the cell so that one is left only with the zero mode. When
considering then multiple cells patched together into a
bigger cell, the fully homogeneous analysis discussed here
demands the zero modes in different cells to be equal while
setting to zero all inhomogeneous modes. This essentially
amounts to replicate the physics in one cell into all the
others and in turn leads to the mapping of states (3.14)
between different Hilbert spaces and no renormalization of
the Hamiltonian yet. The present setting can therefore be
extended in the following ways. First, even neglecting
interactions between the cells which in our framework
should be encoded in boundary terms at the surfaces of the
individual cells, the inclusion of inhomogeneous modes
with a wavelength larger than a single cell size would
require us to impose different gluing conditions for the field
modes. Therefore, we expect the dynamics for states in the
quantum theories of a single cell or many cells not to be the
same anymore and, consequently, the mapping between
different Vo-valued Hilbert spaces to be modified. Second,
a more complete picture would then require the interactions
between neighboring cells to also be included. In this
respect, it would be interesting to compare the resulting
analysis with previous work on perturbations around
homogeneous cosmological spacetimes as initiated in
[42], and systematically study the regime of validity of
perturbative treatments of inhomogeneities at the quantum
level. We believe that the framework presented in this paper
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(and in its follow-up paper [30]) offers interesting starting
points for investigating these questions which are thus left
for future investigation.
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