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4D N =2 superconformal field theories and their invariants can be often enriched by nonlocal
Bogomol'nyi-Prasad-Sommerfield operators. In this paper we study the flavored Schur index of several
types of A/ = 2 superconformal field theories with and without line operators, using a series of new
integration formula of elliptic functions and Eisenstein series. We demonstrate how to evaluate analytically
the Schur index for a series of A, class-S theories and the N' = 4 SO(7) theory. For all A class-S theories
we obtain closed-form expressions for SU(2) Wilson line index, and ’t Hooft line index in some simple
cases. We also observe the relation between the line operator index with the characters of the associated
chiral algebras. The Wilson line index for some other low rank gauge theories is also studied.
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I. INTRODUCTION

Any 4D N =2 superconformal field theory (SCFT)
contains a nontrivial protected subsector of Schur operators
that form an associated two-dimensional chiral algebra [1],
providing an important invariants of A" = 2 SCFTs. These
operators are defined as the cohomology class of some
well-chosen supercharge of the A/ =2 superconformal
algebra. The index that counts these Bogomol'nyi-Prasad-
Sommerfield operators is called the Schur index Z(q),
which happens to be a special limit 1 — ¢ of the full N = 2
superconformal index Z (p, ¢, t) [2]. The Schur index plays
a central role in the SCFT/vertex operator algebra corre-
spondence, as it coincides with the vacuum character of the
associated chiral algebra.

Similar to the §* supersymmetric partition functions [3],
the superconformal index [4,5], and in particular, the Schur
index [2] is an exactly computable quantity. For theories
with a Lagrangian, the Schur index can be computed as an
§3 x §' partition function and localizes to a multivariate
contour integral along the unit circles [6—10]. Alternatively
for theories of class-S [11], the index can be identified
as the partition function the 2D g-deformed Yang-Mills
theory [12-17]. There are also instances where the asso-
ciated chiral algebras are known from other methods, whose
module characters have already existed in the literature [18].
There are also other methods to compute the Schur index in
different scenarios [19-22]. Many of these results, although
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exact, are not given in closed-form in terms of finite
combinations of special functions with well-controlled
periodic and modular properties. This problem is tackled
in several recent works. The unflavored and later the
flavored Schur index for the N' =4 SU(N) theories are
computed in closed-form using the Fermi-gas formalism
in [23-25] and modular anomaly equation [26]. In [27], the
unflavored Schur index for many class-S theories are
computed in terms of quasi-modular forms. In [28], several
integration formula are proposed to compute analytically the
index for a wide range of Lagrangian theories (and some
non-Lagrangian ones) in terms of finite combination of
twisted Eisenstein series and Jacobi theta functions.

Line operators can be introduced into 4D N = 2 SCFTs
that preserve some amount of supersymmetry [29-32],
and the corresponding S$* partition function and super-
conformal index in their presence have been computed
exactly [3,33-37]. In the context of the AGT-correspon-
dence, the line operators correspond to the Verlinde net-
work operators in the Liouville/Toda CFT [38-42]. In [31],
the Schur index of supersymmetric Wilson lines and the
S-dual ’t Hooft lines in different gauge theories are studied,
incorporating the monopole bubbling effects. In [32], the
authors propose an infrared computation method using the
infrared Seiberg-Witten description and compute the line
operator index for Argyres-Douglas theories and SU(2)
SQCD. The papers [43,44] further studied the Schur index
of Wilson-"t Hooft line operators in terms the punctured
networks.

In this work, we focus on computing analytically the
Schur index with or without line defects in 4D N =2
SCFTs, generalizing the work in [28]. See also [45] for
extensive analytic results on Wilson line index for the N =
2* U(N) theories. The key tools for our purpose are a new
set of integration formula that can be applied to a wide range

Published by the American Physical Society


https://orcid.org/0009-0003-9365-6913
https://orcid.org/0000-0003-2492-6601
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.106002&domain=pdf&date_stamp=2023-11-03
https://doi.org/10.1103/PhysRevD.108.106002
https://doi.org/10.1103/PhysRevD.108.106002
https://doi.org/10.1103/PhysRevD.108.106002
https://doi.org/10.1103/PhysRevD.108.106002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

GUO, LI, PAN, and WANG

PHYS. REV. D 108, 106002 (2023)

of 4D N =2 Lagrangian SCFTs, expressing multivariate
integrals of elliptic functions in terms of Eisenstein series
and rational functions of flavor fugacities. Concretely, we
propose integration formula for integrals with the following
types (and some variants) of integrand,

f(a)El[ﬂ}Ek[il], (),

za zb
+1 +1 -1
z”‘Ek[ :|Ef|: } me(5)Ek[ ] (1.1)
za zb za

where f(3) denotes an elliptic function in 3, and z = e>"i.
These formula can be used to compute the standard Schur
index of some A,-type theories of class-S, Wilson line index
in A,-type theories of class-S, SU(N) SQCD and N = 4
theories of gauge group SO(N). We also compute the
’t Hooft line index in some simplest cases.

Let us explain the A; case in a bit more detail. Recall that
an SU(2) Wilson line operator' in a A; class-S theories
T[Z,,] is dual to a line operator on the X,,, and in
particular, such a line operator resides at some long tube in
the pants-decomposition of X, , which provides a gauge
theory description for 7[%,,]. We find that for A;-type
theories 7'[X, ,], there are two major types of Wilson line
operators: if the relevant tube separates X,, into two
disconnected parts, the index is called type-2, and other-
wise type-1. Note that type-1 line operators exist only when
genus g > 1. It turns out that the type-1 Wilson index is
easy to compute and we are able to obtain an elegant
compact closed-form,

n . +j 20—2
) in(7) n(7) g
W, -7 _ . mYy
o= [T ] 8 [t
i
e
m’ ’_m , (1.2)
gq g
(1)
<Wjez+%>921’n —0. (1.3)

Note that given a X, as long as the Wilson operator is of
type-1, the index is independent of the specific tube it
resides. Generalizing the observation in [32], the type-1
index can be viewed as a linear combination of the vacuum
character 7, of the associated chiral algebra of 7[X ]

in(z)
9;(26;)

and a nonvacuum module character n(z)%=2 ",
where the coefficient is a rational function

'We consider the simplest Wilson lines charged under one
SU(2) gauge group, and leave more general Wilson lines and
their correlators to future work.

i : by = b
= <qm/2 _ q—m/2)2g—2 = qm/2 _ q_m/2 .

(1.4)

For the type-2 Wilson line, the closed-form index takes a
less elegant form. Still, we are able to identify a similar
structure of finite linear combination of characters for the
SU(2) SQCD, T[Z,,], and all T[X,o]. In particular, the
type-2 Wilson index in 7 [%, ;] provides two new linearly
independent (combinations of) characters of the associated
chiral algebra, which were previously not visible from
analyzing surface defects in 7% ,].

This paper is organized as follows. In Sec. II, we
demonstrate that the generalized integration formula can
be used to compute analytically the Schur index of a series
of A,-type class-S theories with or without Lagrangian,
and of SO(7) N =4 SYM. In Sec. Ill, we compute
both type-1 and type-2 line operator index for A;-type
class-S theories. In Sec. IV, we further compute line
operator index for some other higher rank gauge theories.
The Appendix A contains a quick review of the relevant
special functions, and Appendix B contains a series of new
integration formula that help compute Schur index or and
without line operators.

II. MORE ON SCHUR INDEX

Several integration formula were proposed in [28], which
can be used to analytically compute some multivariate
contour integral of elliptic functions. Those formula were
enough to compute exactly the Schur index of A; class-S
theories and some low rank A/ = 4 theories. However, they
were insufficient for more general Ay class-S theories. In
this section, with the help from some new integration
formula, we explore the exact computation the Schur
index of a series of A, theories and the N' =4 SO(7)
theory, generalizing the results in [28]. The computation in
this section is relatively technical, and uninterested readers
may skip to Sec. III for the computation of line opera-
tor index.

A. A, theories of class-S

First we recall the Schur index of the SU(3) SQCD. It
can be computed as a contour integral

1 2 day HA;&B’gl(aA —ag)
Zs CD:—U(T)M]{ :
Q 3! E 2mias TG T15., 84(ay —m,)

2
d
= ]{ [1-24 2(a),
Ay 2miay

where a3 = —a; —a,, a3 = (aja,)”", and a; = >4,
m; = e**™i_ See also Appendix A for the definitions and
properties of the Eisenstein series E;, [’g} and the Jacobi theta
functions. The integral can be performed by applying the

(2.1)

1
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integration formula in Appendix A, which yields the exact
(albeit slightly complicated) result,”

6 -
ISQCD:Z2ROJ~2E1 |:m :| +Z< (12_
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1
- E2 _1 .
mj,q >

From the computation of SU(3) SQCD index, we already
see that the complexity is far above the A; type. Therefore,
we shall focus on arguing that the index can be computed
using the existing integration formula. The complexity
could decrease once more optimized integration formula is
found, which we leave to future work.

As a class-S theory, the SQCD has manifest flavor
symmetry SU(3)M) x SU(3)?) x U(1)1) x U(1)?). We
shall denote the fugacities of SU(3)® as c< ), and those
of U(1)@ as d@. They are related to m; by

(2.2)

Cgl) = ml/d(l)’ Cg) = mz/d(l)» d = (m1m2m3)1/3,
(2.3)
ng) =my/d?, cg) =ms/d?, d¥ = (mymsmg)'/3.
(2.4)

Starting from SU(3) SQCD, one can build SU(3) linear
quiver theories by successively gauging in 9 hypermultip-
lets one after another. Let us perform one such computa-
tion. The gauging procedure multiplies to Zgocp factors

IVM~H&

AB=1
A#B

_aB

s n(z)
ooy (2
A,B:1194(—0A + ¢z +b(*>)

IHM =

Here the prefactors R; ;, are given by

i (1)138 (2m;,)9,(m;,)?

R =
O 6 Tisy, 91 (my, — )9y (my, + m)[ Ty, 9a(my)
R (1)'01‘)4(2m + m] )94(m;, +2m;)
M 61T, o O (my, — )y (my, = m) [Ty, 5, 194('"/, +my, +m;)
in(z)"*9,(2m;, )84 (m )
R.fl = Rjjo*= ) = Rofl'

T (m, +m) 3, (m; — m)9; ()

= —a; —ay, c?) = —c§3) - c(;). The gaug-

ing also identifies cf) with ay, and a contour integral of a;,

a, should be performed,

dal daz
= T MW a,dV, dNT
]{2711'611 2ria, SQCD (c a ) wi(@)

X IHM (a, C(3), d(3)) .

where again aj

(2.6)

Let us look at the various terms in this integral. First of
all, we have an integral of

6 -1
> R, TymuIumE {m ] . (2.7)

Jo=1 J2

It is straightforward to verify that, as a function of aj,,
the factor Ry;, ZymZpwm is elliptic with respect to both a; 5.
Moreover, after the replacing m with the ¢, d fugacities
and a,

(ml, ...,m6)

m @
_ (ngd(l),ngd(l),d_,a1d<z>,a2d<z>,d_>,
C

and  similarly  m;m; Lo~ () a7 (), a5 (L),

(ajay)*'(...)) where (...) denotes combinations of
¢, dM d? . Therefore, one can perform the a, integral
using (B4) or (B7). For all j,, there are several types of
poles from Ry;, ZymZwms

=[12], [3], —ay+][1,2], —ay+[3]. (2.9)

Here [1, 2] and [3] denote respectively linear combinations
of ¢V, d(1?) and ¢©®),d3). The Eisenstein series E;[ ! ]

mj,=123
are independent of a;, a,, and will never participate in
subsequent integrations or gauging. The variables a;, a, in

E, [mj;ij 6} appear in the form a;, or a,, or a product a,a,.

The a, integral using the integration formula will produce
E, [[ ]] EI[B]} Ez[az[l 5 or Exf, [3]} where [1, 2] and [3]
denote respectively combinations of the flavor fugacities
W, dM d? and of ¢®,d®). The a,-integration of these
terms can be further carried out, and we have Eisenstein
structure,
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El{ui,]z]]El[[ilzJ’ El[;]z]}&ﬁ;”
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12.3)

where [1,2,3] denotes products of c(1), ¢(3) d(123),
Next we have R; (ay=0)ZyyZpuE[,'] integral.
. N

(2.10)

Again, the prefactor R; (a; = 0)ZyyZyy is separately
elliptic with respect to both a;,. This factor again has
a;-poles of the form

a =[1,2], [3], —ay+][1,2], —a,+[3]. (2.11)
Therefore, the a;, a, integral can also be straightforwardly
performed with a reference point a; = 0. The Eisenstein
structure is the same as that of the previous term.

Let us also look at the last two terms in (2.2),

1 1
R. . | E - F .
j]]2< 2|:mj1mjz:| ? |:mj2:|>

We note that R; ;, = 0 when j; = j,. One can also directly
verify that R; ; TymZywm is elliptic, with a; poles of the
same simple form as the above. Hence, one can also
proceed with both a;, a, integral using the integration
formulas (B4) and (B7). The Eisenstein structure of the

result involves

El{[i]]@[ui,lzﬂ’sl[[L;r[s]]’

ElE]Ez[;lzﬂ&[[l,zj]irm]’

We are now ready to deal with the middle two terms in
(2.2). Again, the factor in front of the Eisenstein series is
suitably elliptic. But now this elliptic function is multiply-
ing with

-1 -1 -1 -1
2 o ) P o
mj, mj, mjmj,q mj,

(2.14)

(2.12)

(2.13)

When substituting in the a, ¢, d fugacities we will need to
integrate

flan )k LA;, 2] ] b LZB;’ 2] ]

flay, ay)E, { (2.15)

aA{ll, 2] ] b [ala;{ll, 2] } '

We can carry out the @ integral which involves poles of the
same form as the above, a; = expressions of ¢,d and
a; = —a, + expressions of ¢, d. The integral can be per-
formed using the integration formula (B4). After the a;
integral, we will have the following type of integrand left to
integrate (factors independent of a, are omitted),

fla2)E=12 sz.l..)} , or,

Fa2)Eim HIJE [(ﬂ

To illustrate this, we can look at a term in the sum, for
example,

flar, a)E, [ZEJEI {_(])}

Since f(ay, a,) has poles only of the form a; = (...) and
a; = a;'(...), the integral of the above will produce
Eisenstein series with arguments

(2.16)

(2.17)

e27n’0a51(”.)’ 827[1'0(.”)7

(2.18)

Here we have chosen the reference point as a; = 0.
Therefore, although tedious, the leftover a, integral can
be dealt with, and it produces the exact Schur index for the
SU(3) x SU(3) linear quiver theory. In the end, the exact
index contains Eisenstein structures

Ehﬂ Ehil)]E[(il)] (219)

The above analysis can be repeated for longer linear
SU(3) quiver theories, where we will encounter integrals in
the presence of

E"{j..l»]’ E[fl)]E[z(ﬂJ

These integrals can be treated using the integration formula
in the Appendix B, and therefore Schur index of all linear
SU(3)-quiver are computable, though rather tedious, with
the current method.

Now that gauging a SU(3) symmetry with fugacities ¢(?)
can be carried out using the integration formula, we are able
to also compute Schur index of some non-Lagrangian
theories. Consider the Eq superconformal field theory of
Minahan and Nemeschansky [46], whose index can be
computed by exploiting the Argyres-Seiberg duality [47]
and an inversion formula [20,48],

(2.20)
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FIG. 1. An SU(3)-type class-S theory at genus-zero with three
maximal (circle) and a minimal puncture (dot).

T, (c(l), c@, (wr,w'r, r‘z))

Zsqcp (C“), 0(2),W7§,£)

o r w—»q%w
9(w2)
1 _1
Isqcp(cm,c(2>,”—'3,w—3) |
i AR Y 3)
O(w2)
where the denominator is related to d; by
9
o(c) = — 12 (222)
iZ2q(q:q)

With the known closed-form expression of 7. Lsqcp: the
above formula also provides a closed-form Z, . ? Note that
two of the SU(3) flavor symmetries of the E theory share
identical fugacities ¢(!),¢(® with those of the SU(3)
SQCD. The above formula allows one to directly compute
the Schur index of, for instance, a theory of class-S with
three maximal and one minimal punctures (see Fig. 1),
(1), =1 u! w3
Tsqcp (C ,a ,T,W—,‘)W_)qi%w

da
T =
7{ 2wia g O(w*?)

x Tym(a)Tm (a, B, d(3)).

(2.23)

As we have argued, this can be computed exactly with the
currently available formula in the Appendix B.

B. N =4 SO(7) SYM

The Schur index of the V' = 4 SO(7) theory is a contour
integral of the following integrand,

3Unfor’[unately, the current closed-form Zp only makes
manifest the SU(3), x SU(3), C Es symmetry. It would be
interesting to further explore a better formula with explicit Eg
Weyl-invariance.

1(0) (aq; + pa;, q)
Zlar,ay,05) = ( O)) gg& (aa; + pa; +b.q)
1(aa;. q)
X HH94 ot 6.0 (2.24)

which is separately elliptic with respect to all three
variables a; ;3.

The integral can be performed analytically by integrating
ay, a,, ay one after another using the integration formula
collected in the Appendix B. The a; integration involves
the following simple poles which are all imaginary,

ab+%, aa2+ﬁb+%, aa3+ﬂb+%. (2.25)

The residues of these simple poles are denoted by P, Q s,

and Qaﬂ. Using the integration formula (B1), the a;
integration leaves an integrand

ddl
Z(as,a :]{ —Z(ay,a,,a
(wa)=§ sz

1
- ZP El |: b(l:| ZQaﬂEl |: a’bﬁ:|
1
+ ZQ(I/}EI l: abﬂ:|

The poles and residues of P, Q, Q are listed in Table I,
which are used in the a,-integration.

Using the integration formula (B4), the a, integration
leaves a final integrand

(2.26)

d(lz
Z,5(az) = Zilay,ay) =1, +1, +1;, (2.27
() = § 572 Ziara) = I+ Bt (227
where
TABLEL Poles and residues of P,, Q,4, and Qaﬂ with respect

to the variable a,. Here a, 8,y = £1.

Poles Residues
P 2yb Poy
%(2}’03 +2pb+1) Poapy
Qp  A+bn (k6)={(0.1).(1,0), (1, 1)} ok
—apb +5+57 {(k.£)} = {(0,0), (1,0), (1, 1)} —QW*V
aﬁb + % yP(zy
vas + aﬁb + % Qa/iy
rvaz — zaﬁ[’ af—y
Qa/} )/b + % _?Yﬂa
—yaz +afyb+3 Qupy
y(—az — 2aph) —J’Qa/ﬂ
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j{ daz { 1} and
I, = P.E
a=+1 27[1&2 b(l
: ! day -~ -1
_ L dar
= E 3 ‘7{ . af 1|: p :|
a;:lpay 1 |:b27 1 1:| 1 |:b11:| (l,/}Z:il 2rxia, a3bﬁ
1
=1 -1
+ Pap E1{ ]E [ } (2.28) = Z Qaﬂ\az -0 1[ “bﬁ}
aﬂyzil T Labp! b* af==*1
> 19 E{ . ]E[_l]
" a»ﬁ»)/:il}, e agyb—ﬂtﬁrqé ! a(SIb/i
r { o } 1 -1
- PypoE E
a= i1%2ma asb? a/};ﬂ 17 l[lﬂ] l[agb/’}
= Z Z aQaﬂ m —|— Z aﬂy |: . la/}y:|E |: :1/}:| (230)
==+1 k.0 ,m,n=0 a.py==+1 b (13b
(—1)'”
x E; kpn=map g ZaQaﬂy The closed-form of A = 4 SO(7) Schur index is then given
( 1y afy==+1 k=0 by
<_1)k (—l)k
x5k<E2_k[ (k] 1]+E2_k[ o }
o oL o )
ap- ke g ap2H z:?{ G 2 (as). (2.31)
\a3|:1 277-'1(13
ZI: PoySE [ (-1)F } 229
— QY FayO ok w0 )
af=t1 k=0 ! p(2=Hkap

At this stage we encounter the following types of integral

7{2:1 %Zf(z)E" [j ] ﬂ{zl %Zf(z)El E; ]El [; ] (2.32)

which can be computed using the integration formulas (B4), (B7), and (B13). Since the computation of integrand is
somewhat technical and tedious, we will only present the final result without the details. To do so, we define I ; ; as some
intricate combinations of Eisenstein series,

nem ) emo-n [ (S o] 1)

(2.33)

and

st o 0 ) B SR 4 i

1 ]El [(:K” bﬂ] s [(<—) ke%:l,axét—k)(—l)f%mz[(_lzjyﬂ

Do P | CRECIM AN ISTEIN)

S F( 1);72} * ﬁyEl{ }+;i(_i)ﬁEl[<—1>ﬂb;+kq#}’ 23

a1V, [ pr+1 ]

p?
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and
e 2 L PR o) 1O IR BB B RN
[ ol U R RS o2 L S B )

3 (—l)k 9 2 -1 n
+ZCkE2[ o ]+§> _2H)El[b2k+l] 2E1[ ] +ZA E3[ ) } (2.35)
With the above three definitions, we can express the N' =4 SO(7) Schur index as

i i
IN 450(7) — 48 Z(Raﬂ(ll)a/} + Taﬂ(IZ)aﬁ) + 4_8WI3 (236)

In this formula, the Greek indices (a, ) sum over the set {(0,0),(1,0), (1,1)}. Note that

91 (B -+ <) 94 () 94(6)’

R, =b"% : 2.37
ke 9,(3b + a;ﬂr)& (2b + %) 9, (26)° 237)
¢ 81(35+W)8 (b+/”+/’ ) Ly 2k+2 b) '

Finally, it is straightforward to check that the unflavored limit of Z yr_ 4 50(7) satisfies a monic I" 0(2) modular differential
equation at order 10,

64169 116269 99455 51397 45310090
D/\f:4 — DUO) _ e) (8) e} 7' D(7) 0.4
s0(7) — T4 45888 1 45888 02 * (68832 703 ~ 22944 012 T\ 3215744

37792730, 5 5245697@M> PO 4 (_ 11336530, 5 25579030, , 5597392,3> o)

3303936 | 4405248 4405248 | 4405248 2202624
<1 19088547304 9249707570, 5 | 39377155250, 25057753696)3,3) o (_ 1173360590 7
22836805632 3806134272 7612268544 11418402816 22836805632
299109735105 3803660110, 5 930902663(93,4> o <_ 2741371077490, 5 37368893710,
22836805632 2537422848 | 22836805632 ) ¢ 26308000088064 3288500011008
3301346624350, | 1992016421150 5 41820786289(94,4> @ (240693275531@0,9
6577000022016 ' 3288500011008 ' 26308000088064 39462000132096
_ 889922128690, 5 _ 80998747570, 3300645700850 _ 174451260571(94,5) o) (_ 2569218750,
4384666681344 1096166670336 ' 3288500011008 2192333340672 ) ¢ 256624295936
| 4774168350,y 5982133505 | 5504606010;; 131093195310, 10552431897(95,5>
128312147968 256624295936 ' 32078036992 128312147968 128312147968

(2.39)

and nonmonic I'’(2) equation at order 9,
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q

24717 407 71 10377 1339781
DQ&:;; _ ®O’IIDEIQ) ( @1’1 _ 3 0 @0_2) D(g) (69 @1'2 _ 03 @0’3)2)517) + ( 339 8 @0'4

1912 1912 11472 3824 275328
156250 5 1767811@22) PO <17516635®05 | 374363530, 4 12423443@)2,3> o)
1434 275328 a 13215744 13215744 6607872 I
(_ 4443892105 246438550, 5 1771477750, , 76738414783_3> o (436377635@077
317177856 52862976 35241984 158588928 ) ¢ 11418402816
26311221430, s 64868932730, 5 1702845230393,4> ) (287431763@0,8 46324860950 ;
11418402816 3806134272 11418402816 ) * 30449074176 ' 22836805632
34907143870, 1997336305105 133319985805@)4,4> o <_ 2477224494970,
2537422848 7612268544 91347222528 a 26308000088064
6635924230, 5 1059951321110,; 29102731747970; 4 439516599949645) W (49415625@0,10
36087791616 243592593408 2192333340672 487185186816 )¢ 32078036992
526882230, 25418124270, 300126689105, 363567980790, 2565061713995,5> (2.40)
16039018496 32078036992 4009754624 16039018496 16039018496

In the above modular linear differential equations, the
operator DSI") is the so called Serre derivative given by
DY = a2 000, o) = go, + kEy(z), (2.41)
and the functions @, ) = 939" + 95"93" are weight
2(m + n)I'’(2) modular forms [49]. We also note that each
Trow vector (Roo, R](), R”), and (Too, TlO’ T] l) forms the
same 3-dimensional representation p of I'°(2), following
from the modularity of Jacobi-theta function. In particular,
the representation matrix of ST is given by

-1 0 0
p(STS)=1 0 0 -1/, (2.42)
0 -1 0

acting to these two row vectors. The factor W form a
one-dimensional representation of I'°(2). It would be
interesting to further investigate the relation between the
many ingredients in the above closed-form of 7y _450(7)
and the highest weight characters of the associated chiral
algebra V4 50(7), which we leave for future work.

III. LINE OPERATOR INDEX OF A;-THEORIES
OF CLASS-S

In this and the following section we discuss the Schur
index in the presence of a line operator. For a Lagrangian
4D N =2 SCFT with gauge group G and flavor group f,
the Schur index in the absence of operator insertion can be
computed by a multivariate contour integral [1,2]

7- ﬂ%}zw,b), (3.1)

|
where the integrand Z(a, b) is elliptic with respect to the
“exponent variables” a; separately, and captures contribu-
tions from the vector multiplets and hypermultiplets in a
gauge theory description. Variables b denote the flavor
fugacities with respect to the flavor symmetry f.

One can introduce half line operators in the 4D theory
that extend from the origin to infinity while preserving
certain amount of supercharges [32]. In particular, there
are line operators that preserve the supercharges used to
construct the Schur index. In the presence of such a
Bogomol'nyi-Prasad-Sommerfield half Wilson line ope-
rator in the representation R of the gauge group, the half
Wilson line index can be computed simply by4 [31,32]

We) = ¢ [ da }m<a>2<a>,

2ria

(3.2)

where yx(a) denotes the character of representation R of
G. A full Wilson line operator in representation R can be
thought of as a junction at the origin of two half Wilson line
operators in complex-conjugating representation R, R, and
hence the full Wilson line index can be computed by

v = [ﬂ}mwmw)zw).

33
2ria (3:3)
In our notation, we will only add the superscript “full”
when dealing with a full Wilson line operator.

One can also consider correlators of half Wilson line
operators, which take the form

(W, W) = f o] [Hm()l 2. (34)

*For simplicity we omit the normalization factor Z~".

106002-8



N =2 SCHUR INDEX AND LINE OPERATORS

PHYS. REV. D 108, 106002 (2023)

One can consider applying the tensor product decom-
position ®_; R; =) ;m jR(/) and reduce the product of
characters on the right to a sum of characters of the
irreducible representations RY) of the gauge group,

(Wg, - Wg ) = ij<WR(j)>. (3.5)

In this sense, half Wilson line indices in irreducible
representations are the basic building blocks for correlators
of half/full Wilson line, which will be our main focus.

In the following we will study line operator index for A,
theories of class-S. We will start with some simple
examples where we are able to compute both the Wilson
line index and the S-dual 't Hooft line index. Eventually we
will analyze in detail the half Wilson line index for general
A, theories of class-S.

In many cases, we are able to expand the Wilson line
operator index as a linear combination of chiral algebra
module characters. At the computational level, these
characters come from residues of the elliptic integrand Z
which are related to Gukov-Witten type surface defects. As
already discussed [32,37], the appearance of nonvacuum
chiral algebra modules is somewhat expected. Recall that
the associated chiral algebra of a Lagrangian theory can be
constructed using a set of small bc ghost’ and symplectic
bosons fy through a BRST reduction that imposes gauge-
invariance. Let us denote the vacuum character of the bcfy
system as Z;.5,. The Wilson line index in an irreducible
G-representation R can be written more explicitly as

7{ {%} HaarXR(a)Zb”ﬁy(a)’ (3.6)

Hence the Wilson index account for the local operators
formed from the normal ordered product of the bcpy that
are gauge-variant and can compensate the charge R at the
end of the Wilson line. These operators are acted on by the
chiral algebra V(7) and naturally form a reducible module
R* ® M(R) of G x V(T), since the operators in V(7') are
gauge-invariant under G. The Wilson index then picks up a
trace over the reducible module M,

<W'R> = trM(R)qLO_ibf. (37)

In general, M(R) may be decomposed as an infinite tower
of irreducible highest weight modules M; of V(7).
Therefore it is natural to expect that the trace returns a
weighted sum of irreducible characters ch M;

Smallness means the zero mode ¢, of the ¢ ghost is removed
from the algebra.

(Wr) = ZLjU?v q)ch M, (3.8)

where L;(b, q) are rational functions of the flavor fugac-
ities and ¢. These irreducible modules often arise from
different types of surface defects in the 4D N =2
SCFT [49-54], and (linear combinations of) the module
characters correspond to the defect Schur index. For more
general line insertion, it is less obvious how the chiral
algebra modules arise in the line index. One may argue
from a pure two dimensional perspective. A temporal line £
insertion into the trace gives a trace over the Hilbert space
‘H, of the line L,

trHﬁqLO_i. (39)
When the line is topological (or, commute with the chiral
algebra at hand), the line Hilbert space H, can be decom-
posed into chiral algebra modules. This is the case for the
Verlinde lines in rational theories, and the corresponding
trace has been shown to be expanded in characters of the
primaries [32,55]. In any case, it would be interesting to
further investigate the precise origin of the surface defect
index’s appearance in line operator index, as well as the
physical meaning of the rational functions L;(b, g).

A. N =4 SU(2) theory

1. Half Wilson line index

The associated chiral algebra V,_, of the N = 4 theory
with an SU(2) gauge group is given by the 2D small N = 4
superconformal algebra. The Schur index, which is iden-
tified with the vacuum character of V,,_,4, can be computed
by the contour integral

Ui’ [ da_ 8,(20)9,(-20)
~29,(b) f/@:l 2mia 94(2a + b)9,(—2a + b)

- frmmo=gima| ;|

9020) ' b
In the following we consider the index in the presence of a
half Wilson line operator in the spin-j representation. The
index is then given by the integral

In-4=

(3.10)

da /
W) = i\ Z(a). 3.11
W)= 9 e [Z @. G
Here the spin-j character is given by y;(a) = {;1:_.,» a’,

and in particular, the adjoint character is a*> + 1 4+ a~2.
To proceed, we note that there are a collection of poles
from the elliptic integrand,
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2k+1)r ¢

= =0,1. 12
4 27 kvf 07 (3 )

b
+ _ +—
a, 5 +
Due to the presence of 7/4, all these poles are imaginary,
with essentially the same residues

SRS

Applying the integral formula (B38), the index reads

X ~— . (3.14)

Note that for j € Z, the character y;(a) contains a constant
term 1, which upon integration leads to the original Schur
index 7 yr_4. On the other hand, when j € Z + %, the entire
expression vanishes identically thanks to the summation
over £ = 0, 1. Therefore, we have

_ i 94(6) ¢
<Wj€Z> _+IN:4 281(25)m§::qu/2_q

m;é?)

pm — p—m
-m/2°

(Wiczp) =0. (3.15)
The first term 7 ,-—, = chy is identified with the vacuum

character of the associated chiral algebra V,_4. The factor
e
which is related to the Schur index of Gukov-Witten type
surface defect in the N/ = 4 theory [53]. It can be shown
that the residue satisfies g?‘(‘g)) = chy + chy; where M is
another irreducible module M of V,_4 [53,56,57]. As
module characters of V,_y4, both chy and ch,, satisfy the
flavored modular differential equations arising from null
states in Vr_y4 [49,53,54,58,59]. Therefore, the line index
can be written as a combination of the two irreducible
characters,

in the second term is the residue of the integrand Z

1 +J pm — pm
(Wiez) = I_E;W cho

m#0

1L b —b
-5 > iy | e (3.16)

However, the coefficients of the linear combination are
rational functions of b and ¢g. This is quite different from
the Schur index of surface defects, which are expected
to be linear combinations of characters with constant

coefficients.® In particular, the line index does not solve
the flavored modular differential equations in [53].

2. ’t Hooft line index

In the 4D N =4 SYM (and in general N' = 2 super-
conformal gauge theories), one can define 't Hooft line
operators by specifying certain singular profile for the
gauge fields and scalars in the path integral. By the Dirac
quantization condition, the magnetic charge B of a "t Hooft
operator is valued in the cocharacter lattice Agqgp, inside
the Cartan § of the gauge group G. This lattice A, qepar
corresponds to the weights of the Langland dual group GV,
and therefore a dominant integral element B corresponds to
a G"-representation Rj. The cocharacters as weights in
R}, are obtained from B by subtracting suitable coroot
element o, and weights related by the Weyl group W of
the gauge group G are identified. A weight v in Rj; that is
not Weyl-related to B can screen the ’t Hooft operator and
signals monopole bubbling effect [29,30,60,61].

Under the S-duality, a full Wilson line ina ' = 4 SYM
is mapped to a 't Hooft line. If the magnetic charge of a ’t
Hooft operator corresponds to a minuscule representation
of GV, then its index is safe from monopole bubbling effect,
and the index can be computed by a relatively simple
contour integral [31]. In particular, For the N' =4 U(2)
theory, the "t Hooft line with minimal magnetic charge (1,0)
corresponds to a minuscule representation, and is dual to
the full Wilson operator in the fundamental representation.
The ’t Hooft index can be written as a contour integral [31],

X . (3.17)

Note that the parameters and integration variables have
been renamed and reorganized compared to the double
contour integral in [31]. In series expansion,

(H ) = 142(b+b7") /g + (1+ 36 + 3b72)q

FAD )P (3.18)

The ratio of 9 functions in (H™!) are essentially identical
to the original integrand that computes Z yr_4, up to a shift
from 9, 4 — 94, Itis therefore elliptic in a, with real poles
a = *b. The rational factor in the integrand can also be
expanded in the SU(2) characters,

®possibly up to some overall factors of g [52].
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(a = b)(~1+ ab)
(v -a)(-1+/4qa)

+00
= (1+0?) z; ' j—4(a)
=

—b an/zxf =5 :z<a)

n=0
(3.19)
+oo0
=(1+b2)20 q"x; qu”/x _y14(a
+o0 .
b3 (@) 3.20)

n=0

Hence, the integral (H™') can be computed directly and
exactly using (B45). In this case, the residues of two real
poles a = b* are given by

R, =+ 3.21
After some algebra, we have
3 +oo +n/2
Hfull _ ”7(1) 1 - b— b
HED) =500 (7T ZOZ
L b¥ — b7 2(b +b! - 2q7)
X g2 —
=g -4
in(z)’ [—1]
X E , 3.22
9,(26) ' b (3.22)

where in the second line we applied

f da 1(7)°84(a)? _2in(@)’ {—1]
2mia9,(a—0)9,(a +6)9,(6)>  9,(26) | b |
(3.23)

After stripping off the free contribution 7(7)/94(b), here we

i94(b)
9,(26)

the physical

see explicitly a combination of two characters and

vacuum character .;?ér;)) E\[3)).

However,

meaning of the prefactors is unclear to the authors.
The dual Wilson operator index can be computed a lot
more easily with (B38),

1 n(r)® j{ da 1\2
whal N 2 Z
Wiz 294(0)? J a1 27ia ‘g
191 (2(1)191 (—20)
1.94(20 + 5)194(—2(1 + [1)
= Wi ue) + In=ave)
Lin(0) 84(8) (. [-1]_ b=b"
- 2F A
T, 8,20\ b | g

(3.24)

As required by S-duality, (W, ,) = (H ?‘” )~ This equal-
ity indeed follows analytically from the identity (A37).

Let us also consider 't-Hooft operators with nonminimal
charge B = (2,0). In this case, the index receives con-
tribution from monopole bubbling with v = (1, 1), and is
expected to equal the U(2) Wilson index in the tensor
product of fundamental representation. The ’t Hooft index
reads

. 1 da n(2)°  9(a)’
(H5o) =4 /2j{2ﬂiaz(a)&4(5)284(jl:a+b)’

(3.25)

where

Z(a) =

(1-28) (1-47) (1-"9) (1 -abva)

(1-H(1-a) (1-9(1-aq)

[(q 12+ (b+1)/a(1+q)
(1-9(1-aq)

1 ~2q(a+ )]’
! |

(3.26)

Note that

1 ,
= Di—ag)~ 270

<1 — ﬁ) (1= ab*y/q) = (1+b*2q) = b*qypy(a).

Inserting these expansions, we have

1

Z= m [A — By p(a) + qx (a)]
x 2 q7xi(a) + [46°(1 + i (@) = € = 2Cqx(a)]
< 3 N (3.27)
~0=a0=1/a). ZZ])(](a > Ziyi(a). (3.28)

el
J€N
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where

A= (1+b2q)<1+%> +q.

=(b+b")/q(1 +q) (3.29)
C=(q-1)?+ <b+%>\/a(1 +9q),
ayr(a ZN sxr(a (3.30)

J"

and Z;, Z' are polynomials of b, g from applying the
tensor product rule for the SU(2) characters,

ZZ,;{, [A=Byi2(a) + qxi(a Zqu;(,
JEN jeN
(3.31)
Z 7*(1+x1(a)) = C* = 2Cqyy(a)]
JE5 IN
x> PUINT g (a), (3.32)
JJ/J//EIN

while their explicit expressions will be left implicit.
Plugging this expansion into the integral, we have

i 22|02 P[]

+oo k bk+2m b—k—Zm) il’](T)3
+ Z Zo k+m _ q———m ) + ,91 (25)

(H5%)

m==j k+k2m¢0
-1 +J p2m _ p=2m
XZZ; 5jEZZE1[ }—Zﬁ .
e IN b n— 4 —4
JE€3 mA0
(3.33)

Unfortunately, we are unable to recast the expression to a
more elegant form, therefore we do not prove (Wig,) o) =

(H[3,) analytically.

B. SU(2) theory with four flavors

Next we consider the N' =2 SU(2) gauge theory with
four fundamental flavors. In terms of the class-S descrip-
tion, the theory is associated to the four-punctured sphere
% 4 and it admits three weak coupling limits corresponding
to three different pants-decompositions. For any such limit,
we can insert a half or full Wilson line operator of the
SU(2) gauge group in the spin-j representation, which is
illustrated in Fig. 2. The half Wilson index can be computed
by the following integral,

FIG.2. SU(2) SQCD, a weak coupling limit of the A; theory of
genus-zero and four punctures. The black arc denotes the half
Wilson operator associated to the SU(2) gauge group.

Wios =3 $ 5oz Z ]—s (20)8,(20)
S
s di(a+m;)di(-a+m)

The poles of the integrand are all imaginary, given by a;i* =
+m; + 5 with residues

i 91(2
2 iz ) O 91 (m; + my)d)(m; —my)
(3.35)
Applying the integration formula (B38), we have
(Widos=Toabjez — ZZZRli e biq2)
"o
4 . ag2m —2m
M — M
=Toadjcz— Y Ziqm — | e (330)
=1 \ m—i

m#0

where M, := e>*™i. The theory is of class-S associated to
the four-punctured sphere. The SU(2)* fugacities b; are
related to the m; by

Ml == blbz,
M4 - b3/b4.

M, = b,/b,, M3 = bsby,

(3.37)

In [32], several Wilson line index in SU(2) SQCD were
computed, and the results can be organized as linear
combinations of the infinitely many highest weight char-
acters y{,. 00,0 of 33(8)_2 which were obtained from the
Kazhdan-Lusztig formula [62]. Our new computation
improves the result and relates all (W;),, to just five
highest weight characters, with respect to finite weights
A=0,-2w, —w,, —2w;, —2w,, of the simple vertex oper-
ator algebra 80(8)_, [63,64]. Indeed, the four residues R
in the above are related to the Schur index of Gukov-

Witten type surface defects, and also to the module
characters [28,65-68],
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ch_p; = chy —2R, (3.38)

ch_;, = —2chy + 2Ry + 2R, (3.39)
ch_p;, =chy =Ry =R, —R3; — Ry (3.40)
ch_sy, =chy— R, —R, — Ry + Ry, (3.41)

where chy is the vacuum character of 33(8)_2, identified
with the Schur index 7 4. Therefore, one may write the half
Wilson line index as a linear combination of the five
module characters,

(Wi)oa = < ez — Mu sz)Cho

1
E(M“ Myj)eh; + *(Msj — M,;)ch,
1
E(sz + My;)chy + = (M%j My;)chy,
where we define the rational functions
+Jj 2m —2m
M2 — M-
M,’j = lm _lm (342)
m=—j q - q

m#0

With the half-Wilson index, the index of a full Wilson
line operator in the fundamental representation is then
given by

<qu" >04 = (W,aW )00 = Toa+ (Wis)oae  (343)

By S-duality, this Wilson operator is mapped to the ’t Hooft
operator with a minimal magnetic charge B = (—1,1)
which receives contribution from monopole bubbling [31].
The ’t Hooft index is given by a slightly more involved
contour integral,

da 2q]]¢ (a—M;)(—1+aM,)
tHi-1)oa= 7{271161( 1+a2)2(a12—q)(—1+02‘])1_[?:1M

1
X <—§191 (:tZ

n(z)?
a)) l.:1191(:i:a+Mi)

(3.44)

where

Zmom):qH |: <Q+HM>
:t 1—2) qai2)
We can rewrite
ZQ%Hi}:l(a M;)(=1+ aM;)
(=1 + az)2<a2 —q)(=1+ azq) M,
= q’ )iy,_j(a )]
4
X H()(l/z(a) —x12(M;))
i=1
247 3 Z(a) (3.46)
1= — x(a), .
(1-a?)(1-a?) Z 7
2
Zomo = 7 | e @ )|
g1 M, JeN S
= > Zila), (3.47)
JeiN
where
gren(M _I+ZMM +HM,,
1/ l
Grenn(M ZM +ZMM My, (3.48)

i.jk=1
i<j<k

and Z; and Z/; are rational functions of ¢ and fugacities M
which simply follow from expanding tensor product of
SU(2) irreducible representations; their explicit form will
be left implicit. Therefore, we have the exact formula for
the "t-Hooft index,

+00

Hitoa= > 21>, >,

1 ——J k=
JeN  om==J 2+ 2m#0

M2k+2m M —2k— Zm)

lzR 2A+2m q ZkJEZm
e +2222

JelN  m==Ji=

(SZWG VA OIO 4

2m _ —2m
xR MM (3.49)
qg —dq
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FIG. 3. An A, class-S theory of genus one and two punctures,
where a half Wilson operator (indicated by the black arc) is
inserted at one of the tubes which denotes an SU(2) gauge group
in this particular weak coupling limit.

Unfortunately we are unable to reorganize the expression
into a more elegant form. Therefore we do not further
compare analytically between this 't-Hooft index with the
corresponding Wilson index.

C. Genus-one theory with two punctures

Let us consider a higher rank theory with g =1 and
n =72, which can be obtained by gauging a diagonal
SU(2) x SU(2) subgroup of the flavor symmetry of two
copies of trinion theories 7 3. There are essentially two
different weak-coupling frames one can consider, and here
we focus on the frame illustrated in Fig. 3. In this frame, the
|

original Schur index is given as a contour integral

2 da;
Ti2= j{H%na, H

/lj::l:

xf[ (——8(i2a ) = f {26:1161} Z,,(a). (3.50)

i=1

:|:a1 :taz)

Let us consider a half Wilson line operator associated to
one of the SU(2) gauge groups, whose index is given by the
integral

(1) da, J 2 2
12:]{H2ﬂ1a - aj ,1:[11-1

T 2 1
x Ml(—a)liaz)n (-519&2(11.)). (3.51)

4

The integral can be evaluated in two different orders: first
a, or first a,. We choose to integrate over a; first, where
the relevant poles are a; = ab; + fa, + 7 with residues
(where a, f = £1)

in(7)°9(2pay)9; (2pa, 4 2ab;)

Riaﬂ = 4

91 (2ab;)9, (ab; — pbs_;)9,

The a; integral leaves integrals of the form

(3.52)

which can be carried out using formula (B38). Finally, the
index in the presence of the Wilson line operator gives

(b7 — b
Wiczhia=Tin+ H (25, Z m/z TR

The result is symmetric in by, b, as expected. Note that the
first term is clearly the vacuum character of the associated
chiral algebra of 7 [Z,,]. The factor n(z%)/ []%, 9:(26;)
arises as the unique’ nested residue of Z,,(a),

"One can try different nested residues, but they are either zero
or proportional to n(z%)/ [17_, 9:(2b;).

(ab; + pbs_;)9,

(2a; + affb; — b3_;)9,(2a, + apb; + b5_;)’

n(z)?
91(26,)9,(2b,)”

(3.54)

Resa __@Resal:a2+b.+531,2(01.2)

and is also expected to be a linear combination of non-
vacuum module character, since it has been shown to
satisfy a set of flavored modular differential equations that
should annihilate all module characters [54,69]. For exam-
ple, at weight-two there are two equations

1 1
:|:D£11)_4=2Di,_4zi |:b{1|b(12:|212 Db

(3.55)
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and

1 1
0 D? +4E —8E T
(0 s ] 3 )i

! 8E ! A
b% 2 b% 1,2-

(D,%Z +4E, [ (3.57)

D. Type-1 half Wilson line index in 7 [%, ,]

Now we are ready to consider more general type A;
class-S theories 7[X,,]. Any such theory usually admits
several weak-coupling limits as different supersymmetric
gauge theories. With respect to each gauge theory descrip-
tion, we can introduce a half Wilson operator associated to
one of the SU(2) gauge groups. In general one can
introduce Wilson line charged under multiple SU(2) gauge
groups in the weak-coupling description, however, we
leave the study of their index and correlation functions
to future work.

Let us build on top of the previous (W), , by extending
the corresponding Riemann surface to the left and right,
while maintaining the location of the Wilson line operator.
We simply refer to such a construction of Wilson line
operator as type-1. The resulting configuration is shown in
Fig. 4, and it is clear from the figure that type-1 Wilson line
operator encircles a tube that when cut the Riemann surface
%, remain connected. Put differently, a type-1 Wilson
operator can be constructed from a single connected
Riemann surface £, ,,, by gluing two existing punctures
and simultaneously inserting a Wilson operator at the
tube. In this subsection we will prove that the index of
type-1 Wilson line operator in the spin-j representation is
given by

A E ]

m

m #0

. n
<Wj€Z>g(/2>1,n :Ig.n _5 |:H

X bi™

. (3.58)
qg"?

(Wieri)idh, =0. (3.59)
In particular, when n =0, the products [[, simply
return 1.

Before discussing the proof, here are a few remarks.
Although in any given gauge theory description of 7 [, ,]
there may be different choices of SU(2) gauge groups to
support a half Wilson line, the final index is actually
independent of the choice, as long as they are all type-1.
Also we emphasize that type-1 Wilson line exists only for
genus g > 1.

FIG. 4. Some (half) Wilson line operators of type-1. When the
tube where the loop resides is cut, the Riemann surface remains
connected.

y can be shown to be the

The factor 5(7)2972 []L 119

unique® nested residue of the 1ntegrand Z, , that computes
the original Schur index. The uniqueness is only true for
g>1, as we have already encountered four different
residues R; in the 7[X,4] computation; in this sense,
class-S theories at g > 1 seem to enjoy some nicer proper-
ties than the g = 0 counterparts.” Extrapolating from the
discussions in [53,54], it is natural to expect that this
factor is a solution to the set of flavored modular diffe-
rential equations that annihilate the Schur index, namely,
the vacuum character of the associated chiral algebra
x(T[Z,,]) of T[Z,,], and therefore a linear combination
(with constant coefficients) of the vacuum and nonvacuum
module characters. For example, when n = 0, the relevant
factor is simply 7(7)?972, and it has been explicitly checked
for g = 2, 3, 4 that 5(7)?9~2 and the original Schur index
T, n—o solve the same modular differential equations. For
general g > 2, 7(7)?972 is a particular linear combination of
the vortex defect indices Z9%_ (k). These observations
suggest that the Wilson line index of type-1 is also a linear
combination of y(7[X,,]) characters, with rational coef-
ficient

+J

1
> =]

m=—j
m#0

2g-2 I b — pTm

d"—q

(3.60)

. 1) .
Moreover, the closed-form expression <Wj> é,), 1S essen-

tially a finite sum (over m) of products of contributions

Up to some numerical factors.

See also [70], where Landau-Ginzburg description can be
found for ¢ > 1 N = (0,2) and (0,4) class-S theories in two
dimensions. It might suggest some subtle difference in the
representation theory of associated chiral algebras of the g =0
and g > 1 cases. It will be interesting to clarify this issue in the
future.
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m

by =b" . :
prERpT from the n punctures and a “three point function”

contribution ﬁ which closely resembles that of the

g-deformed Yang-Mills partition function on X ,,. It would
be interesting to match our result in detail with those from
the punctured network [43,44], and understand our formula
from the perspective of 2D g-deformed Yang-Mills.

The proof of the index formula (3.58) can be done
recursively by assuming at some g > 1, n > 0 the index
(W;) é],), is given by the ansatz (3.58). We already know that
the ansatz works for the g = 1, n = 2 case which provides a

good starting point. We can compute (W j>gl,3 41 by gauging,

<Wf>yr)l+1 :% dc-l (

W/>g')l(bl’ cees bn_z, a)

2ria

X Zym(a)Zos(—a.b,_;.by). (3.61)
Let us compute
da
<WjEZ>g,n+1 = 2ria Ig.n(blv cnbyi,a)Zyy(a)
i"n(z)"

XIO,3(—a»bnabn+1) -

28,(2a) [T7=1 91(26;)

29-2 Hn 1 (bm 7m)
( m/2 _ —m/2)

Dyl
m#()

x (a"—a™)Tym(a)Zo3(—a,b,, bn+1):| .
(3.62)

The first term clearly gives 7, ,,, ;. The second integral is of
the form (up to irrelevant factors pulled out of the integral)

da am —a™"
— 7 Zos(—a,b,,b,. ). 3.63
5 G T @ Toa(-a By ,). (3.6
It is easy to check that
Zym(a)
Ve .b,. b, 3.64
9,(2a) 03(—a +1) ( )
is elliptic in a. Therefore (B38) implies that
da Zym(a)
m _ ,—m T _ ’b ’B
%Zm'a(a a )81(2a) 03(—a. by, by)
_ine) I (Bf - b7 (3.65)
;-1 91(26;) (¢ —q/?)
In other words we have verified <W,);1,), .1 also

satisfies (3.58),

'n+117( )n+l +J

Wiez)gnit = Lon1 = W —
y |: ’1(1) :|Zg ) Hn-H(bm _ —m)
qm/z _ q—m/2 (qm/Z —m/2)n+l .

(3.66)

In the direction of increasing genus g, one can glue pairs

(M

of punctures to obtain Wilson line operator index (W), /, ,

for theories of higher genus g + 1,

g+1n f%IVM bn7a9 _a)'

W) (s

(3.67)

Assuming the ansatz holds at genus g, we have

_7 ]{dal i"n(e)"  i*n(e)?
— Totla 27ia2 [[%; 91(2b,) 9;(&2a)

! S g |
x| —=9 (:|:2a)> X E [ — ]
< 2 1 Lt qm/Z —q m/2

m#0

(" —a )@ = ) i by = b

1
<Wj>§]Jr>1,n

X

(qm/Z _ q—m/2)2 1 qm/2 _ q—m/Z .
(3.68)

The two 9, (42a) factors are canceled, while
(@ —a™(a™—a™) =—-a*" —a? +2. (3.69)

Only the 42 survives the a-integration since m # 0. Hence,

<W>(1> — z‘ _l - ”7(7> i
Jlg+1.n g+1.n 2 L. 191 (25 ) -
j_l / 1771#-0!
|: 77(7) :|2(g+l)—2 n b;n _ b]—m
X |t —_—t
qm/2 _ q—m/2 = qm/2 _ q—m/2
(3.70)

proving the index formula (3.58).

>é>> | » can be computed in a

The type-1 Wilson index (W
different approach, by gluing two existing punctures and

simultaneously insert a half Wilson operator,

da
<Wj>gzl.n = f )(j(a>1—g 1n+2(bla (ERE] bnv a, —(1)

2ria

x Ty (a). (3.71)
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Recall that for ¢ > 0, n > 0, the A; Schur index is given
by [28]

i ’7( )n+2q 2

T 7
m =T 13 251)&

n+2g-2
(H (l]> Z n+29— )

k=1

XEk

] 57

After identifying b, | = a, b, » = —a and multiplying the
vector multiplet contribution Zyy(a), all the 9, (2a) factors
cancel out, and the integration variable a is only present
inside the Eisenstein series. When j € Z, the constant term
in y;(a) leads to an additive term Z,,. For the terms in
xj(a) with nonzero m, we proceed with the integration,

da " l'n+2 ’7( )2g —2+n n+2
f{2ﬂiaa2 2 I1, 9 )Z<H“>

29—227”’ 1(29—2+n) (_l)n ] (3 3)
X ko Ek 42 1. . 7
k=1 H i b n+1::1‘/'u

Only the terms with a,,| = —a,,:=f, such that

by bys = a®’, survives the integration since 2m # 0.
Let us look at cases with even n, where the integral

becomes

2g-2+n) 4"  EBEu_i(q™)
= (k=1)1 (1 —gm)*

i ;7(1.)29—2-&% 29=2+n

2T, 94(26
X H(b/ -
j=1

where we applied integration formula (B16). Note that
since n is even, kK must also be even in order for the rational
numbers A to be nonzero, and

n 1 n ma n
(T (1T ) =TT -7
a=+ \j=1 HJ le Jj=1 Jj=1

(3.74)

Therefore,

+J i ’7(,[)2_(/—2+n n

0 m Tm
Wilgn =Zgnbiez = D) 5 ma o9 op 11T —0;
( ]>g. gnOjez %ZH%&I(%/')}_[I( J J )

’ " (2g—2+n) qm
X Z A (k —

k=1

in(z)"
IGHSJEZ 2H,92([, )Z( m/2

m
n
X H m/2

m#0
]: q

Eu_(q™)
D1 =g™)*

n(z)*~?
_ q—m/Z) 2g-2

Sy

pTes (3.75)

where in the second equality we apply the identity (for
even n)

29—-2+n

Z /12g 2 9" Bu(q” ): 1
k 1) ( ) (qm/Z_q—m/2)29—2+n'

(3.76)

A similar computation can be carried out with odd n.
Again, an m # 0 term integrates to

y _ 2g—2+
+£ W(T)Zg Zn nll(2g—2+n)

21T 9:(28) = ™
m/2 n
« (kq—l)!q)(qm’l""%) [y =), 3.77)

where we used for odd n,

Z(Haj) (Hb;m(lj _Hby{lj> — _2H(b] -
a==+ \j=1 j=1 j=1 j=1
(3.78)

For odd n we continue to have the same formula as the even
n case,

1y ”1(T — n(z)*2
<WJ'>9*" Zyndjez = H Z q"? — —m/2)2_g—2

X 1_.[ m/2 —m/2 ’ (379)
thanks to the curious identity for odd n,
2g—2+4n m/2 1
(2g—2+n) 4
A D(qg" 1 -k,
2 A e <‘1 2)
1
(3.80)

- (qm/Z _ q—m/2)2g—2+n :
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FIG.5. A half Wilson operator of type 2, where it is inserted at a
tube which separates the Riemann surface into the left and right
pieces, respectively with (g =2,n, =4) and g, = 1, n, = 4.

E. Type-2 half Wilson line index in 7 [Z, ]

Next we consider another type of half Wilson operator
index, which can be built on top of that of the SU(2) SQCD
by extending the relevant Riemann surface on either sides
(but not further connecting the two sides). Put differently,
we consider a half Wilson operator sitting at a tube that
separates the Riemann surface into two disconnected pieces

X, and £, . See Fig. 5. Let us denote such a Wilson
index by <W]>§%)nl ., 1IN this notation, the previous

Wilson index (W) 4 of the SU(2) SQCD can be denoted
2
as <W>(<),3);0;3‘

1. Simple type-2 examples

We begin our analysis by looking at a simple genus-one
configuration in Fig. 6. It can be constructed from the
SU(2) SQCD by gauging the diagonal of the SU(2), x

SU(2)p,- The Wilson index can be computed by
@) da 2) 1
)= f s ko] (32200 G331

Recall that (3.36)

4 +i a2 -2,
2 M — M7
<W>((),3);o;3 =Zo4bjez — Z Zﬁ R;,
i=1 — 4 —4
m#0
(3.82)
where Ml = blbz, M2 = bl/bz, M3 = b3b4, and

My = bs/b,. Obviously as by =a,b; = 1/a, the i =1
term does not contribute. Therefore, the Wilson index reads
(where we have renamed b5, by — by, b,),

FIG. 6. A type-2 Wilson line operator in the genus-one theory
with two punctures.

(2) ’7(7)2 ol
(Wilitos =06jezLin— mg(qm +qg™)
m#0

n(z)*
2[Tic129:(2b;) =~

1 +J a\2m _ a\—2m
(o] 1] SA 0P )
b1b2 m=—j q _q

m#0

2m —2m
bi" —b; _
m _ ,—m
i=i2 4 4

X

(3.83)

There are four major terms in this half Wilson index, which
are proportional respectively to four linearly independent
expressions,

n(z)? n(z)? 1
- 9,(2p;)° 2 9,(20;) Ex [blbzi} ’
(3.84)

Il,27

with rational coefficients in b;, g. The first two expressions
have appeared previously in Sec. III C, both being solutions
to the flavored modular differential equations [54]. It turns
out that the two new expressions containing E; are also
additional solutions to the same set of differential equa-
tions, and therefore the type-2 index (W ,)ng (0.3 should also
be a linear combinations of y(7[X,,]) characters with
rational coefficients.

Next we consider a Wilson operator as demonstrated
in Fig. 7. There are different ways to compute the index,
and the most straightforward way is through the contour

integral
2m
m——j ‘|H194 bI:I:al:I:az)

39
)12:03 fHZma,
n(r)

X
++ 194((13 Fa F (12)

n(z) A
% g194(—a3 + b, +by) 11 <‘§’91(i2a")> '

i=1

(3.85)

FIG. 7. A simple example of type-2 Wilson operator for a
genus-one theory with three punctures.
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We choose to evaluate first the a;-integral, and then a,, a,-integral. The computation is fairly tedious, and we only show the

end result,

1111
<W>(12%o3—1 djez + ZZ (

aﬁ i m= —/

N aﬁb%mabgmﬂ
m _

9 —q

1 1

m __ ,—m1 _ ,—2ma
q q 1 K.y,0=%

+

{_ 4aﬁb§mab§’"ﬁ

- 57’E1{ 115710 ]
" yo— quszbg p—
Z bgmmbg’"éaayékEl

b%ma + b]—Zma

qm _q—m y(s A |:q bﬁbabﬁ]

20 ,B b2ma bzmﬂ
(2 ) Z bé babﬁ

|: bkb}’aﬂbfsaﬂ :|

an(7)°

+ Z Zml (qm —

af==

q—m) (qma

Note that the Eisenstein series in the first two lines depend
on 27 instead of just z, a price to pay for simplifying the
result using the following identities,

[ 2J0-a {2
ZiEk[ ] :—2Ek[ﬂ(2r)

?|o.

Ek|:—‘;l:|(27:) +Ek{_1](2r) :2Ek[+ﬂ,

F4 2k

[t Lo

+2E,{

(3.87)

2. General type-2 Wilson index

From the above two examples, it is somewhat clear that
the Wilson index of type-2 is significantly more complex
than the type-1 index. Moreover, unlike that in type-1, the
Wilson index with spin j€Z + 5 1s nontrivial. Let us
compute the type-2 index from another perspective. We
consider gluing two Schur indices Z, , and insert a Wilson
operator at the connecting tube,

2 da
<W>!(Jl,)n1;§’z,nz = %Zﬂla)(j( ) 0 nl(f)l, nl—lv )IVM(C[)
xZ, . (-a.b, ...,an_l). (3.88)

For this we can apply the closed-form expressions (3.72)
for Z,,, [28], and the above becomes

—q ") 8] [op94(by £, £65)

(3.86)

1 da jmtn ’7( )"1+291—2 ’7( )"2+292—2
_E%Zm'a)(’(a) 4 TT0T9,(26,) [T 94(26;)
n n1+2g,-2 ny+2g9,-2

S (=) (118) X %

aj M=l =1 = =1

_1)”1

(n14+291-2) 5 (n2+29,-2) (

X/Ik j-f E |: y, Hn]—l ] :|
-1y
XEf|: B ol 7 ] (3.89)
a ﬂnz Hji]l b]l

Note that the vector multiplet factor has canceled the
9,(2a)9,(—2a) in the denominator. Therefore, the integra-
tion boils down to computing

da E +1 E +1
%E%’(Z) k 2a ¢ b |

For the special case of ny =n, =1, g, =g, = 1 cor-
responding to a Wilson line in the genus-two theory as
illustrated in Fig. 8, we can easily compute the type-2
Wilson index by applying the two identities

(3.90)

FIG. 8.
T[Xy0]

A type-2 Wilson operator in the genus-two theory
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dz £ +1 2_q”((n—2)—nq")
2miz | 7 | (1-g")? '

[ ] e

The index then reads,

@ da in(z) in(z)
(Wit = ]ézma’(/(@ 9,(2a) 9;(~2a)

« (gsl(ﬂa))b\ [ﬂa L_—ll]
_ % (a,,.eznmz (Ez@ + 1—12>

- (2m+1)g™
(" =q™m) '

m#0

We note that the two factors 7(r)? and 5(7)*(E; + 75)
appearing in the above index are solutions to the modular

differential equation that annihilates the genus two Schur
index 7, [49,54],

— 4060E¢D{ +20275E2D”
— 68600(E2 — 49125E3)| 7,
(3.91)

0= [DY - 305E4D£, )
+2100E,E¢D),

and therefore the above Wilson index <Wj>f1);1, , is also

expected to be a linear combination of characters of the
chiral algebra y (7 [Z,,)).

The same structure of linear combination actually holds
true for all type-2 index <Wj>;?’)1;gqu illustrated in Fig. 9.

Indeed, the relevant integrals are of the form (k; < 2¢g;, — 1)

da -1 -1
$ ot 5] ]

~ linear combination of E,, Ey, ..., Ey; 5, (3.92)

where we have used (B29) and (B30). In the end, the

Wilson index <Wj>§;??l;yz,

17

FIG. 9. A generic type-2 Wilson line in a genus g = g; + ¢»
theory without any puncture.

| is a linear combination of

n(2)2972, (1) 2E,(7), ....n(2)* 2 Ey,_»(z) with the coef-
ficients being rational functions of g. This series of
functions are conjectured to be solutions to the modular
differential equations annihilating the Schur index Z, as
they are simply the Schur index of the vortex surface
defects in the 4D theory 7 [Z,,] [54.71].

For more general n;, g;, we need to apply the integration
formula (B29) and (B30) and their variants. For example,
with both n,, n, even, we have

2)

( _
<Wj>91,"1§92-"2 - I{]1+!]2’"1+"2—25}'€Z

n(r )2(gl+gz)+<nl+nz—2>—2 J

27 9,(28) A
m#0
ny+ny,—2 max(n;4+2g;,—2)
i=1 =0
2m 2m 1
x (b, g )EK{HWZ_Z b%]. (3.93)

Here we have merged the two sets of flavor fugacities
(by.....b,,_;) and (13],...,13,12_,) into a larger set b =
(bi,...,bn]+n2_2), and the corresponding signs (ay, ...,
Ay 1. P1s s Py—1) N0 (@, ..., @y 4n,—2). Finally, the A
are a set of rational functions of b; and ¢ coming from
applying the integration formula (B31),

42gi—2 )
RS 1 ( 1>k +1q2 (”|+291—2)

(91:11392.12) (12
Af] ] (b i fy Hn2—1 Zmﬂ,

q2m) —

(n2+29,-2) 2ma  ,2m
X’lkz Exy ke (D7, g7").

Although it is a finite sum, unlike the beautiful result for the
type-1 index formula, we are unable to reorganize the
above type-2 result into a more elegant form. It would be
interesting to further explore the relation between the type-
2 Wilson line index and the characters of the associated
chiral algebra y(7[Z,,]), and it is likely that the Wilson
line index has access to new characters besides those from
the surface defects index [54].

IV. LINE OPERATOR INDEX IN
OTHER GAUGE THEORIES

A. N =4 SU(3) theory

The flavored N' = 4 SU(N) Schur index in the presence
of Wilson line operators is studied in [45] using the Fermi-
gas formalism. In the following we also compute some
simple examples using our integration formula. The rele-
vant integral is of the form

106002-20



N =2 SCHUR INDEX AND LINE OPERATORS PHYS. REV. D 108, 106002 (2023)

- N-1 -2,
Wa) = - 1O Wt la) Can SR, 2 gl G M
N'194(b) -- Zm'aA 2 - L+ q"1/2_q—”1/2 2 - 2+ qn1/2_q—"1/2
x H 1(84 = 45) (4.1) —ay Z R ay" P pEm gl gsn (— 1)
AAl:éBl 84 b e aB) ? +:k,0=0,1 ke qn1/2 —4d / ’
(4.3)

We will focus on N = 3. The SU(3) character y(a) is a
sum of monomials @' ay*. Note that the ratio of the Jacobi
theta functions is symmetric in a; <> a, and a, — —ay,,

and therefore we can focus on monomials of the form

where the poles are all imaginary with residues given in the
following table.

. . . 1
a1]>0a22, trivial monomial a{a) insertion simply integrates (al)g,;)t aEb+/2
to the original V' = 4 Schur index. Now we compute RW ip(7)3 84(30,2:0)8, (30,2b)
1+ 6 9,(226)9; (303)9; (30, 36)
1 — —
1@ 107 das o 17 Si(as —ap) (al)é’)i M R
1 2
- - - —_— 0 i N3 9030 F0)9 (B3 F28) (1)
N! 194(5)1\, ! fAl 2riay ! ABi 194(5 +ay— aB) Ryx én(T) 91(1225)%1(3021)84(%‘02:!335) =Rz
vy @ KRR
( . ) Rgli o i n(@)? H 81(%ya?i%§+£r+§r+§)2
) ) ) ) ) . == 129,(£20) L Ly== 94 By ar 130+ +50+0) 9, rar Fhb+1r+5r+5)
by first integrating a; and then a,. The a; integration is
easy, leaving an a, integration of
|
It can be shown that,
da .
~f skl =0, ifnesz )

Therefore, we only focus on n; + n, = 3p > 0. Note also that n, — 2n; = 3(p — n;) in the second sum is also a multiple
of 3. With this assumption,

b*m da, 3, R _ b*m da, o (1)
_Z n/2 _ —nl/zfzﬂiazaz L+ ; n /2 _ —n1/2\% ) [Rl:t}%az—mz

—q q q q 2ria,

b1 94(b -1
7 E E
Ot~ qu;_q 369,(3b) ( l{bﬁ ] ‘[HD
bEm 1 9,4(6 g’ — b3
-5 4.5
mtn#0 T qu -q- 2 6194 35 (qp/2 —q P/2> ( )
Similarly
day ) G bt 1 94(b) bt -1 -1
- — Ry, ————F=—-0, -0 E | —F
742%1'612 % zi: 2+ qnl/z _ q—n|/2 ny=2n, 06194(35) Zi: qn1/2 _ q—n|/2 1 b:|:2q7 1 bt
n —2n]
1 194(5) pEm q 2 _ bi(ﬂz—an)
+ 6}12—2"1750 6 19 (35) Z ”1/2 _ q_"l/2 qnz 62111 _ _m 62111 N (4'6)
Lastly, one can also check that
da2 n 1 . 3
f Srie, aRY,, =0, ifng Sz (4.7)
Therefore, since n; + n, is an integer, we may assume n, — n; /2 = n; + n, — % ny =3p— 3ﬂ with p € Z in order for the

integral to be nonzero,
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pEni/ 2qn1/4q St (=1)¢m day (1 nz n In the above we have used the poles and residues of the
- gl %27”- a R3 140 R-factors listed in the following table.
ikt
9, (5) Factor Poles Residues
pr— n ln - —_— l
#1129,(30) o=, 2, R} a2 =0 ~ i v
BACHm=2m) =2k (=1 =2yms) a, =F 3b+3 + et 2oh
XY i .
(qzl —qg ) (q6(2n2 1 _ q 5(2n, l)) R(zli a, =0 +671( )194<( [’))
L peEgim kD (- ar =+3b+3 ~ G T
= O 1219 Z Z 4 qn/? — g m/? ) 3 c 1 ¢ 9.(6)
ar + k=0 RS ., a=F3rb+5+;2k—)yr+5 y==*1 Y T8 00%)
-1
£ { paBr D) 42k~ (r41) ] ' (4.8)

Putting all the above together, we have

3N 3 N-1 daA
m gl —0 if 0 mod 3,
Nu9 %Hzma H194b+aA—aB) ity +ny 70 mo

AB=1
A#B

1 9,(6 pEm -1 1 1 94(b bEm g’ — b¥r
CISC_ +5n1+n2_0 4< ) Z . n21 <E1|: _:| E1|: :|> _5 - 4( ) Z ny n < )

6194(35) q? —q bizq; bT it #0 6194(35) —q? — q_Tl qp/2 - q—p/Z
1 94(b) b*m -1 -1 1 94(b) bEm
— Opo—on, = E | - FE Opton, =
ny=2n, 6194(35) zi: qn1/2 _ q—n,/2 1 b;qu 1 bt + On,0m, 6194(35) zi: qnl/z _ q—n,/Z
m2n _ pE(ny—2ny) 1 ol Ln (2k=1) (_1\¢m -1
q s b 94(b b2 gs 1
x =20y np=2n - 5n2=%n1 % Z Z Y n, /2 —(nl /2) Ey ~La(By+1) ,~12k(y=1)=(y+1))
g —q & 4( )a,y*ikb’—o q —-q b™ q*
9.6 B3((14r)ni=2yn;) o =5(2k=1)((y=3)m1~2yn,)
 Onath, 1218‘11 ( 3)6 4 2"—‘ -7 ((12"]2—n ) — g=s@m=m)) (4.9)
4( )(z.y:ikf:(),l (qz -9 2)(q6 2 q e )
The formula above implies the following symmetry which can be used to simplify computations,
Z(ny,ny) = I(ny,my) = I(—ny, —ny), (4.10)
Z(ny,ny) = Z(ny,ny —ny) = Z(ny — ny,my). (4.11)

With this formula, one can compute any Wilson line index in any SU(3) representation R in closed-form. For example,
W) = 2L n—asu) + 6112

— 2T\ asus) + 1;%‘4((355)) [b\/c_l _;Ezlgfé;))qﬁ b n (b;(;i)\g? (E1 [—bl] +E, L;;D]. (4.12)

(Wia)) = 3T peasu) + 12215 + 61,4 + 613,
94(b) {\/ﬁ(b%ﬁ —1)(=bq —2b*qi(qg + 1) = b*(q(q +4) + 2))}

= 3L y—asui) T

9,4(3b) b4(¢12 - 1)2
L 9a(b) [\/6(%2(261(61 +2) 4+ 1) +2b(q + 1)q + qm)}
94(3b) b*(g* — 1)
94(6) /a(b* = 1)[(b* + 1),/q + 2bq + 2] -1 -1
NG (- ) (E [ b } th {bw])' #.13)
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<W[3’3]> - 4IN:4su(3) + 181-1’2 + 1222’4 + 1213.0
+ 12745 + 6Z5. (4.14)
B. N'=2 SU(3) SQCD

Let us also consider Wilson operator in the SU(3)
SQCD. The relevant integral reads

da
ZSU(S)SQCD = ——77 16% H 27112A

HA#B 1(ay —ap)

HA 1H, 1 94(ay —my)

1
= —_— 4.16
x(a) = a +a2+ala2 ( )
First we note that
daA d(lA
%H%ﬂaf,al a,m) j{H2maA a,Z(a, m).
(4.17)

Therefore we simply compute the one with a; insertion.
The relevant poles when performing the a; integration are
all imaginary given by

dClA
a,m). 4.15
f [giae@2@m. @19
T T
alzmjl—}—i, 01:—02—mj1+§, (418)
1. Fundamental representation
As the simplest example, we consider the fundamental
representation with the respective residues
1
R 1 77(7>13618HA#B191(QA 03)|a1:m,-|+§ R
/ 6 [[94(az — m)[[;94(az + m;, + m; +3)[ [, 8a(m; —m;, —3) ’ "

Therefore, after the a; integral we are left with

da, J 1 |
7{2ﬂia2 _ZRJI g —1 (mjlqz)

|

Next we perform the a, integral. Each residue R; is an
elliptic function with respect to a,, with imaginary and real
poles

=1 T . .
6 J tm o, R (4.20)
1 i
+ > R; (aglmilqi)] . (4.19)
)Iz::l . ql -1 ! or, = —mjl — mjz, jz # jl' (421)
The corresponding residues are, respectively,
09,2m; +m,; )9 (m; +2m;
lejz = ’7(7) 4( it h) 4( it ]2> ’ _lejo' (422)
O Loy o 81 (mjy = mi) 9y (my, — w)[ i, g, Oa(m, +my, 4+ my) '

We also set R;,;, = 0 when j; = j,. With this, we have by

applying (B1)

f da2
—R; =
2ria,

-1
=R;,(a, =0) +ZRME1[ }
Jz

j')_l

~1
+R, E s 423
N [mjlmqu_%} (4.23)

I
where we have picked a, = 0 as the reference point, and

da2 1 6 1
742”ia2 a, le = +Zlej2 1— qmjlmjz

J2=1
6

- ZRh]z

=1

(m,q®)~"  (4.24)
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6 -1,1

mjmj, —m; q

:+Zlej2—12_q . (4.25)
=1

Collecting the results, the integral with a;-insertion reads
e
2maA

: -1
_ 4 Som, (R(ZO +ZRME1[ }
Jz

jol

(4.26)

1 6 6 ]
S S gt - 629

J1=1jp=1

Next we compute the integral

% H daA
[ 2miay a1a2

Similar to the previous computation, we first integrate a,
with poles a; = m; +5and a; = —a, —m;, +7,

(4.29)

da, 1 J 1 N

Ji=1
& 1
1
+ Zle q—] -1 (azlm“ qz) (430)
Ji=1
da, 6 1 |
_me'az l_; i (@' m3lg72)
6 1
+Y R, — 1m,lq—-] (4.31)
J1=
Carrying out the a, integration, we have
d d 1
% e B B (4.32)
2mal 27”02 ayay

6 -1
qz
=+——Y m; (R (aa=0)+> R;,E
1—¢q mj,

=1
-1
+Rj ), E g2

2 ’—mjfllmjleq) (4.34)
Ji=lj=

Actually, this is identical to the previous result,

da1 d(lz 1 d611 daz
- ———Z = . — a1 Z
2zia; 2zmia, aja, 2zia; 2zia,

d d
:‘% C-ll 6.12 dzz.
2ria; 2ria,

(4.35)

Combining the integration of all three terms in the
fundamental characters, we therefore have a fairly simple
result,

3q% 6 -1
(W3)su3)sacp = T—gq Z( jio T ZRh]z (El [ .
12

Ji=1 Jo=1

-1
“lase)
mjmj,q >

}: S R
2 ]1]2 mj,q>—m; n; q)’

JiJa=1

(4.36)

(4.37)
where we abbreviate

le() = R/l (a2 - 0) (438)

2. General representation

The above computation can be generalized to insertion
of all half Wilson operators in any representation of the
gauge group SU(3). The basic building block is of course
a monomial a|'ay’. Let us therefore compute the basic

integral
dal da2 ny _n
Z. 4.39
?{Zﬂial 2nia, e ( )
Note that
d d d d
j[ i agzzzjf D Ch mz o (4.40)
2zia, 2xia, 2zia, 2xia,

Therefore, without loss of generality we assume n; € Z,
and we first perform a; and then a, integration. The first
step picks up the imaginary poles a; =m; +7 and
—a, —m; + 5, which produces
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6

da2 anz
2riay °

J1

1 |
- Zle m (mjl qi)nl - Z<_Rj1>

6

Ji=1

g" —1

(aglmzlq%)n1‘|

daZ 6 N\n : - -1, \n
7{2ma2 l Z (m"qz) T Z(_Rh)a;z : m_q (mjl qz) ik (4:41)
=
|
Depending on whether n, = 0 or n, — n; = 0 or a generic For the second term, if n, — n; = 0, then
n,, the a,-integration of the two terms take different form.
For the first term, if n, = 0, then the integral picks up 6
contributions from the imaginary poles m;, + 7 and the real j[ da, Z R; a™ ( 1 q')n, (4.45)
poles —m; —m; , which reads 2miay | £ 7 S IR
daZ J nz=0R 1 N, 4.42 _ .
Zﬂiaz - . a2 7 q"l —l(mjlq2> ( . ) 6 mj]nqu —1
) = g -1 R/lo +lej2E1 m.
ji=1 Ja
Rjo+ R j,E +R; ,E : 4.46
= n1 — 1 1 1J2 ij Jij2 1 |:mj]mj2q_1/2:|> ( )
-1
tRE ) (4.43)  On the other hand, if n, — n; # 0 then
J1770)2
However, if n, # 0, then da, 1 ,
" -n =1 _35\n
frte [ Sm onn| o
f daz _ o an # (m %)n] e
2riay ~ el g —1 nd
6 L, AL 6 ny—ny L(n,—n)
6 (m l)"l 6 1 _ m; q: m;, ¢
— n? 1 = — R, , ———
= —jZ:] P —jZ:]lejz 7q"2 1 (mquz)"z —~ gn -1 ; JiJ2 g — 1
1— 2=
6 1,,,—1 n
6 (m m- ) 271
1 o + R..~ 7 h) | 4.48
_Z(—lejz)l——q‘mz(mjllmjzl)nz) (444) Jz::l M= gt 49
2= }
Putting all terms together, we have
1
day day 40 p & mquinl -1 -1
Z==6,_ . R; R, . E R, . E
f27ria1 2miay T P n0 2 Mo TR R g
6 1 ! 1,,-1
B S T Ll O el L
ny#0 =t JiJ2 C]nl -1 qnz -1
6 1AL
m. 'q2 -1 -1
+6,_ = (R y+R;;,E +R,  E
ny=ny “ZI g —1 ( J10 Jij2 =1 |:ij:| Jij2=1 |:mjlmj2q—l/2:|>
6 -ny ML na—ny Lny—ny) _ ( -1 l)nz—n] no—n;
m. g2 m; q? m;. -m; q
_5n2;én1 Z Rj1j2 J1 1 J2 i) . (449)
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For example, for the Wilson operator in the antifunda-
mental representation,

da; da,
(Wadsusoen =3 7{ 2, Zm'az

-1
:—S—Zm <leO+lej2E1|:m- :|
11_1

J2
—1
+R; . E
UL m;m;q 1/2

J1

a;lz

C. N =4 50(4) SYM

The Lie algebra 80(4) is isomorphic to 8u(2)?. The
Schur index of a Lagrangian theory is only sensitive to the
gauge Lie algebra, and therefore the N'=4 SO(4) and
SU(2)? gauge theory share an identical Schur index,

1 A n(z)? 2 day
ISU(Z)Z = 150(4) = Z’I(T) 194(5)2 H2ﬂiaA

9, (aay + Pag)
x H H84(aaA +ﬂ03+b)

a,f=+ A<B

In the following we will compute a few full Wilson operator
index and compare it with the S-dual ’t Hooft operator
index using the formula in [31].

We first analyze the index of a full Wilson operator
associated to the vector representation 4 and its S-dual. The
full Wilson index reads

2 day 1 1\2
full _
(WaD) soun=4 = ]{g 2ria, (al + @ + a +612> Z.
(4.52)
By a change of variables a) := a; + a, and a} := a; — a,,

the Wilson index factorized into a product of two identical
integrals,

SO(4)N'=4
1 [ d 12 8(+d 372
2) 2zia"  d  94(Ea’ +b)Iy(b)
which is identical to
(<W§£11/2>SU(2)N:4)2' (4-54)

The vector representation of SO(4) is minuscule, and the

d
]{ H 5 A Z(ay,a,). (4.51)  S-dual ’t Hooft index is safe from monopole bulling,
i, given by
(H) fl_.[ day,  4qi(ba; — ay)(—a, + bay)(b — aya,)(—1 + ba,a,) =
2zia, b*(\/qa, — az)(\/qar — a1)(\/4 — ayay)(—1 + \/qaa,)
where
1 n(z)? 94 (aa; + pay)
Z' = —p(r)* . 4.55
4 ( ) 194(5) aﬁ:igl(aal +ﬁ02 + b) ( )
In terms of the a’ variables, the above factorizes into
da qi(b—d,)(=1+bd) n(z) 84(xa) 1°
<H>S0(4)N=4 - 2zid. b 7 / / (456)
wid, (/g — d,)(=1 + /ga}) 94(6) 9y (£a + b)

Up to the square and some simple factors, the result is identical to that of the U(2) minimal ’t Hooft operator index (3.17) in

Sec. IIT A, and naturally

(H)somn—4 = (W) so@n—s

(4.57)
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Next we consider the index of a full Wilson operator
in chiral spinor representation 2. The corresponding char-
acter is

1
pr— 5 4'58
x2(a) NG +vaia, (4.58)
and the relevant index is given by
d(lA
(W) SO(4N=4 = HZmaA *Z(ay, a;) (4.59)

daA 1
H 141+ aja, +—
| 2miay a,a,

x Z(ay, a,). (4.60)

In terms of the @’ variable, the above factorizes

(Wa)son—s = V 2, U0+ 2=1)(a )<_%>

Zla

X”I(T)3 9, (&a))
9,(0) 9, (£a| +b) | SU@N=

+ <W_I;'u:111 >N=4SU(2) )ISU(Q)/\[:4.

= (Znasupe)

The S-dual ’t Hooft line index is given by

<H> o % d(lA 2(b - Clla2>(—1 + ba1a2>
st 2mian bai(\/q — aya0)(—1 + \/qa,ay)

Z(ay,ay) =

where

, 1 77(7)2 9,(£(a; + ay))
2= g B9 (e +a3) +B)
8,(+(a; - a2))
94(x(a; —ay) +6)°

(4.62)

In terms of the @' variables,

[ dd, (b—a))(—1+ ba))
) = [ f 2rid, bg P (y/q — a) (—1 + aa))
194(i01) 'I(T)TI
9, (£a, + b) 9,(b)) V=HUE!

(4.63)

The equality from S-duality also follows from the dis-
cussion in Sec. IIT A.

D. N'=4 S0(5) SYM

Let us now consider N' =4 SO(5) SYM with insertion
of a half Wilson operator in the fundamental representation

(4.61)
da, da,
o @2 ane), (46
where
|
1 7(2)° —81(a1)*81(a2)*8,(a; + ay)*9;(a; — a,) (4.65)
8194(5)2194((11 + 5)194((12 + 5)194(01 + a, + 5)194((11 —Qay + b) ’ '

and

1 1
){5(0):(11+_+(12 +—+1 (466)
ap %5}

From the symmetry Z(a;,a,) = Z(a,,a;), we only

need to compute

dal da2 41
Z . 4.67
% 2ria, 2ria, ai Z(a1,0) ( )

Moreover, the symmetry Z(aj,a,)
implies

= Z(—ay,a,) also

\% dal da2
a
2ﬂia12ﬂ'i612 !

d d
Zana) = f o0 G B ).

2ria, 2ria,
(4.68)
The a-integration picks up imaginary poles

a]:ab+%, alzﬁa2+yf)+%, a, By ==+

(4.69)
with residues respectively
Ry = é"(T)S 81(2a%)%112(;(f2%é;§1zajf2 2ab)’ (4.70)
and
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9,4(ay + fyb)

191 ((12)194(2(12 + ﬂ]/b)z

i
R y = gﬂ(7)3

The a;-integration leaves us with
da2 1 1
_ R —— (b%q2 +
%2717'612 { ; aqi—l( 7)
1
Bry 1
- ZRﬂ}’ ] (azbyqz)i]'
=

The residues R, and Ry, are all elliptic with respect to a;,
and therefore the a,-integration of both terms can be carried

(4.72)

. 4,71
51(@> + 2575)94(az — )9, (2a,)9, (21)9, (2az 1 2p7B) @.71)
B brag® —5 94(36)9,(b)
- _;q —1 < 2? (2b)9, (4b)
-1
« E, [bmq%D. (4.75)

By direct computation, one sees that the above is actually
independent of + sign in the af insertion, consistent with
the symmetry Z(a;, a,) = Z(—ay, a;).

The term with Ry, can be carried using (B38),

out. In R, there are poles and residues da, i _ ﬂn) q) B
%Znia prda = _ZR/?Y/
a, =2aob Res R, = —é—84(35)84(b) ey
2 T a=2am ¢ 89,(20)9,(4b) (ﬂn))
(4.73) - Z /)’r/ (4.76)
1rng]
Hence Here a(zﬂ ") denotes the simple poles of Ry, with respect to
da, 1 o a,, with the corresponding residue Ry, ;. We list the poles
- j{ i ZRa 1 (bq)* (474)  and their residues in Table IL
2a=t Performing the sum over 3, y,
_7{ da, Sk, 1 (dbrah)t — Vab*(qg+1)—4by/g+q+1) 94(6)? 9,(0)
2miay gt -1 2 8b(q — 1)29,(26)2 9,(2b)

+ (b*q = b\/q(qg + 1) +q)

N Va(=2b* /g + b (q+ 1)+ b(g+ 1) —2,/q) 9,(3b)94(b)

94(b)? {193(0)

n 194(0)}
8b(q — 1)*8,(26)> [95(2b)

94(20)

which is independent of the + in a3, consistent with the
symmetry Z(a;,a,) = Z(—ay, a,).
To summarize,

}'{2?:21 21?22 @1 2(a1,a2) (478)
RGN IO

T 8b(g—1)  9,(2b)

V(1 =4b\/g+ g+ b*(1+ q)) 94(6)> 9,(0)

16b(g — 1) 9,(26)2 9,(2b)

(4.80)

+\/5(19— V@) (by/g—1) 9,(b)? ( 95(0) n 9,(0) )
8b(g—1)7  9,(26)2\8,(2b) ' 94(2b)

(4.81)

, 4.77
8b*(q —1)? 9,(2b)9,(4b) ( )
TABLE II.  Poles and residues of the elliptic functions Rp,.

Poles agﬂ vJ) Residues Ry, ;
Real a, = =2fyb B 94(0)84(36)
2=—2r +5%9, 209, (@0)
— 1 $94(6)295(0)
@ =—frb+; + 169, (2679, 20)
=1 £84(0)°95(0)
2=z ~ 69, (26)%5, 26)
a, = —fyb $94(0)*84(0)
2 Pr - 161914(25)21;4(25)
: _ 1 9,(6)9,(3b
Imaginary ay = fyb+5 _g314(<2 b)) 194]((4 b))
a =3 £94(0)*9,(0)
169, (26)%9,(26)
=1l £94(0)>95(0)
@2 =213 = 163, (2679, (26)
a, = —pyb+ % +% + $94(6) '92(0

169, (26)29, (26)
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94(6)84(36) (a(b—/q)(1-b\/q)  (b*=1)/q -1
+ 5,209, (40) ( 42 (q - 1) h(g-1) {bzq;])- (4.82)
Therefore,
i(b? =1 )39 1 —4b./q + q+ b(1 84(6)2 9,(0
<W5>/\/:4SO(5) :IN:4SO(5) + (2b< )\g_ﬂ( )(2;() ) + \/_( 4\-2_( ql) ( )) 14(<25>)2 822((2[3)
N V(b= /q)(b\/q—1) 9,(b) ( 95(0) | 94(0) )
2b(g —1)? 91(26)% \95(2b) ~ 94(2b)
9,(6)9,(3b) (alb—/q)(1—-b*/q) (b*-1)\/q -1
+ 5,209, (@) < Plg-07 bg-1 O [zﬂq%])’ (4.83)

where the 7y _450(s5) 1s the original Schur index of the

SO(5) N =4 SYM.

1. General representation

Let us consider the 30(5) representations whose char-
acters can be written as polynomials of a;, a, with integral
powers,

— )
a) = g Coyny 0y Ay

ny,ny

(4.84)

1

In particular, using the symmetry a; <> a,, a; <> a; , we
can focus on the integrals of the following form
dal ddz n>0 n,>0
— = Z. 4.85
7{ 2ria, 2xia, @D ( )

The a,-integration leaves (recall that the a-integral picks
up 6 imaginary poles)

da, 1y b“’“qznl
jg27riaza2 l Z ‘g -

a==+

”1/ b"lyqz’ll
Z pr— _n _ 1 nl _ :
(4.86)

Depending on whether n, = 0 or n, # 0 in the first term,
and whether n, = n; = 0 in the second term, the integral
leads to different closed-form result. When n, = 0, the first
term integrates to

_ 5 1 94(b) (in(z)’94(b)  84(3b) . [
—Tm=049,(20) \ 29,(26)2 T 9,(4b) | b2
b — b
X : (4.87)
qn1/2 _ q—nl/2

while when n, > 0, it integrates to

bnlaqﬂll < o 194(35)194([)) ) (bzaﬁqz)nz
n2>0{lzi q - EZ:I:I 8191 (25)1.91(4b> qn2/2 — q—n2/2
-5 194(6)194(3[)) (bnl iy ><b2n2 _ b_znz)
=089, (26)9,(4b) (g2 =g /?)(1—q ™)

(4.88)

In the second term, when 0 < n; # n,, we have n, +
nif # 0 for either f = £1. In this case,

dﬂz b"‘yq%"‘ ny+m
Ry a,”"
“onn, j 2ma2[), — q" -1 pre2

(4.89)

(aéﬁmq )aner]ﬁ

Pri 1 1
real/imgj q7<n7+nlﬁ> [— q 2(n2+n]ﬂ)

(4.90)

bn]yq%n]
= +5ﬂ1¢"2 Z " —1
Pr==+

On the other hand, when n; = n, > 0, we have n, + n;f8 =
0 for = —1, and n, + n;f = 2n; #0 for f = 1. In this
situation,

‘7{ da, ;2+”1ﬁbn1yq%n|
2ria, Pt g —1
(+7J'>)2n1 +02n, | 20y An
(a q2 b l}’qz 1
:5n =n Zl Z R+J/j : n —n ‘| n
l Zy::t real/img;j 7' —q " 7" -1
b"]Yq%”] 0)
- 5’11="zzm (R—V (a2 =10;")
y==%
—1
—+ Z R_”El a, i%‘|>a (491)
real/imgj a(20> q
where agm is a generic reference value, for example,

a<20) — b3, In the above, we have used the poles and
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residues in Table II. Putting all the contributions together,
we deduce that for n; > 0, n, >0,

7{1_[ 2ria; "lagzg

(4.92)

B 184(b> in(z)29,(6)  9,(36) [ 1
=009, (2) ( 2&(2;)2 +191(45)E1{sz
b" — b~
X q"1/2 _ q—n|/2 (493)
9,(6)8,(36) (b™ = b™™)(b? — b72m)

" 7089,(26)8, (48) ("2 = g (1 = g 7)

(4.94)
b”l?’q%’ll
o > oy 2 R
Pr==+ q real/img j
(a3 )"0 (4.95)
q%(”2+”lﬂ) — q_%(”2+"l/}> ’

s Zl Z . (a§+7j))2n]qi%2n]] bnlyq%nl
ny=n, +vJ -

y== [real/img j qn] -4 " qn] -1
(4.96)
bn17q2n1 0
5”2 n n 1 R_y((lz - ag ))
=41 -
-1
+ > RE |7 i%] ) (4.97)
real/img j a(zo) q

The Wilson index corresponding to the SO(5) representa-
tions with Dynkin labels [n, 0] can be computed using the
above integration formula by simple substitution, since the
corresponding character can be written as a sum of simple
monomials,

n m m
)([n.O](GI’GZ) = ZZG{ lalzﬂ " (4.98)
m=0 j=0 i=0
n +1 n m ) n n
SIS ED W SCEES 3 oty
2 m=0 i:ﬂ% m=1 ;,i,#jo
(4.99)
\2, m| |i+j—m]| \J i
+ a,
m=0 =0 mz:l ;
i#m/2
(4.100)

Here in the last line we have rewritten the expression using
the symmetries a; <> a,, a; <> a;' of the integral, so that
each term can be easily computed with the above integra-
tion formula. Although the Wilson line index can be
computed straightforwardly simply by substitution, we
are unfortunately unable to reorganize the final result in
an elegant form, so we will refrain from presenting the final
expression of (Wp, o) x_sso(s) here.
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APPENDIX A: SPECIAL FUNCTIONS

Throughout this appendix and the paper, we adopt the
convention that fraktur letters a, b, etc., are related to the
standard letters by

a = EZ”ia, b= eZﬂib’ . 7 = 6271'13.

ey

(A1)

except for the standard notation g = e>*'*.

1. The Weierstrass {-function

The Weierstrass {-function is defined by

1 1 1 Z

~

6 = z @%e:zz[z_ —m'+m—|—m'+(m+nr)
(mm#(00)

(A2)

In the following and in the main text we will often
abbreviate

> Z > Z (A3)
<,': :):(OZ g) n”"ig

The ¢ function is not elliptic, and under full period shift of z,
—{(zl7) = 2m(7)

{(z+7|t) = L(z]r) = 2mr(7) = 21, (7) — 2,

{(z+17) (A4)

(AS)

where 77; and 7, are independent of z and are both related to
the Eisenstein series E,. Note that  has a simple pole at each
lattice point m + nt with unit residue. The fact that { is not
fully elliptic is due to the fact that meromorphic function on
T? with only one simple pole does not exist.
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2. Jacobi theta functions

The standard Jacobi theta functions can be defined as
infinite products of the g-Pochhammer symbol (z;q) :=

(1= zg),

9,(3) = —izq"(q: 9)(zq: 9) (21 @),

9,(3) = 224%(q: q)(~24: 9) (=" "; q). (A6)
93(3) = (q:9)(—29"* q) (=27 ¢"/?),
94(3) = (¢:9) (2" q)(z7'q'*; q). (A7)

From the definition it is easy to read off their simple zeros,
for example,

9,(m+nt) =0, 84<m+nr+;>:0, mnel”z.
(A8)

The Jacobi theta functions can also be rewritten in infinite
series in ¢, or Fourier series in 3,

96 =i Y (-1yhetigs,
r€Z+%
2
92(3) = D e, (A9)
r€Z+2

n ; nz
815 = Do, 8u(5) = D (1),

nez nez

(A10)

The functions 9;(z) share similar shift properties under
the full period shifts,

203+ 1) ==912(3), 934(3 +1) = +954(3),
(A1)

8143 +17) = —19,4(3), 923(3 +7) = +4923(3),
(A12)

where 4 := ¢~*"3¢""", while under half-period shifts which

can be summarized as in the Fig. 10, where y = e "i%¢ %,
and f —>g means

either f<5 + —) =ag(3) or f(g + %) = ay(3),
(A13)

depending on whether the arrow is horizontal or (slanted)
vertical respectively.

///
///

FIG. 10. Half shifts of the Jacobi theta functions.

Finally, we will frequently encounter residues of the 9
functions. In particular,

11 11 1

Res ( 1) k gkl ), (A14)
asphgh a2 @ 9 (na = b)  n(q:q)
11 1

R =— DS (ALS

a_,bn;sezm cad (na - b) n”(r)3( ) q? ( )

Note that the (—1)¢ in the second line is related to the
presence of a branch point at z = 0 according to (A6).

3. Eisenstein series

The twisted Eisenstein series are defined by the follow-
ing infinite sum,

raff] =24

(F—Fﬂ kle— r+A
_112 91r+/1

<—> (r= 2104
* !; 1—6g (A17)

(A16)

where the parameter ¢ :=e*™* with 1€(0,1), Bi(x)
denotes the kth Bernoulli polynomial, and the prime ' in
the summation means that the term with » = 0 should be
omitted whenever ¢p = 6 = 1. We also define Eo[ | =-1.

The standard Eisenstein series E,,, are the 6, ¢ — 1 limit
of the above Eisenstein series. When & is odd, 0 = ¢ = 1
gives zero except for the special instance with k£ = 1, where
there is a simple pole 3 — 0,

P [—H}—E E [4—1}_0
wl | T E 3| | =
+1 1 9
El[ } _ _.‘91(5).
z 27i 8 (3)

The Eisenstein series exhibit several useful properties.
For example, the symmetry property

(A18)
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(A19)

a[2] - 3]

When shifting the argument 3 of the Eisenstein series
by half or full periods of 7, or equivalently, shifting z by ¢2,
one has

+1 kN 1
E =N (2) —E.
k[zq%] ;(2) £

A simple consequence is that"

1554
+1 +1 2 1 -1
E -E =S Eiiom ,
k[zrﬁ} k[zq‘%] ,,;)22’"(2m+1)! ol [ z }

(A21)

, ne”z.

{(—1)”(11)}

(A20)

or more generally

15t
1 1 on + 1\ 2t
] -al L] = ()

X ; E H
(2m + 1)' k—1-2m z .
(A22)

F(5) = Cr 4 s SR = 37) = 1

50)+ZRJ~<E1 tl} _E'F;D
—f(so)+;Rf<E1 _—H i {Z_ID

4. Elliptic function

In this paper we frequently encounter elliptic functions
with respect to a complex structure z. They are meromorphic
functions on C satisfying the doubly periodic condition,

f@)=fG+7)=rf(a+1) (A23)
Here 7€ C with Imz > 0. Exploiting the periodicity, one
may restrict the domain of j to the fundamental parallelo-
gram in C with vertices 0, 1, 7, 1 4+ 7. Equivalently, an
elliptic function f is a meromorphic function on the torus 72
with complex structure 7. Using z = €273, f(3) is sometimes
written as f(z).

As a meromorphic function, f(3) may have poles in the
parallelogram. In this paper we mainly focus on elliptic
functions f(3) with only simple poles. We classify the
poles 3; into two types by the following criteria: we call 3;
real if Img; = 0, or imaginary if Img; > 0. The residues at

the simple poles 3; are captured by R;,

R; = Reslf(z).

=7 Z

(A24)

Using the well-known Weierstrass ¢ function and the
Eisenstein serles any elliptic function f(3) with only
simple poles can be expanded in various ways,

= f(z0) + ;RJ- <E1 ﬁ_ql—%] —E [—_qlD

= f(30) +

Here z, = ¢?*% is an arbitrary and generic reference value.
Note that the above expansions are valid for all types of
pole combinations, real or imaginary, where the last line
incorporates explicitly the realness of the poles to deter-
mine the j:%. These expansions lead to useful integration
formula that we will review later.

"In fact, these equalities remain true even after replacing 1 by
e and —1 by e2mi(A+s)

DR <E1 { Z__q” - (A25)

real/img 3;

5. Useful identities

The Eisenstein series are related to the Jacobi theta
functions,

Ek[+1} _ |k/2] (_1)k+1 <L>k—2f[E flg(lk—zf)((,))
z = (k—2¢)! \2xi 9,(3)
(A26)

"For functions with higher order poles, one needs to include
derivatives of {-function or Eisentein series.
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where we define

1 3 1
|E2 = E2, |E4 = E4 + E(Ez)z, IE6 = E6 + ZE4E2 + g(E2)3,

Exy= Y

{”p}

p21

H 1 1 E np
s tp! \2P )

(2p)np=2¢

(A27)

(A28)

Similar formula for £, [;], E; [i} can be obtained by replacing 9, with 8, 3 4. For the reader’s convenience we list the first

few conversions here.

[+1] 1 9(3)

E =_—Ué
"z 27i9,(3)

[+17 1 8/(3) 1

E - ——
lz] 8283 27
'+1' . 19/// . 19/
E, _ ! . 7' (3) _b 1(3) E,,
Lz ] 4877 9,(3) 479,(3)
(17 19 1 9 1 1
E =— ! E,—12 ([ E, +=(E,)?
4_ z | 3847* 9,(3) +16ﬂ'2 29,(3) 4 4—1—2( 2)
[+1] i 97() ) 1 9 (5)
E = - 1 E 1 —— | E —(E 2 1
7 384075 9;(3) 965 2 9,(3) 871( s+3(E) )81(3)
(17 199G 1 W) 1 1 a9 1 1
E, = ! - E, - E,+=(E)?* )| 2= __(Es+>E,E
ol 7 | 460807 9,(3) 7687* > 9,(3) +327z2< a+3( 2)> 9,(3) 6< 6yttt

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

Moreover, the Eisenstein series satisfy the following relations which are generalization of the so-called duplication

formula of the Jacobi theta functions,

++

¢

¢
a | |eoen] !

The E; function also has some alternative expansions besides its definition, for example,

> Ey [ij (¢

¢

Z

J@

):_

“+o0

-1 b-lgp
aly =i
b

bg b — b
T P+ nﬁ
1-b'q 1-bqg Zq 2

c~" gi—q
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b_lq%

1
2

(i)

APPENDIX B: INTEGRATION FORMULA

- b‘lq% - 1

In this appendix we collect integration formula for
contour integrals containing an elliptic function, some
products of Eisenstein series and some monomial factors.

1. Integration formula without monomial

We begin with the simplest formula. Consider an elliptic
function f(3) with only simple poles. Denoting z = e>*i,
then the contour integral of f along the unit circle can be
computed analytically,

jg dz
lz|=1 277.'iZ

Here, 3, (and zo, = e**%) denotes an arbitrary and generic
reference value, and 3; (with z; = e?"i3;) are the simple
poles of f. Recall that 3; is real if Img; = 0, or imaginary
if Img; > 0. This formula follows directly from the
decomposition

f(3) = f(30) +

> RiE

real/img 3;

]‘ (B1)

U gt
20

n/2 3 om —2m
—q " b —b
Z /2 Z = (A38)
m?,;’é/z
[
-1 -1
RO =1+ 3 (B ] <55 )
real /img 3; 20 q 71"
(B2)

Note that only the last term depends on z, and upon

integration,

Only the z-independent terms survives the contour inte-
gration, yielding (B1).

In computing Schur index, we often encounter more
complicated contour integrals involving the product of an
elliptic function and several Eisenstein series. For example,
for the class-S A, index, we need the following integration
formula,

-1

za

dz

dz -1
E B4
[T (B4)
-1
—-s(a+ X wmE]La])- ¥ zstk ] gt ] (B5)
real/img 3; 20 real/img 3; zjaq
Here S, are rational numbers defined through the series expansion
: =>s (B6)
5 R
2sinh(y / 2 =
Explicitly, we list a few instances of S, below.
4 0 1 2 3 4 5 6 7 8 9 10 11 12
Sy 1 0 L 0 7 31 127 0 73 0 1414477

5760 967680

154828800 3503554560 2678117105664000

Similarly, we also have

dz

ﬁ;l 2rwiz f<3

)Ey Fz—al] =-A (f(éo) +

p>

real/img 3;

-

-1
Z; 41
— 2
Z()q

> RE

real/img 3; |:

-1
BkEl[ ]
zjaq™

)

k-1
+ZSfEk+1 ¢

1
Zjaqi%

(B7)

)
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where

_ BZn 5n,

B 5,
A2n+1 = 2n 0

(Zn),_Sva an+l = 2’ .

B2n - (BS)

To compute the Schur index of the some class-S A, with 2 or 3 maximal punctures and an arbitrary number of minimal
punctures, we need the following type of integrals,

foerom| |85, | (B9)

As simplest cases, when f(3) = 1 we have the following integration formula,

dz -1 -1
—F E B10
2riz k{za] f{zb] ( )
14 4
= (e (—cﬁﬂﬂsw DIPCHEREEO A B11)
r=2 s=r
kf 1
IR D (B12)
r=¢+1 i /b

One can also utilize this formula to derive or understand the structure of the other ones we introduce in this appendix. For
example, to compute (B4), one can begin by decomposing f as in (A25), and apply (B10).

When f(3) is a nontrivial elliptic function, we have the following series of integration formula,

fison o[- [f o] o] )5 H

real/img 3;

k=1 1 1 k=1 1
X SorEsji1- e RE Sy E

J real/img 3;

ZRzk:Ih”SE ! +S8,. | E ! +E !
j 20E2k42-2¢ szqi% 2%\ E2 az/qi 2 a1l s

real/img 3; =0 szq 2
(B13)
and
dz -1 -1 k+1 1
E E = (2k )S SoyE
j{2mzf(5) 1{“] ZHI[zb] [ 2mz ] [ +1 2k+2+; 20E2k 10— 2£|: /b”
> 1
R;E, { } SarEapia- 2f|: 1]
real/lmg 3 aZ]q =0 szqiz
k
+1
R;E, { } SarEniia- 2£|: }
real/lmgg az;q ZO /b
k 1
S S0 SUEEL OV N H (B14)
real/imgg;  £=0 297
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Variants of these integration formula with E;[%)], E;[%)]
can be obtained by applying (A20).

2. Integration formula with monomial

In the previous discussions, we have encountered inte-
grals involving products of elliptic functions and Eisenstein
series. In the following, we further enrich the integration
formula by including a monomial of the integration
variable,

dz dz +1

%2—.1'7(5)’ %—.an(S)Ek[ . NEZy,
iz Z za

(B15)

where f(3) is again an elliptic function in 3. These formula

will be important when dealing with loop operator index.

a. One Eisenstein and monomial

In the presence of an Eisenstein series, we have the
following integration formula for a generic a independent

of g,
dz 1 1
g - z
27iz” k{za} (k—1)1a" (1—q")

q"Eu_(q")
LTS (BI6)

dz n 1 _ (_l)k nEu —l(qn)
2niz” Ek[z‘la] (k- 1)!(aq) (1k_ PO

(B17)

1 L1\
e =2 6)

=0

(k—1)! ) 1
k—l—z,”)!q) q", 1 k+f,2 .

Here Eu, () denotes the Eulerian polynomial defined by
the equation

+0o0 n

X r—1
ZEun(t ; = f— el=Dx’

(B13)

Similarly, we have the following parallel integration for-

mula
dz [—1 1 g"? 1
—_'E =L _o(q¢1-k=
7{2m'zz k_za:| k=10 a \T"7"%2)
(B19)

dz [ -1 (=1)* 1
= g — n n/Zq) n,]—k,— ,
2riz” k_z‘la] (k—l)!a i i 2

(B20)

where the ® denotes the Lerch transcendent function
®(z,5,a) given by

+0o0

®(z,s,a) = Z &

m. (B21)
p=0

Recall that the Eisenstein series enjoy shift property (A20).
When inserted into the above integration formula, the shift
property translates to

(B22)

For readers’ convenience, we list a few instances of Eu and ®,

n 12| 3 | 4 | 5

Eu() | 1 | l+q | 1+4g+4q> | 1+1g+11¢2 +4° | 1+26q+ 664" +264° +g*
n 6

Eu,,(7) 1 +57q + 302¢% + 302¢> +57¢* + ¢°
n 7

Eu,(f) | 1+120g+ 1191¢> 4 24164° + 1191¢* + 120¢° + ¢°

In the presence of certain amount of g-shift, the above formula need some modifications. For example, with generic a,

O<a<l1,7eN,

d 1] "
—Z‘Z”E‘l [ B _ (a) = %
2miz zlag] 1-g¢q

2riz ag®| (k—=1)!

1
"E
2riz” l[z—la]’

dz I Eu,_;(¢"
—ZnEk|:Z_1 = (ageyqr o)

(B23)

4“ ) = 81 (aq”)" (B24)
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dz [ =1 7 =2+2¢" (-1)k 1
— 7" = "g"P®( g" 1 - k. ), B25
2miz” M lagt | T d+qn k=TT 2 (B25)
dz [ =1 ] —Q2f-1)+Q2+1)g" (-1)* 1
nE — n "/ZCD "1l—-k,—, B26
27iz” | lag’ | 1+q" SR 2 (B26)
d [ -1 20 —1)? =2(=3 + 42 20 +1)%¢*"
< g, _@-1P-23 44 + 20+ 1) (527
27iz |z aq” | 1+q"
) !
"o ¢" 11—k, = ). B28
o q 3 (B28)
|
b. Two Eisenstein series dz g [+1 } £ [—H ]
—Z
With two factors of Eisenstein series, the integration 2riz k za k zb
formula become much more tedious. For n€ Z,, and B dz +1 +1
k1 > kz, we have =b EZ Ek] Za/b Ek2 .
dz +1 +1
dz +1 +1 =a" ¢ —7"E; { }E [ } B32
—_Z"Ek1 Ekz 2riz ki Z k2 zb/a ( )
2riz z za

_ < 1 ¢"Eug, i1 (g") [(=1)87
=) A [

la" E +1
(ky =Dy =k + ) a |

and when k| < k,,

dz +1 +1
ZnEk] Ekz
2miz Z za
1 q" Euk1+f 1(q") { a"
(

— 1" (1= ¢ |k = 1)!

(—1)"24'/”! +1
(ky = 1)1(ky =k + f)!] E"z—f[ u } (B30)

It may be convenient to merge the two identities into

dz +1 +1
ZnEk Ek
2miz "z 2| za

“ |

_I_

(B29)

+

ky.ky)

max
= 2
=1

1 q" +1
ﬁygkhkz;f(a", 4") Emax iy k)¢ { . ] ;

(B31

~—

where £ can be read off from (B29) and (B30). Note also
that

The other integration formula variants of (B29) and (B30)
of involving Ey[, . E Kl 2] can be straightforwardly derived

using the shift property (A20). For example, solving the
system of equations

n dz +1 +1
q: F"Ey, Ey,
z

2mZ Z
ki ko 2
1 d -1
PN B |
2] 2{1'{2 2]”Zi:l Z

(B33)

produces the integration formula for z"Ej./ «, [*‘] X
Ei<r,<h [, ' in terms of a linear combination of the known
1
results for 2"E; <y, < [ Z] and 2"E\ <, , [ - ]Elsfzskz[ - ]
Combining the above results,
integration formula for m € Z 4,

ol
:[]f;;zf(s)] ;ZZZmEkEH
el 2] o

za

one can write down

real/lmg 3
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which follows easily from the decomposition

=)+ > RJ<E1[§3:11%]‘E1[

real/img 3;

f(3)

)

Y gt
(B35)

Z

c. Elliptic functions and monomial

We proceed with the first integral by recalling that

which gives

dz of 1
R R,——7"
J j
+\n
(Zﬂ ’)
= Z J n/2 _ ,—n/2° (B38)
real/img 3; 4q 4q

Summing over n with suitable coefficients, we further
obtain some useful formulas. For example,

1
f&)=C@) +5-D Rl(e=3).  (B36) 7{ dz -1
27l & / / 0 an(a) = - RE] 1| (B39)
J Zﬂ'lzr;Z real/%gaj / z jqiz
where { can be expanded in Fourier series,
This is simply a special case of (B1), since
{(3) = —4n*3E5(t) — (2m + 1)zi
/ dz
- =1)=¢—95
T e £~ (OB P (FD
— sinnnt
(B40)
for 3 = 39 + At + mr, A€]0, 1) and m € Z. The integral in
the presence of 7" with n # 0 can be carried out easily, Also, for neN,
|
dz (q — 1)Z qz;
B41
me’z(l—z)(l—qz r; 1 - gz H% ’1— (B41)
1
=- - R; (B42)
i1 J )
rg;, I —gqz; i%/ -z
dz 1 | k(z;q7) P
: 'f(3) = Ri(z;4™)" )~ (B43)
mez(l —z")(l —Z%) real/;géj I k%)qé _ g
n dz
+ p6/’€Z<O j{?zzf(z') (B44)
When z is the SU(2) fugacity, then we have with the insertion of a spin-J character y;(z) :== Y7 __, z*"
dz dz
e =5 R 2m R 2m , B45
]{27;1/”( )f () ]627{27512 Z; (r;; —2m +1ng; T Zj ) (B45)
and
dz 2(2) a 5 k(z;q2) 7k L om dz
: @)= > Riua™)™ ) o —wm t Z—&mez —f(3)-
%27”1 (I—=2zP)(1-1/zP) M=) seai e 3, IER B B =t P 2miz
(B46)
Note that for p =1, J€IN, S0 2mby, .o = [J1([J] =27 = 1) = =[(J +)?].
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