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We study the conformal bootstrap of 1D CFTs on the straight Maldacena–Wilson line in 4D N ¼ 4

super-Yang–Mills theory. We introduce an improved truncation scheme with an “OPE tail” approximation
and use it to reproduce the “bootstrability” results of Cavaglià et al. for the OPE-coefficients squared of
the first three unprotected operators. For example, for the first OPE-coefficient squared at ’t Hooft
coupling ð4πÞ2, linear-functional methods with two sum rules from integrated correlators give the rigorous
result 0.294014873� 4.88 × 10−8, whereas our methods give with machine-precision computations
0.294014228� 6.77 × 10−7. For our numerical searches, we benchmark the reinforcement learning soft
actor-critic algorithm against an interior point method algorithm (IPOPT) and comment on the merits of
each algorithm.
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I. INTRODUCTION AND SUMMARY

In two recent papers, the authors of Refs. [1,2] initiated a
nonperturbative study of 1D defect conformal field theories
(CFTs) in the planar ’t Hooft limit, combining methods
from integrability and the numerical conformal bootstrap
program. The analysis of [1,2] focused on the 1D defect
CFT of the 1

2
-BPS infinite Maldacena–Wilson line in 4D

N ¼ 4 super-Yang Mills (SYM) theory. It produced high-
precision numerics for three different (non-supersymmetric)
three-point functions involving two protected and one unpro-
tected operator. To obtain these results, the usual constraints
of crossing symmetrywere combined with information about
spectral data from integrability1 and two sum rules arising
from integrated correlation functions [5,6].
The combination of powerful techniques from integra-

bility and the conformal bootstrap, dubbed bootstrability
in [1], aims to blend two methods that have played a
leading role in nonperturbative studies of quantum field

theories. On the one hand, integrability has proven very
successful in the analytic computation of scaling dimen-
sions in the planar limit of gauge theories but less efficient
in computations of correlation functions. On the other
hand, the conformal bootstrap2 has shown great promise in
yielding rigorous results for generic CFT data (including
both scaling dimensions and correlation functions) but has
difficulty in navigating toward arbitrary theories of interest.
The input of integrability guides a conformal bootstrap
search toward a desired solution.
In this work, we continue the bootstrability study of the

1D CFT on the straight, 1
2
-BPS Maldacena–Wilson line,

by employing a different methodology on the conformal
bootstrap side compared to Refs. [1,2]. Instead of the
commonly used linear functional method [12], which
produces rigorous inequalities for CFT data by making
use of the positivity constraints from unitarity, we introduce
an improved truncation scheme to directly solve approxi-
mate crossing equations and sum rules.
Truncation methods within the conformal bootstrap pro-

gram are not new, having previously yielded outcomes with
varying degrees of success. Earlier work includes [13–20],
while more recently [21–24] have implemented truncation
methods in the context of the four- and five-point bootstrap,
respectively. In particular, Refs. [21,22] highlighted the
significance of selecting an appropriate truncation strategy
as a means of guiding the search within the conformal
bootstrap framework. These studies also aimed to devise
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1The input of exact spectral data into the conformal bootstrap
has been considered for 2D CFTs in [3,4].

2For reviews, see [7–9], while for a recent state-of-the art,
see [10,11].
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methodologies capable of handling substantial truncations,
encompassing hundreds or even thousands of operators.
This represents a notable improvement over earlier works,
which employed more drastic truncations limited to Oð10Þ
operators.
One of the main disadvantages of truncation methods is

that they are subject to systematic errors that are hard to
quantify, rendering them nonrigorous. Furthermore, deter-
mining the appropriate truncation can be a nontrivial task,
and the interpretation of results obtained through such
approaches may not always be straightforward. Conversely,
truncation methods have advantages such as flexibility
and computational cost effectiveness. They do not rely on
positivity constraints, making them well suited for explor-
ing the landscape of CFT data, including the cases of
nonunitary theories, defect CFTs and analyses arising
from bootstrapping higher-point functions. Therefore,
truncation-based searches could be creatively employed
in guiding targeted searches for specific theories, extracting
dynamically viable gap assumptions and other information
that a more rigorous method could employ at a later stage.
We find this aspect particularly interesting and worthy of
further exploration.
In this paper, we expand upon the bootstrability inves-

tigation of the 1D defect CFT but also introduce several
improvements to previously employed truncation methods.
These improvements allow us to accurately reproduce the
findings of [1,2] with exceptional precision. This precision
extends to the seventh decimal place for certain data, all
the way from the weak to the strong coupling regimes. To
obtain these results, we employed both reinforcement
learning (as done in [21–23]), as well as more conventional
nonlinear optimization algorithms. We used the same
information from integrability methods (the scaling dimen-
sions of 10 nonprotected operators) as developed in [25,26]
and employed for bootstrability in [2].
Our main results can be summarized as follows:
(i) We present a substantially improved truncation

scheme by introducing approximations for the “tail”
of the OPE expansion, as well as “effective” operators.

(ii) We obtain numerical results for the OPE-coefficients
squared of the first three unprotected multiplets of
the 1D line-defect CFT, with/without utilizing the
sum rules of integrated correlators and compare
with [1,2]. A sample of these results is presented
in Table I, with the full list available in Table VII.

(iii) We benchmark the soft actor-critic (SAC) reinforce-
ment learning algorithm [27], used as a nonlinear
optimizer, against the IPOPT implementation of the
interior point method optimization algorithm. In this
context, we provide specific evidence for the effec-
tiveness of the average of statistical runs with the
SAC algorithm and comment on the motivation to
explore more advanced reinforcement learning algo-
rithms. We highlight the fact that truncation methods
using either of the above algorithms are computa-
tionally cheaper than the (rigorous) linear-functional
methods. Our computations were performed using
machine precision.

(iv) We significantly improve our Python implementation
BootSTOP to: (a) use the improved truncation scheme
in 1D, (b) work with CFTs in 1D, 2D and 6D, and
(c) switch between SAC and the Python Parallel
Global Multiobjective Optimizer (PyGMO) [28],
which includes a host of deterministic and stochastic
optimization algorithms, including IPOPT.

The rest of this paper is organized as follows. In Sec. II,
we give a detailed account of our improved truncation
scheme. In Sec. III, we provide a brief review of the
necessary background needed to set up our bootstrap
problem. In Secs. IV and V, we list our main results by
reproducing the recently obtained values for the OPE-
coefficients squared of the first three unprotected multiplets
in the 1D defect CFT [1,2] using our SAC/IPOPT opti-
mization protocols. We round off in Sec. VI by discussing
the merits of different optimization algorithms, as well as
presenting some predictions for additional data in the 1D
defect CFT, before concluding in Sec. VII. Appendix A
includes a full list of our results, while Appendix B
presents an alternative analysis for the adiabatic variation

TABLE I. Sample results for three OPE-coefficients squared in the 1D line-defect CFT of the Maldacena–Wilson
line in planar 4D N ¼ 4 SYM theory at ’t Hooft coupling λ ¼ ð4πÞ2 ≃ 157.91 or g ¼ 1 in the notation of the main
text. The precise definitions appear in Sec. III. The first line presents results from [2] using the linear-functional
methods implemented with the semidefinite programming approach of SDPB [29], and the errors reflect rigorous
upper/lower bounds. The second line presents a sample of our new results based on the use of an improved
truncation method that employed an interior point optimization algorithm implemented with IPOPT [30]. The errors
are statistical in this case and reflect 1σ deviation. In the main text, we present further results obtained using
alternative optimizers. Both lines combine the crossing equations with two sum rules from integrated correlation
functions. The full list of results is available in Table VII.

Method C2
1 C2

2 C2
3

SDPB in [2] 0.294014873� 4.88 × 10−8 0.039788� 4.10 × 10−4 0.146757� 5.82 × 10−4

Improved truncation 0.294014228� 6.77 × 10−7 0.041832� 1.86 × 10−3 0.144100� 2.39 × 10−3
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of the crossing equations, which could be used in future
studies.3

II. IMPROVED TRUNCATION SCHEMES

One of our objectives in this paper is to investigate
enhancements to truncation methods. Specifically, we aim
to develop a novel framework for interpreting the operators
and associated CFT data within a truncation scheme. We
will attempt a systematic treatment in contexts where the
CFT is a member of a parametric family (with continuous
or discrete parameters), by assuming that the theory can be
defined/solved in a specific corner of that family. Let us call
this corner of parameter space the defining corner. That
corner typically reflects a weak coupling formulation and
could be a free fixed point or a generalized free point
(possibly captured by a dual supergravity description). The
known spectrum of the defining corner forms the starting
point for an informed truncation of the spectrum. The goal
of the program is to explore how the CFT data evolve
(adiabatically) across the parameter space.4 This strategy
fits well within a more general approach that prioritizes the
exploration of specific theories, compared to an exploration
of general properties in the space of CFTs.
The ensuing discussion will be kept generic and applies

to CFTs in any number of spacetime dimensions. For
concreteness, we will focus on a single crossing equation,
but similar methods can also be applied to the multi-
correlator bootstrap or to the bootstrap with the addition of
extra sum rules. The typical bootstrap problem involves an
algebraic crossing equation of the general formX

n

CnFnðxÞ þ rðxÞ ¼ 0; ð1Þ

where the index n runs over the infinite number of
operators that appear in the conformal block expansion
(in multiple channels). In two and higher spacetime
dimensions, n enumerates operators of different spin and
scaling dimension. In one dimension, where there is no
concept of spin, n simply labels operators at different
scaling dimensions. Cn denotes the OPE-coefficients
squared, and Fn is shorthand notation for the (crossed)
conformal blocks. The variable x represents the single cross
ratio present in 1D CFTs or collectively the pair of complex
cross-ratios ðz; z̄Þ in higher-dimensional CFTs. The func-
tion rðxÞ is an in-homogeneous contribution, which is
assumed to be explicitly known.5 This term may depend on
external continuous or discrete parameters. The CFT data

encoded in (1) are the OPE-coefficients squared Cn and the
corresponding scaling dimensions Δn.
The cross-ratio dependence of the crossing equation

can be discretized, either by evaluating it on a grid of x
points [33] or by applying a finite number of linear
functionals. A popular basis of linear functional in the
conformal bootstrap literature consists of derivatives at the
crossing-symmetric point [7–9]. For the 1D applications of
the upcoming sections, we used (even) derivatives at x ¼ 1

2
.

This discretization reduces the continuous character of the
algebraic equation (1) to a finite subset of equations, which
we collect in a finite-dimensional vector. Accordingly, we
recast Eq. (1) into the vector form:X

n

CnF⃗n þ r⃗ ¼ 0: ð2Þ

Let us now split the full set of operators appearing in (2)
into a finite subset, call it S, and its complement. The
selection of S can be based on various criteria, which we do
not have to specify at the moment. Typically, we are
interested in a subset of “the most significant” operators.
In the Euclidean bootstrap around the crossing symmetric
point, where the conformal block expansion converges
exponentially fast [34], these are operators with relatively
low scaling dimensions.6 Consequently, we can now recast
Eq. (2) into the more refined formX

n∈S

CnF⃗n þ T⃗ þ r⃗ ¼ 0; ð3Þ

where T⃗ captures the contribution of the operators in the
complement of S, which we will call the “tail,” and the sum
over n now involves only a finite number of terms and
corresponding CFT data. Thus far, (3) is exact.
The main premise of truncation methods, up to this point

in the literature, involves dropping the tail contribution T⃗
completely and analyzing the resulting equation,

E⃗ ≔
X
n∈S

CnF⃗n þ r⃗ ≃ 0; ð4Þ

which can only be satisfied approximately. In [13], the
analysis of the truncated equations proceeds via the method
of determinants. In [20], and subsequently in [21,22], one
formulates a positive semidefinite function L of the vector
E⃗ and tries to minimize the “cost” function

Cost½fΔn; Cngn∈S� ≔ L½E⃗�: ð5Þ

3After a preprint of this work appeared on the arXiv, we
learned of similar explorations of the 1D defect CFT using
BootSTOP in the master's thesis [31]. We thank P. Ferrero for
communication on this point.

4A recent study of the Ising CFT using a different adiabatic
deformation in spacetime dimension appeared in [32].

5In the upcoming Eq. (31), rðxÞ ¼ Gsimpleðg; xÞ.

6Higher-dimension operators also play a significant role in
our approach, and how we incorporate them into S is part of our
discussion. Summarizing remarks related to this aspect appear
in Sec. VI. More generally, we expect that higher-dimension
operators will eventually become increasingly important in
hybrid numerical/analytical bootstrap methods; see, e.g., [35]
for a recent discussion.
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L quantifies the deviation of E⃗ from the zero vector and
should therefore vanish at zero by definition. A typical
choice of L is the root mean square, but other options can
also be explored.
We want to depart, slightly, from this logic by keeping the

tail T⃗ with a suitable approximation and obtaining a better
understanding of what the data fΔn; Cngn∈S represent in an
approximate scheme, with or without T⃗. Part of the problem
relates to the fact that in truncations with many operators, the
higher-dimension CFT data can be redistributed by the
optimization algorithm in many different ways to collec-
tively capture a similar overall, approximate contribution to
the cost function. This includes configurations where oper-
ators are grouped together in narrow bands of scaling
dimensions, effectively reducing the number of active,
independent CFT data in the truncation. There is also an
interplay between this freedom and the dynamics of the tail
that affects the complexity of the optimization problem and
the interpretation of the results for a given truncation scheme.

A. Tail approximation

As mentioned in the beginning of this section, we will
assume that the theory of interest is part of a family of CFTs
and that there is at least one corner in parameter space
where it can be solved explicitly with traditional methods.
In order to set up a convenient language, let us collectively
denote the external parameters λ and their value at the
defining corner λ�. The parameters λ could be discrete (e.g.,
the rank of a gauge group) or continuous (e.g., the value of
an exactly marginal coupling). In general, the notation λ is
shorthand for a multiparameter vector.
The existence of an explicit solution at λ� has several

useful consequences. First, the solution at λ� can be used to
inform the choice of truncation, namely the set of operators
S in the crossing equation (3). For instance, this can be
done by picking a cutoff on the scaling dimension or twist,
so as to specify the number of operators that we want
to include in S for each spin. In [21,22], this choice
informed a corresponding “spin-partition,” With the num-
ber of data appearing in S specified, our goal takes the
following form:
”Solve (3) to determine how the data fΔn; Cngn∈S vary

across the parameter space from λ� to a generic value of λ.”
The quality of the results can depend nontrivially on the

tail T⃗, which includes the value of the CFT data of all the
hidden operators in the complement of S. As a first step
toward a better approximation of T⃗ (compared to simply
setting T⃗ ¼ 0), we propose the following approach: At λ�,
we assume having access to the CFT data fΔ�

n; C�ngn∈S
inside the truncation, and the Eq. (3) can be satisfied exactly:

X
n∈S

C�nF⃗
�
n þ T⃗� þ r⃗� ¼ 0: ð6Þ

Most importantly, we can use this equation to determine the
exact value of the tail at λ�:

T⃗� ¼ −
X
n∈S

C�nF⃗
�
n − r⃗�: ð7Þ

If the tail T⃗ does not vary significantly as a function of λ,
then a first approximation of the tail consists of setting

T⃗ðλÞ ≃ T⃗�: ð8Þ

In such a case, the exact Eq. (3) is approximated byX
n∈S

CnF⃗n þ r⃗ −
X
n∈S

C�nF⃗
�
n − r⃗� ≃ 0; ð9Þ

and leads to the minimization of the modified cost function

gCost½fΔn; Cngn∈S� ≔ L½E⃗ − E⃗��; ð10Þ

with E⃗ defined in (4).
The approximate assumption in (8) is not unrealistic (for

sufficiently large truncations) in the vicinity of λ� and
certainly improves the drastic truncation ansatz T⃗ ¼ 0.
Indeed, there is now at least one point in parameter space
where the crossing equations are satisfied exactly by
construction. The assumption (8) is also motivated by
the fact that high-dimension operators have minimal con-
tribution to the conformal block expansion around the
crossing-symmetric point, and that in the limit of high
spin, CFT states behave asymptotically as generalized free
fields [36,37]. Nevertheless, whether this approximation
holds for a finite deformation away from λ� (and to what
degree) is not obvious and is certainly critical. In general,
one can imagine various ways in which (8) can break down.
For example, as one deforms away from λ� and the
spectrum rearranges itself, some operators from the tail
can become increasingly important. The tail contribution
can also be affected when the scaling dimensions of the
external operators are λ dependent.7

B. Effective operators and degeneracies

Setting the approximation of the tail aside for the
moment, another issue that affects the complexity and
efficiency of a truncation scheme relates to the presence of
large accidental degeneracies. This usually occurs in the
defining corner at λ� that involves a (generalized) free
field description; the weak coupling regimes of gauge

7For example, one can explicitly write down the crossing
equations in the 2D S1 CFT for scalar, charged primaries [21,22]
and check the value of the tail for a fixed truncation as a function
of the external operator dimensions. As one moves on the
conformal manifold, the value of the external dimension changes
and the tail exhibits significant variations. We would like to thank
A. Stratoudakis for working out specific examples of this type.
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theories are typical examples. Large degeneracies are
challenging for two reasons: First, they can grow very
rapidly as functions of the scaling dimension. In that case, a
complete description of the degenerate spectrum would
force a truncation with high dimensionality. Second, away
from λ�, the accidental degeneracies are typically lifted, and
tracking the precise splitting across the parameter space
can be a very complicated task. One might therefore ask:
Is it possible to alleviate the problems that arise in such
situations?
To isolate the effects of nearly degenerate operators, let

us assume that part of the sum
P

n∈S CnF⃗n in (9) involves a
relatively narrow band of Nband operators (at the same
spin) with scaling dimensions Δ∈band, where band≡
½Δmin;Δmax� and Δmax > Δmin. We will denote their con-
tribution to the crossing equation as

E⃗ ¼
X

Δ∈band⊂S
CnF⃗n: ð11Þ

For an exact solution to the crossing equations, this vector
takes a specific value

E⃗ðexactÞ ¼
X

Δ∈band⊂S
CðexactÞn F⃗ðexactÞ

n : ð12Þ

We want to explore the possibility of approximating the

exact vector E⃗ðexactÞ with an effective sum

E⃗ðeffÞ ¼
X
Oeff

COeff
F⃗Oeff

; ð13Þ

over a reduced number Neff of operators. Crucially, the
CFT data of these operators do not capture the exact data of
the CFT in the band. They are meant to provide an effective

description that approximates the contribution E⃗ðexactÞ

inside the crossing equation.
A special instance where this effective description is

exact is that of exact degeneracies. In that case, there
may be a possibly large number of distinct operators,

Nband > 1, that contribute to the sum E⃗ðexactÞ in (12).
However, since all of them have the same scaling
dimension Δ (and the same corresponding conformal

block F⃗ðexactÞ
Δ ), the vector E⃗ðexactÞ is effectively encoding

the contribution of a single operator ðNeff ¼ 1Þ with
OPE-coefficient squared equal to the sum of the OPE-
coefficients squared of the individual degenerate operators:

E⃗ðexactÞ ¼
�X

Δn¼Δ
CðexactÞn

�
F⃗ðexactÞ
Δ : ð14Þ

Therefore, from this single effective operator, only the
scaling dimension Δ and total OPE-coefficient squared

ðPΔn¼Δ CðexactÞn Þ can be read off.

More generally, in a band of finite size, one can write

E⃗ ¼
X

Δ∈band

CnF⃗n ¼ C̄
X

Δ∈band

cnF⃗n; ð15Þ

where we defined

C̄ ≔
X

Δ∈band

Cn; cn ≔
Cn
C̄
: ð16Þ

With this definition, and assuming that Cn ≥ 0 by unitarity,
the new coefficients cn are by construction numbers
inside the interval [0, 1] with the property

P
n cn ¼ 1.

Consequently, the vector e⃗ðexactÞ ¼ P
Δ∈band c

ðexactÞ
n F⃗ðexactÞ

n
of the exact solution is inside the convex combination
ΣðexactÞ of the Nband vectors F⃗ðexactÞ

n . Moreover, the convex
combination ΣðexactÞ is inside the convex hullH½Δmin;Δmax�
of the segment of the curve F⃗Δ for Δ∈ ½Δmin;Δmax�.
The latter is a set that characterizes the conformal blocks
independently of the details of the exact solution of the
Nband operators in the band. To summarize, the exact
contribution of the band to the crossing equation is the vector

E⃗ðexactÞ ¼ C̄e⃗ðexactÞ ð17Þ
with

e⃗ðexactÞ ∈ΣðexactÞ ⊂ H½Δmin;Δmax�: ð18Þ

When the Nband operators are replaced by Neff <
Nband operators, the quality of the approximation will
depend on the minimal distance between the convex
combination ΣðeffÞ of the Neff vectors F⃗ðeffÞ

n and the
convex combination ΣðexactÞ as the scaling dimensions of
the effective operators vary. Assuming the latter vary inside
the same band ½Δmin;Δmax� as the scaling dimensions of the
exact configuration, both convex combinations ΣðeffÞ and
ΣðexactÞ are subsets of the same convex hull H½Δmin;Δmax�.
This puts an indirect upper bound on the error of the
approximation of the exact configuration.
It is not easy to promote these observations into specific

quantitative predictions in generic situations or to use them
to develop a concrete strategy for the selection of the
effective operators. We wanted, however, to highlight these
features for two reasons.
First, we believe that an effective description of a

complicated spectrum can be an important tool that can
be used to reduce the complexity of the problem. For
relatively narrow bands of nearly degenerate operators, one
might expect reasonable results with cheap effective
descriptions. Moreover, parametrizing ignorance with an
effective description may lead to a better interpretation of
the output of a computation. For instance, if there is
confidence in the existence of a nearly degenerate band
for a given problem, then instead of trying to interpret
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specific numbers as individual predictions for actual CFT
data, it may be more appropriate to interpret those results as
features of an effective description. In that case, from the
spread of the scaling dimensions of the effective operators,
one may want to distill a prediction for the size of the band,
and from the overall coefficient C̄ in (15), one may want to
distill an approximate sum rule for the total OPE-coef-
ficient squared in the band.
A second related motivation for the above discussion

is that sometimes, during the optimization steps in a high-
dimensional truncation, an algorithm (or two separate
algorithms) may identify two distinct high-reward configu-
rations with one of them having rendered several operators
nearly degenerate. Rather than interpreting these two
configurations as results corresponding to two distinct
theories with a different number of operators, it may be
more appropriate to view them as different effective
representations of the same theory.

C. Implementation and a soft extension of the tail

In the last subsection, we attempted to isolate effects
inside some relatively narrow band of operators. Let us now
return to the complete problem and the approximate
truncation scheme (9).
In the defining corner at λ�, we understand the structure

of the spectrum and how it is captured by our chosen
truncation. As we deform the theory away from λ�, we can
now envision the emergence of the following complica-
tions: Nearly degenerate bands (possibly captured by a
reduced set of effective operators) can develop significant
splits, operator scaling dimensions can cross and the naive
approximation of the tail at λ� may cease to be accurate.
The latter will force the operators inside our truncation set
S to readjust appropriately. How one proceeds at this point
depends on the situation and will typically require addi-
tional external input in order to extract confident results.
For example, such an input could arise by considering the
simultaneous information from multiple correlators, the
combination of a truncation scheme with a navigator
method based on the linear-functional approach [38]
and/or input from OPE inversion formulas [39–41]. We
plan to explore all these possibilities in future work. In the
present paper, the external input that we use are the exact
scaling dimensions for 10 operators from the quantum
spectral curve.
Accordingly, our results in Secs. IV and V are obtained

with a truncation of 62 operators, further split into 10
operators, the scaling dimensions of which we can track
explicitly, and the remaining 52 operators that we treat as
effective. We will not attempt to make any predictions for
actual CFT data based on these effective operators. We sum
their contribution to the crossing equation and treat it as
part of a soft extension of the initial tail approximation T⃗� at
zero ’t Hooft coupling. We will provide concrete evidence
that this soft extension of the tail is a valid approximation at

all values of the coupling. We will also see that different
algorithms treat the 52 effective operators in different ways.

III. REVIEW OF DEFECT CFT IN N = 4 SYM

Before delving into the details of our numerical compu-
tations, we begin with a lightning summary of the 1D line-
defect CFT, highlighting only the aspects that are necessary
for our discussion. For a complete account, we refer the
reader to [6] and references therein. The line-defect CFT
resides on a straight, infinite Maldacena–Wilson line

W ¼ Tr P exp
Z þ∞

−∞
ðAt þΦjjÞdt; ð19Þ

which preserves an ospð4�j4Þ subalgebra of the full super-
conformal algebra of the parent N ¼ 4 super Yang–Mills
theory in four dimensions [42] and inherits its integrable
structure in the planar limit [43,44]. In (19), At and Φjj are
gauge and real scalar-field components, respectively. The
maximal bosonic subalgebra involves the 1D conformal
algebra, the spð2ÞR R symmetry and the algebra of soð3Þ
rotations transverse to the line defect in four-dimensional
spacetime (sometimes referred to as “spin”). All states in the
line CFT fall into unitary irreducible representations of this
superconformal algebra, the superconformal primaries of
which are scalars under the soð3Þ global symmetry. The
irreducible representations include short Bk (protected)
representations, the dimension of which is fixed by their
spð2ÞR quantum numbers ½0; k�, Δ ¼ k, and long LΔ

½0;0�
(unprotected) representations, which are spð2ÞR scalars.
We are interested in four-point functions arising from

local-operator insertions along the Maldacena–Wilson line.
More specifically, we are interested in identical insertions
of one of the real scalars of N ¼ 4 SYM Φi⊥, i ¼ 1;…; 5,
not appearing in (19):

⟪Φ1⊥ðt1ÞΦ1⊥ðt2ÞΦ1⊥ðt3ÞΦ1⊥ðt4Þ⟫
≔ hTrWt1

−∞Φ1⊥ðt1ÞWt2
t1Φ

1⊥ðt2ÞWt3
t2Φ

1⊥ðt3ÞWt4
t3Φ

1⊥ðt4ÞWþ∞
t4 i:
ð20Þ

TheΦ1 component is the superconformal primary of the B1

multiplet, known as the displacement multiplet, the OPEs
of which obey the following selection rules:

B1 × B1 ¼ I þ B2 þ
X
Δ>1

LΔ
½0;0�: ð21Þ

A crossing equation arises from (20) due to the invari-
ance of the four-point function under a cyclic relabelling of
the insertion points, which can be recast as

x2fð1 − xÞ þ ð1 − xÞ2fðxÞ ¼ 0: ð22Þ
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In this expression, x is the single conformal cross-ratio
in 1D,

x ≔
x12x34
x13x24

; xij ≔ xi − xj: ð23Þ

As a consequence of (21), the function fðxÞ admits a
superconformal-block decomposition of the form

fðxÞ ¼ FIðxÞ þ C2
BPSFB2

ðxÞ þ
X
n

C2
nFΔn

ðxÞ; ð24Þ

with the specific blocks given by

FIðxÞ ¼ x; ð25Þ

FB2
ðxÞ ¼ x − x2F1ð1; 2; 4; xÞ; ð26Þ

FΔn
ðxÞ ¼ xΔnþ1

1 − Δn
2F1ðΔn þ 1;Δn þ 2; 2Δn þ 4; xÞ; ð27Þ

involving standard hypergeometric functions.
In addition to fixing the dimension of the B2 primary

from superconformal representation theory for all values
of the ’t Hooft coupling λ of N ¼ 4 SYM, one can also
determine the value of the corresponding OPE-coefficients
squared,C2

BPS, with the help of supersymmetric localization
[45,46] or integrability methods [2]. The latter vary with
the ’t Hooft coupling and, when expressed as a function of

g ≔
ffiffi
λ

p
4π , read

C2
BPS ¼ 1 − FðgÞ; ð28Þ

where

FðgÞ ¼ 3ðg2 − BðgÞÞ
π2ðBðgÞÞ2 ; ð29Þ

and the Bremsstrahlung function is

BðgÞ ¼ g
π

I2ð4πgÞ
I1ð4πgÞ

; ð30Þ

involving modified Bessel functions of the first kind.
Using this information, the crossing equations (22) can

be recast into the following compact formX
n

C2
nGΔn

ðxÞ þ Gsimpleðg; xÞ ¼ 0; ð31Þ

where

Gsimpleðg; xÞ ≔ GIðxÞ þ C2
BPSðgÞGB2

ðxÞ ð32Þ

is a now a known function, with GI encoding the crossed
superconformal blocks:

GI ;B2;Δn
ðxÞ ≔ ð1 − xÞ2FI ;B2;Δn

ðxÞ þ x2FI ;B2;Δn
ð1 − xÞ:

ð33Þ

Therefore, the undetermined quantities appearing in the
superconformal-block expansion of (31) will involve the
dimensions of the unprotected operators along with their
corresponding OPE-coefficients squared. The lowest
dimension long primary is Φjj. The long CFT data vary
as a function of g, but one can make use of the quantum
spectral curve (QSC) to numerically determine the evolu-
tion of the conformal dimensions of long operators from
weak to strong coupling. These results arise from a 1D
adaptation of a numerical QSC implementation for N ¼ 4
SYM developed in [47,48]. The dimensions of the first 35
long operators for g∈ ½0; 2� were provided in [1], while
those of the first 13 long operators for g∈ ½0; 4� were found
using methods developed in [25,26] and used in [2].
In [1], the dimensions of the first two unprotected

superconformal primaries were used as external input to
the linear-functional method to determine bounds for the
OPE coefficient of the first long multiplet entering (31).
Preliminary results with the input of additional scaling
dimensions from the QSC were also reported. In [2], the
dimensions of only the first 10 unprotected superconformal
primaries were used, but the crossing symmetry conditions
were supplemented by two sum rules arising from inte-
grated correlators, which were derived in [5,6], respec-
tively. The incorporation of these sum rules was observed
to yield significantly sharper bounds and better accuracy
for the first three OPE-coefficients squared. These two
additional constraints from integrated correlators can be
brought to the following form:X

Δn

C2
nInti½FΔn

ðxÞ� þ RHSi ¼ 0 for i ¼ 1; 2; ð34Þ

where

Int1½FΔn
ðxÞ�≔−

Z 1
2

0

ðx−1−x2ÞFΔn
ðxÞ

x2
∂x logðxð1−xÞÞdx;

ð35Þ

Int2½FΔn
ðxÞ� ≔

Z 1
2

0

FΔn
ðxÞ ð2x − 1Þ

x2
dx; ð36Þ

with FΔn
ðxÞ given in (27) and

RHS1 ¼
B − 3C
8B2

þ
�
7 logð2Þ − 41

8

�
ðF − 1Þ þ logð2Þ;

ð37Þ
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RHS2 ¼
1 − F
6

þ ð2 − FÞ logð2Þ þ 1 −
C
4B2

: ð38Þ

The curvature function CðgÞ has analytic expansions at
weak and strong coupling, while a numerical evaluation
with high precision, which we used in our implementation,
was provided in [6].

IV. RESULTS WITHOUT INTEGRAL
CONSTRAINTS

We now move on to present the main results of this
paper. We begin with the analysis of the crossing symmetry
conditions (31) without any input from the two integral
constraints (34). We will fix the scaling dimensions of the
first 10 long multiplets using the QSC and compare with the
corresponding results in [2], which implemented the linear-
functional method with SDPB. The inclusion of the integral
constraints will be discussed separately in Sec. V.
Our goal is to extract information about the scaling

dimensions and corresponding OPE-coefficients squared
for operators in unprotected (long) multiplets that appear
in the conformal block expansion of the four-point
function (20). An adiabatic sequence of runs was per-
formed on the HPC cluster at Queen Mary University of
London (QMUL) starting at g ¼ 0.2 up to g ¼ 4 with step
δg ¼ 0.2. We analyzed derivatives of the crossing equations
at the crossing symmetric point (as per usual practice in
the conformal bootstrap program) and chose to normalize
each derivative with a factor of 1=ð2pp!Þ at order p.
Because of symmetry, only the even derivatives are non-
trivial. In most of the reported results, we included all even
derivatives up to order Nder ¼ 260, but we also performed
runs with Nder ¼ 700.

A. Implementation of algorithms

In this section, we will report independent results
using two optimization methods. The first is based on
the SAC algorithm, deployed as a stochastic optimizer and
implemented through PyTorch. This is a reinforcement
learning algorithm based on the concept of Markov
decision processes, first introduced in this context in
[21,22].8 The second is the interior point optimization
(IPOPT) algorithm [30], which is deterministic. We note
that IPOPT is now accessible from within our coding
framework for numerical bootstrap, BootSTOP [67], which

incorporates all the algorithms of the Python Parallel
Global Multiobjective Optimizer PyGMO [28,68].9 Access
to this library allows the user to choose from a large suite of
standard deterministic and stochastic algorithms. In our
problem, IPOPT seems to outperform other algorithms
available in PyGMO (such as simulated annealing, particle
swarm optimization and differential evolution); we have
not, however, performed a full, systematic, comparative
study of all the PyGMO options.
We used the highest precision possible in the PyTorch and

PyGMO packages: floating point precision, which on 64-bit
machines, corresponds to 16 decimal places. In order to
improve the run-time of the algorithms, we pregenerated
the values of the differentiated conformal blocks. We found
a closed form expression for the pth derivative and verified
this formula in Mathematica up to order p ¼ 20. Beyond
this order, Mathematica became extremely slow so we
opted to evaluate the Nder ¼ 700 derivatives in Python using
the MPMATH package. While this package allows for
arbitrary precision, we chose 20 decimal places for all
intermediate calculations before reducing to 16 for the final
output. Cross-checks with Mathematica were performed
when this was possible. Each derivative was evaluated on a
lattice of conformal weights starting from 0 and ending
at 20 with an increase of 10−4 between lattice sites.
Conformal blocks on scaling dimensions in-between the
points of the grid were evaluated with linear interpolation.
The pregeneration of conformal blocks and our setup
within PyTorch and PyGMO are some of the main obstacles
toward arbitrary numerical precision in our implementation
and the reason why we restricted our computations to
machine precision. It is encouraging that this compromise
did not significantly affect the quality of our final results.
Both SAC and IPOPT algorithms were employed to

minimize the L2-norm cost function of the difference
between the value of the crossing equations (31) at each
coupling g and its corresponding value at g ¼ 0. This
approach implements the improved truncation scheme of
Sec. II with the tail approximated by its value at g ¼ 0,
as set up in (10). We will also be frequently referring to the
corresponding “reward” of a configuration, defined as the
inverse of the L2-norm cost function.

B. Choice of truncation

The set S of long operators that we included in this
truncation was informed by the structure of the spectrum at
g ¼ 0. At this free point, the scaling dimensions of long
operators are integer, Δ≡ J ¼ 1; 2;…. With the exception
of J ¼ 1, all other levels are degenerate, with degeneracies

8There have been many recent applications of machine
learning techniques to high-energy theoretical physics. An
incomplete list of references includes the exploration of string
vacua [49–51], integrability [52,53], the construction of numeri-
cal Calabi–Yau metrics for string compactifications [54–56],
interplays with Wilsonian renormalization in quantum field
theory [57–61], string field theory [62] and lattice quantum field
theory [63,64]. For a recent review, see [65]. For an introduction
to reinforcement learning and the SAC algorithm, see [66].

9
BootSTOP currently contains libraries for conformal blocks in

1D, 2D, and 6D, necessary for attacking CFTs in the correspond-
ing spacetime dimensions with truncation methods. We intend to
make further updates with 3D and 4D conformal blocks in the
near future.
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that can be determined in principle. Our choice is detailed
in Table II. The operators were grouped according to their
g ¼ 0 scaling dimension, J. Only the first nine states at
J ¼ 1; 2; 3 match the exact degeneracy at g ¼ 0. All the
states at higher values of J are effective in the sense of
Sec. II B.
As the coupling g is increased, the spectrum rearranges

itself and the free-theory degeneracies are lifted. At each
search cycle, we opted to reorder the operators within the
same J family according to their scaling dimension, as we
would normally do in higher-dimensional CFTs for the
tower of states at each spin [23]. Such a choice allowed us
to track how the groups of nearly degenerate states evolved
with increasing coupling. However, we note that J is not a
spin quantum number. All the operators within the trunca-
tion contribute with the same type of conformal block, and
at higher values of g, the mixing between different J sectors
is significant. This is a characteristic difficulty of 1D CFTs
that does not exist in higher dimensions.
Therefore, in all our runs, we included 62 operators in

the truncation, which amounts to 124 CFT data (62 scaling
dimensions and 62 corresponding OPE-coefficients
squared), although technically our numerical algorithms
can also handle efficiently many more operators. Input from
the QSC was used for the scaling dimensions of the first nine
operators at J ¼ 1; 2; 3 and for the lowest one at J ¼ 4.
Our main results refer to the OPE-coefficients squared of the
J ¼ 1; 2 operators, denoted, respectively, as C2

1; C
2
2; C

2
3.

C. Specifics of the SAC runs

The SAC searches were implemented with Nder ¼ 260
derivative constraints. We employed 200 agents, each
allowed to run on the QMUL HPC cluster for a
maximum of 23 hours.10 The search windows

(guess_sizes_deltas and guess_sizes_opes in
the code) were set to 0.4 for the conformal dimensions
of the 52 unfixed long multiplets, 2 × 10−2 for the OPE-
coefficients squared of the first 47 long multiplets and
2 × 10−3 for the OPE-coefficients squared of the last 15
long multiplets. Each run was performed around the (reward-
weighted) average of the solutions at the previous value of g.
In the SAC implementation, the scaling dimensions of

the 10 “fixed” long multiplets were not completely fixed.
They were allowed to vary with a small 10−3 search
window around the solution at the previous value of g.
We stress that in SAC this value does not control the size of
the box inside which the search is performed. Instead, it
controls the maximum size of the next action. In this
manner, if the starting value of a datum is not in the vicinity
of a local minimum, the algorithm can eventually wander
off significantly, even with a small search window.
At the end of the runs for the 200 SAC agents at each g,

we also did an independent search with IPOPT inside a 4σ
area around the average of the SAC result. Two sets of
independent IPOPT runs were executed here, one with
Nder ¼ 260 and another with Nder ¼ 700 derivative con-
straints. These follow-up IPOPT runs were performed with
2 × 108 agents (subdivided on the cluster into 2000 jobs,
each with a population of 100 000 in the PyGMO architec-
ture). They increased the reward significantly by a couple
of orders of magnitude, but did not move the SAC averages.
The addition of more derivative constraints did not lead to
significant improvement either. We will make additional
comments regarding these features in Sec. VI.

D. Specifics of the IPOPT runs

The IPOPTalgorithm was employed with 4 × 108 agents.
These runs were subdivided into groups with a population of
100 000 within the PyGMO architecture. Each group was run
4000 times on the QMUL HPC cluster with an approximate
20 minutes run-time. Our final statistics for this approach
comprise the 200 HPC cluster runs with the highest reward.
The results we report in Table III were obtained with Nder ¼
260 derivative constraints. The box of the overall search was
fixed within the hyperparameters of the algorithm. We chose
�1 for the scaling dimensions and �0.2 for the OPE
coefficients, around the solution at the previous value of
g. We also enforced as extra lower bounds the free-limit
value for the scaling dimension in each J family and 0 for the
OPE-coefficients squared. In contrast to the SAC runs, the
first 10 long operators had their dimensions completely fixed
to the results of the QSC. To further assist the search, we
imposed on both algorithms (SAC and IPOPT) the addi-
tional constraints C2

2 < 0.1 and C2
3 > 0.1.

E. Results

A sample of the results obtained with SAC and IPOPT
(from g ¼ 0.2 to g ¼ 1 with step δg ¼ 0.2) appears

TABLE II. The number of operators included in our truncation.
The operators are allocated in groups characterized by the g ¼ 0
value of their scaling dimension, J. For the low-lying operators at
J ¼ 1; 2; 3, this exactly matches the known g ¼ 0 degeneracy.
For J ≥ 4, the number of chosen operators is smaller than the
expected g ¼ 0 degeneracy. We used more operators at J ¼ 4
(3 above the reported 19 operators in [1,2]) and gradually less at
higher values of J. All the operators in the groups J ≥ 4 are
therefore effective. In total, our truncation involves 62 operators
with 124 corresponding CFT data.

J 1 2 3 4 5 6 7 8 9 10

# of operators in truncation 1 2 6 22 8 8 5 4 3 3

10We observed that most agents were approaching their final
configuration roughly within the first 12 hours. We did not attempt
to optimize the scheduling of the algorithm, opting to allow for a
longer search. In BootSTOP, SAC was implemented with parame-
ters: faff max ¼ 5000, pc max ¼ 6, window rate ¼ 0.7,
max window exp ¼ 30.
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in Table III. The full list of results can be found in Table VII
of Appendix A. In Fig. 1, we plot the full set of results
against the background of Fig. 6 from Ref. [2], which
contains the rigorous upper/lower bounds derived with the
linear-functional method and SDPB. The averages and
statistical errors of the CFT data from the SAC and IPOPT

runs are defined as averages weighted by the square of the
ratio of current reward to the best reward.
Furthermore, in the first data row for each value of

g in Table III, we have also included for quick comparison
the results for C2

1 from Ref. [1]. These were obtained
using Algorithm 1 in Ref. [2], which employed only

TABLE III. Partial list of results (for g∈ ½0.2; 1�) from IPOPT and SAC runs with no integral constraints imposed.
The errors in our results encode one standard deviation around the statistical reward-weighted average. For quick
reference, we have also included at each value of g the results for C2

1 from Ref. [1]. In that case, the errors are
rigorous and have a distinctly different meaning.

Method g C2
1 C2

2 C2
3

[1] 0.2 0.0663� 1.9 × 10−3

IPOPT 0.2 0.06607342� 4.18 × 10−5 0.04708� 2.04 × 10−3 0.1630� 2.69 × 10−3

SAC 0.2 0.06733947� 1.26 × 10−3 0.06506� 1.05 × 10−2 0.1384� 1.47 × 10−2

[1] 0.4 0.1684� 1.9 × 10−3

IPOPT 0.4 0.16944584� 8.35 × 10−5 0.02659� 3.45 × 10−3 0.17965� 4.90 × 10−3

SAC 0.4 0.16824002� 1.00 × 10−3 0.06380� 1.37 × 10−2 0.14198� 1.80 × 10−2

[1] 0.6 0.2329� 9 × 10−4

IPOPT 0.6 0.233574606� 1.32 × 10−4 0.02533� 6.78 × 10−3 0.17382� 7.68 × 10−3

SAC 0.6 0.232721152� 3.24 × 10−4 0.06151� 5.46 × 10−3 0.13363� 6.77 × 10−3

[1] 0.8 0.2701� 5 × 10−4

IPOPT 0.8 0.270632286� 6.67 × 10−5 0.020165� 6.29 × 10−3 0.17218� 7.06 × 10−3

SAC 0.8 0.270121362� 2.93 × 10−4 0.05776� 5.00 × 10−3 0.13110� 5.35 × 10−3

[1] 1.0 0.29388� 2.7 × 10−4

IPOPT 1.0 0.294177967� 6.79 × 10−5 0.023344� 9.64 × 10−3 0.163302� 1.04 × 10−2

SAC 1.0 0.293941106� 3.03 × 10−4 0.05658� 5.81 × 10−3 0.127135� 6.26 × 10−3

FIG. 1. Results for the OPE-coefficients squared of the first three long operators with no integral constraints. The solid lines indicate
the rigorous bounds presented in Fig. 6 of [1], reprinted here with permission from the authors. Same-colored circles and squares
indicate our results from the SAC and IPOPT runs, respectively. The corresponding statistical errors are too small to display on this plot
but can be found in Table VII.

V. NIARCHOS et al. PHYS. REV. D 108, 105027 (2023)

105027-10



two scaling dimensions from the QSC. Incorporating
the QSC data of 10 scaling dimensions with Algorithm 2
in Ref. [2] yields slightly improved upper/lower bounds.
The most characteristic features of our results are the

following:
(1) The results for the OPE-coefficient squared C2

1 are
directly comparable with the corresponding results
in Refs. [1,2], with agreement at the level of the third
decimal point or higher.

(2) As is apparent from Fig. 1, our results for the OPE-
coefficients squared C2

2 and C2
3 are always well

within the bounds of [2]. Interestingly, SAC and
IPOPT have not produced the same average con-
figurations exploiting the effective operators in
different ways. toward strong coupling, the spread
between the SAC and IPOPT averages seems to be
an indirect probe of the rough size of the rigorous
allowed regions obtained with the linear-functional
method.

(3) The linear-functional method can be quite sensitive
to the choice of spectral data imported from the
QSC. It was observed in [2] that their algorithms
ceased to converge if the spectrum deviates signifi-
cantly from the QSC answer. For example, at g ¼ 3,
it is sufficient to introduce an error of the order of
5 × 10−7 in the spectrum, for the method that sets
bounds for C2

1 to no longer converge [2]. In light of
this, the fact that the SAC runs did not alter the
values of the “fixed” conformal dimensions of the
first 10 operators (even with the relatively large 10−3

window) and converged on a result with good
accuracy showcases that the method is robust and
managed to locate the theory. For an example of the
variation in the scaling dimensions Δ1, Δ2, Δ3 in the
SAC runs, see Table VI below.

(4) SAC and IPOPT are producing configurations of
comparable rewards.11 Qualitatively, the SAC curve
in Fig. 1 is smoother compared to the IPOPT curve,
but the numbers in Table VII do not declare a clear
winner. Besides C2

1, a more specific datum that one
can check is the sum of the C2

2 and C2
3 coefficients.

Toward the strong coupling region the scaling
dimensions of the J ¼ 2 operators, Δ2 and Δ3,
converge toward 4. As a result, the two operators
remain nearly degenerate throughout the flow from
weak to strong coupling. This feature complicates
the search, as was already noted in [1]. In Fig. 4
of [1], narrow bounds were reported at g ¼ 1 that
place C2

2 and C2
3 on the line C2

3 þ 1.13C2
2 ¼ 0.19.

By inserting the average results from the SAC and
IPOPT runs into this expression, we find:

SAC∶ C2
3 þ 1.13C2

2 ¼ 0.19107;

IPOPT∶ C2
3 þ 1.13C2

2 ¼ 0.18968: ð39Þ

In the upcoming section, we will see that the most
accurate results of [2], based on also using the
integral constraints, yield C2

3 þ 1.13C2
2 ¼ 0.19171.

V. RESULTS WITH INTEGRAL CONSTRAINTS

We proceed to discuss the results obtained by incorpo-
rating the two integral constraints (34). Anticipating a
more pronounced minimum in this case, we exclusively
employed IPOPT. The search parameters closely resembled
those used in the IPOPT runs of Sec. V. The integral
constraints were supplied as separate equations using the
corresponding functionality of PyGMO. Our runs involved
4 × 108 agents. These runs were subdivided into groups
with a population of 100k within the PyGMO architecture.
Each group was run 4k times on the QMUL HPC cluster,
with an approximate run-time of 20 minutes. Statistics were
collected from the 200 runs with the highest reward. We
imposed Nder ¼ 260 derivative constraints but, unlike the
previous section, did not enforce the additional restrictions
C2
2 < 0.1 and C3

2 > 0.1. The search windows were set to
�1 for the scaling dimensions and �0.2 for the OPE
coefficients, centered around the average solution obtained
at the previous value of g. To ensure proper results, we
incorporated lower bounds. The lower bound for each J
family was set to the free-limit value for the scaling
dimensions, while the lower bound for the OPE-squared
coefficients was set to 0. Additionally, the dimensions of
the first 10 long operators were fixed completely according
to the results of the QSC.
Our results are plotted in Fig. 2 against the background

of the rigorous allowed regions in Fig. 10 of Ref. [2].
A partial list of the specific numbers with statistical errors
appears in Table IV and the full list in Table VII of
Appendix A.
We observe that the presence of the integral constraints

significantly narrows down the statistical errors for the first
OPE-coefficient squared and enhances the accuracy of our
statistical IPOPT runs, which align closely with the find-
ings of [2]. This alignment is particularly noticeable for
lower values of g. At higher values of g, the IPOPT results
for C2

2 and C2
3 become less accurate, while the linear-

functional method results become sharper. We believe this
is due to the near degeneracy of the corresponding
operators, which makes the search more demanding. We
observed that by increasing the number of parallel agents,
there is improvement in these numbers.
One might wonder whether our approximation scheme,

which includes the tail evaluated in the free limit, remains

11Strictly speaking, for SAC, this is true after running IPOPT
around the SAC average configuration. As we discuss in more
detail in Sec. VI, this has minuscule effects on the average
configuration.
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valid for all values of g. We have checked this point by
performing cursory runs, where besides fixing the dimen-
sions of the first 10 long operators to the results of the QSC,
we also fixed the values of C2

1; C
2
2 to the values of [2].

IPOPT then recovered, for all g, the value of C2
3 in [2] with

at least third decimal point accuracy (and often fifth
decimal point). We expect that full-fledged statistical runs
would improve this even further. This provides favorable
evidence that our (soft) tail approximation scheme works
well in this specific problem for a large region of parameter
space from weak to strong coupling.
Moreover, at g ¼ 1, we computed the sum C2

3 þ 1.13C2
2,

which is expected to come in at 0.19 from [1], and found:
IPOPT with constraints:

C2
3 þ 1.13C2

2 ¼ 0.19137; ð40Þ

Cavaglià et al. [2]:

C2
3 þ 1.13C2

2 ¼ 0.19171: ð41Þ

We also computed the sum C2
2 þ C2

3 of our IPOPT results
for all values of g (up to g ¼ 4) and found it to agree
with [2] to at least three decimal points. This is further
evidence for the validity of the tail approximation.

VI. ANALYSIS AND DISCUSSION

We would now like to discuss some of the most
informative features of the approximate solutions of
Secs. IV and V. These properties are not apparent from
the table and figure representation of the results for the first
three OPE-coefficients squared. First, we will comment on
the OPE coefficients of higher excited states predicted by

TABLE IV. Partial list of results (for g∈ ½0.2; 1�) from IPOPT runs with two integral constraints and comparison
with [2]. The errors for [2] encode the rigorous upper and lower bounds about the indicated mean. The errors for
IPOPT encode one standard deviation around the statistical reward-weighted average.

Method g C2
1 C2

2 C2
3

[2] 0.2 0.065679029� 6.95 × 10−7 0.09452� 7.25 × 10−3 0.1101� 1.27 × 10−2

IPOPT 0.2 0.06567873� 1.55 × 10−7 0.09683� 1.41 × 10−3 0.1063� 2.42 × 10−3

[2] 0.4 0.16838882� 1.29 × 10−6 0.06925� 2.80 × 10−3 0.13196� 7.16 × 10−3

IPOPT 0.4 0.16838814� 6.13 × 10−7 0.07010� 1.06 × 10−3 0.13026� 2.58 × 10−3

[2] 0.6 0.233041731� 4.49 × 10−7 0.05246� 1.47 × 10−3 0.14546� 2.99 × 10−3

IPOPT 0.6 0.233041064� 8.18 × 10−7 0.05347� 1.30 × 10−3 0.14376� 2.37 × 10−3

[2] 0.8 0.270286735� 1.32 × 10−7 0.044285� 7.18 × 10−4 0.14798� 1.17 × 10−3

IPOPT 0.8 0.270286201� 8.53 × 10−7 0.045597� 1.60 × 10−3 0.14607� 2.27 × 10−3

[2] 1.0 0.294014873� 4.88 × 10−8 0.039788� 4.10 × 10−4 0.146757� 5.82 × 10−4

IPOPT 1.0 0.294014228� 6.77 × 10−7 0.041832� 1.86 × 10−3 0.144100� 2.39 × 10−3

FIG. 2. Results for the OPE-coefficients squared of the first three long operators after the incorporation of two integral constraints. The
solid lines indicate the rigorous bounds presented in Fig. 10 of [2], reprinted here with permission from the authors. Same-colored
squares indicate our results from the IPOPT runs. The corresponding statistical errors are too small to display on this plot but can be
found in Table VII.
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our searches. Second, we will compare the performance of
the SAC and IPOPT algorithms. In particular, we would
like to address the questions:
“What have we learned about nonconvex optimizers in

the context of our truncation schemes? Is reinforcement
learning a useful tool for future studies?”

A. Higher CFT data

We remind the reader that, in addition to the first three
lowest-lying operators in the J ¼ 1 and J ¼ 2 families, our
searches also had the scaling dimensions of six operators
in the J ¼ 3 family and the leading operator in the J ¼ 4
family fixed using the QSC. These operators acquire
anomalous dimensions, and their scaling dimensions can
cross with other operators as functions of the coupling. The
mixing of contributions from different families in our
crossing equations prevents us from extracting clear results
for individual operators. However, this mixing is minimal,
or altogether absent, for the four lowest-lying operators in
the J ¼ 3 family; their scaling dimensions (labeled Δ4, Δ5,
Δ6, Δ8 in the language of [2]) are tracked with the QSC.
As a preliminary result, we have included in Table VIII
of Appendix A the corresponding values of the OPE-
coefficients squared C2

4; C
2
5; C

2
6; C

2
8 for g∈ ½0.2; 1�, obtained

by independently using SAC without integral constraints,
IPOPTwithout and with integral constraints. These are the
same runs already reported with Nder ¼ 260.
We observe that the statistical errors are now more

significant, which aligns with the observations of [2].
Setting this aside, the values of all three methods are close,
giving some confidence that they are in the neighborhood
of the exact result. Comparing with the unpublished
rigorous bounds of the authors of Ref. [2]12 supports the
same conclusion.
It is interesting to ask how our results compare with

known expectations at strong coupling. Before delving into
the numbers, we must address an issue that affects our data
at strong coupling. Throughout the whole range of g values
that we explored, both SAC and IPOPT have opted to keep
the leading J ¼ 5 scaling dimensions close to their weak
coupling values. At strong coupling (specifically g ¼ 4),

this puts the scaling dimensions of some operators in the
J ¼ 5 family close to the scaling dimensions of the nearly
degenerate J ¼ 3 operators and obscures the interpretation
of our results. This effect is more pronounced in the IPOPT
runs. In the SAC runs, only two operators are low enough to
be nearly degenerate with the J ¼ 3 operators. We expect
that this issue can be remedied by using additional
information from the QSC for the leading operator in
the J ¼ 5 family, using an appropriate modification of the
method recently developed in [48] along the lines of [1].
In Table V, we present the results of our three runs

at g ¼ 4. In the column “other,” we have included the
OPE-coefficient squared contribution of operators in the
J ¼ 5 family with scaling dimensions close to the J ¼ 3
dimensions of interest.13 For comparison, Ref. [2] reports
the upper bounds

C2
4 < 0.0079; C2

5 < 0.0123: ð42Þ

In addition, Ref. [69] has computed the strong coupling
limit of the total OPE-coefficient squared of the four J ¼ 3
degenerate operators at 10=429 ≃ 0.023. Adding up the
contributions in Table V, we obtain:

IPOPTwith constraints∶ 0.028� 0.030;

IPOPTw=o constraints∶ 0.032� 0.002;

SAC∶ 0.028� 0.015: ð43Þ

At the current stage, we do not want to read too much into
these numbers, as the statistical errors are significant, but
they appear to indicate that our approach is on the right
track. We believe that with further improvements, such as
fixing the dimension of the first J ¼ 5 operator from the

TABLE V. Preliminary results for the OPE-coefficients squared of the operators with scaling dimensions Δ4, Δ5,
Δ6, Δ8 at g ¼ 4 from the searches of Secs. IVand V. The “other” contributions come from effective operators of the
J ¼ 5 family that have comparable scaling dimensions.

Method C2
4 × 103 C2

5 × 103 C2
6 × 103 C2

8 × 103 other ×103

IPOPTþ cons 5.57� 5.83 3.74� 2.35 3.76� 2.31 4.12� 4.23 11.18� 15.44
IPOPT 3.74� 0.23 3.58� 0.21 3.63� 0.22 3.39� 0.20 17.58� 0.93
SAC 7.50� 3.30 3.17� 1.85 3.96� 2.67 2.68� 2.16 10.74� 5.14

12We would like to thank the authors of [1,2] for communi-
cation on this point.

13At g ¼ 4, the nearly degenerate operators of interest in the
J ¼ 3 family have scaling dimensions Δ4 ¼ 5.504295213, Δ5 ¼
5.521481452, Δ6 ¼ 5.516492991, Δ8 ¼ 5.539940361. In SAC,
the two interfering J ¼ 5 operators come out at Δ ¼ 5.226�
0.075 with C2 ¼ 0.00742� 2.88 × 10−3 and Δ ¼ 5.508� 0.078
with C2 ¼ 0.00332� 2.26 × 10−3. The next J ¼ 5 operator,
which was not included in Table V, has Δ ¼ 5.875� 0.072.
For IPOPT, the J ¼ 5 effective operators are more densely spread
around Δ ¼ 5.5. In “other,” we included J ¼ 5 operators within
the band Δ∈ ½5.25; 5.7�, which involved six and seven operators
for the constrained/unconstrained search, respectively.
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QSC, one will eventually be able to obtain more accurate
and reliable results for these CFT data as well.

B. The unreasonable effectiveness
of the SAC average

Our results show that the (reward-weighted) average
of the SAC runs is particularly accurate and frequently
much closer to the actual result (compared to that of the
maximum-reward agent in the population). If SAC can
efficiently locate a basin of attraction, as already anticipated
and partially observed in [23], then perhaps this is a natural
expectation. However, whether and how this actually
happens is not at all obvious for several reasons. Most
notably, unlike other typical (deterministic or stochastic)
optimization algorithms, where one observes a high-
reward-driven distribution of configurations exploiting the
microstructure of the search landscape, in SAC, individual
agents are comparatively reward-underachievers. The
reward of the average configuration is not remarkable
either. Moreover, since we have been running a tiny
population of 200 parallel agents—when IPOPT was
operated with 4 × 108 agents—one may also question
the quality of the statistics we obtained.
In order to test the quality of the SAC average, and

whether SAC was able to identify a genuine basin of
attraction, we performed the following exercise at the
end of all of our 200-agent SAC runs. We set a search
box around the SAC average, SAC, with bounds
½SACi − 4σi; SACi þ 4σi�. The index i denotes the ith
CFT datum and σi its corresponding 1σ uncertainty in
the SAC runs. Inside this box, we ran 2 × 108 IPOPTagents
(subdivided into 2k groups each with 100k population). We
repeated these “IPOPT-on-SAC” runs for all values of g.
The results at g ¼ 1 are plotted in Fig. 3. In Table VI, we
present the corresponding values of the reward-weighted
averages for the SAC and IPOPT runs with Nder ¼ 260, as
well as results from IPOPT runs with Nder ¼ 700, which
are not plotted in Fig. 3. For reference, we also included the
QSC values of the scaling dimensions.
For all values of g, we observed the following features.

First, the algorithms optimize the scaling dimensions in
the vicinity of the QSC values. This is a satisfying
minimal check of the method against the QSC expect-
ations. Second, increasing the number of derivatives from
260 to 700 in the IPOPT runs does not appear to yield any
significant improvements. Third, and most important, the
IPOPT averages reproduce consistently and with great
accuracy the SAC averages despite the spread that the
IPOPTagents exhibit. It is truly striking that the SAC runs
with only 200 agents and relatively low reward have
managed to capture well a local basin of attraction. For
the first operator, we also notice an intriguing feature of
Fig. 3: The IPOPT results are arranged linearly along the
diagonal on the ðΔ1; C2

1Þ plane. We have observed this

configuration at all values of g but do not have a clear
explanation for it.
For the g ¼ 1 results in Fig. 3 and Table VI, we obtained

the following rewards:

FIG. 3. Plots of SAC and IPOPT results with Nder ¼ 260 w=o
integral constraints at g ¼ 1. For SAC, only the average (blue
lines) and the 1σ regions (pink) appear. For IPOPT, we plot the
average (red lines), the 1σ region (magenta) and the results of the
best run for each of the 2k jobs on the HPC cluster (points).
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200SAC260 agents∶ min¼ 1.76× 104; median¼ 4.46× 104; max¼ 1.82× 106;

2k IPOPT260 agents∶ min¼ 2.52× 103; median¼ 1.56× 106; max¼ 2.66× 107;

2k IPOPT700 agents∶ min¼ 1.17× 103; median¼ 1.57× 106; max¼ 2.22× 107:

We observe similar features at all other values of g.
Typically, the median and maximum rewards of the
IPOPT-on-SAC runs are 2 orders of magnitude larger than
those of the SAC runs. The above values of the rewards are
also typical for all the IPOPT runs (independent of SAC) at
all values of g, with or without the integral constraints.
In conclusion, we notice that, as a powerful deterministic
algorithm, IPOPT gives a visible enhancement of the
reward with only small modifications to the average
SAC configuration.

C. Role of effective operators

In Sec. II we introduced and highlighted the significance
of effective operators in truncation schemes. The presence
(or absence) of higher-dimension effective operators can
affect the quality of the results for the low-dimension data,
and the freedom to rearrange them at high reward can affect
the inherent uncertainties of the search. In that sense, it is
not unreasonable to anticipate some correlation between
the latter and the size of allowed regions in the linear-
functional method. The results in Fig. 1 appear to support
this expectation.
In the same context, it is interesting to ask how different

algorithms manipulate the effective operators and,

correspondingly, how they learn the landscape onto which
they are optimizing. In Fig. 4, we present the scaling
dimensions of all 62 operators in our truncation as obtained
by SAC (dark blue for g ¼ 0.2 and light blue for g ¼ 4) and
IPOPT with the integral constraints (dark red for g ¼ 0.2
and light red for g ¼ 4). Both plots contain the same
information with different orderings of the operators. We
observe the following features.
From the top plot in Fig. 4, we notice that both SAC (in

blue) and IPOPT (in red) have chosen to minimally vary the
scaling dimensions of the J ≥ 5 families of operators from
g ¼ 0.2 to g ¼ 4. The main variation occurs for the 22
operators of the J ¼ 4 family and is more dramatic in the
case of IPOPT. There is another significant difference
between the two spectra in Fig. 4. IPOPT exhibits a clear
tendency (at all values of g) to keep operators within the
same family nearly degenerate. In this manner, it effectively
reduces the number of active operators in the truncation.
This was a feature that was also present in other non-SAC
algorithms. In contrast, SAC prefers to keep the operators
more distinct, effectively smearing them across scaling
dimensions, as is apparent in the bottom plot of Fig. 4.
It would be interesting to understand why this occurs,
whether it is linked to reinforcement learning mechanisms
and if it contains some significance that can be used
constructively in future searches.
We note in passing that, in addition to the runs reported

in this paper, we also performed SAC and IPOPT runs by
fixing only nine scaling dimensions that did not include
the first of the 22 operators in the J ¼ 4 family. In those
results, the 22J ¼ 4 operators received much smaller
anomalous dimensions yielding qualitatively worse results
both for SAC and IPOPT. It may be useful to explore if
exact QSC information for the scaling dimension of the
lowest J¼5 operator, obtainable from the recent work [48],
can similarly lead to further improvements to the results
presented here. Naively viewing J as an analog of spin in
higher dimensions, it is tempting to consider whether this
is analogous to fixing the leading Regge trajectory. That
would lead to an interesting hybrid numerical bootstrap
analysis in higher-dimensional CFTs, capitalizing on exter-
nal information from analytics, e.g., from OPE-inversion
formulas methods.

D. On the choice of optimization algorithms

Over the course of this work we compared the perfor-
mance of several different algorithms—some deterministic,
some stochastic. We observed that an algorithm like IPOPT
was very efficient and could be deployed with 4 × 108

TABLE VI. The average and 1σ values of the plotted CFT data
for the first three long operators. The subscripts in SAC and
IPOPT denote the number of maximum derivatives used. The row
of each table also includes the QSC value of the corresponding
scaling dimension.

Algorithm Δ1 C2
1

QSC 1.670227842
IPOPT260 1.6702536� 7.80 × 10−4 0.2939600� 6.12 × 10−4

IPOPT700 1.6702387� 8.05 × 10−4 0.2939429� 6.34 × 10−4

SAC260 1.6702139� 3.92 × 10−4 0.2939411� 3.03 × 10−4

Algorithm Δ2 C2
2

QSC 3.127846278
IPOPT260 3.1278644� 1.11 × 10−4 0.0569002� 1.02 × 10−2

IPOPT700 3.1278716� 1.41 × 10−4 0.0582812� 1.00 × 10−2

SAC260 3.1278389� 3.13 × 10−4 0.0565833� 5.81 × 10−3

Algorithm Δ3 C2
3

QSC 3.222893829
IPOPT260 3.2230032� 2.00 × 10−4 0.1269864� 1.09 × 10−2

IPOPT700 3.2229707� 2.86 × 10−4 0.1254095� 1.05 × 10−2

SAC260 3.2229662� 3.49 × 10−4 0.1271357� 6.26 × 10−3
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agents, producing very quickly (within minutes per 100k
population grouping) accurate results. In contrast, SAC
produced less accurate results with lower rewards in runs
that typically took 12 to 24 hours per agent, depending on
the chosen scheduling for the quenching of the search-
window sizes. One could therefore ask whether SAC is a
useful nonconvex optimization tool within the conformal
bootstrap and whether there is sufficient motivation to
explore even more advanced machine learning or reinforce-
ment learning algorithms in this context. Based on our
current understanding, we would like to argue in the
affirmative for the following reasons.
In a typical study of a (truncated) crossing symmetry

condition, one formulates a corresponding cost function
that is then minimized by varying scaling dimensions and
OPE-coefficients squared. The complicated landscape of

minima may contain multiple local minimum configura-
tions, some of which correspond to different physical
theories. Therefore, when optimizing, one is not necessarily
looking for the global minimum. Moreover, in attempting
to discover a specific local minimum, one needs the ability
to perform a local search without having specific informa-
tion about the bounds of the search. As a result, typical
optimization algorithms that are efficient in global searches
or are efficient in local searches but require specific bounds,
like interior point methods, stochastic gradient descent and
others, are not in general appropriate tools. This feature was
not particularly pronounced in the 1D problem that we
analyzed in this paper (at least for some CFT data), but it is
generally an important issue. For example, in the context
of the 6D (2,0) superconformal bootstrap that was analyzed
in [23], there are at least two minima of physical interest

FIG. 4. The scaling dimensions of the operators in our truncation at g ¼ 0.2 and g ¼ 4. On the x axis, different integer values
parametrize different operators. In the upper plot, the operators are ordered separately within their respective J family. In the lower plot,
the operators are ordered globally in ascending scaling dimension. The blue dots denote SAC results: dark blue for g ¼ 0.2 and light
blue for g ¼ 4. The red dots denote IPOPT results with integral constraints: dark red for g ¼ 0.2 and light red for g ¼ 4. We did not
include the results of IPOPTwithout integral constraints, as they are very similar to the data including the constraints. The results of both
SAC and IPOPT for the first 10 operators overlap.
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corresponding to the A and D series CFTs. In that case,
setting up a global search (or a local search with prescribed
bounds) is not an efficient approach. On the contrary,
Markov-chain algorithms can be a useful alternative,
because one can drop agents within a region of interest,
and the algorithm will dynamically decide how to explore
the local search landscape. SAC (and other similar sto-
chastic algorithms) play this game especially well. SAC is
particularly appealing within this class, because it is built
upon a process of policy optimization, which adapts its
dynamics on the given landscape. Indeed, we have already
highlighted several features within this section that support
the use of algorithms like SAC. These features include the
effectiveness of the average, the qualitative features of the
solution and the smooth evolution across parameter space.
The collection of these observations also motivates looking
for improvements to our reinforcement learning approach,
ranging from refining our SAC implementation, as well
upgrading the algorithm itself by deploying Constrained
and/or multiagent reinforcement learning algorithms,
where the agents collaborate to achieve higher rewards.
Irrespective of the above debate, we believe that the

present work, and the inherent complexity of the physical
problem we are trying to solve, strongly suggest building an
arsenal of diverse algorithms. These algorithms can possess
traits, which can be used either separately or in combination,
to learn a particular problem from qualitatively different
perspectives. It is not necessarily desirable to isolate a single
algorithm based on a sole feature like speed of performance
or quality of the reward. This is perhaps a philosophy that
departs from the standard perspective in many optimization
problems. We have updated BootSTOP to make more algo-
rithms directly accessible to the bootstrap practitioner in
service to this philosophy.

VII. OUTLOOK

In this paper, we studied the four-point function boot-
strap in the 1D CFT of the 1

2
-BPS straight Maldacena-

Wilson line in 4D N ¼ 4 SYM theory. Importing
information for the scaling dimensions of 10 long operators
from the quantum spectral curve [70,71], we analyzed the
crossing symmetry conditions with or without the inclusion
of two additional sum rules arising from integrated corre-
lation functions [5,6]. Unlike Refs. [1,2], which employed
linear-functional methods, we introduced an improved
truncation scheme with a tail approximation that requires
the solution of a nonlinear, nonconvex optimization prob-
lem. We attacked this problem using stochastic (reinforce-
ment learning) and deterministic (interior point method)
algorithms, producing numerical results for three (non-
protected) OPE-coefficients squared that aligned very close
to the rigorous results of [1,2]. The main novelties and
contributions of this paper are summarized at the end of
Sec. I. Our method is relatively computationally cheap; it
does not rely on positivity constraints and offers many

future opportunities when combined with other analytic
and rigorous numerical methods. Our Python implementa-
tion, BootSTOP, now contains a library of pregenerated
conformal blocks in diverse spacetime dimensions and,
besides SAC, also direct access to all the deterministic and
stochastic algorithms within PyGMO [28].
One can envision further applications in several different

directions. It would be interesting to further explore the 1D
CFT of the 1

2
-BPS Maldacena–Wilson line aiming at the

computation of more CFT data. We expect that the judicious
use of additional input from the QSC and the simultaneous
study of multiple correlators can lead to significant progress.
Analogous progress may be possible also in other higher-
dimensional CFTs. It would be interesting to revisit the
6D N ¼ ð2; 0Þ bootstrap [23,72–74] and 4D N ¼ 4 super-
conformal bootstrap [75–77] using improved truncation
schemes and to explore in that context the improvements
in accuracy and rigor that can arise with the combination
of other numerical methods (e.g., navigator methods) and
analytic methods (e.g., methods based on the light-cone
bootstrap and the OPE-inversion formula).
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APPENDIX A: EXPLICIT NUMERICAL RESULTS

In this appendix, we list our complete results for runs
without integral constraints (both SAC and IPOPT), as well
as for IPOPT runs with both integral constraints imple-
mented. In Table VII, we list the values for the OPE-
coefficients squared of the first three unprotected operators
from the J ¼ 1; 2 families, C2

1; C
2
2; C

2
3, when g∈ ½0.2; 4�

along with the results of [1,2] for reference.
In Table VIII, we list the results of the OPE-coeffi-

cients squared for the next four unprotected operators
from the J ¼ 3 family, C2

4; C
2
5; C

2
6; C

2
8 when g∈ ½0.2; 1�.

The unpublished rigorous bounds of the authors of [2]
support the expectation that these results are on the right
track. The operators with scaling dimensions Δ7, Δ9

acquire large anomalous dimensions at strong coupling
and are no longer almost degenerate with Δ4, Δ5, Δ6, Δ8.
The OPE-coefficient squared values for the full list of
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TABLE VII. Explicit numerical results for OPE-coefficients squared C2
1; C

2
2; C

2
3 from: (a) [2], (b) IPOPTwith two

integral constraints imposed (c) [1], (d) IPOPT with no integral constraints imposed, and (e) SAC with no integral
constraints imposed. The errors for (a) and (c) encode the rigorous upper and lower bounds about the indicated
mean. For (b), (d), (e), the errors encode one standard deviation from the statistical average.

Method g C2
1 C2

2 C2
3

[2] 0.2 0.06567902� 6.95 × 10−7 0.09452� 7.25 × 10−3 0.1101� 1.27 × 10−2

IPOPT w/ cons 0.2 0.06567873� 1.55 × 10−7 0.09683� 1.41 × 10−3 0.1063� 2.42 × 10−3

[1] 0.2 0.0663� 1.9 × 10−3

IPOPT w=o cons 0.2 0.06607342� 4.18 × 10−5 0.04708� 2.04 × 10−3 0.1630� 2.69 × 10−3

SAC w=o cons 0.2 0.06733947� 1.26 × 10−3 0.06506� 1.05 × 10−2 0.1384� 1.47 × 10−2

[2] 0.4 0.16838882� 1.29 × 10−6 0.06925� 2.80 × 10−3 0.13196� 7.16 × 10−3

IPOPT w/ cons 0.4 0.16838814� 6.13 × 10−7 0.07010� 1.06 × 10−3 0.13026� 2.58 × 10−3

[1] 0.4 0.1684� 1.9 × 10−3

IPOPT w=o cons 0.4 0.16944584� 8.35 × 10−5 0.02659� 3.45 × 10−3 0.17965� 4.90 × 10−3

SAC w=o cons 0.4 0.16824002� 1.00 × 10−3 0.06380� 1.37 × 10−2 0.14198� 1.80 × 10−2

[2] 0.6 0.233041731� 4.49 × 10−7 0.05246� 1.47 × 10−3 0.14546� 2.99 × 10−3

IPOPT w/ cons 0.6 0.233041064� 8.18 × 10−7 0.05347� 1.30 × 10−3 0.14376� 2.37 × 10−3

[1] 0.6 0.2329� 9 × 10−4

IPOPT w=o cons 0.6 0.233574606� 1.32 × 10−4 0.02533� 6.78 × 10−3 0.17382� 7.68 × 10−3

SAC w=o cons 0.6 0.232721152� 3.24 × 10−4 0.06151� 5.46 × 10−3 0.13363� 6.77 × 10−3

[2] 0.8 0.270286735� 1.32 × 10−7 0.044285� 7.18 × 10−4 0.14798� 1.17 × 10−3

IPOPT w/ cons 0.8 0.270286201� 8.53 × 10−7 0.045597� 1.60 × 10−3 0.14607� 2.27 × 10−3

[1] 0.8 0.2701� 5 × 10−4

IPOPT w=o cons 0.8 0.270632286� 6.67 × 10−5 0.020165� 6.29 × 10−3 0.17218� 7.06 × 10−3

SAC w=o cons 0.8 0.270121362� 2.93 × 10−4 0.05776� 5.00 × 10−3 0.13110� 5.35 × 10−3

[2] 1.0 0.294014873� 4.88 × 10−8 0.039788� 4.10 × 10−4 0.146757� 5.82 × 10−4

IPOPT w/ cons 1.0 0.294014228� 6.77 × 10−7 0.041832� 1.86 × 10−3 0.144100� 2.39 × 10−3

[1] 1.0 0.29388� 2.7 × 10−4

IPOPT w=o cons 1.0 0.294177967� 6.79 × 10−5 0.023344� 9.64 × 10−3 0.163302� 1.04 × 10−2

SAC w=o cons 1.0 0.293941106� 3.03 × 10−4 0.05658� 5.81 × 10−3 0.127135� 6.26 × 10−3

[2] 1.2 0.310433307� 2.16 × 10−8 0.036979� 2.62 × 10−4 0.144696� 3.40 × 10−4

IPOPT w/ cons 1.2 0.310433� 3.07 × 10−7 0.038659� 1.19 × 10−3 0.142616� 1.44 × 10−3

[1] 1.2 0.31033� 1.7 × 10−4

IPOPT w=o cons 1.2 0.31050381� 4.45 × 10−5 0.026543� 1.04 × 10−2 0.155286� 1.14 × 10−2

SAC w=o cons 1.2 0.310378551� 2.11 × 10−4 0.055333� 4.36 × 10−3 0.124209� 4.74 × 10−3

[2] 1.4 0.322466863� 1.08 × 10−8 0.035063� 1.79 × 10−4 0.142594� 2.20 × 10−4

IPOPT w/ cons 1.4 0.322466925� 1.47 × 10−7 0.035350� 7.74 × 10−4 0.142205� 8.95 × 10−4

[1] 1.4 0.32239� 1.2 × 10−4

IPOPT w=o cons 1.4 0.322494228� 1.64 × 10−5 0.026081� 5.01 × 10−3 0.152136� 5.33 × 10−3

SAC w=o cons 1.4 0.322459863� 2.73 × 10−4 0.052775� 6.01 × 10−3 0.123285� 5.96 × 10−3

[2] 1.6 0.331663291� 5.97 × 10−9 0.033675� 1.30 × 10−4 0.140664� 1.52 × 10−4

IPOPT w/ cons 1.6 0.331663391� 1.42 × 10−7 0.033591� 9.48 × 10−4 0.140715� 1.06 × 10−3

[1] 1.6 0.33160� 9 × 10−5

IPOPT w=o cons 1.6 0.331696148� 7.15 × 10−6 0.017362� 2.96 × 10−3 0.157958� 3.13 × 10−3

SAC w=o cons 1.6 0.331515801� 2.68 × 10−4 0.051282� 3.94 × 10−3 0.122229� 3.99 × 10−3

[2] 1.8 0.338918478� 3.53 × 10−9 0.0326214� 9.75 × 10−5 0.138948� 1.11 × 10−4

IPOPT w/ cons 1.8 0.338918374� 1.22 × 10−7 0.0339949� 1.05 × 10−3 0.137417� 1.15 × 10−3

[1] 1.8 0.33887� 6 × 10−5

IPOPT w=o cons 1.8 0.338952186� 1.03 × 10−5 0.0133279� 4.15 × 10−3 0.159124� 4.30 × 10−3

SAC w=o cons 1.8 0.338753189� 1.99 × 10−4 0.0496961� 3.67 × 10−3 0.121366� 3.98 × 10−3

(Table continued)
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TABLE VII. (Continued)

Method g C2
1 C2

2 C2
3

[2] 2.0 0.344787161� 2.21 × 10−9 0.0317952� 7.56 × 10−5 0.1374382� 8.44 × 10−5

IPOPT w/ cons 2.0 0.344786958� 1.12 × 10−7 0.0343623� 1.22 × 10−3 0.1346474� 1.32 × 10−3

[1] 2.0 0.34475� 5 × 10−5

IPOPT w=o cons 2.0 0.344812637� 6.30 × 10−6 0.0154283� 4.13 × 10−3 0.1543773� 4.30 × 10−3

SAC w=o cons 2.0 0.344739867� 1.67 × 10−4 0.0484264� 3.37 × 10−3 0.1202422� 3.48 × 10−3

[2] 2.2 0.349631253� 1.45 × 10−9 0.0311296� 6.02 × 10−5 0.1361104� 6.60 × 10−5

IPOPT w/ cons 2.2 0.34963113� 1.16 × 10−7 0.0332158� 1.55 × 10−3 0.1338673� 1.65 × 10−3

[1] 2.2 0.34960� 4 × 10−5

IPOPT w=o cons 2.2 0.349651805� 4.90 × 10−6 0.0147950� 2.78 × 10−3 0.1529520� 2.84 × 10−3

SAC w=o cons 2.2 0.349528529� 1.69 × 10−4 0.04762628� 3.27 × 10−3 0.1193224� 3.36 × 10−3

[2] 2.4 0.353696925� 9.9 × 10−10 0.0305818� 4.90 × 10−5 0.1349397� 5.30 × 10−5

IPOPT w/ cons 2.4 0.353696905� 1.32 × 10−7 0.0314842� 2.08 × 10−3 0.1339678� 2.21 × 10−3

[1] 2.4 0.353669� 3.2 × 10−5

IPOPT w=o cons 2.4 0.353713043� 9.54 × 10−6 0.0184944� 4.62 × 10−3 0.1472742� 4.66 × 10−3

SAC w=o cons 2.4 0.353608797� 1.34 × 10−4 0.0452261� 3.98 × 10−3 0.1201249� 4.05 × 10−3

[2] 2.6 0.357157434� 7.0 × 10−10 0.0301230� 4.06 × 10−5 0.1339028� 4.34 × 10−5

IPOPT w/ cons 2.6 0.357157405� 1.57 × 10−7 0.0312744� 2.82 × 10−3 0.1326779� 2.97 × 10−3

[1] 2.6 0.357134� 2.7 × 10−5

IPOPT w=o cons 2.6 0.357170084� 6.24 × 10−6 0.0187927� 3.21 × 10−3 0.1454316� 3.27 × 10−3

SAC w=o cons 2.6 0.357024241� 1.56 × 10−4 0.0453255� 2.97 × 10−3 0.1187001� 2.93 × 10−3

[2] 2.8 0.360138240� 5.0 × 10−10 0.0297329� 3.42 × 10−5 0.1329800� 3.63 × 10−5

IPOPT w/ cons 2.8 0.360138136� 1.18 × 10−7 0.0327207� 2.68 × 10−3 0.1298450� 2.80 × 10−3

[1] 2.8 0.360118� 2.2 × 10−5

IPOPT w=o cons 2.8 0.360146985� 3.74 × 10−6 0.0190562� 3.74 × 10−6 0.1438591� 5.46 × 10−3

SAC w=o cons 2.8 0.360062267� 1.26 × 10−4 0.0445569� 3.08 × 10−3 0.1180638� 3.08 × 10−3

[2] 3.0 0.362732415� 3.7 × 10−10 0.0293973� 2.92 × 10−5 0.1321546� 3.07 × 10−5

IPOPT w/ cons 3.0 0.362732181� 8.27 × 10−8 0.0358479� 2.28 × 10−3 0.1254397� 2.38 × 10−3

[1] 3.0 0.362715� 1.9 × 10−5

IPOPT w=o cons 3.0 0.362739018� 1.46 × 10−6 0.0237969� 2.40 × 10−3 0.1377698� 2.45 × 10−3

SAC w=o cons 3.0 0.362574889� 1.71 × 10−4 0.0436489� 2.77 × 10−3 0.1180333� 2.88 × 10−3

[2] 3.2 0.365010449� 2.8 × 10−10 0.0291054� 2.52 × 10−5 0.1314126� 2.64 × 10−5

IPOPT w/ cons 3.2 0.365010269� 1.11 × 10−7 0.0348757� 3.37 × 10−3 0.1254316� 3.49 × 10−3

[1] 3.2 0.364995� 1.6 × 10−5

IPOPT w=o cons 3.2 0.365018232� 2.83 × 10−6 0.0206917� 4.75 × 10−3 0.1398753� 4.85 × 10−3

SAC w=o cons 3.2 0.364922694� 1.43 × 10−4 0.0425634� 2.43 × 10−3 0.1179391� 2.43 × 10−3

[2] 3.4 0.367026704� 2.2 × 10−10 0.0288492� 2.20 × 10−5 0.1307425� 2.30 × 10−5

IPOPT w/ cons 3.4 0.367026579� 1.47 × 10−7 0.0335769� 4.71 × 10−3 0.1258575� 4.86 × 10−3

[1] 3.4 0.367013� 1.4 × 10−5

IPOPT w=o cons 3.4 0.36703306� 2.72 × 10−6 0.0221385� 1.63 × 10−3 0.1374627� 1.65 × 10−3

SAC w=o cons 3.4 0.366989521� 1.28 × 10−4 0.0413939� 2.98 × 10−3 0.1180792� 2.99 × 10−3

[2] 3.6 0.368823769� 1.7 × 10−10 0.0286224� 1.94 × 10−5 0.1301347� 2.02 × 10−5

IPOPT w/ cons 3.6 0.368823674� 2.03 × 10−7 0.0327516� 7.18 × 10−3 0.1258821� 7.38 × 10−3

[1] 3.6 0.368812� 1.2 × 10−5

IPOPT w=o cons 3.6 0.368834396� 7.83 × 10−6 0.0193471� 4.10 × 10−3 0.1393921� 4.18 × 10−3

SAC w=o cons 3.6 0.368792133� 1.50 × 10−4 0.0411893� 3.09 × 10−3 0.1173746� 3.11 × 10−3

[2] 3.8 0.370435484� 1.4 × 10−10 0.0284203� 1.73 × 10−5 0.1295811� 1.79 × 10−5

IPOPT w/ cons 3.8 0.370435381� 2.20 × 10−7 0.0335783� 8.74 × 10−3 0.1242843� 8.96 × 10−3

(Table continued)
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J ¼ 3 unprotected operators for g∈ ½0.2; 4� are available
upon request.

APPENDIX B: FLOW EQUATIONS

In this appendix, we present an alternative analysis for
the adiabatic variation of the crossing equations, which
aims to determine the infinitesimal vector of the CFT data
in parameter space. The approach is similar in spirit to the
flowing method of Ref. [79], except that it is not specific to
extremal solutions and works within a general truncation
scheme. We did not use this method to derive any of the
results reported in the main part of this work, but we present
it here as an idea that may be useful in future studies.
Preliminary analysis shows that this method can produce
high reward curves, at least within a finite region of
parameter space. An interesting technical aspect of this

approach is that it leads to a convex optimization problem,
which is significantly simpler compared to the nonconvex
problems we had to solve in the main text.
As always in this paper, we assume that we have a set

of crossing equations (possibly supplemented with addi-
tional sum rules) for CFT data on a parameter space.
The parameters are collectively denoted as λ and can be
continuous or discrete. If discrete, we compute finite
differences instead of derivatives. Our crossing equations
take the form (3), repeated here as

X
n

CnðλÞF⃗nðλÞ þ T⃗ðλÞ þ r⃗ðλÞ ¼ 0: ðB1Þ

We assume to have an exact or approximate solution of the
CFT data at λ and are interested in determining the solution
at λþ δλ for infinitesimal (or small finite) δλ.

TABLE VIII. Explicit numerical results for OPE-coefficients squared C2
4; C

2
5; C

2
6; C

2
8 from: (a) IPOPT with two integral constraints

imposed, (b) IPOPT with no integral constraints imposed, and (c) SAC with no integral constraints imposed. The errors encode one
standard deviation from the statistical average.

Method g C2
4 C2

5 C2
6 C2

8

IPOPT w/ cons 0.2 0.04110� 1.17 × 10−2 0.02602� 7.65 × 10−3 0.02292� 9.63 × 10−3 0.01618� 5.63 × 10−3

IPOPT w=o cons 0.2 0.03257� 3.60 × 10−3 0.02464� 2.03 × 10−3 0.02251� 1.91 × 10−3 0.01609� 1.19 × 10−3

SAC w=o cons 0.2 0.02186� 2.17 × 10−2 0.03303� 2.77 × 10−2 0.01103� 1.26 × 10−2 0.02534� 1.41 × 10−2

IPOPT w/ cons 0.4 0.02596� 1.04 × 10−2 0.02397� 1.19 × 10−2 0.02249� 1.11 × 10−2 0.01203� 6.46 × 10−3

IPOPT w=o cons 0.4 0.03601� 5.49 × 10−3 0.01670� 2.00 × 10−3 0.01478� 1.99 × 10−3 0.00883� 1.59 × 10−3

SAC w=o cons 0.4 0.02191� 1.65 × 10−2 0.01655� 1.24 × 10−2 0.01546� 1.35 × 10−2 0.01987� 1.73 × 10−2

IPOPT w/ cons 0.6 0.01376� 8.94 × 10−3 0.02165� 1.35 × 10−2 0.01875� 1.09 × 10−2 0.01365� 6.03 × 10−3

IPOPT w=o cons 0.6 0.02907� 5.97 × 10−3 0.01232� 1.93 × 10−3 0.01143� 1.94 × 10−3 0.00769� 2.30 × 10−3

SAC w=o cons 0.6 0.02211� 9.74 × 10−3 0.01587� 7.10 × 10−3 0.01923� 1.08 × 10−2 0.00809� 8.86 × 10−3

IPOPT w/ cons 0.8 0.01083� 6.21 × 10−3 0.01914� 1.00 × 10−2 0.01228� 6.44 × 10−3 0.01735� 8.83 × 10−3

IPOPT w=o cons 0.8 0.02839� 5.43 × 10−3 0.01005� 3.40 × 10−3 0.01043� 3.28 × 10−3 0.00548� 2.58 × 10−3

SAC w=o cons 0.8 0.02026� 6.00 × 10−3 0.01912� 7.46 × 10−3 0.01510� 6.27 × 10−3 0.00606� 6.04 × 10−3

IPOPT w/ cons 1.0 0.01273� 6.68 × 10−3 0.01011� 7.32 × 10−3 0.01140� 8.15 × 10−3 0.01965� 9.77 × 10−3

IPOPT w=o cons 1.0 0.02194� 6.32 × 10−3 0.01017� 3.30 × 10−3 0.01050� 3.13 × 10−3 0.00649� 3.70 × 10−3

SAC w=o cons 1.0 0.01712� 5.97 × 10−3 0.01688� 6.40 × 10−3 0.01628� 8.17 × 10−3 0.00519� 4.66 × 10−3

TABLE VII. (Continued)

Method g C2
1 C2

2 C2
3

[1] 3.8 0.370425� 1.1 × 10−5

IPOPT w=o cons 3.8 0.370445095� 7.19 × 10−6 0.0180924� 5.66 × 10−3 0.1399174� 5.75 × 10−3

SAC w=o cons 3.8 0.370403920� 1.67 × 10−4 0.0411710� 2.97 × 10−3 0.1165761� 2.99 × 10−3

[2] 4.0 0.371889072� 1.1 × 10−10 0.0282390� 1.55 × 10−5 0.1290748� 1.60 × 10−5

IPOPT w/ cons 4.0 0.371888949� 2.07 × 10−7 0.0343581� 8.98 × 10−3 0.1228095� 9.18 × 10−3

[1] 4.0 0.371880� 1 × 10−5

IPOPT w=o cons 4.0 0.371890446� 5.79 × 10−6 0.0230225� 8.59 × 10−4 0.1343690� 8.23 × 10−4

SAC w=o cons 4.0 0.371940952� 2.1 × 10−4 0.0404640� 2.60 × 10−3 0.1162919� 2.86 × 10−3
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Varying (B1) with respect to λ, we obtain the flow
equation:

X
n

�
F⃗nðλÞδCnþCnðλÞ

∂F⃗n

∂Δn
ðλÞδΔn

�
þδT⃗þδr⃗¼0: ðB2Þ

We know by construction r⃗ as a function of λ and can
approximate δr⃗ ≃ ∂r⃗

∂λ δλ. In addition, by implementing our
basic approximating assumption in the main text that
the tail T⃗ has a weak λ dependence, we can set δT⃗ ≃ 0.
These assumptions lead to the simplified approximate
flow equation

X
n

�
F⃗nðλÞδCn þ CnðλÞ

∂F⃗n

∂Δn
ðλÞδΔn

�
þ ∂r⃗
∂λ

δλ ≃ 0; ðB3Þ

which is linear in the flow-vector unknowns δCn; δΔn.
An obvious strategy for proceeding is to try and solve
for these unknowns by minimizing a quadratic cost
function. This is a linear regression problem that can
be handled with one’s favorite deterministic optimizer.
Unfortunately, this strategy is not optimal because it
relies on the assumption that at every step one flows away
from a good quality solution of the CFT data. As a result,
even when starting from an initial point with knowledge
of the exact solution, the errors will pile up quickly, and
the quality of the search will decrease.
A more promising alternative is to consider the linearized

version of the full crossing equation, not just its differential.

Indeed, at λþ δλ, one could aim to solve the approximate
equationX
n

CnðλÞF⃗nðλÞ þ T⃗ðλÞ þ r⃗ðλÞ

þ
X
n

�
F⃗nðλÞδCn þ CnðλÞ

∂F⃗n

∂Δn
ðλÞδΔn

�
þ ∂r⃗
∂λ

δλ ≃ 0:

ðB4Þ

The unknowns are again the flow-vector data δCn; δΔn, and
the problem is a linear regression problem. Since we
included the zeroth order part in the first three terms, this
approach has a chance to self-correct as one flows away
from an exact solution.
We have noticed in preliminary applications that this

adiabatic flow can be run quickly with a very small step δλ
to produce high-reward curves, but we have not studied it
systematically. At finite distance in the flow, one could also
combine it, or compare it, with a full nonconvex optimi-
zation run (like the ones reported in the main text). On the
technical side, we noticed that a quick implementation of
the linear regression in this context was possible using the
SLSQP algorithm from NLopt, which is available within
PyGMO. SLSQP is a sequential quadratic programming
algorithm for nonlinearly constrained gradient-based opti-
mization. We also noticed that the near degeneracies caused
instabilities in the gradient descent, which could be
addressed with the Ridge-regression regularization scheme
common in machine learning; for a review, see [80].
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