PHYSICAL REVIEW D 108, 105026 (2023)

More on the spin-2 analog of the massive BF model
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The addition of mass terms in general breaks gauge symmetries which can be recovered usually via
Stueckelberg fields. The massive BF model describes massive spin-1 particles while preserving the U(1)
symmetry without Stueckelberg fields. Replacing the spin-1 curvature (field strength) by the Riemann
tensor one can define its spin-2 analog (massive ‘BR” model). Here we investigate the canonical structure of
the free mBR model in terms of gauge invariants in arbitrary dimensions and compare with the massive BF
model. We also investigate nonlinear completions of the mBR model in arbitrary dimensions. In D = 3 we
find a nonlinear completion in the form of a bimetric model which is a subcase of a new class of bimetric
models whose decoupling limit is ghost free at leading order. Their spectrum consists only of massive
spin-2 particles. In arbitrary dimensions D > 3 we show that the consistency of a possible single metric
completion of the mBR model is related with the consistency of a higher rank description of massless

spin-1 particles in arbitrary backgrounds.

DOI: 10.1103/PhysRevD.108.105026

I. INTRODUCTION

The universal nature of the gravitational interaction
makes the search for a possible graviton mass a fundamental
subject. Severe problems in the consistency of massive
gravitons like the vDVZ mass discontinuity [1,2], and
the presence of ghosts [3] have been tackled by a convenient
choice of the graviton potential [4]. Such work has triggered
a huge amount of work in the subject of massive gravity,
see [5,6]. In particular, the need of viable cosmological
solutions has led to the bimetric model of [ 7] which besides a
massive spin-2 particle contains an extra massless spin-2
particle. Regarding the phenomenology and consistency
of [7], see [8,9].

The model [4] and also [7] are based on the Fierz-Pauli
massive spin-2 free theory [10] which can be defined in
terms of a symmetric rank-2 tensor. One might wonder how
robust are the physical outputs of the present massive
gravity theories against the replacement of the FP paradigm
by other descriptions of free massive spin-2 particles.

The introduction of mass terms breaks the local sym-
metries of the massless theories in general. In the case of
the metric formulation of gravity the local symmetry is
reparametrization invariance which should be preserved
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also in the massive theory. This is achieved in [7] via the
introduction of a second metric which is a dynamical field
and enlarges the spectrum of the theory as compared to [4].
One might search for a phenomenologically viable massive
gravity with only massive spin-2 particles in the spectrum
this is the main motivation for the present work.

In order to preserve local symmetries in a massive theory
one could follow an approach already known in the spin-1
case. Instead of the usual Proca theory with Stueckelberg
fields, we might follow [11] where the mass for the spin-1
field is generated via a gauge invariant coupling to a two-
form field (anti-symmetric tensor). The Cremmer-Scherk or
massive BF model (mBF henceforth) can be generalized to
arbitrary dimensions and for the non-Abelian case [12].
Inspired by duality relations, a spin-2 analog of [11]
has been suggested in [13], henceforth we call it “mBR”
model since the spin-1 curvature F,,(A) (field strength) is

replaced by a linearized Riemann curvature Rl(uszlﬂ(h) and
the two-form field B,, by a Riemann like tensor B, .
Here we investigate in detail the particle content of
the mBR model in terms of gauge invariants and compare
with the mBF spin-1 model, pointing out some important
differences. We go beyond the linearized truncation of [13]
and investigate possible nonlinear completions of the mBR
model in arbitrary D-dimensions. The linearized model in
D = 3 has inspired us to suggest a new class of bimetric
models where however the particle sepectrum only contains
massive spin-2 particles as we have checked at leading
order in the decoupling limit. We show that the consistency
of a possible nonlinear completion of the mBR model in
D > 4 is tightly connected with a consistent coupling to
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gravity of a higher rank massless spin-1 model suggested
by Deser et al. [14].

II. LINEARIZED mBR MODEL
A. From mBF to mBR

In order to derive the linerarized massive mBR model we
start from the simpler spin-1 case by constructing a master
action with two vector fields (A,, f,), an antlsymmetrlc

tensor B,, = —B,, and an arbitrary external source' J,,
1 m?
Sull] = / el L) =
4 2
" pu (l
+ZB Fo(f=A)+ fJ"s. (1)

If we first integrate over B, we arrive at the functional
constraint F,,(f —A) =0 whose general solution can
be written in terms of a scalar Stueckelberg field
fu=A,+d,p/m, now integrating over f, we obtain
the Proca theory with a Stueckelberg field which is
invariant under the U(l) gauge transformations
(6A,,6¢) = (9,A, —mA),

1 m> d,p\ 2
sisbl) = [ {1 -7 (a,+%2)

(220} o

If instead, we first integrate over f, we arrive at the
massive BF (mBF) model in D dimensions, up to quadratic
terms in the external source,

1 1
SmplJ] = /dD {—ZF/%D( )+ g BB
_ %BMMA) +ByJ" + O(J2)}, (3)

where B, = L ¢*B,,. The mBF model is invariant under the
independent scalar and transverse tensor (3# A}, = 0) gauge
transformations:

0A, = 0, \; 0B, = A}, (4)

In D = 3 we can write B,, = ¢,,,B and after rotating
and decoupling the vector fields B, and A, it follows that
the mBF model is equivalent to a couple 0f topologically
massive Maxwell-Chern-Simons (MCS) models [15] of
opposite helicities +1 and —1 just like a Proca theory. In
D = 4 we can write B = "7 B, and mBF becomes the
topologically massive BF model also known as the
Cremmer-Scherk model [11].

'We use M = (=, 4).

The master action allows us to prove the duality between
Sps and S;gr via a map between gauge invariant vectors
that we read off from the linear terms in the sources,
namely: A, + d,¢/m < Bj;. The equations of motion
0Supr = 0 can be written as

#F, [A] = m*B;;

/,w[ FMD[A_B*] =0. (5)

From the general solution of the second equation of (5)
A, = B, + d,A back in the first equation we have a Proca-
like equation 0*F,,[B*] = m*B; which is equivalent to the
Klein-Gordon equation (CJ—m?)B;, = 0 since ¢*B;; = 0.
Notice however, that the transverse condition is a dynamic
equation in the Proca theory while it is a trivial identity for
the dual field Bj,.

Now we can follow similar steps in order to derive the
spin-2 version of S gg. First, we define a master action in
terms of two symmetric rank-2 tensors (4, f,,) and a
rank-4 tensor B,z antisymmetric by the exchange u <> v
or a <> f# and symmetric by [uv] <> [af)], like the Riemann
tensor. By replacing the spin-1 curvature F,, by the
linearized Riemann curvature tensor we have

1
SDIT) = / de{—zhﬂva,ﬁ)(h)

1
3BTRS =0+ fu (©

2
- ™ = 1)

where R\, (1) = (0,00, 4040, hyy—0,0, hoy—0,05h,,)/2.
If we first integrate over B,,,s we obtain the linearized

zero curvature condition

;wa/)’(f h) - O (7)

whose general solution gives rise to vector Stueckelberg
fields,

+%%+®w

f;w(h’ W) = h;w m

(8)
Back in the master action we have the Fierz-Pauli [10]
theory with Stueckelberg fields which describes massive

spin-2 particles with linearized reparametrization invari-
ance (6h,,.0y,) = (d,€, + 0,€,, —me,), namely,

sl = | dDX{‘éh"”Gﬁ?(h)
m2
= Vb (hoy) = £ ()]
+ fu(h. w)T"”}- ®)

On the other hand, by first integrating over f, in (6) one
derives the massive BR (mBR) model [13]:
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1 v 1 vy L
SBuelT] = [ aa{ =Sl ) = S BoRE 0
1
b LonlB] + B O (10)
where the dual symmetric tensor is given by

* 2 1 let
B”U:—W[daaﬁBﬂauﬂ—mnwa 65304 (11)

with B = p,, B/ while the Lagrangian

1
D-1)

LB [B] = (0,05B*7)* — ( (0.05B%)*  (12)

has been first obtained in [14] in D = 4 and generalized to
arbitrary dimensions in [16]. It describes massless spin-1
particles like the Maxwell theory. Although of 4th order in
derivatives, it is ghost free in arbitrary dimensions as shown
in the Appendix, see [14] for a proof in D = 4. The DTS
model is invariant under the following scalar and tensor
transformations:

58;40:1//)’ = (I/[ﬂbl/laﬂ - ”ﬂﬂrlya)” + Ayauﬁ (13)

where A5 must satisty

oA

v —

0. (14)

The scalar transformation plays the role of the U(1)
symmetry of the Maxwell theory. Comparing with the spin-1
mBF model, we notice that the EH term (massless spin-2) is
the analog of the Maxwell theory (massless spin-1) while
Lpts (massless spin-1) is the analog of the antisymmetric
model (massless spin-0). The spin-1 curvature F,, is
replaced by the linearized Riemann tensor in the “BR”
mixing term. Regarding the equations of motion 6S,,gr = 0,
they can be written in close analogy with (5),

m2

L * *
> 5 (Bl = 1uB"), (15)

G (h) =

R

Wlﬁ(h -B*)=0. (16)

If we plug back in (15) the general solution of (16), i.e.,
h,, = B, + (0,A, + d,A,)/m we arrive exactly at Fierz-
Pauli equations for the dual field:

L m’

G;w(B*) = _7(8;11 _”yuB*)v (17)
which leads to the Klein-Gordon equation (C1—m?)B;;, =0
and B* = 0 = ¢"B,, which are typical equations for free
massive spin-2 particles. Notice that ¢B,, = d,B* holds

identically from the definition of the dual field, differently
from the usual FP theory where it follows from the
derivative of the FP equations for the fundamental field £, .
Since the equations of motion (17) are of fourth order in
derivatives the skeptical reader may be questioning whether
we have ghosts in the spectrum. Also in the spin-1 case the
Proca-like equation in terms of the dual vector field Bj, is of
3rd order in derivatives. In order to make sure that in both
s = 1 and s = 2 cases we only have the expected massive
physical particles we perform in the next subsection a
canonical analysis in terms of gauge invariant combinations
of helicity variables in both mBF and mBR models in
arbitrary D dimensions confirming our expectations.

B. Canonical structure

1. The mBF model

The canonical analysis of the mBF model via
Hamiltonian methods has appeared before in [17,18] in
D =4 and in [19] in D dimensions. In [17,19] the Dirac
method has been employed while [18] makes use of the
Faddeev-Jackiw method. However, we believe that the
purely Lagrangian approach presented here is simpler and
clarifies the role of each degree of freedom in producing the
necessary mass terms. The Lorentz invariance is not
explicit but we are able to write down the action only in
terms of gauge invariants, there is no need of gauge fixing.
Moreover, since Hamiltonian methods become cumber-
some for higher derivative theories like the mBR model, the
spin-1 case works like an introduction and, more impor-
tantly, it points out that the analogy between the spin-1 and
the spin-2 cases is not completely faithful.

We follow the approach used for higher order higher spin
theories in D = 3 in [20]. The gauge invariants are built up
in a constructive way from the definition of the gauge
transformations. For example, in the case of the U(1)
symmetry we take one of the D equations A, = d,A for
the elimination of the gauge parameter, explicitly we have®:
A= ajéAj/Vz. Plugging back in the D — 1 remaining
equations we obtain D — 1 invariants (81(A), 61} (A)) =
(0,0) where Io(A) = Ay — 9y0;A;/V? and IT(A) = A,
with the projection operator:

0,0,

The invariant /5(A) comes from the divergence of the
electric field while IJT(A) is given in terms of the spatially
transverse components of the magnetic field which are of
course the only nonvanishing ones. In general, the number

*We assume vanishing fields at infinity, so V2A = 0;0,A =0
leads to A =0, where A represents any field or its spacetime
derivatives. Moreover, we use T for space and ¢ for spacetime
transverse quantities.
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of independent gauge invariants equals the number of
independent fields minus the number of independent gauge
parameters, symbolically,

NIZNA—NA. (19)

Thus, from the D(D—1)/2 equations 6B, = A},
and the D — 1 constraints 0#Aj, =0 we can find N; =
DD-1)/2-[D(D-1)/2—-(D-1)] =(D-1) invari-
ants® which turn out to be I',(B) = 0"B,,. Now we return

|

to the mBF theory. Let us introduce an invertible decom-
position without time derivatives in order to avoid changes
in the canonical structure of the theory, namely,

where 0,07 =0=0,bT =0;cT =0,b/;=0 and b]; = b,

J7uy
So we have

—iF +3(9"B)*

N

1 1 . . 1 1 . . .
LoBF = 5 IO} — 3 (y —0)\V?(y — 0) —Evzy/Eh// + 3 (V2T = bT)* + m(y — 0)V2y + m(V2el = bl ol (22)

The free Lagrangian is a bilinear function of the
previously found invariants: (I(A).I](A)) = (y — 0. v])
and (Io(B).I}(B)) = (V?y, V2T —bi —03y). In the
Maxwell theory we have D —?2 massless propagating
modes (UJT) and 1 nonpropagating one (y — ), while in
the antisymmetric tensor we have the opposite, 1 massless
propagating mode () and D —2 nondynamic gauge
invariants (VZCJT - bjr). In the BF term we have a perfect
match. The nondynamic modes of one theory couple to the
propagating ones of the other one in order to generate the
mass terms. After diagonalizing the Lagrangian, the now
massive D — 1 propagating fields (UJT,I//) decouple from
the nonpropagating ones giving rise to a massive spin-1
particle without extra fields or ghosts,

1 1
Lnpr = EU,T(D —m?)v] + EW(—vz)(D —m?)y
(G|
—L—_TVr 23
* 2 2 ’ (23)

where (CT.T") = (V2cI = b7 + mvl.y — 6 — my) are the
nondynamic invariants.

2. The mBR model

Turning off the sources and redefining B,,; —
mB,q5/2, the Lagrangian for the linearized mBR
model (10) is given by:

3Specifically, we have decomposed a general antisymmetric
field as (Ag;, Ajj) = (4] + 0;p, Af; + 0,0} — 0;w] ) and used the
transversality condition 0“Aj, =0 to get rid of redundant

components (¢, o!) = (0,47 /V?).

_mpuw
BYF,,

1/1 1
EmBR = 5 <2 /’l}wljh;w - ihD/’l + hﬁﬂayh’“’ - h’“’aﬂd’{hh>
+1(6 0 B"""“ﬂ)2 —é(a d B”‘ﬁ)2
4 4D-1)" "
m av, L
-3 B PR (h). (24)

The linearized EH theory, first line of (24), is invariant
under linearized reparametrizations 6h,, = 9,&, + d,&,. We
use D of those D(D + 1)/2 equations to determine the
gauge parameters &, in terms of 64, and plugging back the
result in the transformations the remaining equations furnish
N;,=D(D+1)/2—-D =D(D—-1)/2 gauge invariants.
Using (&.¢;) = (o, ng + 0;¢) and the decomposition:

hoo=p
=< hoi=r] +0,0 (25)
hij=h{+ o] + 0] +6;;Vy+0,0;¢

where the superscript 77 means transverse and traceless, i.e.
0;h] =0 = 6,;h]", we can write down the linearized EH
theory in terms of gauge invariants,” up to total derivatives
we have:

= 1 1
LLEH - ( _gR)hh = ZhZ}TthT;T - EFJVZFj

Jr(D—1)4(D—2)

D-2
o0 + %qm@) (26)

where the D(D — 3)/2 invariants A" represent the propa-
gating degrees of freedom of the graviton while the next
(D —2) + 2 invariants:

4Compare with [21] for D = 4.

105026-4



MORE ON THE SPIN-2 ANALOG OF THE MASSIVE BF MODEL

PHYS. REV. D 108, 105026 (2023)

M=yl —yl;, ®=V (27)

J

RWY) = 0*&hy, — Oh = V2[p =20+ ¢ + (2 — D)0y
(28)

are nonpropagating. In total we have the expected
D(D —1)/2 gauge invariants. Notice that (27) and (28)
|

make clear that each invariant can be indeed associated with
an independent field. In particular 6S; gy /6p = 0 establishes
that the “would be” propagating mode @ vanishes.
Consequently, from &8S;gy/6® =0 we have vanishing
scalar curvature (RY) = 0) as expected from the Einstein
equations in the vacuum.

Regarding the rest of the Lagrangian (24), we introduce
the general decomposition:

Boijo;) = Bij + 0:B] + 0;B] +20,0,Z

_ pprT pT rT
By — § Bpoin = Bi[jk] +0;Cy — 0kC;

(29)

Bl = Blijjug + 1007 + 0Dy + 0, Wi, = W) + (i & j. k < )]

where (B];, W};) = (B}, W};) while ijT # Cfl.T. All spatial
tensor fields are transverse in all indices except the ones in

the second line of (29) which are only partially transverse
(pT), namely, ajBf.’[fk] =0=0,Cl but 0,»B5’UT,<] #0 and
9,Cl'T # 0. In the Appendix we show that Lpyrs in (12) can
be written in terms of (D + 1)(D — 2)/2 gauge invariants,
see (Al4), which split into a transverse vector VJT
representing D — 2 propagating massless modes, in
agreement with a massless spin-1 field, plus (D —1)
(D —2)/2 nonpropagating modes represented by a trans-
verse symmetric spatial tensor WE which we further
decompose into its trace W = §/W]; and its traceless

|
and transverse piece W] =W[, -6, W/(D -2), see
(A11) and (A13).

Regarding the BR term, there is an important difference
with the spin-1 case. Namely, the BF term does not break
any of the symmetries (4) of the rest of the model while the
BR term breaks the scalar symmetry in (13). Since we
have one less gauge parameter we end up with one more
gauge invariant besides (V, W];). We find it by noticing
that ala/(sB[Oi][Oj] = alaj/\[()i][oj] = a”a”A[O”HO,,] =0 by vir-
tue of (14). Back in the first line of (29) we have our last
invariant 6Z = 0, which only appears in the BR term.
Finally, from (26) and (A14) and working out the BR term,
we have for the whole mBR model:

1 1 (D-1)(D-2) (D-2)
— B TTIT IAvind L
Lopr = 7 hi Ohff = STV 4 ————00® + ~—— @RV
1 1 w2
S (WITY? 4 VI (=T
W) SV VIO s —
M WITTT eyt M 2p(L
+ 5 Wi il +mTIV2VE 4 W + mZV2R®). (30)
KL,
Integrating over the nonpropagating fields W[-TjT, FJT, and W we generate mass terms for the helicities +2, £1, 0 of the

massive spin-2 particle respectively,

1 1
Loupr =5 h

41 2

while the integral over Z produces the constraint R(X) = 0
which eliminates hy,. We have not written down the
nonpropagating modes in (31). They correspond to
quadratic terms in field redefinitions of WiTjT, FJT, and W.
Thus, we have the same number of propagating and
nonpropagating gauge invariant modes in the final

(@O =m?)hlT + V(=3O -m?)Vi +

(D-1)(D-2)

. (0 - m2)o, (31)

|

Lagrangian just like in the spin-1 case. However, the
analogy between the mBF (22) and the mBR model (30)
is not totally faithful. Although one might think at first sight
of a perfect match between propagating and nonpropagat-
ing modes ([, VI, ®) < (W[, TT, W), we recall that @
is a nonpropagating gauge invariant in the LEH theory, it
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only becomes a dynamic field because of the last term
in (30) which annihilates the effect of the term ®R(-) which
sets @ = 0. So in the spin-2 case the role of the BR term is
not only to couple dynamic with nondynamic fields but
also to turn a nonpropagating mode into a propagating one
and this is only possible because the scalar symmetry (U(1)
symmetry) of the DTS model is broken giving rise to the Z
invariant.

Since the linearized mBR model is a consistent ghost
free description of massive spin-2 particles with linearized
reparametrization invariance, it is natural to try to go
beyond the free theory and develop a consistent nonlinear
version of the model invariant under general coordinate
transformation. In order to prepare the ground for an
|

analysis via decoupling limit, see [5,6], in the next
subsection we take a closer look at the pure massless limit
starting with the simpler D = 3 case.

C. The D =3 case and the massless limit

Since the mBR model describes massive spin-2
particles with reparametrization invariance, it might be
related with the new massive gravity (NMG) theory
of [22] for D = 3. Indeed, see [13], in D =3 we can
write the Riemann tensor in terms of the Einstein tensor
Ryvop = eﬂmeaﬂgG’l". So one can write down the mBR
model (6) in D = 3, without sources, in terms of three
symmetric rank-2 tensors:

_ 1 m? -
S8k = [ @xl=m Gl ="y (- ) 4 BrGE - ) | (32)
1. .. 1. .om? -
=:/lﬁx{—EMLG$%h+y+EBWG$%B>—7;<ﬁy—f%-%ﬂWG$%B>}, (33)

where (h,),, = h,, + B/w and we have introduced the
following symmetric tensor which has the same number of
independent components of B, in D = 3:

1 _
B = el By, = B (34)

Integrating over f,, in (33) and neglecting the first EH
term which decouples and has no particle content in D = 3,
we obtain the linearized version of the NMG theory [22]:

| - 1 -
SP=3 = / d3x{+§Bﬂ”Gf5>(B) —I—WﬁK[B]} (35)
with

| [N (N o, L ;
Ly =7 0B, 0B =2 0B,,0'9,B™ + £ (9,0,B")?

(WO (S
+40089,0,B" — g (OB)? (36)
_ | n2 _§ 2
- Rt - R0 7)

We have considered EW as the fluctuation of a metric
about the flat space: y,, = 1,, — BW. The first term in (35)
becomes the linearized version of the EH theory with the
sign opposite to the usual one. As a first step to check the
particle content of the NMG model beyond the linearized
theory (35) one might try to look at the leading order in the
decoupling limit where m — 0 and m, — oo as we later

l
explain, see [23]. Notice however, that the fourth order
theory (35) is singular at m — 0. This is also the case
of the D-dimensional mBR model in (10). If instead, we
simply abandon the canonical mass dimension and
redefine B,q3 — mB,,z when m — 0 we will be left
only with £; which is equivalent to the Maxwell theory in
D =3 and has D—-2 =1 degree of freedom instead
of two degrees of freedom as expected for a parity
doublet of spin-2 in D = 3. If we try m — 0 directly in
the 2nd order theories (32) or (33) we have zero degrees of
freedom. So without the extra fields, we do not have a
smooth massless limit. This point has been investigated
in [23]. Going back to the second order version’ (33),

— ] D > B
s’ = [ @x{+ 3862 B) - 6 B)

m2

- (39)

we notice that the mass term breaks the symmetry
(6f - 6hy,) = (0,8, +9,£,,0). In order to recover it
one introduces auxiliary compensating (Stueckelberg)
fields via:

0,A, +3d,A, 20,0,
P + -

f;w_)f/w+ m

(39)

>We have neglected the first term of (33) which has no particle
content.
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After taking m — O one has:

— 1 - 5 _
S (m = 0) = / d3x{+§BWG,§i)<B) ~ "Gl (B)

1
- ZFI%H(A) - f/,w(a”au(p - ”MDD(p)}'
(40)
Integrating over f,, one obtains:
G (B) = n,,0¢ — 9,0 41
Hv ( ) ’/hw @ U s ( )
whose general solution is given by
B,w = 21, + pure gauge. (42)

Back in (40) one finds [23]:

_ 1
Sube (m = 0) = / d3x{—1Fﬁy(A) +2¢D¢}. (43)

The Maxwell theory in D = 3 has only one degree of
freedom, it is dual to a scalar field, we end up with a total of
two degrees of freedom which is the expected number of
degrees of a parity invariant massive spin-2 field in D = 3
(parity doublet). So we have a smooth massless limit. This
is similar to the spin-1 master action (1) after f, — f, +
d,¢/m and m — 0 which leads to Maxwell plus a scalar
field again, corresponding to D —2 4+ 1 =D — 1 degrees
of freedom, in agreement with the Proca theory.

Now we go back to the mBR model in D-dimensions in
its second order version (6). After inserting Stueckelberg
fields we have

Hvaf

SgRStuec = /de{_Ehm/G,%)(h) - EBMWlﬂR(L) (h) + EBﬂ”aﬂR(L) (f) —_F? (A)

2
- ™ = ) = (P = 0,4) = £, 000 =) . (44

After m — 0 we obtain up to total derivatives,

1 1
S (m = 0) = / de{— S G (h) + WO By = POV By = Fiu(A) = [ (@09 n””Dfﬂ)}- (45)

Integrating over the field B,,; we have

RY(F) =R (h) (46)

whose general solution is given by f,, =h, +
Xy + 9yx,, Where y, are arbitrary pure gauge vector
fields. Back in (45) we get:

1
D= / de{— Ehfwc;f,?(h) + 1 (1, 0p = 9,0,)
1 2
~ 2 FRA) . (47)

After a conformal redefinition h,, — h,, + D%z)nm,(p
we have a diagonal form which splits into spin-2, spin-1,
and spin-0 sectors,

4"

1. 1 D-1
D= / de{—zh””G,(uL,)(h)——Fz A+ )(qu)}.

(D-2)
(48)

4 H

|

In D dimensions the linearized Einstein-Hilbert term
possess D(D — 3)/2 degrees of freedom which altogether
with (D —2)+ 1 degrees of freedom of the vector and
scalar sectors lead to (D + 1)(D —2)/2 which is the
same number of independent modes of the massive spin-
2 Fierz-Pauli [10] theory described by a symmetric rank-2
tensor (D(D + 1)/2) constrained by the (D + 1) FP con-
ditions: 0*h,, =0 =n"h,,. At D=4 we end up with
5 =25+ 1 degrees of freedom as expected. In summary,
the D-dimensional mBR model with Stueckelberhg fields
via (39) has a smooth massless limit like the FP theory with
Stueckelberg fields.

III. NONLINEAR mBR MODELS

Before we search for nonlinear extensions of the
D-dimensional mBR model we have found convenient
again to first address the D = 3 case in the next subsection
which is simpler and has allowed us to suggest a new class
of bimetric models.
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A. A new class of D =3 bimetric models
A closer look at the linearized D = 3 mBR model (32)

- 1 -
SBR>(B. b f) = / d3x{—2hwc,§ﬁ>(h) — B*Gy) (h)

m o, 2 v (L)

- P rale ) @)
inspires us to introduce two metrics (g,,.7,) =
(Muy + Py My + Byy). While the last two terms give rise,
after integrating over f,,, to Lx which on its turn can be
nonlinearly completed in terms of squares of curvatures, the
first and second terms can be written as linearizations of
linear combinations of \/=gR(g) and \/=gy**G,,(g) where
Y = g”"g”/’yaﬁ. The field f,, remains an auxiliary field.
In fact we can go beyond (49) and suggest a quite
general Ansatz for a new class of bimetric models in
D = 3, namely, restoring the Planck mass in the action we
have

Syy = Mp / d3x{a\/:§R(g) +by/=7R(y)
+ev=9r"Gu(9) + dy=r¢" G, (r)

2

TG T - )] (50)

where a, b, ¢, d, and k are arbitrary constants and jfﬂy are
auxiliary fields such that f** = y”“y”ﬂfaﬂ and f = y/‘”f,w.
The simultaneous flat space solution: g,, =y,, = 7,

j‘”,, = 0 solves in general the equations of motion of (50).
Introducing

G =Tt B =T (s1)
At quadratic order in D = 3 we have:
1
Mp/=GR(g) = =5 WGy (k) (52)
1
Mpy/=7R(y) = =5 DG (b) (53)

5
Mp /=37 G (9) = 0" Gy () + TH Gy (k) (54)

5
Mp /=79 Gu (1) — ~I“Gyu (b) + 76 Gu)(b)  (55)

Mpy /=71 Gu(y) = G (b) (56)
MP\/__}/(]?;ZM_.}Q)_)( /zzu_fz)' (57)

On the right side all indices are raised with the Minkowisky
metric #**. Using (52)—(57) in (50), we obtain at quadratic
order:

S = / d3x{— S Gy (h) =S Gl (b) = Gl ()

m2
R0 = (- 1)} (58)
where:
5 5
r:a—ic, s=b—§d, t=c+d. (59)

Since the EH theory has no content in D = 3 we must have
k # 0 in order to avoid the empty content of the first three
terms of (58). If s = 0 = 1 the first term decouples from the
b,, field and becomes the quadratic truncation of the EH
term and the last two terms are equivalent to the “K” term
of (37) which is equivalent to the Maxwell theory as shown
in [24] with only one degree of freedom in D = 3. So
henceforth we assume that k# 0 and s or ¢ must be
nonvanishing. If » = 0 we must have ¢ = 0 otherwise the
h,, equation of motion leads to b,, pure gauge and we
would have no content again. Moreover if r =0 =1 we
must have s < 0 in order that the EH term for the b-field
has the “wrong sign,” typical of the NMG model [22],
which guarantees a physical massive spin-2 particle. If
r # 0 we can diagonalize the first three terms and write

1/
S = / Pl =Gl (M) + 5 (S =5 )Gl (b)

2 2\r
2

v (L m

G0 =" (- )} (60)
where H,, = h,, +*tb,,. Since the first term (linearized
Einstein-Hilbert) has no particle content, we may keep only
the remaining ones which have the form of a second order

formulation of the NMG model, namely,

s L (7 (L)
S= [ dx —|—§ — =5 |b" G, (b)
r

(L) m o, 2
FGD0) " =P (o)
The particle content of (61) corresponds to a physical
massive spin-2 particle with two helicity states +2 when-
ever the EH coefficient has the “wrong sign” and k # 0,

2
(— - s) > 0; k #0. (62)
,

Comparing with (50) we identify the linearized mBR
model (49) corresponds to a = 7/2;¢ = 1;b = d = 0; and
k = 1 which implies (r,s,t) = (1,0, 1).
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Now in order to go beyond the linearized approximation
we investigate now the decoupling limit of (50) at leading
order. Namely, following [23] we will take the following
double limit while keeping the scale As/, fixed,

that the term 1/—)/]A"”’G,,,,(y) is invariant under 5]3,,, =
V¢, +V,{, which is broken by the mass term for the

auxiliary fields JA‘W. In order to restore the symmetry we
substitute in (50):

m — 0, Mp — o, AS/ZE(\/Msz)z/S. (63) _ _ o
B n fw VA +V,A, V.V,
R . . . fuw — . (64)
egarding the notation, we use V, for the covariant H VMp VMpm VM pm?
derivative with respect to the metric y,, while V, corre-
sponds to the metric g,,. Similarly to [23], we first notice Up to total derivatives we obtain:
P [ y P
|
S0 | d%{aMpr—gR(g) DM JTTR() + Mp/=G7 G (9)
2
m N N
+ dMpy/=70" Gy () + v/ Mpr/=7 1 G (v) = /=7 (T3 = 1)
v \V/ V. a v VAV, 2
— My _Yf” (vﬂAl/ - VﬂbvaA ) Y _}/f” (vﬂvy(p - yyuv ¢)
1 = o = = 1
S (VﬂA,,V”A” - VMA/‘VDA”> 3 VTR (A A
a4 Sv am SH S
+ ZTRW(V)A”V @+ WRW(}’)V”¢V 40}, (65)
where we have used [6” V, v+ = R, (y)V* with V¥ = A* and Vg.
Using (51) and taking the decoupling limit we have:
1
S, = / d3x{— % weGE () - % DG (b) = G () - L FE,(4)
w L) w L o) y
+ kf Gﬂb (b) _f (aﬂay(p - WMDDCP) + WRIM/ (b)au¢a @ - (66)
5/2
I
Integrating over f,, which appears linearly we obtain After a conformal field redefinition:
2t
kG;%)(b) = 0ﬂ()yg0 - ﬂﬂyD(P (67) hlﬂ/ - hﬂl/ + k—i’]ﬂy(p. (70)
r
whose general solution is: We have a diagonal action:
2
—_= 1
P = = w0 + 04+ 0 5, = [ -fmalion -irw

Back in (66),

r 2s
S, = /d3x{—2h"”G,%)(h) - ?gaqu

t 1
- %hﬂb (auav(p - 'IWDQ”) - ZF;ZW(A)

1
e (C0au00'e + 0,0,00" 00 p) } (69)
5/2

2 (12 1
+-= <— - s> O + —7i D(pdﬂgoa”(p}. (71)
k= \r 2k,

So, as in [23], we have a smooth massless limit where the
scalar field has Galileon self-interaction and quadratic
kinetic term with the correct sign in agreement with (62).
The EH term has no content while the Maxwell theory has
one degree of freedom. So the decoupling limit of the
bimetric model at leading order is free of ghosts as far
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as (62) holds true. Clearly, a complete nonlinear analysis
including a detailed study of the Hamiltonian structure of
the model (50), as the one carried out in [7] for the Hassan
and Rosen 4D bimetric model, is required for a full
consistency proof.

In a more general setting we can add cosmological terms
to (50) like A,,/=g + A,,/=7 and look for AdS solutions.
It is possible to show that there is always a region in the
parameters space of the model for which AdS solutions
with proportional metrics g,, o y,, do exist.

B. Searching for a single metric mBR model

Now we come back to the linearized D = 3 mBR model
in (49) and consider the B,w field as an extra field appearing
linearly in the action instead of a second metric fluctuation
in order to prepare the ground for D > 3. The only metric
now is g,, = n,, + h,,. We arrive at the natural nonlinear
generalization:

SNLBR = P/dSX\/—_g{R(Q) —B”UGW(Q)

~ ~ m2 . ~
#BG,() - (- 1) 72)
where
7 — 1 27 1 aj 1 a\y ¥
ny(f) :E -V f/w +§vﬂv fm/ +§v vyfav

1 n 1 A
+ 5 vyvafaﬂ + 5 vavufay
- vyvv}‘ + g;wv2]’;‘ - gﬂvvavﬁ}‘aﬁ) . (73)

The symbol V, stands for the usual covariant derivative
with respect to g,, and we use the notation V2 =V, V¥,
The Einstein-like tensor G, satisfies:

B*G,,(f) = f*G,,(B) + total derivative. ~ (74)

The equations of motion 5SNLBR = O are satisfied by the

flat space solution: g, = 7,,; f,w = = 0. Expanding
about it, using
h - f - b
=n,, +—1 =K B K 75
g/w '7/41/ \/M—P fﬂl/ \/M_p 174 \/M—P ( )

we recover the linearized D =3 mBR model (49) at
Mp — co. Now if we go beyond the linearized approxi-
mation and try to examine the decoupling limit as we
have done in the bimetric model of the previous section
there will be an important difference. First, notice the
expansion

G (B) = G (b) + G (b.h) + G (b.h?) +

where Gﬁ,’f} (b) is of order n in the fields. The tensor G,(,ﬁ) (b)
coincides with the linearized Einstein tensor for the field
b, i, GY'(b) =G (b). Thus, Gl (b) =0, but
6"6,(3,) (b, h) # 0. If we substitute the Stueckelberg covar-
iant decomposition (64) in (72), after taking m — 0 and
Mp — oo while keeping As), = (VMpm*)?> fixed, we
obtain the following term at cubic order in the fields

(76)

¥ G\ (b, h)

5/2
A5/2

(77)

which comes from /=g /"G, (B). The term (77) has more
than two time derivatives and apparently introduces new
degrees of freedom in the theory which will probably cause
instabilities. The root of the problem is the noninvariance of
the integral of \/_f’“’G ,(B) under 81" = VHiy* + V¥yt
due to V¥G,,(B) # 0. Basically, the same problem appears
in the general D-dimensional case for which we turn now.
A natural nonlinear completion of (10) is given by

o=z [ x/o{ R) = 5 BByl

1. aom? "o
+ EB”W[ ;wa/)’(f) T (f/wfﬂb f )} (78)
where
” 1 A N N o
Ryyaﬁ (f) :Z (vyvafpﬂ - vyvﬂfﬂa - vy vafvﬁ + vy vﬂfva)

1 N A
+Z (vﬂvyfau - v/}vufﬂa
- vavy}vli + vavuf,\‘uﬁ> .

Notice that

\/_—g B;wa/}

(79)

R, a/}(JAC ) = —2\/—9]?"”8”1,(3) + total derivative
(80)

where we have introduced the symmetric field:

S, (B) = % (Ve By + VP By ). (81)

In D = 3 the role of the symmetric tensor S,,, (B B) is played
by G,,(B). As in the D = 3 case, the symmetnc tensor is not
conserved in general V¥S,,, # 0. Consequently, new degrees
of freedom show up which may destroy stability. In particular,
if we apply V¥ on the equation of motion of f** coming
from (78): m?(f,,—0uf)=—2S,,(B), because of the
higher time derivatives on the right side we lose the curved
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space version of the flat space vector constraint 0"f,, —
d,f = 0 which is essential for a correct counting of degrees of
freedom. The same problem can be seen from a different point
of view, if we Gaussian integrate over f"” in (78) we obtain a
curved space version of the DTS model (12), equivalent to the
Maxwell one on the flat space [14], namely,

= 2(F
Cons(B) = (s, Bs(B) -5 2 ) (52)

with§ = ¢’S,, . The reader can check that part of the curved
space version of the local symmetries (13) are lost. Indeed, on
the flat space the restrictions (14) on the tensor gauge
parameter correspond to a symmetric transverse rank-2 tensor
but after replacing 0¥ — V* and symmetrizing, the restriction
is just a symmetric tensor, so we have extra D restrictions on
the curved space which means D less symmetries. Moreover,
the curved space version of the scalar symmetry: 6,,Bﬁmﬁ =
(9up9va = Gua9up)® is also broken since &,[S,,S* —
$?/(D - 1)] = 28"V, V, 7 and the integration by parts will
not vanish. So the viability of the model (78) is related with the
consistency of the DTS model on curved spaces. In [14] a
preliminary study of the curved space extension of gauge
symmetries has been carried out without definite conclusion.
Inspired by the procedure of [25] in the definition of a
nonlocal gravitational model, we recall [26,27] that any
symmetric tensor can be decomposed as S,, =S}, +
V.S, +V,S, where VAST, =0. So we might replace
S.(B) - S],(B) =S,,(B)-V,S,—V,S, in (80) where
the vector field S, must satisfy the vector condition V°S,,, —
V2§, — V*V,S, = 0 which can be implemented by a vector
Lagrange multiplier. This is currently under investigation.

IV. CONCLUSIONS

The addition of mass terms usually breaks the gauge
symmetry of massless theories which can be recovered by
means of Stueckelberg fields. One exception to this rule is
the 4D Cremmer-Scherck model [11] which describes
massive spin s = 1 particles while preserving the U(1)
symmetry, which can be generalized to the non-Abelian
case [12], without Stueckelberg fields. In Sec. Il we have
written the D-dimensional version of [11], the massive BF
model (mBF) model, in terms of some Lorentz non-
covariant gauge invariants. Likewise, we have written
the D-dimensional generalization of the massive spin-2
model of [13], which we call the mBR model, in terms of
the corresponding gauge invariants and argued that the
mBR model is very much, though not exactly, a spin-2
analog of the mBF model. In both models a spin-s massless
theory is coupled to a spin-(s-1) higher rank massless
model by means of a gauge invariant mass term involving a
spin-s curvature. We believe that there should be higher
spin (s > 2) version of those massive models. In the s = 1

case the mass term (BF term) couples the massless theories
without breaking any gauge symmetry while in the s = 2
case the BR term breaks the corresponding U(1) symmetry
of the higher rank spin-1 massless theory.

The mBR model is a consistent description of massive
free spin-2 particles. The D =3 case is rather special
because the rank-4 Riemann-like tensor B, is equivalent
to a symmetric rank-2 tensor via (34) which may be
interpreted as a second metric fluctuation about flat space
which has inspired us to suggest a new class of bimetric
models, see (50). Following [23] we have gone beyond the
linearized truncation and checked that the model is ghost
free at leading order in the decoupling limit if the
conditions (62) are satisfied. We can also add cosmological
terms with independent cosmological constants for both
metrics which leads to a rather general room to investigate
the discrepancy between bulk and boundary unitarity of
D = 3 gravity in the context of AdS;/CFT, duality [24] in
a purely metric formalism, differently from [28-30]. Now
we are investigating a certain region in the parameters space
of the model where we have found AdS solutions with
proportional metrics g,, «y,, (in progress). In a future
work we wish to study the stability of those solutions.

If, on the other hand, we stick to a single metric
interpretation of a possible nonlinear completion of the
D = 3 mBR model, see (72), it turns out that the decou-
pling limit reveals the appearance of extra ghostlike degrees
of freedom, see (77). Basically the same problem goes
thorough the D >4 cases. We have shown that the
consistency of the nonlinear model (78) is tightly connected
with the consistency of the higher rank massless spin-1
model of [14] on curved backgrounds. The key point is the
nonconservation of the symmetric tensor (81) on arbitrary
backgrounds. We are currently investigating the replace-
ment of S, (B) by a transverse version S}, (B) as explained
at the end of last section along the lines of [25].
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APPENDIX

1. Deser-Townsend-Siegel (DTS) model in D dimensions

The D-dimensional generalization of the D =4 DTS
model [14] has been suggested in [16],

Lprs = (9,0,B")* — (0.95B7)* (A1)

(D-1)
where B = 1, B**P.
The DTS model is invariant under the transformations

(13) with the restrictions (14). The number of gauge
invariants built up from the field B,,,; and its derivatives
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via (13) is the number of independent components of B4,
minus the number of independent gauge parameters
(Ayawp- 7). Since A, has the same index properties of
B, - the number of gauge invariants (N;) is the number of
restrictions (14) minus 1 (due to x). The restrictions (14)
correspond to a symmetric transverse tensor, thus we have
N;=DD-1)/2-1=(D+1)(D-2)/2. In order to
derive those invariants we start with the general
J

decomposition (29) and decompose the gauge parameter
in a similar way. After requiring (14) we obtain

T nT T
Ay = Wi + 9,07 — 9,0 (A3)

al .. al . T . T . T . T . .
Alijlikg :A[Ti-j][kl] + {aigjr[kz] +0,Q [akq);l _0lq);rk] +ﬁ [ak (65']1 +®Z’ ) =0, (Gfk +®£j )] Tiejkel) (A4)

1ij] — 4

with the constraint

3 T
AT =0,00".

(AS)

From (13) we have 6By;)(0;] = Ajojj0;) — 6:;7 Which leads to

= =§[2V?p] (A6)
Al = 6bT (A7)
@], = 5[B; — 2(0;0; — 6,;;V%)p] (A8)
while from 6B g;jjx) = Aoy jx) We have
e =sct! (A9)
Wiy = OBy (A10)

Applying 0; in (A9) and using the constraint (A5) we find:
AT = 5[0,C1}']. Combining this result with (A7), we obtain
8V} = 0 where

VI =b —o,C (A11)

J gk e

On the other hand, applying 9;0; on 6Bj;jjy = Ajijj +
(66j1 — 646 j)m we have

[
ég+eijv2®§[ +0,,00 +0, V) r==5[V'W,]. (A12)

Substituting (A6), (AS8), and (A10) in (Al12) we obtain
SW]; = 0 where

W} = VAW + B]; + 0,V2Cl] + 6, V2Cl —26,V°0)p
(A13)

The invariant (A11) has D —2 components while in
(A13) we have (D — 1)(D —2)/2, they add up to a total of
(D+1)(D—-2)/2 gauge invariants as expected. After
introducing the traceless and transverse tensor invariant
WIT =W/, - 0;;W/(D —2) where W = §/W],, the DTS
Lagrangian density in D dimensions can be written in a
canonically simple way:

WZ

1 T T
ip-no—2 2V VIRV

1
Lprs = 1 (W,'TjT)z +

(Al4) .

So we have D — 2 propagating massless degrees of freedom
(VT) as expected for a massless spin-1 particle and (D — 1)

(D —2)/2 nonpropagating modes represented by Wg
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