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We consider the strong-coupling phase in a model ofOðNÞ spin-2 field theory in de Sitter spacetime and
the effective mass of spin-2 fields therein. In the strong-coupling phase, the Higuchi bound limits the mass
parameter in the theory. The analysis using the large N approximation finds the critical value of the mass
parameter with numerical calculation.

DOI: 10.1103/PhysRevD.108.105022

I. INTRODUCTION

The massive spin-2 field theory has been studied for
quite some time [1]. However, in recent years, the theory of
massive graviton [2,3] as a spin-2 particle has attracted
attention as a kind of modified gravitation theories. As a
key to solving the cosmological constant problem, it is
also considered significant to investigate the relationship
between the mass of the graviton and a small cosmological
constant. Besides, bigravity theories [4] and multigravity
theories are also considered, and in special cases, it is also
speculated that spin-2 particles (not yet discovered) other
than the graviton partly plays the role of dark matter [5].
On the other hand, the existence of the Higuchi bound

[6,7] is known for the mass of a spin-2 particle in maximally
symmetric spacetime. It has been shown that a negative norm
state appears in the spin-2 field theory below the critical
mass-squared, D−2

DðD−1ÞR (whereR is the scalar curvature of the
de Sitter space), and the theory becomes unstable (except for
the massless case). This is a distinctive feature of the spin-2
field theory that is not seen in other spin fields. Therefore, in
some sense, it is speculated that the study of spin-2 theory is a
very important key point related to both the dark energy
problem and the dark matter problem.
Now, for example, the masses of the (spin 1=2, 1)

particles in the standard model is obtained by the Higgs

mechanism. On the other hand, how is the mass of spin-2
particles determined? In this paper, as a very bold
assumption, we consider a model in which the dynamical
mass is determined from the interaction of N spin-2 fields
haμν ða ¼ 1;…; NÞ. Consider N spin-2 fields haμν withOðNÞ
invariant interaction:

Lint ¼ −
λ

8N
ðha μνhaμν − haμμ haνν Þ2; ð1:1Þ

where λ is the coupling constant. Then, the vacuum
expectation value

hσi≡
�
m2 þ λ

2N
ðha μνhaμν − haμμ haνν Þ

�
; ð1:2Þ

(where m is the mass parameter) is the mass squared of
the spin-2 fields in the strong-coupling vacuum. For the
spin-zero field model, the large N approximation as a self-
consistent approach has been devised since half a century
ago [8–11], which makes it possible to study the strong-
coupling phase relatively easily, and we also uses this
method in this paper.1 Since the mass in the Lagrangian
and the effective mass in the strong-coupling vacuum are
generally different, we are most interested in how the
parameter restriction by the Higuchi bound in de Sitter
spacetime works.
Various no-go theories have been found for massless

spin-2 field interactions [16]. However, earlier discussions
have already reported that the theory of spin-2 with
perfectly sound interactions requires an infinite number
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1The large N scalar field theory in de Sitter space has been
studied in Refs. [12–14], and recently, that in three dimensional
AdS space has been investigated in Ref. [15].
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of massive fields anyway [17,18]. The relationship between
the string theory, which involves infinite particle states, and
the massive spin-2 theory has been investigated [19].
Therefore, although the model treated in the present paper
does not have a number of theoretic properties such as UV
completeness, we have begun our study with the expect-
ation that the theory will have better properties in the
emerging vacuum in nonperturbative regime.
In our model, defined in the next section, we proceed

with the study assuming that the N spin-2 fields are
independent of the graviton. However, the mixing with
the graviton is conceivable as a field of the same spin-2, so
in the future, we will manage to construct an effective
model related to cosmology and elementary particle theory,
after taking the mixing properly. Of course, the existence of
large-N spin-2 fields with a degenerate mass is problematic
in the literal sense. We expect that even in this simple model
we can see some features of the model with a finite number
of fields. We would like to leave such research as a subject
for future papers.
The structure of the present paper is as follows. In Sec. II,

we introduce the spin-2 model considered in this paper.
In Sec. III, we consider the case of four dimensional de
Sitter spacetime. The critical value of the renormalized
Lagrangian mass, avoiding the Higuchi bound, is exam-
ined. Finally, we discuss the conclusion and future pros-
pects in the last section. We have Appendix for the case of
three dimensional de Sitter spacetime.

II. OðNÞ SYMMETRIC SPIN-2 MODEL
IN DE SITTER SPACETIME

Let us consider the following model. The action of N
massive symmetric tensor field haμν on a D-dimensional
maximally symmetric spacetime with the constant scalar
curvature R≡ gμνRμν, where the Ricci tensor Rμν equals to
R
D gμν, is written by [20–24]

SFP ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
∇μhaνρ∇μhaνρ þ∇νhaμρ∇μhaνρ

−∇μha∇ρhaμρ þ
1

2
∇μha∇μha

þ R
D

�
ha μνhaμν −

1

2
haha

�
−
1

2
m2

0ðha μνhaμν − hahaÞ
�
;

ð2:1Þ

where h≡ hρρ ¼ gμνhμν, ∇μ represents the covariant deriva-
tive in terms of the metric gμν, andm0 is the mass parameter
(the bare Lagrangian mass). In addition, we assume the
following OðNÞ invariant interaction:

Sint ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−

λ0
8N

ðha μνhaμν − hahaÞ2
�
; ð2:2Þ

where λ0 is the (bare) quartic self-interaction coupling
constant. In this paper, we will not consider the possi-
bility of OðNÞ symmetry breaking, although it might be
interesting.
To introduce the auxiliary field σ, we add the following

action, which is nondynamical itself, for σ:

Saux¼
Z

dDx
ffiffiffiffiffiffi
−g

p 	
N
2λ0

�
σ−m2

0−
λ0
2N

ðhaμνhaμν−hahaÞ
�
2


:

ð2:3Þ

Note that the functional integral over σ is a trivial Gaussian
integral.
It can be seen that the vacuum expectation value of σ

becomes the square of the mass of the spin-2 fields.
Performing a Gaussian integral over the spin-2 fields haμν
(and the corresponding ghost fields with the gauge fixing)
can then be performed in the partition function with the
total action S ¼ SFP þ Sint þ Saux and we obtain the one-
loop effective action up to an additive constant:

Seff ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
N
2λ0

σ2 −
Nm2

0

λ0
σ − NL0ðσÞ

�

≡
Z

dDx
ffiffiffiffiffiffi
−g

p ½−NVðσÞ�; ð2:4Þ

where [25–27]

L0ðσÞ≡ V−1
D

	
1

2
Tr ln

�
Δð1; 1Þ − 2

R
D
þ σ

�

−
1

2
Tr ln

�
Δ
�
1

2
;
1

2

�
− 2

R
D
þ σ

�

; ð2:5Þ

with VD is the volume of the spacetime,
R ffiffiffiffiffiffi−gp

dDx. Here,
the differential operators Δð1

2
; 1
2
Þ and Δð1; 1Þ are defined as

Δ
�
1

2
;
1

2

�
ξμ≡−□ξμþRμνξ

ν;

Δð1;1Þϕμν≡−□ϕμνþRμτϕ
τ
νþRντϕ

τ
μ−2Rμρντϕ

ρτ; ð2:6Þ

respectively, where Rμρντ denotes the Riemann tensor.
The equation of motion δS

δσ ¼ 0, which determines the
extremum of the effective potential, dV

dσ ¼ 0, leads to

1

λ0
σ −

m2
0

λ0
−
dL0ðσÞ
dσ

¼ 0; ð2:7Þ

which gives the relation of the leading order in the
expansion in 1=N, thus it is independent of N. The
expected value of σ can be obtained by solving this
equation.
We will compute the one-loop contribution of the spin-2

fields by with the spectrum of the Laplacian on a D-sphere
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SD, as the Euclidean version of D-dimensional de Sitter
spacetime. Hereafter, we set the constant curvature of the
space as

Rμρντ ¼
Λ

D − 1
ðgμνgρτ − gμτgρνÞ; Rμν ¼ gρτRμρντ ¼ Λgμν;

and R ¼ DΛ; ð2:8Þ

where Λ is a positive cosmological constant, while the
volume is given by

VD ¼ 2π
Dþ1
2

ΓðDþ1
2
Þ
�

Λ
D − 1

�
−D=2

: ð2:9Þ

Then, the first derivative ofL0 is formally given by [25–32]

dL0ðσÞ
dσ

¼ ΓðDþ1
2
Þ

4π
Dþ1
2

�
Λ

D− 1

�
D=2

×

	X∞
l¼0

d2ðlÞ
�

Λ
D− 1

ðlþ 2ÞðlþDþ 1Þ þ σ

�
−1

−
X∞
l¼0

d1ðlÞ
�

Λ
D− 1

lðlþDþ 1Þ þ σ

�
−1


;

ð2:10Þ

where the degeneracies are

d2ðlÞ≡ ðDþ 1ÞðD− 2Þ
2

ðlþ 1ÞðlþDþ 2Þð2lþDþ 3Þ

×
ðlþD− 1Þ!

ðD− 1Þ!ðlþ 3Þ! ; ð2:11Þ

and

d1ðlÞ≡ ðlþ 1ÞðlþDÞð2lþDþ 1Þ ðlþD − 2Þ!
ðD − 2Þ!ðlþ 2Þ! :

ð2:12Þ
Note that dL0

dσ contains divergences, which must be
addressed by parameter renormalization. We will show
concrete methods and numerical results for four dimen-
sional spacetime in the next section, and the results for three
dimensional spacetime in the Appendix.

III. FOUR DIMENSIONS (D= 4)

A. Calculation of one-loop contribution

For four dimensions, the expression (2.10) becomes2

dL0ðσÞ
dσ

¼ Λ
16π2

	X∞
l¼0

d2ðlÞ
�
ðlþ 2Þðlþ 5Þ þ 3σ

Λ

�
−1

−
X∞
l¼0

d1ðlÞ
�
lðlþ 5Þ þ 3σ

Λ

�
−1


; ð3:1Þ

where

d2ðlÞ ¼
5

6
ðlþ 1Þðlþ 6Þð2lþ 7Þ and

d1ðlÞ ¼
1

2
ðlþ 1Þðlþ 4Þð2lþ 5Þ: ð3:2Þ

Using the integration formula

1

z2 − β2
¼

Z
∞

0

e−zt
sinh βt

β
dt; ð3:3Þ

dL0

dσ is expressed as

dL0ðσÞ
dσ

¼ Λ
16π2

	
5

16

Z
∞

ϵ

e−
7
2
tð2− 7et þ 7e2tÞ

ðsinh t
2
Þ4

sinhβ2ðσÞt
β2ðσÞ

dt

−
1

16

Z
∞

ϵ

e−
5
2
tð1− 5et þ 10e2tÞ

ðsinh t
2
Þ4

sinhβ1ðσÞt
β1ðσÞ

dt



;

ð3:4Þ

where

β2ðσÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
3σ

Λ

r
and β1ðσÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25

4
−
3σ

Λ

r
: ð3:5Þ

Here, we introduced a UV regulator ϵ in order to avoid
divergences at the lower limit in the integrals.
Now, noting that

sinh βt
β

¼ tþ β2

6
t3 þOðt5Þ; ð3:6Þ

we renormalize the divergent integral by defining the
renormalized parameters as follows3:

m2

λ
¼m2

0

λ0
þ Λ
16π2

	
5

16

Z
∞

ϵ

e−
7
2
tð2− 7etþ 7e2tÞ
ðsinh t

2
Þ4

�
tþ 3

8
t3
�
dt

−
1

16

Z
∞

ϵ

e−
5
2
tð1− 5etþ 10e2tÞ

ðsinh t
2
Þ4

�
tþ 25

24
t3
�
dt



; ð3:7Þ

and2In the limit of Λ → 0, we find that dL0ðσÞ
dσ ¼ 1

8π2

R
k3dk
k2þσ

¼
g
2

R
d4k
ð2πÞ4

1
k2þσ

with g ¼ 2. According to [25], the absence of the
discontinuity between the massive case and massless case at the
one-loop level has been noted (thus, g ¼ 2 instead of g ¼ 5).

3We adopt a kind of “minimal subtraction” of divergences in
the integral in this paper.
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1

λ
¼ 1

λ0
þ 1

32π2

	
5

16

Z
∞

ϵ

e−
7
2
tð2 − 7et þ 7e2tÞ

ðsinh t
2
Þ4 t3dt

−
1

16

Z
∞

ϵ

e−
5
2
tð1 − 5et þ 10e2tÞ

ðsinh t
2
Þ4 t3dt



: ð3:8Þ

Then, the equation of motion for σ (the gap equation) is
rewritten as

1

λ
σ −

m2

λ
−
dLðσÞ
dσ

¼ 0; ð3:9Þ

where

dLðσÞ
dσ

≡ dL0ðσÞ
dσ

−
�
m2

λ
−
m2

0

λ0

�
þ
�
1

λ
−

1

λ0

�
σ: ð3:10Þ

After the renormalization, dLðσÞdσ is calculable by the integral
by setting ϵ → 0.
We show 1

Λ
dL
dσ as the function of σ

Λ in Fig. 1, which is
obtained by numerical integration in the case of four
dimensions. We should notice that dLdσ is calculable without
regard to the Higuchi bound for σ > 0. It can be seen that L
is convex downward as a function of σ, since 1

Λ
dL
dσ is

monotonously increasing as shown in Fig. 1. The minimum
of L is located at σ=Λ ≈ 1.5.

B. Negative coupling constant λ

For the OðNÞ scalar theory, it is reported that there
appears the OðNÞ symmetric stable ground state when the
renormalized coupling λ is negative [9–11]. Therefore, we
first examine the case with λ < 0 in our model.4

Since the equation of motion can be read as, for λ < 0,

m2

Λ
¼ σ

Λ
þ jλj 1

Λ
dL
dσ

ðλ < 0Þ; ð3:11Þ

we can exhibit the relation between m2

Λ and the vacuum
expectation value of σ

Λ for some specific values of the
coupling λ in Fig. 2 (where we use the simple σ instead
of hσi for the vacuum expectation value). We show the
region where σ=Λ > 2=3, above the Higuchi bound [6,7].
The lower limit of m2=Λ as a function of jλj, which yields
σ=Λ > 2=3, is shown in Fig. 3.

C. Positive coupling constant λ

For λ > 0, the equation of motion for σ reads

m2

Λ
¼ σ

Λ
− λ

1

Λ
dL
dσ

ðλ > 0Þ: ð3:12Þ

We show the relation between m2

Λ and the vacuum
expectation value of σ

Λ for some specific values of the

FIG. 1. 1
Λ
dL
dσ for the four dimensional case as the function of σ

Λ.

FIG. 2. The relation between m2

Λ and σ
Λ for some specific values

of the coupling λð< 0Þ. The curves correspond to jλj ¼ 0, 30, 60,
90, 120, whose leftmost points line up from top to bottom.

FIG. 3. The lower limit of m2=Λ for σ=Λ > 2=3, as a function
of jλj.

4Most recently, a preprint [33] has appeared. The preprint
includes a recent discussion on the negative coupling constant in
scalar field theory and some important references.
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coupling λ in Fig. 4. We find the region where σ=Λ > 2=3,
above the Higuchi bound [6,7]. The increasing lines in the
figure correspond to the extremum of the action, which
is continuously connected to that in the limit of λ → 0.
The lower limit of m2=Λ as a function of λ, which yields
σ=Λ > 2=3, is shown in Fig. 5.
In the present analysis, we assume that OðNÞ symmetry

is unbroken. However, especially in the case of m2 < 0,
which realizes for λ > ≈289, the unbrokenOðNÞ symmetry
is problematic as in the case with the classical Higgs
potential. More detailed analysis, such as Ref. [11] for
scalar theory, is needed to clarify the symmetry breaking in
our present model. However, since our model deals with
fields with spacetime indices, similar analyses of Ref. [11]
must be reconstructed, and further research is left as a
future topic.

IV. CONCLUSION AND OUTLOOK

In this paper, in the OðNÞ spin-2 model, the effec-
tive mass in a strong-coupling vacuum is studied by the
large N approximation, and the critical values of the mass
parameter, which exceeds the Higuchi bound, are numeri-
cally estimated. If we take a large enough m2, we can find
a strong-coupling vacuum with an effective mass that
exceeds the Higuchi bound.
Furthermore, for sufficiently large coupling constant, it

is possible that the effective mass is created when the
mass parameter is zero (if jλj > 31 for λ < 0 and if λ > 289
for λ > 0, in the case with D ¼ 4). There is also the well-
known problem of discontinuity [2,3,34] at m ¼ 0,5 so this
point may require additional study in the future, though the
absence of the discontinuity at one-loop level is reported
in Ref. [25].
The bound has been obtained in our toy model, but we

hope it makes some sense in the choice of models in
realistic models (including an infinite number of fields).
Also, in such a case, the quantum effects of other matter
fields should inevitably come into play. After incorporating
them, we would like to consider the running of coupling
constants and possible phase transitions. The stability of
the vacuum is the most important topic that should be
investigated further.
In this paper, we have also presented expressions in

general D dimensions, but it may be considered that
renormalization or evaluation of parameters in higher
dimensions should be done more carefully than in four
dimensions, so we would like to leave it as a future
task. However, like the calculation of quantum effects in
higher dimensional theory (e.g., [35]), it may be possible
to perform numerical calculations in a similar model in
odd-dimensional spacetime. We would like to consider
such a issue in the future. We assumed that the OðNÞ
symmetry is not broken in this paper (for simplicity as
in the initial stage of the study), but we would like to
consider the case where OðNÞ is broken in the future. We
wish to examine the model when the background spacetime
is also the Nariai spacetime [36], a higher-dimensional
Kaluza–Klein spacetime, etc. Paying attention to whether
the anisotropy can be avoided or favored, we want to
study their consequences. In the future, we would like to
research bold hypotheses such as the self-consistent
de Sitter universe (e.g., Refs. [14,37,38]) in the strong-
coupling phase.
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FIG. 4. The relation between m2

Λ and σ
Λ for some specific

values of the coupling λð> 0Þ. The curves correspond to
λ ¼ 0; 30; 60; 90; 120; 150; 180; 210; 240, 270, 300, whose left-
most points line up from left to right.

FIG. 5. The lower limit of m2=Λ for σ=Λ > 2=3, as a function
of λ. 5Another discontinuity is also found at m2 ¼ D−2

D−1Λ [2,3,26].
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APPENDIX: THREE DIMENSIONS (D= 3)

1. Calculation of one-loop contribution

As in the four dimensional case, we find the following.
The formal expression of the one-loop calculation reads,
for D ¼ 3,

dL0

dσ
¼

ffiffiffiffi
Λ

p

4
ffiffiffi
2

p
π2

	X∞
l¼0

d2ðlÞ
�
ðlþ 2Þðlþ 4Þ þ 2σ

Λ

�
−1

−
X∞
l¼0

d1ðlÞ
�
lðlþ 4Þ þ 2σ

Λ

�
−1


; ðA1Þ

where

d2ðlÞ ¼ 2ðlþ 1Þðlþ 5Þ and d1ðlÞ ¼ 2ðlþ 1Þðlþ 3Þ:
ðA2Þ

As the treatment in the previous section, we can find its
integration form:

dL0ðσÞ
dσ

¼
ffiffiffiffi
Λ

p

4
ffiffiffi
2

p
π2

	
1

4

Z
∞

ϵ

e−
5
2
tð−3þ 5etÞ
ðsinh t

2
Þ3

sinh β2ðσÞt
β2ðσÞ

dt

−
1

4

Z
∞

ϵ

e−
3
2
tð−1þ 3etÞ
ðsinh t

2
Þ3

sinh β1ðσÞt
β1ðσÞ

dt



; ðA3Þ

where

β2ðσÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2σ

Λ

r
and β1ðσÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

2σ

Λ

r
: ðA4Þ

The renormalization should be done as

m2

λ
¼ m2

0

λ0
þ

ffiffiffiffi
Λ

p

16
ffiffiffi
2

p
π2

	Z
∞

ϵ

e−
5
2
tð−3þ 5etÞ
ðsinh t

2
Þ3 tdt

−
Z

∞

ϵ

e−
3
2
tð−1þ 3etÞ
ðsinh t

2
Þ3 tdt



; ðA5Þ

and the coupling constant λ0 ¼ λ does not undergo
renormalization correction. Then, we set

dLðσÞ
dσ

≡ dL0ðσÞ
dσ

−
�
m2

λ
−
m2

0

λ0

�
: ðA6Þ

Qualitatively, it is the same as in the case of four
dimensions. Note, however, that the dimensions of the
coupling constants are different. We show 1ffiffiffi

Λ
p dL

dσ as the
function of σ

Λ in Fig. 6 in the case of three dimensions. It can
be seen that L is convex downward as a function of σ as in
the four dimensional case. The minimum of L is located
at σ=

ffiffiffiffi
Λ

p
≈ 3.

FIG. 6. 1ffiffiffi
Λ

p dL
dσ in the three dimensional case as the function of σ

Λ.

FIG. 7. The relation between m2

Λ and σ
Λ for some specific values

of the coupling λð< 0Þ. The lines correspond to jλj= ffiffiffiffi
Λ

p ¼ 0, 30,
60, 90, 120, whose leftmost points line up from top to bottom.

FIG. 8. The lower limit of m2=Λ for σ=Λ > 1=2, as a function
of jλj= ffiffiffiffi

Λ
p

.
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2. Negative coupling constant λ

The equation of motion can be read as, for λ < 0,

m2

Λ
¼ σ

Λ
þ jλjffiffiffiffi

Λ
p 1ffiffiffiffi

Λ
p dL

dσ
; ðA7Þ

where jλjffiffiffi
Λ

p is dimensionless. We show the relation between
m2

Λ and σ
Λ for some specific values of jλjffiffiffi

Λ
p in Fig. 7. We show

the region where σ=Λ > 1=2, which is above the Higuchi
bound in three dimensions.
The lower limit of the mass parameter, which yields

σ=Λ > 1=2, is shown in Fig. 8.

3. Positive coupling constant λ

The equation of motion can be read as, for λ > 0,

m2

Λ
¼ σ

Λ
−

λffiffiffiffi
Λ

p 1ffiffiffiffi
Λ

p dL
dσ

: ðA8Þ

We show the relation between m2

Λ and σ
Λ for some specific

values of λffiffiffi
Λ

p in Fig. 9. We show the region where

σ=Λ > 1=2, which is above the Higuchi bound in three
dimensions.
The lower limit of the mass parameter, which yields

σ=Λ > 1=2, is shown in Fig. 10.
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