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We study Unruh phenomena for a qudit detector coupled to a quantized scalar field, comparing its
response to that of a standard qubit-based Unruh-DeWitt detector. We show that there are limitations to the
utility of the detailed balance condition as an indicator for Unruh thermality of higher-dimensional qudit
detector models. This can be traced to the fact that a qudit has multiple possible transition channels between
its energy levels, in contrast to the 2-level qubit model. We illustrate these limitations using two types of
qutrit detector models based on the spin-1 representations of SUð2Þ and the non-Hermitian generalization
of the Pauli observables (the Heisenberg-Weyl operators).
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I. INTRODUCTION

The Unruh effect is one of the most remarkable pre-
dictions in quantum field theory: it says that accelerating
observers do not perceive the Minkowski vacuum state as
empty but rather as a thermal bath with temperature
proportional to the proper acceleration of the observer
[1]. It can be equivalently stated as the fact that the bifurcate
Killing horizon of Rindler observers with proper accel-
eration a can be assigned a temperature—the Unruh
temperature TU ¼ a=ð2πÞ. At the level of quantum field
theory, the Unruh effect is the statement that the pullback of
the Wightman two-point functions with respect to the
Minkowski vacuum state along a constant-acceleration
trajectory is stationary and (anti-)periodic in the imaginary
time direction, with period equal to the inverse Unruh
temperature β ¼ T−1

U —this is an example of the Kubo-
Martin-Schwinger (KMS) condition. It has been argued
that the effect persists even for interacting theories [2].
From the perspective of relativistic quantum information

(RQI), the Unruh effect can be viewed as the statement that
a uniformly accelerating two-level system (“qubit”) inter-
acting with a quantum field initialized in the Minkowski
vacuum state thermalizes to a Gibbs state with temperature
equal to the Unruh temperature. These results rely on
the fact that the problem can be formulated “quantum-
optically” using the so-called Unruh-DeWitt (UDW)

particle detector model [3–8]. Sometimes this is understood
as the detailed balance condition [9], which says that the
excitation-to-deexcitation ratio (EDR) of the detector is
equal to expð−βΩÞ, where Ω is the energy gap of the
detector. The detailed balance condition exploits the KMS
condition and under some mild technical assumptions is a
necessary and sufficient condition of thermalization for
initial states that have no coherence in the Hamiltonian
eigenbasis of its free Hamiltonian. Consequently, the
detailed balance condition is often taken as a diagnostic
for thermalization (see also [10,11] for some generalization
on this front).
In this paper, we are interested in a more thorough study

of the Unruh effect using a generalization of the UDW
detector model where the detector is a three-level system
(“qutrit”) or higher. There are at least three reasons why this
generalization merits investigation:
(a) In many situations, qubits exhibit certain coincidences

that the higher-dimensional qudits or harmonic oscil-
lators [12,13] do not share. For example, in a model
where a qubit interacts with a bosonic environment (as
is the case for Unruh phenomena), at leading order in
perturbation theory all qubit states that are diagonal in
the energy eigenbasis cannot generate coherence. This
will not be the case for higher-dimensional qudits,
which in turn has implications on how we deal with the
ultraviolet (UV) behavior of the environment.

(b) More importantly, unlike qubits, which are essentially
uniquely defined through their free Hamiltonian
h ∼Ωn̂ · ˆσ⃗ [for some energy gap Ω, n̂ a unit vector
and ˆσ⃗ ≡ ðσ̂x; σ̂y; σ̂zÞ], there are multiple inequivalent
definitions of a d-level quantum system depending on
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the allowed transitions. For example, the spin-1
representation of an SUð2Þ qutrit does not have the
same internal dynamics as the qutrit constructed
as a defining representation of SUð3Þ, or using the
Heisenberg-Weyl operators.

(c) Qudit detector models have not been investigated
much in the RQI context, with some rare exceptions
(such as [14]). Most studies consider two extremes,
employing either qubit detector models or harmonic
oscillator detectors. A more complete understanding
of the various possibilities would allow for extending
known relativistic quantum information protocols to
higher-dimensional detectors.

We are particularly interested in the definition, meaning,
and mechanism of thermalization for qutrits. If the Unruh
effect is to be taken operationally as a generic thermalization
of a quantum-mechanical system moving along a uniformly
accelerated trajectory, it is necessary that we understand the
circumstances under which thermalization of an accelerated
detector occurs for generic detector models. Note that this
generalization is distinct from the one studied in [10], where
the dynamics of the generalized detector model were
restricted to a two-dimensional subspace.
Here we analyze the role of the detailed balance

condition as a diagnostic/indicator for thermalization due
to the Unruh effect. We show that there are strong
limitations placed on the value of the detailed balance
condition when we allow for higher-dimensional detector
models. This can be traced to the fact that there are many
possible types of three-level systems with different kinds of
allowed transitions and degeneracies, while there is only
essentially one type of qubit detector. We map out these
limitations by constructing two types of qudit detector
model, based on the spin-j representations of SUð2Þ and
the non-Hermitian generalization of the Pauli observables
of the qubit detector (the Heisenberg-Weyl operators
[15,16]). We provide some connections to the detailed
balance property associated with the Fourier transform of
the Wightman functions.
Our paper is organized as follows. In Sec. II we establish

the general setup for the physical situationwewill analyze. In
Sec. III we study the SUð2Þ qutrit detector and infer some
properties of a higher dimensional SUð2Þ qudit. In Sec. IV,
we analyze the Heisenberg-Weyl qutrit detector model. In
Sec.Vwediscuss the general results andprovide some future
directions. In Appendix Awe include technical details of our
calculations and in Appendix B we present the more general
expression for our calculation in Sec. III A. We use natural
units c ¼ ℏ ¼ 1 and the mostly-plus signature for the metric
and we write x to denote spacetime events.

II. GENERAL SETUP

In this section we give the general construction for the
detector-field interaction needed to study Unruh phenom-
ena. We will then specialize to some natural choice of
detector-field coupling.

A. Scalar field theory in Minkowski spacetime

LetM be an (nþ 1)-dimensional Minkowski spacetime
and consider a real scalar field ϕ obeying the Klein-Gordon
equation

ð∂μ∂μ −m2Þϕ ¼ 0: ð1Þ

Quantization gives rise to the scalar field operator ϕ̂ðxÞ that
defines an operator-valued distribution: it can be expressed
as a mode decomposition

ϕ̂ðxÞ ¼
Z

dnk½âkukðxÞ þ â†ku
�
kðxÞ�; ð2Þ

where fukðxÞg are the positive-frequency modes, and the
ladder operators satisfy the canonical commutation relation
½âk; â†k0 � ¼ δnðk − k0Þ. For the Unruh effect, we are inter-
ested in the quantization with respect to the global inertial
frame associated with Minkowski coordinates x≡ ðt; xÞ.
The corresponding ground state from this quantization is
the Minkowski vacuum j0Mi associated with the plane-
wave mode

ukðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞnωk

p e−iωktþik·x; ð3Þ

such that âkj0Mi ¼ 0 for all k, ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
. The

modes are normalized with respect to the Klein-Gordon
inner product

ðf; gÞKG ≔ i
Z
Σt

dnxðf∂tg� − g�∂tfÞ; ð4Þ

so that

ðuk; uk0 ÞKG ¼ δnðk − k0Þ; ðu�k; u�k0 ÞKG ¼ −δnðk − k0Þ;
ðuk; u�k0 ÞKG ¼ 0: ð5Þ

We will be interested in two states: the Minkowski
vacuum state ρ̂M ≔ j0ih0jM and the thermal state1 ρ̂β. These
two states are examples of quasifree states—states that are
completely characterized by their Wightman two-point
functions,

Wðx; x0Þ ≔ hϕ̂ðxÞϕ̂ðx0Þiρ̂ ¼ Trðρ̂ ϕ̂ðxÞϕ̂ðx0ÞÞ: ð6Þ

1Strictly speaking, in theHilbert space built from theMinkowski
vacuum, the thermal state cannot be written in terms of the density
matrix ρ̂β. Hence the density matrix ρ̂β should be understood as
formal expression, but the Wightman two-point functions are
always well defined through the KMS construction—see [17]
for details.
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For the vacuum state, the Wightman two-point function is
given by

WMðx; x0Þ ¼
Z

dnk
2ð2πÞnωk

e−iωkðt−t0Þþik·ðx−x0Þ; ð7Þ

where this is to be understood as a bidistribution. This can
be written as the closed-form expression

WMðx; x0Þ ¼ lim
ϵ→0þ

m
n−1
2

ð2πÞnþ1
2

1

ð−ðΔt − iϵÞ2 þ jΔxj2Þn−14

× Kn−1
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðΔt − iϵÞ2 þ jΔxj2

q �
; ð8Þ

where Δt ¼ t − t0, Δx ¼ x − x0 and KαðzÞ is the modified
Bessel function of the second kind of order α. For the
thermal state, it can be shown that (see, e.g., [18])

Wβðx; x0Þ ¼ WMðx; x0Þ þWβ;regðx; x0Þ;

Wβ;regðx; x0Þ ≔
Z

dnk
2ð2πÞωk

e−iωkðt−t0Þþik·ðx−x0Þ þ c:c:
eβωk − 1

; ð9Þ

where β ¼ T−1
U is the inverse Unruh temperature. The

splitting of Wβ into the singular (distributional) vacuum
piece WM and the regular thermal piece Wβ;reg follows
directly from the fact that all physically reasonable states
are Hadamard states [19,20]. This observation will be of
importance in our subsequent analysis.

B. Detector-field coupling for a pointlike
accelerating detector in vacuum

Consider a pointlike qudit detector moving along an
accelerated trajectory xðτÞ≡ ðtðτÞ; xðτÞ; x⊥ðτÞÞ parame-
trized by proper time τ, with

tðτÞ ¼ 1

a
sinh aτ; xðτÞ ¼ 1

a
coshaτ; ð10Þ

and x⊥ðτÞ ¼ 0. The parameter a is the proper acceleration
along the trajectory. For studying the Unruh phenomenon,
we prescribe the following interaction Hamiltonian (in the
interaction picture):

ĤIðτÞ ¼ λχðτÞÔðτÞ ⊗ ϕ̂ðxðτÞÞ; ð11Þ

where Ô is a Hermitian observable of the detector. The
time-dependent operator ÔðτÞ is obtained from free evo-
lution via the free Hamiltonian of the system h:

ÔðτÞ ¼ eiĥτÔe−iĥτ: ð12Þ

The usual UDW detector model [1,21] corresponds to a
qubit detector with

ĥ ¼ Ω
2
ðσ̂z þ 1Þ; Ô ¼ σ̂x ¼ jeihgj þ jgihej; ð13Þ

where jgi, jei are the eigenstates of the free Hamiltonian
with energy 0, Ω, respectively.
Since we are considering qudit detector models, the

natural form of the interaction Hamiltonian is given by
(11), with different detector models corresponding to
different specifications of ĥ and Ô. The unitary time
evolution for a generic interaction (11) is given by

Û ¼ T exp

�
−i

Z
∞

−∞
dτ ĤIðτÞ

�
: ð14Þ

If the joint detector-field state is initially prepared in the
uncorrelated state ρ̂−∞ ¼ ρ̂D;−∞ ⊗ ρ̂ϕ;−∞, then the final
state of the joint system is given by

ρ̂∞ ¼ Ûρ̂−∞Û
†: ð15Þ

Perturbatively, up to second order in λ, we have

Û ¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ; ð16aÞ

Ûð1Þ ¼ −i
Z

∞

−∞
dτ ĤIðτÞ; ð16bÞ

Ûð2Þ ¼ −
Z

∞

−∞
dτ

Z
τ

−∞
dτ0ĤIðτÞĤIðτ0Þ; ð16cÞ

where ÛðjÞ are corrections of order λj.
The final state of the detector can be obtained by tracing

out the field’s degrees of freedom. However, since the
quasifree states have vanishing odd-point functions, the
leading-order perturbative corrections occur at λ2 and
corrections with odd powers of λ are absent. Hencewewrite

ρ̂D;∞ ¼ ρ̂D;−∞ þ ρ̂ð2Þ þOðλ4Þ; ð17Þ

where ρ̂ð2Þ ¼ P
kþl¼2 ρ̂

ðk;lÞ includes all the perturbative
corrections of order λ2, with each ρ̂ðk;lÞ defined to be
(traceless) perturbative corrections to the density matrix of
the detector of order λkþl:

ρ̂ðk;lÞ ≔ trϕðÛðkÞρ̂D;−∞Û
ðlÞ†Þ: ð18Þ

The perturbative correction to the detector’s density matrix
depends on the pullback of the Wightman two-point
function along the trajectory xðτÞ, denoted Wðτ; τ0Þ≡
WðxðτÞ; xðτ0ÞÞ. For an accelerating detector with constant
proper acceleration a, we have [22]

Waðτ; τ0Þ ¼
1

ð2πÞn−12
�
m
zϵ

�n−3
2

Kn−3
2
ðmzϵÞ; ð19Þ
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where

zϵ ≡ zϵðτ − τ0Þ ¼ 2i
a
sinh

�
a
2
ðτ − τ0 − iϵÞ

�
: ð20Þ

For a massless scalar field (m ¼ 0) the dispersion relation
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
reduces to ωk ¼ jkj, and the Wightman

two-point function simplifies to

Waðτ; τ0Þ ¼
Γðn−3

2
Þ

4π
n−1
2

1

zn−1ϵ
; ð21Þ

where ΓðzÞ is the Gamma function. For simplicity we will
henceforth specialize to the massless scalar field in (3þ 1)-
dimensional Minkowski spacetime that is commonly stud-
ied in the literature. Since the Wightman function is
stationary, i.e., Waðτ; τ0Þ ¼ Waðτ − τ0Þ, we can write

WaðuÞ ¼ −
a2

16π2
1

sinh2ða
2
ðu − iϵÞÞ ; ð22Þ

where u ¼ τ − τ0.

C. Thermalization of particle detectors

The Unruh phenomenon can also be viewed as follows:
the pullback of the vacuum Wightman two-point function
along the accelerated trajectory (22) is equal to the pullback
of the thermal Wightman two-point function associated
with an inertial trajectory xðτÞ ¼ ðτ; 0Þ, which reads

WβðuÞ ¼ −
1

4β2
1

sinh2ðπβ ðu − iϵÞÞ : ð23Þ

Therefore an accelerated observer experiences thermal
excitation even in the (Minkowski) vacuum environment,
with Unruh temperature given by TU ≔ β−1 ¼ a=ð2πÞ.
How do we make precise such a statement in an operational
manner?
In general, to say that a qudit detector thermalizes to the

Unruh temperature means that the final state of the detector
approaches a steady state that is a Gibbs state, i.e.,

lim
T→∞

ρ̂D;∞ ¼ e−βĥ

tre−βĥ
; ð24Þ

where h is the free Hamiltonian of the detector2 and T is the
effective duration of interaction. However, to prove that this
steady state is achieved is tricky for several reasons.
First of all, thermalization of the detector should be

independent of its initial state. Consider for instance a qubit
detector model interacting with a thermal environment: in

the limit of switching for adiabatically long times3 T → ∞,
the EDR satisfies the detailed balance condition

lim
T→∞

PrðΩÞ
Prð−ΩÞ ¼ e−βΩ; ð25Þ

but this is not sufficient unless one proves that the off-
diagonal terms in the energy eigenbasis vanish at long
interaction times. That said, the detailed balance condition
is often taken as an indicator of thermalization [8,9];
alternatively, one can typically show using, e.g., master
equations in open system dynamics, that at late times the
detectors do have vanishing coherences under some con-
ditions [5–7]. Clearly, the Gibbs state obeys the detailed
balance condition but extended to all energy levels:

PrðEi → EjÞ
PrðEj → EiÞ

¼ e−βðEj−EiÞ; Ej ≥ Ei: ð26Þ

Thus we expect that if the qudit detector thermalizes,
then at the very least Eq. (26) should hold for sufficiently
long interaction times and all coherences should decay
appropriately.
In the next section we will study how the Unruh

phenomenon is captured in the qudit generalization of
the UDW detector model and study the value of the detailed
balance condition in these models.

III. UNRUH EFFECT FOR SUð2Þ QUDIT
DETECTOR MODELS

The interaction for the SUð2Þ-qudit detector is obtained
by replacing the monopole operator for the spin-1=2 qubit
σ̂x with the generic angular momentum operator Ĵx for
spin-j qudit representation of SUð2Þ with d ¼ 2jþ 1. For
the accelerated pointlike qudit model, we can write the
interaction Hamiltonian density as

ĤIðτÞ ¼ λχðτÞĴxðτÞ ⊗ ϕ̂ðxðτÞÞ; ð27Þ

where xðτÞ is given by (10). The free Hamiltonian of the
detector can be taken to be

ĥ ¼ ΩðĴz þ j1Þ; ð28Þ

where j is the orbital angularmomentumnumber. The energy
eigenstates are therefore naturally expressed in terms of the
Dicke basis fjj; mi∶m ¼ −j;−jþ 1;…; j − 1; jg, with
energy spectrum f0;Ω;…; ð2j − 1ÞΩ; 2jΩg. As before,
the identity operator is just a global shift to set the ground
state energy equal to zero. The final state of the qudit detector
is computed according to Eq. (17).

2This should also mean, implicitly, that we are in the weak
coupling regime [23].

3The Gaussian switching guarantees this limit to be adiabatic; in
the usual approach where sharp switching is used, it is necessary
that the coupling strength is “weakened” at long times [9,24].
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A. SUð2Þ qutrit detectors
For concreteness, in what follows we focus on a spin-1

qutrit (j ¼ 1); we will discuss the generalization later. We
will use the shorthand jmi≡ jj ¼ 1; mi. In the usual Dicke
basis ordered as fj1i; j0i; j − 1ig, we have

Jx ¼
1ffiffiffi
2

p

2
64
0 1 0

1 0 1

0 1 0

3
75; Jz ¼

2
64
1 0 0

0 0 0

0 0 −1

3
75: ð29Þ

Suppose the detector is initially in a diagonal state

ρ̂D;−∞ ¼

2
64
a 0 0

0 b 0

0 0 c

3
75; aþ bþ c ¼ 1: ð30Þ

Our task is to calculate the leading-order perturbative
corrections ρ̂ðj;kÞ for jþ k ¼ 2. We have

ρ̂ð1;1Þ ≡ λ2

2

Z
dt dt0χðtÞχðt0ÞWðt; t0Þ

2
64
be−iΩðt−t0Þ 0 beiΩðtþt0Þ

0 aeiΩðt−t0Þ þ ce−iΩðt−t0Þ 0

be−iΩðtþt0Þ 0 beiΩðt−t0Þ

3
75; ð31aÞ

ρð2;0Þ ¼ −
λ2

2

Z
dtdt0Θðt − t0ÞχðtÞχðt0ÞWðt; t0Þ

2
64

aeiΩðt−t0Þ 0 ceiΩðtþt0Þ

0 bðeiΩðt−t0Þ þ e−iΩðt−t0ÞÞ 0

ae−iΩðtþt0Þ 0 ce−iΩðt−t0Þ

3
75; ð31bÞ

ρð0;2Þ ¼ ρð2;0Þ†: ð31cÞ

By defining the following integrals:

I ≔ λ2
Z

dt dt0χðtÞχðt0Þe�iΩðtþt0ÞWðt; t0Þ;

L� ≔ λ2
Z

dt dt0χðtÞχðt0Þe�iΩðt−t0ÞWðt; t0Þ;

Q ≔ λ2
Z

dt dt0Θðt − t0ÞχðtÞχðt0Þe�iΩðtþt0ÞWðt; t0Þ;

R� ≔ λ2
Z

dt dt0Θðt − t0ÞχðtÞχðt0Þe�iΩðt−t0ÞWðt; t0Þ; ð32Þ

the final state takes the form of an X-state

ρ̂D;∞ ¼

2
664
aþ ρð2Þ11 0 ρð2Þ13

0 bþ ρð2Þ22 0

ρð2Þ�13 0 cþ ρð2Þ33

3
775þOðλ4Þ; ð33Þ

where

ρð2Þ11 ¼ 1

2
ðbL− − aLþÞ;

ρð2Þ22 ¼ 1

2
ðaLþ þ cL− − bðL− þ LþÞÞ;

ρð2Þ33 ¼ 1

2
ðbLþ − cL−Þ;

ρð2Þ13 ¼ 1

2
ðbI − aQ� − cQÞ: ð34Þ

Observe that unlike the qubit detector model, starting from
an initially diagonal state generically produces nonzero
coherence.
At this stage, if we were to interpret the detailed balance

condition as taking place in the adiabatic longtime limit

T → ∞, we would also need to show that ρð2Þ13 → 0 in the
longtime limit. By direct computation via the Sokhotsky
formula, we have (see Appendix A)

I ¼ λ2e−
1
2
T2Ω2

�
1

4π
þ

ffiffiffiffiffiffi
2π

p
aT

Z
∞

−∞
du e−2u

2=ðaTÞ2 ð1 − u2csch2uÞ
16π2u2

�
; ð35aÞ

Q ¼ λ2

2
e−

1
2
T2Ω2

�
1

4π
−

iT3

4πϵðϵ2 þ T2Þ þ
ffiffiffiffiffiffi
2π

p
aT

Z
∞

0

du e−2u
2=ðaTÞ2 ð1 − u2csch2uÞ

16π2u2

�
; ð35bÞ
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where ϵ > 0 is a fixed UV cutoff. From these expressions it
can be shown for fixed ϵ;Ω > 0 that

lim
T→∞

I ¼ lim
T→∞

Q ¼ 0 ð36Þ

for any fixed Ω; a > 0. Note that unlike the qubit scenario,
even for an initially diagonal state the time evolution gives
rise to a UV divergence contained in the integral Q for the
pointlike model. For our purposes, we have used a UV
regulator ϵ by smoothing the Dirac delta function by its
Gaussian nascent delta family (cf. Appendix A). However,
the physical prediction is largely independent of the UV
divergences so long as we are in the sufficiently late time
regime—that is, for fixed Ω, ϵ such that ΩT ≫ 1 and
aT ≳ 1. Therefore, the coherence term does not obstruct us
from relying on the detailed balance condition for probing
thermalization.
For the qubit scenario, the EDR is unambiguously

defined since the diagonal entries only have one free
parameter (due to the unit trace condition). However, the
qutrit case is slightly trickier. For the SUð2Þ qutrit, we have
j − 1i; j0i; j1i as the energy eigenstates, and we might
expect the EDR to have the detailed balance property

PrðE−1 → E0Þ
PrðE0 → E−1Þ

¼ PrðE0 → E1Þ
PrðE1 → E0Þ

¼T→∞
e−βΩ;

PrðE−1 → E1Þ
PrðE1 → E−1Þ

¼T→∞e−2βΩ: ð37Þ

The small subtle distinction between the qubit and qutrit
cases has to do with the well-known fact that the EDR is
defined for two different initial conditions. Classically, the
detailed balance condition is defined by comparing two
processes in which one is the reverse of the other: in this
case, we have the deexcitation process as a reverse of the
excitation process [25–27]. Following this strategy, an
analogous construction for qutrits can be done as follows.
For the j − 1i → j0i transition, we set b ¼ c ¼ 0, a ¼ 1
and for j0i → j − 1i we set a ¼ c ¼ 0, b ¼ 1 and we get

lim
T→∞

PrðE−1 → E0Þ
PrðE0 → E−1Þ

¼ lim
T→∞

L−

Lþ
→ e−βΩ; ð38Þ

which agrees with the qubit scenario since L� are precisely
the transition probabilities for the qubit detector with
energy gap Ω. Similarly, for the j0i → j1i transition, we
set a ¼ c ¼ 0, b ¼ 1 and for j1i → j0i we set a ¼ b ¼ 0,
c ¼ 1 obtaining

lim
T→∞

PrðE0 → E1Þ
PrðE1 → E0Þ

¼ lim
T→∞

L−

Lþ
¼ e−βΩ: ð39Þ

This again agrees with the qubit scenario.
The last case, associated with the transition j − 1i ↔ j1i,

is subtle: for the j − 1i → j1i transition, we need to set

b ¼ c ¼ 0, a ¼ 1 and for j1i → j − 1i we need a ¼ b ¼ 0,
c ¼ 1. However, for this qutrit model, at leading order in
perturbation theory we have

PrðE−1 → E1Þ; PrðE1 → E−1Þ ∼Oðλ4Þ; ð40Þ

so at the level of this computation the detailed balance
condition between j � 1i is indeterminate. From the
perspective of the model, this problem arises because the
SUð2Þ qutrit model does not allow for a “direct” transition
from j − 1i ↔ j1i with a single application of the monop-
ole operator Ĵx; consequently, the detailed balance can only
hold at the level of the detector dynamics for the “nearest-
neighbor” energy level allowed by the monopole operator.
This is to be contrasted with the generalized qubit model in
[10], where the monopole operator allows for any (fixed)
two-level subspace of a qudit detector.
It is reasonable, in light of the above results, to posit that

the detailed balance condition makes sense in some
restricted way by excluding the j − 1i ↔ j1i transitions,
i.e., the detailed balance condition is still valid in the “qubit
subspace” where the direct transition via Ĵx is allowed at
leading order in perturbation theory. However, as we will
show next, once the initial state contains nonvanishing
coherence, on its own the detailed balance condition is not a
useful diagnostic for thermalization within the standard
Dyson perturbative expansion without further assumptions
or approximations.
When working with an SUð2Þ qutrit, it is convenient to

decompose the initial density matrix into two distinct
subspaces that we call the X-block and the O-block in
the energy eigenbasis, i.e.,

ρ̂−∞¼ ρ̂−∞;Xþ ρ̂−∞;O;

ρ̂−∞;X¼

2
64
ρ11 0 ρ13

0 ρ22 0

ρ31 0 ρ33

3
75; ρ̂−∞;O¼

2
64

0 ρ12 0

ρ21 0 ρ23

0 ρ32 0

3
75: ð41Þ

This decomposition is convenient when the field is in a
quasifree state since, due to the vanishing of odd-point
functions of the field, each block will evolve independently
in the sense that if we initialize the state in an X-state (with
zero component in the O-block), then the final state will
remain in the X-block subspace.
Now consider instead the following initial state4:

jψi ¼ 1ffiffiffi
2

p ðj1i þ j0iÞ;

4The expression for the second-order corrections for general
initial states are given in Appendix B.
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so that

ρ̂D;−∞ ¼ jψihψ j ¼ 1

2

0
B@

1 1 0

1 1 0

0 0 0

1
CA: ð42Þ

Then, using the integrals (32) the leading-order corrections
that are second order in λ are

ρ̂ð2Þ ¼ 1

4

2
64

L− −Lþ I −Lþ−R�
− I −Q�

I −Lþ−R− −L− Lþ−Q�

I −Q Lþ−Q Lþ

3
75: ð43Þ

Notice that in the longtime limit, some of the corrections of
the decoherence terms in the final state are not only nonzero
but are also divergent in the limit T ≫ ∞. To see this,
observe that at fixed Ω and a we have

lim
aT≫1

L� ∝ λ2aT; ð44Þ

so the (de)excitation probabilities increase linearly with the
duration of interaction T. Crucially, this means that for
sufficiently long interaction times, the perturbative calcu-
lation breaks down and becomes unreliable essentially due
to the secular growth (the phenomenon where λ2aT viewed
as a time-dependent coupling constant is unbounded as
T → ∞) [7].
More importantly, a moment’s consideration would

inform us that at this level of perturbative computation
we will not be able to have a diagnostic of thermalization
even if the detailed balance condition can be satisfied: by
inspecting the coherence term ρ12 of the full state, we
see that

ρ12 ¼
1

2
þ 1

4
ðI − Lþ −R�

−Þ→ 0 ð45Þ

in the longtime limit T → ∞ (which we argued is divergent
in the naïve longtime limit). The problem is threefold:

(i) We do not have an analogous EDR-type statement
for off-diagonal matrix elements. Therefore, the only
clue to thermalization behavior for these compo-
nents is to require them to vanish at late times as
required by the Gibbs state.

(ii) However, since the perturbative correction suffers
from secular growth due to the presence of Lþ
[cf. Eq. (44)], the late-time limit is not reliable at this
stage of the computation.

(iii) From the nature of the perturbative calculation, it is
impossible to reliably make the coherence term
vanish since by construction the corrections are
small. This is analogous to requiring that e−x ≈
1 − x → 0, which is outside the validity of the
approximations.

From a physical perspective, we expect that the Unruh
effect should properly thermalize the detector to the Unruh
temperature TU ¼ a=ð2πÞ. This naïve example demon-
strates the difficulty of probing thermalization of even
simple systems armed with only the bare Dyson series
expansion and the detailed balance condition. It is also not
hard to see that the same problem would arise for qubits the
moment the initial state is allowed to have coherence: in
this case, it is not automatic that detailed balance is, on its
own, sufficient for thermalization.
In other investigations of the qubit detector model,

thermalization of an accelerating qubit detector interacting
with a relativistic scalar bath are worked out using open
master equations [5–7,28]. There it can be shown that the
detector thermalizes properly in the sense of approaching
an appropriate Gibbs state, provided additional approxi-
mations and assumptions to avoid the secular growth are
satisfied. Essentially, by restricting our attention to some
“high-temperature” regimes, it is possible to perform late-
time resummations of the second-order corrections [7,28],
which is precisely what the master equations [29,30] are
designed for. The point is that there are additional tech-
niques within perturbation theory that one can use to study
thermalization due to the Unruh effect (or Hawking effect
in the case of black holes).

B. Some features of SUð2Þ qudit detectors
The decomposition of the SUð2Þ quantum state into

X- and O-blocks generalizes to higher spin systems with
recognizable patterns. Consider the spin-2 qudit, initialized
in the j0ih0j state with respect to the ordered Dicke basis
fj2i; j1i; j0i; j − 1i; j − 2ig. The ensuing perturbed state is
given by

ρ̂j0ih0j;∞¼

2
6666666664

0 0 −
ffiffi
3
2

q
Qþ 0 0

0 3
2
L− 0 3

2
I− 0ffiffi

3
2

q
Q�þ 0 1− 3

2
ðLþþL−Þ 0 −

ffiffi
3
2

q
Q�

−

0 3
2
Iþ 0 3

2
Lþ 0

0 0 −
ffiffi
3
2

q
Q− 0 0

3
7777777775

þOðλ4Þ: ð46Þ

Observe that within the second-order perturbative expan-
sion, starting from the middle state j0ih0j only allows us to
perturb the state at most two entries away from the center of
the density matrix (46). The reason is simple—the Dyson
series truncated at second order can only contain at
most two products of the angular momentum operators
ĴxðτÞĴxðτ0Þ; thus it can only map basis elements to at most
jjihkj → jj� lihk�mj, where lþm ¼ 2 are non-
negative integers. Consequently, the detailed balance argu-
ment will only work well between nearest-neighbor energy
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levels using the same kind of arguments for the qutrit case.
Note that in the above example, the coherences can be
shown to vanish in the longtime regime, so again for a
generic SUð2Þ qudit detector model initialized in diagonal
states, the detailed balance condition will still be a useful
(partial) indicator for the thermalization due to Unruh effect
as we have shown for the qutrit model.
We stress that thermalization is not a purely nonpertur-

bative effect just because the detailed balance condition
alone does not suffice for diagnosing thermalization in the
standard Dyson series approach. Indeed, the standard
open quantum systems approach involves weak coupling
regimes (see, e.g., [31,32]) that must be amenable to
perturbative techniques. The real problem is that of
extracting reliable late-time predictions from perturbative
calculations. The master equation approach furnishes one
way to do so. Certainly, the general problem of thermal-
ization of (possibly strongly) interacting systems is both
difficult and an active area of research [23,33–37].
Last, but not least, we mention that in the context of the

UDW model, the calculations we have done to diagnose
thermalization are clearly model-dependent. In the qubit
scenario, there is not much freedom in varying the model
since there is only one possible free Hamiltonian that
describes (nondegenerate) two-level systems and the qubit
observables are very restrictive, i.e., there are no selection
rules that forbid some direct transitions between energy
levels. In contrast, once we consider qudit detectors with
Hilbert space dimension of at least three, the story changes:
there are several ways to define a three-level system and it
is possible to design interaction Hamiltonians that forbid
some direct transitions. In the SUð2Þ model, we have the
situation where the free Hamiltonian is nondegenerate with
equal energy spacing and the direct transition between j�1i
is not allowed. We will see in Sec. IV that indeed some
conclusions can change by allowing for other kinds of
three-level systems.

IV. HEISENBERG-WEYL QUDIT
DETECTOR MODEL AND THE

VALUE OF DETAILED BALANCE

Let us briefly consider a different generalization of the
qudit detector, using a different generalization of σ̂x, σ̂z
known as the clock and shift matrices, defined by

X̂¼
Xd−1
j¼0

jjþ1 mod dihjj; Ẑ¼
Xd−1
j¼0

e2πij=djjihjj: ð47Þ

For simplicity we focus on the qutrit case, where the clock
and shift matrices are given by

X̂ ¼

2
64
0 0 1

1 0 0

0 1 0

3
75; Ẑ ¼

2
64
1 0 0

0 e
2πi
3 0

0 0 e
−2πi
3

3
75; ð48Þ

where we use the fj0i; j1i; j2ig basis. This generalization is
not Hermitian, so we propose that the Heisenberg-Weyl
(HW) qudit model5 is given by

ĤIðτÞ ¼ λχðτÞðX̂ðτÞ þ X̂†ðτÞÞ ⊗ ϕ̂ðxðτÞÞ; ð49Þ

with free Hamiltonian ĥ ¼ ΩðẐ þ Ẑ†Þ=2. The free
Hamiltonian has degenerate ground states:

Ω
2
ðẐ þ Ẑ†Þ ¼ Ω

2

2
64
2 0 0

0 −1 0

0 0 −1

3
75 ð50Þ

with E1−E0¼0 and energy gap E2 − E0 ¼ E2 − E1 ¼ 3
2
Ω.

To simplify our work with the Heisenberg-Weyl qudits,
we must introduce two new integrals, in addition to making
some slight modifications to our previous integral notation
as follows:

Lq ≔ λ2
Z

dt dt0χðtÞχðt0ÞeiqΩðt−t0ÞWðt; t0Þ; ð51aÞ

Rq≔ λ2
Z

dtdt0Θðt− t0ÞχðtÞχðt0ÞeiqΩðt−t0ÞWðt; t0Þ; ð51bÞ

Uq ≔ λ2
Z

dt dt0χðtÞχðt0ÞeiqΩtWðt; t0Þ; ð51cÞ

V�
q ≔ λ2

Z
dtdt0Θð�ðt− t0ÞÞχðtÞχðt0ÞeiqΩtWðt; t0Þ; ð51dÞ

where q is a real number scaling the energy gap Ω.
Suppose that the detector is initialized in the diagonal

state

ρ̂D ¼

2
64
a 0 0

0 b 0

0 0 c

3
75; aþ bþ c ¼ 1: ð52Þ

The second-order corrections are given by

ρ̂ð1;1ÞD ¼ a

2
64
0 0 0

0 Lþ3
2

Lþ3
2

0 Lþ3
2

Lþ3
2

3
75þ b

2
64
L−3

2
0 U�

þ3
2

0 0 0

Uþ3
2

0 U0

3
75

þ c

2
64
L−3

2
U�
þ3

2

0

Uþ3
2

U0 0

0 0 0

3
75 ð53Þ

5This is to be compared with the model studied in [14] which
constructs a different interaction Hamiltonian without using
Hermitian observables for the detector. The model, however,
has an acausal coupling.
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and

ρ̂ð2;0ÞD þ ρ̂ð0;2ÞD ¼ −a

2
664
2L−3

2
V−
þ3

2

V−
þ3

2

V−�
þ3

2

0 0

V−�
þ3

2

0 0

3
775

− b

2
664

0 Vþ
þ3

2

0

Vþ�
þ3

2

U0 þ L−3
2

R�
−3
2

0 R−3
2

0

3
775

− c

2
664

0 0 Vþ
þ3

2

0 0 R−3
2

Vþ�
þ3

2

R�
−3
2

U0 þ L−3
2

3
775: ð54Þ

Following the same strategy as the SUð2Þ qutrit and using
the notation Pi→j ≡ PrðEi → EjÞ, the EDRs for the HW
qutrit are given by

P1→2

P2→1

¼
L−3

2

Lþ3
2

¼ e−β
3
2
Ω;

P0→2

P2→0

¼
L−3

2

Lþ3
2

¼ e−β
3
2
Ω;

P0→1

P1→0

¼ U0

U0

¼ 1 ¼ e−βð0ÞΩ: ð55Þ

Observe that for this qutrit detector model, the detailed
balance condition effectively “works.” The reason is quite
straightforward: due to the nature of the shift operator X̂, all
the energy levels are essentially nearest-neighbors and
therefore, the EDR captures properly all the forward and
reverse processes. For exactly this reason, the HW qudits
with Hilbert space dimension ≥ 4 will not have the detailed
balance condition work for all transitions since the direct
transition j0i → j2i is not allowed: some indeterminacy
will appear analogously to the SUð2Þ case.
The point of this brief analysis is to emphasize that the

value of the detailed balance condition as an indicator for
thermalization depends on the model, i.e., what we take as
the detector and its free Hamiltonian, as well as the choice
of coupling with the field observable. The latter affects the
allowed transitions at leading order in perturbation theory
and whether the detailed balance condition (26) holds for
all pairwise energy levels depends on both choices. If,
however, our goal of using a detector to probe the field is to
simply extract, say, the Unruh temperature, then in practice
we do not need the detailed balance condition to hold for all
energy levels. Yet, in this case one is left with the question
of whether the qudit coupled to the field truly thermalizes
(even if the matrix elements contain information about the
Unruh temperature).

V. DISCUSSION AND OUTLOOK

In this paper we analyzed the Unruh effect using SUð2Þ
and the Heisenberg-Weyl qutrit detector models. We also
expanded our analysis to understand some general features
of higher dimensional qudits in both models. We concluded
that the detailed-balance condition, commonly taken as an
indicator for thermalization of qubits, is not satisfied in
general for higher dimensional systems. In fact, we
observed that whenever there is a selection rule in the
internal dynamics of the detector, the final state of the
detector up to second order in perturbation theory will not
be thermal. It will contain coherences that do not vanish in
the longtime limit. We also noticed that the Heisenberg-
Weyl qutrit is a special case for which the detailed-balance
condition is satisfied. Indeed, because in this case there is
no selection rule, i.e., all possible jumps between states are
allowed, it behaves similarly to the qubit case.
All the considerations in this paper suggest that we

should not require the detailed balance condition for the
probe system (detector) to be the litmus test for the Unruh
effect beyond the qubit model, unless one has good control
over longtime regimes. When we couple a qubit detector
model to probe the Unruh effect, what we are really trying
to do is to probe the thermal behavior of the quantum field
as seen by an accelerating observer—that is, we are trying
to extract the properties of the pullback of the Wightman
function Waðτ; τ0Þ. However, due to the stationary of the
Wightman function with respect to the proper time τ, by
writing u ¼ τ − τ0 we can compute the Fourier transform

W̃aðωÞ ≔
Z

duWaðuÞe−iωu; ð56Þ

and this obeys the relation [7,22]

W̃aðωÞ
W̃að−ωÞ

¼ e−βω; β−1 ¼ a
2π

; ð57Þ

which, as a statement about power spectra, can be regarded
as a detailed balance relation that is a consequence of the
KMS condition [22].
What the standard UDW detector model traditionally

was designed to do is to show that with an appropriate
choice of switching functions, coupling and energy gaps,
it is possible to recover (57) in appropriate limits
[3,4,8,9,11,22,38,39]. However, the full characterization
of thermality of the field state is still given by the KMS
conditions [40,41].
In short, our work shows that in general the only reliable

way to probe thermal behavior of the field is to show that
the probe thermalizes to the Gibbs state in appropriate limit,
unless one restricts to only using two-level detectors. This
is because only in the context of qubit detectors (or
restricting to two-level subspaces of a qudit detector) that
the lhs of Eq. (57) can be faithfully mapped to the EDR
of the qubit detector, from which the detailed balance
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condition of the detector is equivalent in appropriate
(adiabatic) limit to the detailed balance coming from the
field-theoretic calculations.
Our work constitutes one of the few investigations in to

higher-dimensional detector models in the context of RQI,
and so several future directions arise naturally from our
analysis. For example, the well-known entanglement har-
vesting protocol [42,43] remains largely unexplored in
higher dimensional system. This is not surprising, since
there is a lack of good measures of entanglement beyond
negativity and concurrence for mixed states of two qudits
(with local dimension ≥3). We leave these questions for the
future.
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APPENDIX A: INTEGRAL COMPUTATIONS
FOR ACCELERATING DETECTOR

In this appendix we compute the following integrals that
appear in the matrix elements of the detector:

I ≔ λ2
Z

dτ dτ0χðτÞχðτ0Þe�iΩðτþτ0ÞWaðτ; τ0Þ; ðA1aÞ

L� ≔ λ2
Z

dτ dτ0χðτÞχðτ0Þe�iΩðτ−τ0ÞWaðτ; τ0Þ; ðA1bÞ

Q ≔ λ2
Z

dτ dτ0Θðτ − τ0ÞχðτÞχðτ0Þe�iΩðτþτ0ÞWaðτ; τ0Þ;

ðA1cÞ

R� ≔ λ2
Z

dτ dτ0Θðτ − τ0ÞχðτÞχðτ0Þe�iΩðτ−τ0ÞWaðτ; τ0Þ;

ðA1dÞ

where the pullback of the Wightman function along the
accelerated trajectory is given by

Waðτ;τ0Þ¼−
a2

16π2
1

sinh2ða
2
ðτ−τ0− iϵÞÞ≡Waðτ−τ0Þ: ðA2Þ

The Wightman function is stationary with respect to the
proper time τ since it is a function of τ − τ0. It will be very
useful to formally split the Wightman function into two
pieces, the singular piece that carries the distributional
singularities and the regular piece that is a proper function
(and not a tempered distribution). The way to do this is to
expand around a ¼ 0, so that in fact the singular contri-
bution is given by the pullback of the vacuum Wightman
function along the inertial trajectory:

Waðτ; τ0Þ ¼ WMðτ; τ0Þ þWa;regðτ; τ0Þ;

WMðτ; τ0Þ ¼ −
1

4π2
1

ðτ − τ0 − iϵÞ2 : ðA3Þ

In what follows we will also make extensive use of the
following change of variable:

u ¼ t − t0; v ¼ tþ t0; dτdτ0 ¼ 1

2
dudv: ðA4Þ

Wewill also useGaussian switching function χðτÞ ¼ e−τ
2=T2

.
Finally, a very useful tool for us is the Sokhotsky formula:

1

ðs� iϵÞn ¼ p:v:
1

sn
� ð−1Þn
ðn − 1Þ! iπδ

ðn−1ÞðsÞ; ðA5Þ

where p.v. denotes Cauchy principal value and δðnÞ denotes
the nth weak derivative of the Dirac delta distribution. The
general strategies here would also work for variants of the
above integrals when one considers higher-dimensional
qudits [e.g., the ones in Eq. (51)].

1. Computation of I

Using the change of variable (A4), we have

I ¼ 1

2
λ2

Z
du dvχ

�
vþ u
2

�
χ

�
v − u
2

�
e�iΩvWaðuÞ

¼ 1

2
λ2

Z
du dvχðu=

ffiffiffi
2

p
Þχðv=

ffiffiffi
2

p
Þe�iΩvWaðuÞ

¼ 1

2
λ2

Z
dvχðv=

ffiffiffi
2

p
Þe�iΩv

Z
duχðu=

ffiffiffi
2

p
ÞWaðuÞ

¼ λ2
ffiffiffi
π

2

r
Te−

T2Ω2
2

Z
duχðu=

ffiffiffi
2

p
ÞWaðuÞ: ðA6Þ

In the second equality we have used the fact that the
switching is Gaussian and observe that the � sign in the
phase does not matter, hence we write I instead of I�.
Next, using the splitting (A3), we have
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Z
duχðu=

ffiffiffi
2

p
ÞWaðuÞ¼

Z
duχðu=

ffiffiffi
2

p
ÞWMðuÞ

þ
Z

duχðu=
ffiffiffi
2

p
ÞWa;regðuÞ: ðA7Þ

The second term corresponds to the finite-acceleration term
that comes from the regular pieceWa;reg and vanishes in the
limit a → 0. It turns out that the regular piece does not
admit a closed-form expression but it is straightforward to
calculate numerically due to the nondistributional nature of
the integrand. The first term can be computed exactly via
the Sokhotsky formula.6 Together, we get

I¼λ2e−
T2Ω2

2

�
1

4π
þ

ffiffiffiffiffiffi
2π

p
aT
Z

∞

−∞
dse−2s

2=ðaTÞ2 ð1−s2csch2sÞ
16π2s2

�
:

ðA8Þ

2. Computation of L�
First, it is worth noting that L� corresponds exactly to

the transition probabilities for the qubit detector in the
standard UDW model. In our convention, L− is the
excitation probability from the ground state, while Lþ is
the deexcitation probability. The calculation proceeds
almost identically to the one for I except for the phase

L� ¼ 1

2
λ2

Z
du dvχðu=

ffiffiffi
2

p
Þχðv=

ffiffiffi
2

p
Þe�iΩuWaðuÞ

¼ 1

2
λ2

Z
dvχðv=

ffiffiffi
2

p
Þ
Z

duχðu=
ffiffiffi
2

p
Þe�iΩuWaðuÞ

¼ λ2
ffiffiffi
π

2

r
T
Z

duχðu=
ffiffiffi
2

p
Þe�iΩuWaðuÞ: ðA9Þ

The integral over u can be viewed as the Fourier transform
of χðu= ffiffiffi

2
p ÞWaðuÞ. Using the splitting (A3), we get

L� ¼ λ2

4π

�
e−

T2Ω2
2 �

ffiffiffi
π

2

r
ΩTerfc

�∓ΩTffiffiffi
2

p
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vacuum contribution

þ λ2aT

4
ffiffiffiffiffiffiffi
2π3

p
Z

∞

0

ds
cosð2Ωs=aÞe−2s2=ðaTÞ2ðsinh2s− s2Þ

s2sinh2s
:

ðA10Þ

The value for L− is equal to Ljj=λ2 calculated in [44]. Note
that only the vacuum contribution is sensitive to the � sign
while the regular finite-acceleration piece is symmetric

under the exchange Ω → −Ω. The regular part can also be
shown to vanish as a → 0.

3. Computation of Q

Using the change of variable (A4), we have

Q ¼ 1

2
λ2

Z
du dvΘðuÞχðu=

ffiffiffi
2

p
Þχðv=

ffiffiffi
2

p
Þe�iΩvWaðuÞ

¼ 1

2
λ2

Z
dvχðv=

ffiffiffi
2

p
Þe�iΩv

Z
duΘðuÞχðu=

ffiffiffi
2

p
ÞWaðuÞ

¼ λ2
ffiffiffi
π

2

r
Te−

T2Ω2
2

Z
duχðu=

ffiffiffi
2

p
ÞΘðuÞWaðuÞ: ðA11Þ

Again, using the split (A3),

QM ¼ λ2
ffiffiffi
π

2

r
Te−

T2Ω2
2

Z
duχðu=

ffiffiffi
2

p
ÞΘðuÞWMðuÞ;

Qa;reg ¼ λ2
ffiffiffi
π

2

r
Te−

T2Ω2
2

Z
duχðu=

ffiffiffi
2

p
ÞΘðuÞWa;regðuÞ;

ðA12Þ

so that Q ¼ QM þQa;reg. Observe from Eq. (A8) that the
regular piece is an integral over a symmetric function:

Ia;reg ≔ λ2e−
T2Ω2

2

ffiffiffiffiffiffi
2π

p
aT

Z
∞

−∞
dse−2s

2=ðaTÞ2 ð1 − s2csch2sÞ
16π2s2

:

ðA13Þ

Therefore, the Heaviside function inQa;reg cuts the integral
by half, so we have

Qa;reg ¼
1

2
Ia;reg: ðA14Þ

The vacuum piece QM, however, is problematic because it
is UV divergent: this is due to the common distributional
singularity along τ − τ0 ¼ 0. In order to regularize the UV
singularity, let us first use the Sokhotsky formula and better
flesh out the singularity. From the Sokhotsky formula, we
have

QM ≔ −
1

4π2

Z
duΘðuÞe−u2=ð2T2Þ

�
1

u2
− iπδð1ÞðuÞ

�

¼ −
1

4π2
1

4
ffiffiffiffiffiffiffiffiffiffiffiffi
2π3T2

p −
i
4π

Z
dsΘðuÞe−u2=2T2

δð1ÞðuÞ:

ðA15Þ

In the second equality, the first term can be calculated in
two ways, either via the Fourier transform or by direct
integration over Rn½0; aÞ and subtraction of the divergent
contribution. The second term is the origin of the singular
behavior as it contains products of Dirac delta functions.

6We can also evaluate it by rewriting the Wightman function
WMðτ; τ0Þ in momentum space, i.e., as a distributional integral

WMðτ; τ0Þ ¼
Z

dnk
2ð2πÞnjkj e

−ijkjðτ−τ0Þ:
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To see this, we can define the inner product between some
distribution f and a test function g of f such that

hf; gi ≔ p:v:
Z

∞

−∞
du fðuÞ�gðuÞ: ðA16Þ

Noting that test functions must have vanishing support at the
boundaries (as they are defined to have compact supports),
this inner product has the property that hf0; gi ¼ −hf; g0i. In
particular, the definition of weak derivative of Dirac delta
distribution is given in terms of the inner product as

hδðnÞ; gi ¼ ð−1ÞngðnÞð0Þ≡ ð−1Þn d
ng

dun
ð0Þ: ðA17Þ

Applying these to Θ and δð1Þ, we have hΘ; δð1Þi ¼
−hΘð1Þ; δi ¼ −hδ; δi and we know that hδ; δi is divergent.
This is the statement that δð1Þ is not in the space of test
functions of the Heaviside function (viewing Heaviside as a
distribution), and vice versa.
UV regularization essentially resolves the issue above by

putting a cutoff and forcing the integral defined through the
inner product to be finite. There are at least two natural
ways we can apply the UV regularization:
(1) Regularize the delta function in the Sokhotsky

formula, e.g., using Gaussian nascent family

δa0ðxÞ ≔
1ffiffiffiffiffiffiffiffiffiffi
2πa20

p e−x
2=ð2a2

0
Þ: ðA18Þ

We can either compute the nascent derivative δð1Þa0 or
use the inner product: we get

QM ¼ −
1

4π2
1

4
ffiffiffiffiffiffiffiffiffiffiffiffi
2π3T2

p

−
iT2ffiffiffiffiffiffiffiffiffiffi

32π3
p

a0ða02 þ T2Þ
: ðA19Þ

(2) Regularize the Heaviside function, e.g., using tanh:

Θa0ðxÞ ≔
1þ tanhðx=a0Þ

2
: ðA20Þ

In this case we get, after using the inner product
formula for distributions,

QM ¼ −
1

4π2
1

4
ffiffiffiffiffiffiffiffiffiffiffiffi
2π3T2

p −
i

8πa0
: ðA21Þ

Hence, depending the choice of the UV regulator we
see that

QM ¼
8<
:

λ2
�
e−

1
2
T2Ω2

8π − iT3e−
1
2
T2Ω2

8πa0ða02þT2Þ
�

ðMethod 1Þ

λ2
�
e−

1
2
T2Ω2

8π − iTe−
1
2
T2Ω2

8
ffiffiffiffi
2π

p
a0

�
ðMethod 2Þ:

ðA22Þ

For our purposes, the important feature of the regularization
procedure is that in the longtime regime T ≫ a0, the two
methods give the same scaling behavior QM ∼ −i=a0.
Furthermore, the a0-dependent term is very strongly sup-
pressed at large TΩ ≫ 1 for fixed a0 (in units of Ω).

4. Computation of R�
Using the change of variable (A4), we have

R� ¼ 1

2
λ2

Z
dvχðv=

ffiffiffi
2

p
Þ
Z

duΘðuÞχðu=
ffiffiffi
2

p
ÞWaðuÞ

¼ λ2
ffiffiffi
π

2

r
T
Z

duχðu=
ffiffiffi
2

p
ÞΘðuÞe�iΩuWaðuÞ: ðA23Þ

RegularizingR� is less straightforward than the rest of the
integrals due to the extra phase factor. Again, using the
splitting (A3), let us write

R�;M ¼ λ2
ffiffiffi
π

2

r
T
Z

duχðu=
ffiffiffi
2

p
ÞΘðuÞe�iΩuWMðuÞ;

R�a;reg ¼ λ2
ffiffiffi
π

2

r
T
Z

duχðu=
ffiffiffi
2

p
ÞΘðuÞe�iΩuWa;regðuÞ;

ðA24Þ

so that R ¼ R�M þR�a;reg. The regular piece is straight-
forward and follows the same steps as Qa;reg:

R�a;reg ¼
ffiffiffiffiffiffi
2π

p
λ2aT

Z
∞

0

ds e�2iΩs=ae−2s
2=ðaTÞ2

×
ð1 − s2csch2sÞ

16π2s2
: ðA25Þ

The singular part is much less straightforward. However,
instead we can also compute this numerically by using the
approximate Heaviside step function (A20): that is, we
compute instead

R�;M→λ2
ffiffiffi
π

2

r
T
Z

duχðu=
ffiffiffi
2

p
ÞΘa0ðuÞe�iΩuWMðuÞ: ðA26Þ

For any finite a0 > 0, one can show that the real part is well
behaved and the UV divergence is completely contained in
the imaginary part (analogous to the UV divergence inQM).
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APPENDIX B: FINAL STATE OF THE SUð2Þ-QUTRIT DETECTOR INITIALIZED
IN THE MOST GENERAL STATE

Suppose the detector is initialized in the state

ρ̂D;−∞ ¼

2
64

a d e

d� b f

e� f� c

3
75; ðB1Þ

where aþ bþ c ¼ 1. Following the same notation as for Sec. III, we find for the leading-order corrections:

ρ̂ð2Þ ¼ 1

2

2
64

−aLþ þbL− − 2Re½eQ�� d�I −dðLþ þR�
−Þþ fL− −f�Q −aQ� þbI − cQ− eðR�

−þRþÞ
dI −d�ðLþ þR−Þþf�L− −fQ� aLþ−bðL−þLþÞþ cL−þ 2IRe½e� dLþ −d�Q� −fðL−þRþÞþf�I

−aQþbI − cQ�− e�ðR�þ þR−Þ d�Lþ−dQ−f�ðL−þR�þÞþfI bLþ− cL− − 2Re½eQ�

3
75:

ðB2Þ
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