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This paper reports calculations and analysis of the effects of a perfect conducting wall of a very large
spherical shell on the stable thermodynamic equilibrium of a black hole sitting at the center of the
shell that is filled with electromagnetic blackbody radiation. A parallel is drawn with the case where
electromagnetic radiation is replaced by scalar blackbody radiation with Dirichlet or Neumann boundary
conditions on the wall. It is found that the value of the shell radius above which only blackbody radiation
remains in stable thermodynamic equilibrium can be considerably affected by vacuum polarization due to
the presence of the wall.
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I. INTRODUCTION

Five decades after Bekenstein and co-workers [1–4] and
others discovered that a black hole is a thermal object, its
associated quantum degrees of freedom remain unknown.
Much understanding has been gained by considering semi-
classical gravity, which consists of treating matter quantum
mechanically, whereas the background geometry is taken to
be classical. Indeed, there are also candidates to a “quantum
theory of gravity” (see, for example, Ref. [5] and references
therein) that successfully present explanations for thermal
properties of certain special black holes. In spite of a lot of
progress, it seems fair to say that there is no consensus on
this matter.
It remains promising to explore the issue in setups where

the black hole is in thermodynamic equilibrium with well-
known thermal systems. One of them is a cavity with the
black hole at the center continuously evaporating by
emitting Hawking radiation and simultaneously accreting
blackbody radiation [6]. Since the pioneering work of
Hawking [6] and after early accounts addressing the
fundamentals of black hole thermodynamics in boxes1

(e.g., Refs. [9–13] where heat capacities, phase transitions,
the third law of thermodynamics, Green’s functions, and
likelihood of black hole formation have been studied),
hundreds of publications followed up covering different
aspects, which were related in one way or another, with
thermal stability of black holes in spacetimes of different
geometries. These days the theme is still the focus
of frequent investigations. Among them are those in

backgrounds where the black hole has a holographic
interpretation [5]. It should be remarked that such an
interpretation is one of the most promising schemes to
explain, consistently (see, e.g., the review in Ref. [14]), the
statistical mechanics nature of black holes.
A Schwarzschild black hole of mass M and electromag-

netic blackbody radiation can be in stable thermodynamic
equilibrium in a cavity only if the temperature T of the
system is the Hawking temperature,2

TH ≔
ℏc3

8πGMk
; ð1Þ

and the cavity’s volume V is smaller than a critical
value [6–8],

Vh ¼
220

54
3π2

�
E
EP

�
5

l3
P; ð2Þ

where E is the total energy in the cavity, which is given by

E ¼ Mc2 þ π2

15

ðkTÞ4
ðℏcÞ3 V; ð3Þ

and

lP ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

q
; EP ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

q
: ð4Þ

*moreira@unifei.edu.br
1See also Refs. [7,8]. 2Fundamental constants have the usual meaning.
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In deriving Eq. (2), E along with V are taken to be fixed,
whereas M and T are let to evolve such that the entropy

S ¼ 4πk
ℏc

GM2 þ 4π2

45

�
kT
ℏc

�
3

kV ð5Þ

has a local maximum.
By examining Eq. (3), one sees that vacuum polarization

caused by the nontrivial background or the presence of the
cavity’s wall (see, e.g., Ref. [15]) has been ignored. It can be
argued that V is large enough such that vacuum polarization
effects would simply yield small corrections in Eqs. (3)
and (5), and so they perhaps could be neglected. However,
small cavities should also be examined. At such a regime,
Eqs. (3) and (5) do change due to vacuum polarization [16],
and thus it remains to answer the question on the way Vh in
Eq. (2) modifies. One purpose of this paper is to begin a
study of this matter.3

Another source of motivation for this work is the
following speculation. In 1968, Boyer made a surprising
discovery that the vacuum energy of a conducting spherical
shell tends to expand the shell, instead of shrinking it [17].
Now, gravitational collapse is a thermodynamic process.
Accordingly, one might wonder if for V < Vh the system
black hole and blackbody radiation in thermodynamic
equilibrium could be a stage of gravitational collapse of
the conducting shell itself. And, by considering Boyer’s
discovery mentioned above, it is plausible to conjecture that
it could be even a late stage of collapse. Again, in order to
investigate this scenario, it would be relevant to determine
how vacuum polarization affects thermal stability, in par-
ticular, how it modifies Vh in Eq. (2). The rest of this section
consists of a short outline of calculations and analysis in the
following sections.
The literature is rather vague on the nature of the wall that

keeps E and V constant in the equations above. It is simply
assumed that it is rigid and that no flux of either energy or
momentum takes place through it, i.e., the cavity’s wall is
perfectly reflecting. Nevertheless, any wall is a physical
object, even when it is idealized. Thus, the proper way of
dealing with the problem in the context of quantum fields at
finite temperature is to use suitable boundary conditions
(see, e.g., the classic paper Ref. [18] and a related
thermodynamic account in Ref. [19]).
Consider a perfect conducting spherical shell of radius R,

carrying electromagnetic radiation at temperature T. As
Balian and Duplantier have shown in Ref. [16], at the
regime of high temperatures and/or large shells, i.e.,

kTR
ℏc

≫ 1; ð6Þ

the Helmholtz free energy in the shell is given by,4

F ¼ −
π2

45

ðkTÞ4
ðℏcÞ3 V −

kT
4

�
ln

�
kTR
ℏc

�
þ 0.769

�
þ � � � ; ð7Þ

where

V ¼ 4

3
πR3: ð8Þ

It follows from Eq. (7) the internal energy and the entropy

U ¼ π2

15

ðkTÞ4
ðℏcÞ3 V þ kT

4
þ � � � ;

S ¼ 4π2

45

�
kT
ℏc

�
3

kV þ k
4

�
ln

�
kTR
ℏc

�
þ 1.769

�
þ � � � ; ð9Þ

each containing corrections to the familiar Planckian
expressions due to the presence of the spherical shell’s
perfect conducting wall. A couple of remarks are in order
regarding Eq. (9) as they will be used later on. The term
kT=4 in U is often identified as being a “classical”
correction, since it does not carry ℏ. However, when one
sets ℏ → 0, the Planckian internal energy becomes “infin-
ite” and thus kT=4 “vanishes”: kT=4 is simply the ℏ0-term
of an expansion in powers of ℏ. Another remark is that the
presence of the perfect conducting wall increases the heat
capacity of the hot radiation in the shell. Consequently, the
blackbody radiation temperature becomes less “agile” to
change when U changes.
Now a black hole is set at the shell’s center and let to get

in stable thermodynamic equilibrium with the hot radiation
surrounding it. Then the vacuum polarization corrections in
Eq. (9) are taken into account in Eqs. (3) and (5), and the
problem of finding a local maximum for S is redone,
leading to a new Vh [see Eq. (2)]. Such a program is
implemented in Sec. II.
In Sec. III, the problem is reconsidered for spherical

shells containing hot scalar radiation, with Dirichlet and
Neumann walls. Section IV presents a summary and
addresses further issues considered in previous sections,
such as comparison between vacuum polarization modifi-
cations of Eq. (2) regarding the nature of the radiation in the
spherical shell (electromagnetic or scalar) as well as the type
of boundary conditions on its wall (Dirichlet or Neumann).
Section IVends after pointing out an extension of the work.

3This paper will consider vacuum polarization caused by the
cavity’s wall only.

4It should be remarked that corrections to the Planckian free
energy, which is the term containing T4V in Eq. (7), depends very
much on the geometry of the cavity and on the type of boundary
condition on its walls. For example, in the case of a perfect
conducting cubic cavity, the leading correction is proportional to
T2V1=3 [20], and thus contrasting considerably with that in Eq. (7)
for a perfect conducting spherical shell and also with those in
Eq. (28) for scalar radiation in a reflecting spherical shell.
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The Appendix outlines an alternative derivation of Vh,
closing the paper.

II. ELECTROMAGNETIC RADIATION

As has been sketched in Sec. I, Eqs. (3) and (5) are
modified by considering Eq. (9), i.e.,

E ¼ Mc2 þ π2

15

ðkTÞ4
ðℏcÞ3 V þ kT

4
þ � � � ; ð10Þ

S ¼ 4πk
ℏc

GM2 þ 4π2

45

�
kT
ℏc

�
3

kV

þ k
4

�
ln

�
kTR
ℏc

�
þ 1.769

�
þ � � � : ð11Þ

Ellipses, denoting smaller corrections [note Eq. (6)], will be
omitted from now on. It is convenient to define the
dimensionless quantities,

m ≔
Mc2

E
; t ≔

kT
4E

; ð12Þ

and to recast Eq. (10) as

m ¼ 1 −
210π3

45

�
ER
ℏc

�
3

t4 − t; ð13Þ

where Eq. (8) has been used. In the literature (see, e.g.,
Ref. [8]), where only Planckian contributions are consid-
ered [cf. Eqs. (3) and (5)], it is m in Eq. (12) that plays the
role of independent variable. In the present case, where
corrections to the Planckian contributions are also taken
into account, t in Eq. (12) is the suitable independent
variable in the problem. It follows that m in Eq. (13) is
a function of t, for given E and R. By defining another
dimensionless quantity, namely,

s ≔
ℏc5S

4πkGE2
; ð14Þ

Eq. (11) leads to

s¼m2þ 28π2

135

ER3c2

ℏ2G
t3þ ℏc5

16πGE2

�
ln

�
4ER
ℏc

t

�
þ 1.769

�
;

ð15Þ

which is also a function of t. At this point, it should be
remarked that, since ER ≫ kTR ≫ ℏc [see Eqs. (6) and
(10)], t in Eq. (12) is small, but not that much,

ℏc
ER

≪ t ≪ 1: ð16Þ

A comment on the shell’s radius is also worth making at
this point. As shall be seen soon, a necessary condition for
thermodynamic equilibrium is still that T ¼ TH [see
Eq. (1)], as expected. Now, noticing Eq. (6), it follows that

R ≫ RS; ð17Þ

with RS denoting the Schwarzschild radius of the black
hole in the shell,

RS ≔
2GM
c2

: ð18Þ

That is, the size of the shell must be large compared with
that of the hole. If R were such that the inequality in Eq. (6)
were reversed, then the regime would be that of low
temperatures and/or small shells, resulting in Eq. (9) no
longer holding [16]. In particular, the dominant contribution
in the expression for U would be a vacuum energy, instead
of the familiar Planckian internal energy.
Noticing Eq. (13), derivative of Eq. (15) with respect to

t yields

ds
dt

¼ ℏc5

16πGE2t

�
46π3

45

�
ERt
ℏc

�
3

þ 1

�
ð1 − τÞ; ð19Þ

where

τ ≔ 32π
GE2

ℏc5
mt: ð20Þ

It follows immediately from Eqs. (1), (12), and (20) that

τ ¼ T
TH

: ð21Þ

Clearly, blackbody radiation and the black hole cannot
coexist together in thermodynamic equilibrium if the
maximum value of τ is less than unity. Otherwise, accord-
ing to Eq. (19), s would grow for all t and the black hole
would evaporate, leaving only blackbody radiation behind.
The maximum value of τ happens when dτ=dt ¼ 0, i.e.

[see Eqs. (13) and (20)],

1 −
210π3

9

�
ER
ℏc

�
3

t4 − 2t ¼ 0: ð22Þ

By recalling Eq. (16), the solution of Eq. (22) is given by5

tτ ¼
�

9

210π3

�
1=4

�
ℏc
ER

�
3=4

�
1 −

1

4

�
9

ð4πÞ3
�

1=4
�
ℏc
ER

�
3=4

�
;

ð23Þ

5As mentioned previously, keeping main contributions only.
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corresponding to

mðtτÞ ¼
4

5
−

3

10

�
9

ð4πÞ3
�

1=4
�
ℏc
ER

�
3=4

; ð24Þ

where Eq. (13) has been used. Now, Eqs. (20), (23),
and (24) yield

τðtτÞ ¼
26π

5

GE2

ℏc5

�
9

ð4πÞ3
�

1=4
�
ℏc
ER

�
3=4

×

�
1 −

5

8

�
9

ð4πÞ3
�

1=4
�
ℏc
ER

�
3=4

�
; ð25Þ

as the maximum value of τ.
By taking into account the comments just after Eq. (21)

and noting that τðtτÞ in Eq. (25) diminishes as R increases
with E fixed, one can determine the shell’s critical volume
Vh by solving τðtτÞ ¼ 1 for R [see Eqs. (4) and (8)],
obtaining

Vh ¼
220

54
3π2

�
E
EP

�
5

l3
P −

213

52
3π

�
E
EP

�
3

l3
P; ð26Þ

which should be compared with Eq. (2). An interesting
aspect of Eq. (26) is that the second term on its rhs is
classical as it is kT=4 in Eq. (10) [see remark in the text just
after Eq. (9)]. Indeed,

2
E
EP

lP ¼ 2GE
c4

:

Thus, the vacuum polarization effect of a perfect con-
ducting wall is to reduce the value in Eq. (2) by nearly a
100 times the volume of a Schwarzschild black hole of
mass E=c2 [see Eq. (26)]. It should be pointed out that,
since RS > lP, Eqs. (17) and (26) imply that

E
EP

≫ 1: ð27Þ

In order to have a crude idea of the size of each term
in Eq. (26), one sets E=EP ≈ 10 and E=EP ≈ 1 to see that
the reduction is about 0.06% and 6% of the main
contribution, respectively. As it will be shown in the next
section, the corresponding correction for scalar radiation
is much larger.

III. A PARALLEL: SCALAR RADIATION

In this section, electromagnetic radiation is replaced
by scalar blackbody radiation coexisting with the
Schwarzschild black hole in a spherical shell of radius
R. Dirichlet and Neumann boundary conditions on the
shell’s wall will be addressed. The results will be compared
with those in the previous section.

Still considering the regime of high temperatures and/or
large shells [see Eq. (6)], the Helmholtz free energy for the
scalar radiation can be obtained from Dowker’s general
formula in Ref. [21] and it is given by [cf. Eq. (7)]6

F ¼ −
π2

90

ðkTÞ4
ðℏcÞ3 V � ζð3Þ

8π

ðkTÞ3
ðℏcÞ2 A; ð28Þ

with the upper/lower sign for Dirichlet and Neumann
boundary conditions, respectively,7 and where A ¼ 4πR2

[note also Eq. (8)]. Then Eq. (9) gives place to

U ¼ π2

30

ðkTÞ4
ðℏcÞ3 V ∓ ζð3Þ

4π

ðkTÞ3
ðℏcÞ2 A;

S ¼ 2π2

45

�
kT
ℏc

�
3

kV ∓ 3ζð3Þ
8π

�
kT
ℏc

�
2

kA: ð29Þ

Unlike the correction to the Planckian internal energy in
Eq. (9), U in Eq. (29) carries “quantum” corrections. Notice
also that the Dirichlet wall makes the scalar radiation
temperature more agile to change when U varies, whereas
the effect caused by the Neumann wall is the opposite one.8

Correspondingly, Eqs. (10) and (11) are replaced by their
scalar counterparts,

E ¼ Mc2 þ π2

30

ðkTÞ4
ðℏcÞ3 V ∓ ζð3Þ

4π

ðkTÞ3
ðℏcÞ2 A;

S ¼ 4πk
ℏc

GM2 þ 2π2

45

�
kT
ℏc

�
3

kV ∓ 3ζð3Þ
8π

�
kT
ℏc

�
2

kA;

leading to [cf. Eqs. (13) and (15)]

m ¼ 1 −
29π3

45

�
ER
ℏc

�
3

t4 � ζð3Þ26
�
ER
ℏc

�
2

t3; ð30Þ

s ¼ m2 þ 27π2

135

ER3c2

ℏ2G
t3 ∓ ζð3Þ6

π

R2c3

ℏG
t2; ð31Þ

where Eqs. (12) and (14) have been used again. It should be
remarked that Eqs. (16) and (17) still hold. Now, proceed-
ing as in the previous section, Eqs. (30) and (31) lead to
[cf. Eq. (19)]

ds
dt

¼ ℏc5

32πGE2t

�
46π3

45

�
ERt
ℏc

�
3 ∓ ζð3Þ273

�
ERt
ℏc

�
2
�
ð1− τÞ;

ð32Þ

where τ is defined in Eq. (20) and it satisfies Eq. (21).
Again, by examining Eq. (32), one sees that, for a black

6Recall that ellipses are being omitted.
7As in the whole text.
8Like that for electromagnetic radiation. See Sec. II.
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hole and blackbody radiation to coexist in the shell, the
maximum value of τ must not be less than unity. Then,
noticing Eqs. (30) and (20), the maximum value of τ
happens when dτ=dt ¼ 0 as before, resulting in Eq. (22)
giving place to

1 −
29π3

9

�
ER
ℏc

�
3

t4 � ζð3Þ28
�
ER
ℏc

�
2

t3 ¼ 0;

whose solution is given by [cf. Eq. (23)]

tτ ¼
�

9

29π3

�
1=4

�
ℏc
ER

�
3=4

�
1� ζð3Þ

�
9

2π3

�
3=4

�
ℏc
ER

�
1=4

�
:

ð33Þ

Now, by setting t ¼ tτ in Eq. (30), it results that

mðtτÞ ¼
4

5
� ζð3Þ

5

�
9

2π3

�
3=4

�
ℏc
ER

�
1=4

; ð34Þ

which corresponds to Eq. (24). Then, the maximum value
of τ is given by

τðtτÞ ¼
27π

5

GE2

ℏc5

�
9

29π3

�
1=4

�
ℏc
ER

�
3=4

×

�
1� ζð3Þ524

�
9

29π3

�
3=4

�
ℏc
ER

�
1=4

�
;

where Eqs. (20), (33), and (34) have been used. Finally,
considering the arguments just before Eq. (26), one ends
up with

Vh ¼
221

54
3π2

�
E
EP

�
5

l3
P � ζð3Þ

�
256

58
37

π

�
E
EP

�
13
�
1=3

l3
P;

ð35Þ

which is the scalar version of Eq. (26), for Dirichlet and
Neumann boundary conditions on the shell’s wall. Unlike
the correction in Eq. (26) due to the presence of a
conducting wall, those corrections in Eq. (35) carry ℏ.9

Considering Eq. (27), which also holds for scalar
radiation, it should be remarked that by setting E=EP ≈
10 and E=EP ≈ 1 in Eq. (35) the corrections are about 13%
and 60% of the main contribution, respectively. As has
been previously mentioned,10 these are far larger than the
corresponding correction in Eq. (26).

IV. FINAL REMARKS

A black hole is a thermal object and it can be in stable
thermodynamic equilibrium with blackbody radiation, if the

box where they coexist is not that large. This paper reported
a study of the effects on thermal stability of acknowledging
vacuum polarization caused by the wall of a spherical shell
that contains a Schwarzschild black hole at its center and is
filled with either electromagnetic or scalar hot radiations.
The critical volume Vh ∝ ðE=EPÞ5l3

P above which the two
systems cannot coexist in stable thermodynamic equilib-
rium is well known. It was shown here that this value is
reduced by a term proportional to ðE=EPÞ3l3

P in the case of
electromagnetic radiation in a perfect conducting shell, and
it is increased by a term proportional to �ðE=EPÞ13=3l3

P in
the case of scalar radiation in a shell with Dirichlet (þ sign)
or Neumann (− sign) walls.
As is well known, a Schwarzschild black hole has a

negative heat capacity, C < 0 [see Eq. (A3)]. It can be in
stable thermodynamic equilibrium with blackbody radia-
tion, with heat capacity CV > 0, only if

CV < jCj; ð36Þ

as a basic calculation in thermodynamics may show.11 That
is, Eq. (36) says that the blackbody radiation must be more
agile than the black hole to catch up to the temperature
of the latter when it rushes away from equilibrium. By
replacing the < sign in Eq. (36) by the ¼ sign, one obtains
Vh in Eqs. (26) and (35) (see the Appendix).
A natural extension of the present work would be an

investigation when the inequality in Eq. (6) is less
stringent, such that low temperatures and/or small shells
could be considered. In an early work, Pavón and Israel
have speculated that the first term on the rhs of Eq. (35) is a
good approximation for Vh “even for Planck-mass black
holes and for box radii comparable with the size of the
black hole” [22]. Recalling that by setting E=EP ≈ 1 in
Eq. (35) the corrections reach 60% of the main contribu-
tion, it seems that the conclusion in Ref. [22] needs to be
reexamined. At such a regime, vacuum polarization due to
nontrivial black hole geometry will most likely have to be
taken into account, as has indeed been done in Ref. [22].
Nevertheless, vacuum polarization due to the wall, which
was the focus here, certainly cannot be neglected and,
perhaps, vacuum energy may play a crucial role.
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APPENDIX: Vh FOLLOWING FROM EQ. (36)

The material below makes the text rather self-contained
by showing that Eq. (26) follows from Eq. (36). Analogous
calculations can be used to derive Eq. (35) from
Eq. (36) also.
The heat capacity CV ¼ ∂TU of electromagnetic radia-

tion in a perfect conducting spherical shell follows from
Eq. (9) and it is given by

CV ¼ 4π2

15
k

�
kT
ℏc

�
3

V þ k
4
; ðA1Þ

where only main contributions have been kept. Noting
Eq. (1), one sets T ¼ TH in Eq. (A1), resulting that

CV ¼ k
2715π

V
�

c2

MG

�
3

þ k
4
: ðA2Þ

The heat capacity C ¼ ∂TH
ðMc2Þ of the Schwarzschild

black hole at the center of the shell is

C ¼ −8πk
GM2

ℏc
: ðA3Þ

Now, by considering the comments in the paragraph of
Eq. (36), one sets CV ¼ jCj and solves for V, finding that

VM ¼ 21015π2
G4M5

ℏc7
− 2515π

G3M3

c6
; ðA4Þ

where Eqs. (A2) and (A3) have been used.
The next step is to replace in Eq. (10), T ¼ TH and

V ¼ VM, yielding

E ¼ 5

4
Mc2 þ 3

27π

ℏc3

GM
: ðA5Þ

As usual, only the leading correction to 5Mc2=4 has been
considered in Eq. (A5). The last step is to use Eq. (A5) in
Eq. (A4), which leads to Eq. (26) again.
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