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We investigate the correlation harvesting protocol using two Unruh-DeWitt particle detectors moving
along four classes of uniformly accelerated trajectories categorized by Letaw: linear, catenary, cusped,
and circular motions. For each trajectory, two types of configurations are carried out: one possesses a
stationary (time-translation invariant) Wightman function and the other is nonstationary. We find that
detectors undergoing linear, catenary, and cusped motions gain fewer correlations in the nonstationary
configurations compared to those in stationary configurations. Detectors in circular motion have similar
behavior in both configurations. We discuss the relative suppression of correlation harvesting due to high
acceleration for each case. Remarkably we find that under certain circumstances detectors in both linear
and circular states of motion can harvest genuine (non-communication-assisted) entanglement even
though they are in causal contact.
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I. INTRODUCTION

The field of relativistic quantum information has under-
gone rapid development in recent years, resulting in the
emergence of ground-breaking concepts such as entangle-
ment degradation due to noninertial motion [1–3], entan-
glement harvesting [4–8], and the long-established Unruh
effect [9–11]. The Unruh effect states that a linearly
accelerating observer in Minkowski spacetime will expe-
rience a thermal bath, and this experience is indistinguish-
able from that of an inertial observer sitting in a thermal
bath. More precisely, the temperature detected by a linearly
accelerating two-level quantum system, known as the
Unruh-DeWitt (UDW) particle detector [11,12], is propor-
tional to its acceleration a and it reads

TU ¼ ℏa
2πckB

; ð1Þ

where ℏ is the reduced Planck constant, c is the speed of
light, and kB is Boltzmann’s constant.
Despite its theoretical significance, the Unruh effect has

yet to be verified experimentally. The main challenge
hindering its experimental verification lies in the large
acceleration required to produce experimentally measur-
able temperatures. For example, an acceleration on the

order of magnitude of a ≈ 1020 m=s2 is needed to achieve a
temperature of TU ∼ 1 K.
Given this situation, researchers have explored other

detector trajectories that could induce a phenomenon
similar to the Unruh effect. In 1981, Letaw found five
classes of stationary trajectories with nonzero constant
acceleration in flat spacetime [13]: linear, circular, cusped,
catenary, and helix trajectories. In (3þ 1)-dimensional
Minkowski spacetime, these trajectories are characterized
by three parameters: two torsions and the magnitude of the
proper acceleration. The effective temperatures observed
by a detector undergoing these motions have been studied
over subsequent years in various contexts [14–20].
Among these, the circular trajectory has attracted consid-
erable attention for potential experimental realizations of
the Unruh effect [14,15,19,21–24].
Less studied is the entanglement harvesting protocol for

these various classes of motion, apart from detectors under-
going linearly accelerated motion, which has been exten-
sively analyzed [8,25–28]. In this paper, we consider this
problem and investigate how two UDW detectors can
extract entanglement from the vacuum while undergoing
these various types of noninertial motion.
In the entanglement harvesting protocol [4–7], two

initially uncorrelated detectors interact locally with a
quantum field in some state (typically the vacuum state)
to extract preexisting entanglement [29,30]. More gener-
ally, detectors can harvest classical and quantum correla-
tions in what is called the correlation harvesting protocol.
The amount of harvested correlations is sensitive to the
background spacetime [31–46] and the motion of the
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detectors [8,25–28,47–50]. Implementing this protocol is
very close to implementation as recent experiments
detecting correlations of the electromagnetic ground state
in a ZnTe crystal have demonstrated [51–53].
In this paper we investigate the correlation harvesting

protocol with detectors in four classes of uniform accel-
eration motion: linear, catenary, cusped, and circular
trajectories. Unlike the helical case, these motions can
all be realized in two spatial dimensions and so are more
amenable to experimental testing [19–24]. We categorize
the configurations for the detectors into two configura-
tions: stationary, in which the Wightman function is time-
translation invariant, and nonstationary, in which the
Wightman function is not time-translation invariant. The
Wightman functions for these two scenarios are similar;
however, in nonstationary configurations, they possess an
additional term that breaks time-translation invariance.
After introducing the UDW detector model in Sec. II

and the four uniform acceleration trajectories in Sec. III,
we then focus in Sec. IVA on a single detector following
the four trajectories to examine its transition probability
(or response function). We study its dependence on the
magnitudes of the acceleration and torsions and numeri-
cally evaluate the effective temperature of the detector.
We then consider the correlation harvesting protocol in

Sec. IV B. Specifically, we numerically evaluate the
concurrence of entanglement and quantum mutual infor-
mation, which measures the harvested total correlations.
We find that the stationary and nonstationary configura-
tions behave in a similar manner since their Wightman
functions have terms in common. However, the amount of
correlations extracted by the detectors in the nonstationary
configurations differs from those of the stationary ones
due to an additional term in the Wightman function. We
also look into the acceleration dependence of the har-
vested correlations and conclude that sufficiently high
accelerations prevent any uniformly accelerating detectors
from extracting correlations. This point is consistent with
previous papers that focused on linear and circular
motions [8,25–28,47,48]. Finally, we show that constant
acceleration makes it challenging to perform “genuine
entanglement harvesting” (harvesting entanglement pre-
existing in a quantum field that has no possible assistance
from detector communication) in Sec. IV C. In general,
genuine entanglement can be harvested from causally
disconnected spacetime regions due to microcausality. For
inertial detectors with Gaussian switching in Minkowski
spacetime, we show that a sufficiently large energy gap
allows the detectors to extract genuine entanglement from
such regions [7,54]. While we find that this is generally
not the case for uniformly accelerated detectors, remark-
ably we find small but non-negligible regions of parameter
space where detectors in causal contact can harvest
genuine entanglement.

Throughout this manuscript, we use the mostly plus
metric convention ð−;þ;þ;þÞ and the natural units
ℏ ¼ kB ¼ c ¼ 1. A point in spacetime is denoted by x.

II. UNRUH-DEWITT DETECTORS

A. Density matrix of detectors

Let us first review the correlation harvesting protocol.
Consider two pointlike UDW detectors A and B with an
energy gapΩj, j∈ fA;Bg between ground jgji and excited
states jeji. These detectors interact with the quantum
Klein-Gordon field ϕ̂ along their trajectories xjðτjÞ ¼
ðtðτjÞ; xðτjÞÞ, where τj is the proper time of detector j.
In the interaction picture, the interaction Hamiltonian (as

a generator of time translation with respect to τj) describing
the coupling between detector j and ϕ̂ is given by

Ĥ
τj
j ðτjÞ ¼ λjχjðτjÞμ̂jðτjÞ⊗ ϕ̂ðxjðτjÞÞ; j∈fA;Bg; ð2Þ

where λj is a coupling constant and χjðτjÞ is the switching
function that governs the time dependence of the coupling.
Here, μ̂jðτjÞ is the monopole moment given by

μ̂jðτjÞ ¼ jejihgjjeiΩjτj þ jgjihejje−iΩjτj ; ð3Þ

which describes each detector’s internal dynamics, and the
field operator ϕ̂ðxjðτjÞÞ is pulled back along the trajectory
of detector j. The superscript on Ĥ

τj
j ðτjÞ indicates the time

translation that the Hamiltonian is generating.
The total interaction Hamiltonian Ĥt

IðtÞ can be written as
a generator of time translation with respect to the time t that
is common to both detectors:

Ĥt
IðtÞ ¼

dτA
dt

ĤτA
A ðτAðtÞÞ þ

dτB
dt

ĤτB
B ðτBðtÞÞ: ð4Þ

Note that the proper times τA and τB are each now functions
of t. From this Hamiltonian, one obtains the time-evolution
operator ÛI [55,56]:

ÛI ¼ T t exp

�
−i
Z
R
dtĤt

IðtÞ
�
; ð5Þ

where T t is a time-ordering symbol with respect to the
common time t.
One can then use a perturbative analysis and obtain the

final density matrix of a joint system HA ⊗ HB, where Hj
is a Hilbert space for detector j. Assuming a small coupling
strength, λ ≪ 1, the Dyson series expansion of ÛI reads

ÛI ¼ 1þ Ûð1Þ
I þ Ûð2Þ

I þOðλ3Þ; ð6aÞ

Ûð1Þ
I ¼ −i

Z
∞

−∞
dtĤt

IðtÞ; ð6bÞ
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Ûð2Þ
I ¼ −

Z
∞

−∞
dt1

Z
t1

−∞
dt2Ĥ

t
Iðt1ÞĤt

Iðt2Þ: ð6cÞ

Assuming that the initial state ρ0 of the detector-field
system is

ρ0 ¼ jgAihgAj ⊗ jgBihgBj ⊗ j0ih0j; ð7Þ

where j0i is the vacuum state of the field, one finds the final
total density matrix ρtot after the interaction to be

ρtot ¼ ÛIρ0Û
†
I

¼ ρ0 þ ρð1;1Þ þ ρð2;0Þ þ ρð0;2Þ þOðλ4Þ; ð8Þ

where ρði;jÞ ¼ ÛðiÞρ0ÛðjÞ† and all the odd-power terms in λ
vanish [7]. Then the final density matrix of the detectors,
ρAB, is obtained by tracing out the field part: ρAB ¼
Trϕ½ρtot�. By employing the basis jgAgBi ¼ ½1; 0; 0; 0�⊤,
jgAeBi ¼ ½0; 1; 0; 0�⊤, jeAgBi ¼ ½0; 0; 1; 0�⊤, jeAeBi ¼
½0; 0; 0; 1�⊤, the density matrix ρAB reads

ρAB ¼

2
66664
1−LAA −LBB 0 0 M�

0 LBB L�
AB 0

0 LAB LAA 0

M 0 0 0

3
77775þOðλ4Þ; ð9Þ

where

Lij ¼ λ2
Z
R
dτi

Z
R
dτ0jχiðτiÞχjðτ0jÞe−iΩðτi−τ

0
jÞ

×WðxiðτiÞ; xjðτ0jÞÞ; ð10aÞ

M ¼ −λ2
Z
R
dτA

Z
R
dτBχAðτAÞχBðτBÞe−iΩðτAþτBÞ

× ½ΘðtðτAÞ − tðτBÞÞWðxAðτAÞ; xBðτBÞÞ
þ ΘðtðτBÞ − tðτAÞÞWðxBðτBÞ; xAðτAÞÞ�; ð10bÞ

where ΘðtÞ is the Heaviside step function and Wðx; x0Þ ≔
h0jϕ̂ðxÞϕ̂ðx0Þj0i is the vacuum Wightman function. In
(3þ 1)-dimensional Minkowski spacetime, the Wightman
function reads

Wðx; x0Þ ¼ −
1

4π2
1

ðt − t0 − iϵÞ2 − ðx − x0Þ2 ; ð11Þ

where ϵ is the UV cutoff. The elements Ljj, j∈ fA;Bg are
the so-called transition probabilities (or response func-
tions), which describe the probability of a detector tran-
sitioning from the ground to excited states, jgji → jeji.
The off-diagonal elements M and LAB are responsible for

harvesting entanglement and quantum mutual information,
respectively, as we shall see in the next subsection.
Throughout this paper, we use a Gaussian switching

function

χjðτjÞ ¼ e−τ
2
j =2σ

2

; ð12Þ

where σ > 0 is the characteristic Gaussian width, which has
the units of time. We will use σ to make all quantities
unitless (such as Ωσ).

B. Correlation measure

Let us introduce two measures for correlation: concur-
rence CAB and quantum mutual information IAB.
Concurrence is a measure of entanglement [57,58]. Let

ρAB be the density matrix of a two-qubit system. We first
define a matrix ρ̃AB as

ρ̃AB ≔ ðσ̂y ⊗ σ̂yÞρ�ABðσ̂y ⊗ σ̂yÞ; ð13Þ

where σ̂y is the Pauli-y operator and ρ�AB is the complex
conjugate of ρAB. Then by denoting wi ∈R (i ¼ 1; 2; 3; 4)
as eigenvalues of a Hermitian operator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAB

p
ρ̃AB

ffiffiffiffiffiffiffiffi
ρAB

pp
,

the concurrence is defined as follows:

CAB ≔ maxf0; w1 − w2 − w3 − w4g;
ðw1 ≥ w2 ≥ w3 ≥ w4Þ: ð14Þ

The concurrence is zero if and only if the state ρAB is
separable. In the case of our density matrix (9), the
concurrence is known to be

CAB ¼ 2maxf0; jMj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAALBB

p
g þOðλ4Þ: ð15Þ

Quantum mutual information [59], on the other hand,
quantifies the amount of total correlation, both classical and
quantum. Quantum mutual information IAB between two
qubits A and B up to second order in λ is [7]

IAB ¼ Lþ lnLþ þ L− lnL−

− LAA lnLAA − LBB lnLBB þOðλ4Þ; ð16Þ

where

L�≔
1

2

�
LAAþLBB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA−LBBÞ2þ4jLABj2

q �
: ð17Þ

Note that, while concurrence (15) vanishes when the
“noise term”

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAALBB

p
exceeds the nonlocal element jMj,

the mutual information becomes zero when jLABj ¼ 0. In
addition, if CAB ¼ 0 but the mutual information is non-
vanishing, then the extracted correlation by the detectors is
either classical correlation or nondistillable entanglement.
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III. UNIFORM ACCELERATION TRAJECTORIES

A. Single detector trajectory classification

The most well-known trajectory for a uniformly accel-
erating (i.e., a ¼ const) pointlike particle is linear accel-
erated motion. However, Letaw pointed out that there are, in
fact, five classes of uniformly accelerated trajectories,
excluding the case where a ¼ 0. Along with the linear
case, the other classes are circular, catenary, cusped, and
helix [13]. Consider a trajectory in (3þ 1)-dimensional
Minkowski spacetime. Such a trajectory can be character-
ized by three geometric invariants: the curvature aðτÞ, which
represents the magnitude of proper acceleration, the first
torsion bðτÞ, and the second torsion (also known as hyper-
torsion) νðτÞ of the worldline. The torsions bðτÞ and νðτÞ
correspond to the proper angular velocities in a given tetrad
frame [13]. Assuming that these invariants are constants, the
trajectory becomes stationary. In a nutshell, these motions
are characterized by the following:
(1) linear: a ≠ 0; b ¼ ν ¼ 0;
(2) catenary: a > b, ν ¼ 0;
(3) cusped: a ¼ b, ν ¼ 0;
(4) circular: a < b, ν ¼ 0; and
(5) helix: ν ≠ 0.

In this subsection, we review these trajectories and consider
the corresponding vacuum Wightman functions. We will
suppress the UV cutoff ϵ for readability.

1. Linear motion

The linear acceleration motion of a detector is defined
solely by the constant acceleration a, with all other
parameters set to zero. The trajectory reads

xðτÞ ¼
�
1

a
sinhðaτÞ; 1

a
coshðaτÞ; 0; 0

�
; ð18Þ

and the Wightman function along this trajectory is given by

WlinðΔτÞ ¼ −
1

4π2
1

4
a2 sinh

2
�
aΔτ
2

� ; ð19Þ

where Δτ ≔ τ − τ0.

2. Circular motion

The circular trajectory is defined by a and b satisfying
a < b. Let us begin with a commonly used trajectory

xðτÞ ¼ ðγτ; R cosðωγτÞ; R sinðωγτÞ; 0Þ; ð20Þ

where R, ω, and γ are the radius of the circular motion,
angular velocity, and the Lorentz factor defined as
γ ≔ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, respectively. Here, v ≔ Rωð≤ 1Þ is the

speed of the detector. Introducing the acceleration of the
detector a ¼ Rω2γ2, these parameters can be related by

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
ð1þ aRÞR

r
; ð21aÞ

γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aR

p
; ð21bÞ

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aR

1þ aR

r
: ð21cÞ

In terms of the acceleration a and the torsion b, we can
further express ω and v as

ω ¼ bð1 − a2=b2Þ; v ¼ a=b;

respectively. The Wightman function is then

WcirðΔτÞ ¼ −
1

4π2
1

γ2Δτ2 − 4R2 sin2ðωγΔτ=2Þ : ð22Þ

3. Cusped motion

Cusped motion is described by the acceleration and
torsion with a ¼ b. The trajectory reads

xðτÞ ¼
�
τ þ 1

6
a2τ3;

1

2
aτ2;

1

6
a2τ3; 0

�
; ð23Þ

and the corresponding Wightman function is

WcusðΔτÞ ¼ −
1

4π2
1

Δτ2 þ a2
12
Δτ4

: ð24Þ

4. Catenary motion

Catenary motion can be characterized by a and b with
a > b. The trajectory is given by

xðτÞ ¼
 

a
a2 − b2

sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τÞ;

a
a2 − b2

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τÞ; bτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p ; 0

!
; ð25Þ

and the Wightman function reads

WcatðΔτÞ¼−
1

4π2
1

−b2Δτ2
a2−b2þ 4a2

ða2−b2Þ2 sinh
2
� ffiffiffiffiffiffiffiffiffi

a2−b2
p

Δτ
2

� : ð26Þ

We immediately see that catenary motion reduces to the
linear motion as b → 0. Catenary motion also reduces to
cusped motion as b → a after a coordinate transformation
consisting of a Lorentz boost and a translation [18].
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5. Helix motion

Finally, helix motion is a combination of circular
and linear acceleration motions characterized by three
parameters, a, b, and ν:

xðτÞ ¼
�
P
Γþ

sinhðΓþτÞ;
P
Γþ

coshðΓþτÞ;

Q
Γ−

cosðΓ−τÞ;
Q
Γ−

sinðΓ−τÞ
�
; ð27Þ

where P ≔ Ξ=Γ, Q ≔ ab=ΞΓ, and

Ξ2 ≔
1

2
ðΓ2 þ a2 þ b2 þ ν2Þ; ð28aÞ

Γ2 ≔ Γ2þ þ Γ2
−; Γ2

� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
� A; ð28bÞ

A ≔
1

2
ða2 − b2 − ν2Þ; B ≔ aν: ð28cÞ

The Wightman function reads

WhelðΔτÞ¼−
1

4π2
1

4P2

Γ2
þ
sinh2

�
ΓþΔτ
2

�
− 4Q2

Γ2
−
sin2

�
Γ−Δτ
2

� : ð29Þ

Note that the trajectory and the corresponding Wightman
function reduce to the aforementioned trajectories when
ν → 0. In this sense, the helix is the general motion that
contains other motions.

6. Wightman function at ν = 0

We now turn our attention to the special case where
ν ¼ 0. Although the Wightman functions for linear, circu-
lar, catenary, and cusped motions may initially appear to
take different forms, they can actually be expressed in a
unified manner. Let b̄≡ b=a with the condition that a ≠ 0.
The Wightman functions for all trajectories with ν ¼ 0 can
be written in the following compact form:

Wν¼0ðΔτÞ ¼ −
1

4π2
1

− b̄2

1−b̄2 Δτ
2 þ 4

ð1−b̄2Þ2a2 sinh
2
� ffiffiffiffiffiffiffiffi

1−b̄2
p

aΔτ
2

� :
ð30Þ

The parameter b̄ serves to specify the particular trajectory,
as illustrated in Fig. 1: linear (b̄ ¼ 0), catenary (0 < b̄ < 1),
cusped (b̄ ¼ 1), and circular (b̄ > 1). For circular motion,
we employ the identity sinðixÞ ¼ i sinhðxÞ. Note that one
obtains the Wightman function for the cusped motion,
as given in (24), by performing a series expansion around
b̄ ¼ 1.
The corresponding transition probability Ljj, j∈ fA;Bg,

in (9) reads

Ljj ¼ λ2σ
ffiffiffi
π

p Z
R
due−u

2=4σ2e−iΩuWν¼0ðuÞ: ð31Þ

B. Two detectors in uniform acceleration

We now consider two UDW detectors A and B, both
undergoing uniform acceleration. In particular, we catego-
rize the detector configurations into two classes: stationary
(time-translation invariant) and nonstationary scenarios.

FIG. 1. Four trajectories characterized by b̄≡ b=a.
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1. Stationary scenario

Consider two detectors undergoing the same uniform
acceleration (e.g., both linearly accelerated). The Wightman
function can be made time-translation invariant, meaning it
depends only on the time difference Δτ ≔ τA − τB, by
imposing that the angle between the velocity vector of a
detector and the spatial displacement vector from one
detector to the other is time independent. For example,
two linearly accelerating detectors along the trajectories

xAðτAÞ ¼
�
1

a
sinhðaτAÞ;

1

a
coshðaτAÞ; 0; 0

�
; ð32aÞ

xBðτBÞ ¼
�
1

a
sinhðaτBÞ;

1

a
coshðaτBÞ; L; 0

�
ð32bÞ

give the following stationary Wightman function:

WlinðτA; τBÞ ¼ −
1

4π2
1

4
a2 sinh

2
�
aΔτ
2

�
− L2

; ð33Þ

where L ≔ jxA − xBj is the spatial separation between
the two detectors. As depicted in Fig. 2, top left, each
velocity vector of the detector is always perpendicular to
the displacement vector xAB ≔ xA − xB throughout the
interaction.
We can also construct stationary Wightman functions for

other motions:
Circular

xA ¼ ðγτA; R cosðωγτAÞ; R sinðωγτAÞ; 0Þ; ð34aÞ

xB ¼ ðγτB; R cosðωγτBÞ; R sinðωγτBÞ; LÞ: ð34bÞ

Cusped

xA ¼
�
τA þ 1

6
a2τ3A;

1

2
aτ2A;

1

6
a2τ3A; 0

�
; ð35aÞ

xB ¼
�
τB þ 1

6
a2τ3B;

1

2
aτ2B;

1

6
a2τ3B; L

�
: ð35bÞ

Catenary

xA ¼
�

a
a2 − b2

sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τAÞ;

a
a2 − b2

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τAÞ;

bτAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ; 0

�
;

ð36aÞ

xB ¼
�

a
a2 − b2

sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τBÞ;

a
a2 − b2

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τBÞ;

bτBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ; L

�
:

ð36bÞ

As for a single detector, the Wightman functions along the
trajectories given above take the following compact form:

WsðτA; τBÞ≡WsðΔτÞ ¼ −
1

4π2
1

− b̄2

1−b̄2 Δτ
2 þ 4

ð1−b̄2Þ2a2 sinh
2
� ffiffiffiffiffiffiffiffi

1−b̄2
p

aΔτ
2

�
− L2

; ð37Þ

where Δτ ≔ τA − τB; b̄≡ b=a and the subscript “s” stands
for stationary. Since the Wightman function depends only
on Δτ, the elements in the density matrix (9), M and LAB,
can be simplified to single integrals when the Gaussian
switching function (12) is used:

M ¼ −2λ2σ
ffiffiffi
π

p
e−Ω

2σ2
Z

∞

0

due−u
2=4σ2WsðuÞ; ð38aÞ

LAB ¼ λ2σ
ffiffiffi
π

p Z
R
due−u

2=4σ2e−iΩuWsðuÞ: ð38bÞ

Here, we used the fact that the Heaviside step function
in (10b) can be written as ΘðtðτAÞ − tðτBÞÞ ¼ ΘðτA − τBÞ
for any of the uniform acceleration scenarios mentioned
earlier.

We note that all stationary configurations can only be
realized in (3þ 1) dimensions, with the exception of the
linear configuration.

2. Nonstationary scenario

One can also consider configurations similar to those in
Sec. III B 1, where the Wightman function depends not
only on Δτ but also on Δþτ ≔ τA þ τB. In this case, the
Wightman function is no longer time-translation invariant
(hence, nonstationary).
In particular, consider two linearly accelerating UDW

detectors whose trajectories are given by

xAðτAÞ ¼
�
1

a
sinhðaτAÞ;

1

a
coshðaτAÞ þ L; 0; 0

�
; ð39aÞ
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xBðτBÞ ¼
�
1

a
sinhðaτBÞ;

1

a
coshðaτBÞ; 0; 0

�
: ð39bÞ

The correlation harvesting protocol along these trajectories was examined in [26,28]. The corresponding Wightman
function reads

WlinðτA; τBÞ ¼ −
1

4π2
1

4
a2 sinh

2
�
aΔτ
2

�
− L2 − 4L

a sinh
�
aΔτ
2

�
sinh

�
aΔþτ
2

� : ð40Þ

FIG. 2. Stationary and nonstationary configurations for four classes of uniformly accelerating detectors. Red and blue represent
detectors A and B, respectively.
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The term Δþτ comes from the fact that the angle between
the velocity vector and the displacement vector is time
dependent (0° or 180°).
Similarly, other uniformly accelerating trajectories that

yield a nonstationary Wightman function are as follows:
Circular

xA ¼ ðγτA;RcosðωγτAÞþL;R sinðωγτAÞ;0Þ; ð41aÞ

xB ¼ ðγτB; R cosðωγτBÞ; R sinðωγτBÞ; 0Þ: ð41bÞ

Cusped

xA ¼
�
τA þ 1

6
a2τ3A;

1

2
aτ2A þ L;

1

6
a2τ3A; 0

�
; ð42aÞ

xB ¼
�
τB þ 1

6
a2τ3B;

1

2
aτ2B;

1

6
a2τ3B; 0

�
: ð42bÞ

Catenary

xA ¼
�

a
a2 − b2

sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τAÞ;

a
a2 − b2

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τAÞ þL;

bτAffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ;0

�
;

ð43aÞ

xB ¼
�

a
a2 − b2

sinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τBÞ;

a
a2 − b2

coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
τBÞ;

bτBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ; 0

�
:

ð43bÞ

The Wightman function for these nonstationary motions
can be compactly expressed as

WnsðτA; τBÞ ¼ −
1

4π2
1

− b̄2

1−b̄2 Δτ
2 þ 4

ð1−b̄2Þ2a2 sinh
2
� ffiffiffiffiffiffiffiffi

1−b̄2
p

aΔτ
2

�
− L2 − 4L

ð1−b̄2Þa sinh
� ffiffiffiffiffiffiffiffi

1−b̄2
p

aΔτ
2

�
sinh

� ffiffiffiffiffiffiffiffi
1−b̄2

p
aΔþτ

2

� ð44Þ

and possesses an additional term in the denominator
compared to the stationary Wightman function (37). Here,
the subscript “ns” designates nonstationary. Due to this
additional term, the correlations harvested by nonstationary
detectors will exhibit behavior similar to those of stationary
detectors.
Note that the presence of Δþτ prevents us from reducing

the double integrals in (10) into single integrals.
Furthermore, all nonstationary configurations can be
realized in (2þ 1) dimensions, except for the helix case,
which we are not considering.

IV. NUMERICAL RESULTS

Here, we numerically compute the concurrence (15) and
quantum mutual information (16) harvested by two uni-
formly accelerating detectors by inserting the Wightman
functions (30), (37), and (44) into Lij andM given in (10).
For stationary detectors in Sec. III B 1, we utilize the
expressions given by (38).

A. Transition probability of uniformly
accelerating detectors

Let us begin by considering the transition probability Ljj
for a uniformly accelerating detector. We are particularly
interested in the cases of linear (b̄ ¼ 0), catenary
(0 < b̄ < 1), cusped (b̄ ¼ 1), and circular (b̄ > 1) motions,
and their respective transition probabilities are given by (31).
We consider Ljj=λ2 and write the parameters in units of σ,

which makes the transition probability a function of three
variables: aσ, b̄, and Ωσ. It is important to note that
LAA ¼ LBB, as we are assuming both detectors are identical.
Figure 3 depicts the transition probability Ljj=λ2 as a

function of the magnitude of acceleration aσ for fixed Ω
[Fig. 3(a)] and log10 b̄ for different values of the accel-
eration [Figs. 3(b) and 3(c)]. In Fig. 3(a), the transition
probabilities for a detector with Ωσ ¼ 2 in linear (b̄ ¼ 0),
catenary (b̄ ¼ 0.5), cusped (b̄ ¼ 1), and circular (b̄ ¼ 2)
motions are shown. We find that in all these cases, Ljj=λ2

increases with the acceleration aσ.1

However, the relationship between the transition prob-
abilities of detectors in different uniform motions is highly
nontrivial. For instance, when a detector has Ωσ ¼ 2 and
aσ ≲ 5, as depicted in Fig. 3(a), a detector in circular
motion with b̄ ¼ 2 shows the largest value of Ljj=λ2,
whereas a detector in linear motion (b̄ ¼ 0) shows the
smallest. This relation, however, flips for aσ ≳ 5. We will
numerically demonstrate that such relationships depend on
the interplay between aσ and Ωσ.
In Fig. 3(b), the magnitude of the acceleration is fixed at

aσ ¼ 1, and Ljj=λ2 is plotted as a function of log10 b̄. Each
curve in this figure corresponds to a different value of Ωσ,

1Ljj=λ2 is not guaranteed to monotonically increase with aσ
for a finite interaction duration. For a detector in the linearly
accelerated motion, such phenomenon is known as the (weak)
anti-Unruh effect [60,61].
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with the curve for Ωσ ¼ 2 corresponding to Fig. 3(a) at
aσ ¼ 1. For each value of Ωσ in Fig. 3(b), the transition
probability has a peak for log10 b̄ > 0 (i.e., b̄ > 1) and then
decreases with increasing log10 b̄, becoming smaller than
the value for the linear case (log10 b̄ → −∞). This means
that Ljj=λ2 at aσ ¼ 1 in Fig. 3(a) increases with b̄ until it
reaches a maximum and then decreases. We note that the
presence of the peak is contingent on larger values of Ωσ
relative to aσ; in fact, the peak does not appear for smaller
energy gaps, in which case the transition probability
monotonically decreases with b̄, as shown in Fig. 3(b).
This trend is further illustrated in Fig. 3(c), where aσ ¼ 6 is
chosen. In this scenario, the peak is nonexistent for Ωσ ¼ 1

and 1.5 (as well as forΩσ < 1) but becomes manifest when
Ωσ ≳ 2. Thus we infer that detectors with smaller energy
gaps Ωσ compared to aσ do not have a peak in Ljjðb̄Þ=λ2.
The behavior of Ljj=λ2 is related to the concept of the

“effective temperature” perceived by a detector. For now,
let us denote the transition probability as LjjðΩ; σÞ. The
effective temperature Teff is defined as

T−1
eff ≔

1

Ω
ln
Ljjð−Ω; σÞ=λ2σ
LjjðΩ; σÞ=λ2σ

; ð45Þ

where this formula is derived in the Appendix. We
divide LjjðΩ; σÞ by σ so that it is well defined in the
long interaction limit, σ → ∞ [61,62]. Note that if the
Wightman function obeys the Kubo-Martin-Schwinger
(KMS) condition [63,64], then the effective temperature
converges to the KMS temperature (which is the temper-
ature of the field formally defined in quantum field theory)
in the limit σ → ∞. However, in the case of finite
interaction duration, the effective temperature is an esti-
mator for the actual field temperature. For a detector in a
uniform acceleration motion, the effective temperature for
each scenario has been examined in, e.g., [14–20].
We plot the effective temperature Teff as a function

of log10 b̄ when σ ¼ 1 and aσ ¼ 1 in Fig. 3(d), which
corresponds to Fig. 3(b). We see that the locations of the
peaks in Teff align with those of LjjðΩÞ in Fig. 3(b). This
suggests that, for a given acceleration and energy gap, a

FIG. 3. (a) Transition probabilities Ljj=λ2 as a function of the magnitude of acceleration aσ with Ωσ ¼ 2. (b) Ljj=λ2 as a function of
log10 b̄ with aσ ¼ 1 and (c) with aσ ¼ 6. (d) The effective temperature Teff as a function of log10 b̄ with aσ ¼ 1.
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detector in circular motion within a certain range of log10 b̄
can register higher effective temperatures than those in
other types of motion. However, as b̄ → ∞, which corre-
sponds to the speed of a detector in circular motion with
vcircð¼ b̄−1Þ → 0, the temperature becomes colder.

B. Concurrence and quantum mutual information
between uniformly accelerating detectors

We now move on to the correlation harvesting protocol
using two uniformly accelerating detectors, exploring both
stationary and nonstationary configurations as described
in Sec. III B.
We first examine the difference between the stationary

and nonstationary configurations by plotting concurrence
CAB=λ2 and quantum mutual information IAB=λ2 as a
function of b̄ in Fig. 4. In these plots, we fix Ωσ ¼ 0.1
and L=σ ¼ 1 and consider aσ ¼ 1 and aσ ¼ 2. We notice
two characteristics: (i) In the vicinity of b̄ ≈ 0, stationary
detectors consistently harvest greater correlations than
nonstationary detectors, for both concurrence and mutual
information. (ii) As b̄ becomes larger, both plots begin to

oscillate with b̄, and the curve representing correlations
harvested by nonstationary detectors oscillates around the
curve for the stationary case. The frequency of the
oscillation increases as aσ grows.
These observations can be traced back to the form of the

Wightman functions (37) and (44). Let us recall that the
denominators of these expressions contain sinhðxÞ when
b̄∈ ½0; 1Þ and transform into sinðxÞ when b̄ > 1. Therefore,
within the range b̄∈ ½0; 1Þ, the correlations are characterized
by an exponential pattern, while for b̄ > 1, an oscillatory
behavior emerges. These traits explain the observation
above. In particular, the suppression of correlations near
b̄ ≈ 0 for nonstationary detectors can be attributed to an
additional term in the denominator of (44), which is absent
in the stationary Wightman function (37). This extra term
diminishes the amount of harvested correlations relative to
the stationary scenario and simultaneously gives rise to the
oscillations noticed in the nonstationary case around the
stationary one.
We next examine the acceleration dependence of con-

currence CAB and quantum mutual information IAB as

FIG. 4. Concurrence (a) and quantum mutual information (b) harvested by stationary and nonstationary detectors as a function of b̄.
For each case, Ωσ ¼ 0.1 and L=σ ¼ 1. (a)(i) and (b)(i) are, respectively, CAB=λ2 and IAB=λ2 when aσ ¼ 1, while (a)(ii) and (b)(ii) are,
respectively, CAB=λ2 and IAB=λ2 when aσ ¼ 2.
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illustrated in Figs. 5(a) and (b), respectively. The stationary
[Figs. 5(a)(i) and 5(b)(i)] and nonstationary [Figs. 5(a)(ii)
and 5(b)(ii)] configurations are depicted, and all four
uniformly accelerated motions, linear (b̄ ¼ 0), catenary
(b̄ ¼ 0.5), cusped (b̄ ¼ 1), and circular (b̄ ¼ 2) are shown
in each figure.
As we pointed out earlier, the correlations harvested

by nonstationary detectors for b̄∈ ½0; 1Þ [Figs. 5(a)(ii)
and 5(b)(ii)] decay with increasing aσ faster than those
extracted by the stationary detectors [Figs. 5(a)(i)
and 5(b)(i)]. Meanwhile, the correlations extracted by
nonstationary detectors in circular motion (b̄ > 1)
[Figs. 5(a)(ii) and 5(b)(ii)] exhibit oscillatory behavior
around the corresponding stationary curves [Figs. 5(a)(i)
and 5(b)(i)].
Another observation we make is that, for both stationary

and nonstationary configurations and for any value of b̄,
CAB=λ2 becomes 0 at sufficiently high aσ. This can be
attributed to the high transition probability at large aσ as
shown in Fig. 3(a), leading to jMj < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LAALBB
p

in (15).
Furthermore, the high accelerations prevent the detectors

from extracting quantum mutual information, as IAB=λ2→0
at aσ → ∞ in Fig. 5(b). This indicates that any correlations
cannot be harvested as aσ → ∞ if the detectors are
uniformly accelerated. These findings are consistent with
previous results [8,25–28,47,48], where linearly and circu-
larly accelerated detectors are considered. Our paper extends
these insights, providing a more general understanding that
encompasses arbitrary uniformly accelerated motion.

C. Genuine entanglement harvesting

We finally consider how much of entanglement is
coming from the quantum field. It is known that the
Wightman function can be decomposed into two parts: the
anticommutator and the commutator of the field operator.
The anticommutator part hfϕ̂ðxÞ; ϕ̂ðx0Þgiρϕ (also known as
the Hadamard function), where h·iρϕ is the expectation
value with respect to the field state ρϕ, depends on the
state of the field ρϕ. Conversely, the commutator part
h½ϕ̂ðxÞ; ϕ̂ðx0Þ�iρϕ ¼ ½ϕ̂ðxÞ; ϕ̂ðx0Þ�∈C (also known as the
Pauli-Jordan function) is state independent. This means

FIG. 5. Concurrence CAB=λ2 with Ωσ ¼ 0.1, L=σ ¼ 0.5 (a) and quantum mutual information IAB=λ2 with Ωσ ¼ 0.1, L=σ ¼ 3 (b) as a
function of the magnitude of acceleration aσ. (a)(i) and (b)(i) correspond to the stationary configuration while (a)(ii) and (b)(ii) show the
nonstationary one, and each figure has four curves indicating four different motions.
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that even if the field state is not entangled, the commutator
part in the Wightman function allows detectors to be
entangled with each other. Such entanglement does not
come from preexisting entanglement in the field; rather it is
associated with communication between the detectors, and
thus we cannot say (for an unentangled field state) that
entanglement is “extracted” from the field if the commutator
part is the only contribution [54]. We say that entanglement
is harvested if the anticommutator contribution in the
element M is nonzero, and in particular we qualify the
harvested entanglement as being genuine if the commutator
part in M is zero. Microcausality tells us that the two
detectors can genuinely harvest entanglement if they are
causally disconnected. Here, we explore the circumstances
under which two uniformly accelerating detectors can
extract genuine entanglement from the field. Remarkably
we find that this can be possible even if the detectors are in
causal contact.
We begin by plotting the concurrence CAB=λ2 as a

function of the proper separation L=σ between the detectors
and the energy gap Ωσ in Fig. 6. The respective curves
correspond to linear (b̄ ¼ 0), catenary (b̄ ¼ 0.5), cusped
(b̄ ¼ 1), and circular motions (b̄ ¼ 2) in the stationary
configurations depicted in Fig. 2. The left region of each
curve represents the parameters ðL=σ;ΩσÞ that enable the
detectors to become entangled, manifest as CAB=λ2 > 0.
Conversely, the right region corresponds to CAB=λ2 ¼ 0.
Therefore, the stationary linear configuration (b̄ ¼ 0) has

the broadest parameter space that leads to CAB=λ2 > 0
compared to any other stationary configurations.
It has been shown [7] that two detectors at rest in

Minkowski spacetime with a Gaussian switching function
can be entangled with an arbitrary detector separation L=σ
if the energy gap Ωσ is large enough. However, we see that
this is not the case for uniformly accelerating detectors—
they can be entangled only when they are close to each
other, no matter how large Ωσ is.
We further ask how much entanglement stems from the

anticommutator and commutator parts in the Wightman
function. To see this, let us decompose the Wightman
function as

Wðx; x0Þ ¼ Re½Wðx; x0Þ� þ iIm½Wðx; x0Þ�; ð46Þ

where

2Re½Wðx; x0Þ� ¼ h0jfϕ̂ðxÞ; ϕ̂ðx0Þgj0i; ð47aÞ

2Im½Wðx; x0Þ� ¼ −i½ϕ̂ðxÞ; ϕ̂ðx0Þ�: ð47bÞ

Then the matrix element M can be decomposed into

M ¼ Mþ þ iM−; ð48Þ

whereMþ andM− are (10b) with the Wightman function
being replaced by Re½Wðx; x0Þ� and Im½Wðx; x0Þ�, respec-
tively. Mþ contains the information about genuine entan-
glement harvesting whereas M− is state independent and
does not necessarily exhibit the preexisting entanglement in
the field. For the stationary detectors, these expressions can
be simplified to single integral forms:

Mþ ¼ −λ2σ
ffiffiffi
π

p
e−Ω

2σ2
Z

∞

0

due−u
2=4σ2WsðuÞ

− λ2σ
ffiffiffi
π

p
e−Ω

2σ2
Z

∞

0

due−u
2=4σ2W�

s ðuÞ; ð49aÞ

M− ¼ iλ2σ
ffiffiffi
π

p
e−Ω

2σ2
Z

∞

0

due−u
2=4σ2WsðuÞ

− iλ2σ
ffiffiffi
π

p
e−Ω

2σ2
Z

∞

0

due−u
2=4σ2W�

s ðuÞ: ð49bÞ

We then define harvested concurrence CþAB and communi-
cation-assisted concurrence C−AB as [54]

C�AB ≔ 2maxf0; jM�j −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LAALBB

p
g þOðλ4Þ: ð50Þ

We plot C�AB=λ
2 as a function of L=σ in Fig. 7. Here, we

specifically choose the stationary linear (b̄ ¼ 0) and cir-
cular (b̄ ¼ 2) cases as a demonstration. We find that for
Ωσ ¼ 1 [Fig. 7(a)], the detectors can harvest entanglement
since CþAB=λ

2 > 0. Most strikingly, it is possible to extract

FIG. 6. The boundaries between CAB > 0 and CAB ¼ 0 for the
four stationary trajectories as a function of the proper separation
L=σ and the energy gap Ωσ. Here, linear (b̄ ¼ 0), catenary
(b̄ ¼ 0.5), cusped (b̄ ¼ 1), and circular (b̄ ¼ 2) with aσ ¼ 1 are
depicted. Concurrence is nonzero in the left region of each curve.
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genuine entanglement for L=σ ∈ ð1.5; 2.2Þ since CþAB > 0

while C−AB ¼ 0 in this region. However, this is not always
true as one can see from Fig. 7(b) when Ωσ ¼ 2. Here,
detectors in circular motion can encounter the case where
CþAB ¼ 0 while C−AB > 0, which indicates that the generated
entanglement after the interaction is purely coming from
the communication and not from the field.
However genuine entanglement can still be extracted in

the linear configuration.

V. CONCLUSION

We carried out the correlation harvesting protocol
using two uniformly accelerating UDW detectors in
(3þ 1)-dimensional Minkowski spacetime. According to
Letaw [13], trajectories with constant (nonzero) acceleration
can be characterized by the magnitude of the acceleration
and two torsion parameters, resulting in five classes: linear,
catenary, cusped, circular, and helix motions. The first four
of these classes of motion are confined to a two-dimensional
spatial surface and can be regarded as specific cases of the
helix motion. Since two-dimensional configurations are
more amenable to experimental setups, we employed these
four simpler motions for our analysis.
We first examined the transition probability of a single

detector following the four trajectories in Sec. IVA.
Utilizing a unified expression for the Wightman functions
along these trajectories, we were able to explore the general
characteristics that are common to all these motions. We
found that the transition probabilities of these motions
monotonically increase with the magnitude of acceleration.

Moreover, we also evaluated the effective temperature—an
estimator for the temperature as observed by a detector.
We then introduced another UDW detector to consider

the correlation harvesting protocol in Sec. IV B. Two
configurations were explored: stationary and nonstation-
ary configurations. In the stationary configuration, detec-
tors are separated in the direction perpendicular to their
two-dimensional spatial planes of motion. Specifically,
the displacement vector pointing from one detector to
the other remains orthogonal to the velocity vectors of the
detectors. In such a case, the Wightman function along
the stationary configuration is time-translation invariant.
On the other hand, in the nonstationary configuration,
the displacement vector aligns parallel to the planes of
motion. This makes the Wightman function nonstationary
(i.e., not time-translation invariant). Moreover, while this
Wightman function shares a common term with the
stationary configuration, an additional term appears that
specifically characterizes the nonstationary nature of this
configuration.
We found that the harvested correlations—entanglement

and total correlations—behave in a distinct manner depend-
ing on the motion of the detectors. Specifically, detectors in
linear, catenary, and cusped motions within the nonsta-
tionary configuration gain fewer correlations compared to
those in the stationary configuration. On the other hand, in
the circular motion case, both configurations exhibit similar
behavior. This difference can be attributed to the Wightman
functions. For linear, catenary, and cusped motions, the
Wightman function contains hyperbolic functions, leading
to an exponential alteration of the results. In contrast, the

FIG. 7. Harvested and communication-assisted concurrence C�AB=λ
2 for the stationary linear and circular configurations as a function

of the detector separation L=σ. (a) When Ωσ ¼ 1. The linear and circular cases are very similar and the detectors can harvest genuine
entanglement near L=σ ¼ 2. (b) When Ωσ ¼ 2. Although the linear case does not change much compared to the Ωσ ¼ 1 case, the
circular case cannot harvest genuine entanglement anymore. It is the mixture of the anticommutator and commutator contributions, or in
the worst case CþAB=λ

2 ¼ 0 around L=σ ¼ 1.3.
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Wightman function for circular motion is governed by
trigonometric functions.
We also looked into the acceleration dependence of the

harvested correlations and concluded (not surprisingly) that
high accelerations prevent the detectors from acquiring
correlations from the field. This point is consistent with
previous papers [8,25–28,47,48], in which linearly and
circularly accelerated detectors are considered. Our paper
generalized these results to any uniformly accelerating
detectors on two-dimensional spatial surfaces.
Finally, we focused on entanglement harvested by the

detectors in the stationary configuration and asked how
much entanglement is coming from the correlations
preexisting in the field. To be precise, the entanglement
coming from the commutator part of the Wightman
function is state independent, which suggests that the
detectors can still be correlated even if the field is not
entangled [54]. Thus, it is important to examine how the
anticommutator part of the Wightman function (which is
state dependent) contributes to the extracted correlations.
One way to eliminate the commutator contribution is to use
causally disconnected detectors. However, we found that
the existence of acceleration prohibits us from extracting
correlations with detectors separated far away, no matter
what the energy gap is. However we also found the striking
result that detectors in causal contact can harvest genuine
entanglement in certain parameter regimes.
Our results have important implications for experiment.

Attempts to realize the Unruh effect and correlation
harvesting generally rely on using laser pulses to probe
what are effectively two-dimensional surfaces. To probe the
effects of noninertial motion on mutual information and
entanglement will therefore involve two detectors (two
pulses) in nonstationary configurations, since only these
can be realized in a two-dimensional setting. Experimental
verification of the harvesting of genuine entanglement
would be an exciting confirmation of our understanding
of relativistic quantum information.
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APPENDIX: EFFECTIVE TEMPERATURE

Here, we review the concept of effective temperature Teff
and clarify its relation to the KMS temperature.
Let us first review the KMS temperature. In quantum

theory with separable Hilbert spaces, a trace of an operator,
Tr½·� is well defined. This enables us to consider the Gibbs
state at the inverse temperature β, ρ ¼ e−βĤ=Z, where
Z ≔ Tr½e−βĤ� is the partition function. This is what we
consider a thermal state of a system.

However in quantum field theory (QFT), a trace is
generally not well defined. Instead, we identify the KMS
state [63,64] as a thermal state inQFT. Specifically, if the field
is in theKMS thermal statewith respect to time τ at the inverse
KMS temperature βKMS, the Wightman function satisfies

WðΔτ − iβKMSÞ ¼ Wð−ΔτÞ; ðA1Þ

where Δτ ≔ τ − τ0. The Fourier transform of this equality
with respect to Δτ reads

W̃ð−ωÞ ¼ eβKMSωW̃ðωÞ: ðA2Þ

This equality in the Fourier domain is known as the detailed
balance condition. Thus, the thermality of a quantum field is
imprinted in these equalities.
The thermality can also be implemented in the transition

probability of a UDW detector. Recall that the transition
probability is written as

L¼ λ2
Z
R
dτ
Z
R
dτ0χðτÞχðτ0Þe−iΩðτ−τ0ÞWðxðτÞ;xðτ0ÞÞ; ðA3Þ

where the subscript in Ljj, j∈ fA;Bg is omitted for
simplicity. Let us assume that the switching function
χðτÞ has a characteristic time length σ. In our paper, this
is the Gaussian width in χðτÞ ¼ e−τ

2=2σ2 . It is convenient to
introduce a quantity related to the transition probability
known as the response function (divided by the character-
istic time length) F ðΩ; σÞ:

L¼ λ2σF ðΩ;σÞ;

F ðΩ;σÞ≔ 1

σ

Z
R
dτ
Z
R
dτ0χðτÞχðτ0Þe−iΩðτ−τ0ÞWðxðτÞ;xðτ0ÞÞ:

ðA4Þ

If the field is in the KMS state and the switching function is
a rapidly decreasing function, such as a Gaussian function,
then the response function in the long interaction limit
obeys the detailed balance relation [62]:

lim
σ→∞

F ð−Ω; σÞ
F ðΩ; σÞ ¼ eβKMSΩ: ðA5Þ

Note that this relation holds when the long interaction limit
is taken. On the other hand, if σ is not sufficiently long, the
ratio of the response function (sometimes known as the
excited-to-deexcited ratio) does not satisfy the detailed
balance condition.
From this relation, one can define the effective

temperature as

T−1
eff ≔

1

Ω
ln
F ð−Ω; σÞ
F ðΩ; σÞ : ðA6Þ
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Note that the effective temperature is not necessarily
the KMS temperature. If the field is in the KMS state
and the long interaction limit is taken, then the effective

temperature becomes the KMS temperature. In this
sense, the effective temperature is an estimator for the
field’s temperature.

[1] I. Fuentes-Schuller and R. B. Mann, Alice falls into a black
hole: Entanglement in noninertial frames, Phys. Rev. Lett.
95, 120404 (2005).

[2] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E.
Tessier, Entanglement of Dirac fields in noninertial frames,
Phys. Rev. A 74, 032326 (2006).

[3] P. M. Alsing and I. Fuentes, Observer-dependent entangle-
ment, Classical Quantum Gravity 29, 224001 (2012).

[4] A. Valentini, Non-local correlations in quantum electrody-
namics, Phys. Lett. 153A, 321 (1991).

[5] B. Reznik, Entanglement from the vacuum, Found. Phys.
33, 167 (2003).

[6] B. Reznik, A. Retzker, and J. Silman, Violating Bell’s
inequalities in vacuum, Phys. Rev. A 71, 042104 (2005).

[7] A. Pozas-Kerstjens and E. Martín-Martínez, Harvesting
correlations from the quantum vacuum, Phys. Rev. D 92,
064042 (2015).

[8] G. Salton, R. B. Mann, and N. C. Menicucci, Acceleration-
assisted entanglement harvesting and rangefinding, New J.
Phys. 17, 035001 (2015).

[9] S. A. Fulling, Nonuniqueness of canonical field quantiza-
tion in Riemannian space-time, Phys. Rev. D 7, 2850
(1973).

[10] P. C. Davies, Scalar production in Schwarzschild and
Rindler metrics, J. Phys. A 8, 609 (1975).

[11] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev.
D 14, 870 (1976).

[12] B. S. DeWitt, Quantum gravity: The new synthesis, in
General Relativity: An Einstein Centenary Survey, edited
by S. W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1979), pp. 680–745.

[13] J. R. Letaw, Stationary world lines and the vacuum excitation
of noninertial detectors, Phys. Rev. D 23, 1709 (1981).

[14] J. Bell and J. Leinaas, Electrons as accelerated thermom-
eters, Nucl. Phys. B212, 131 (1983).

[15] J. Bell and J. Leinaas, The Unruh effect and quantum
fluctuations of electrons in storage rings, Nucl. Phys. B284,
488 (1987).

[16] W. Unruh, Acceleration radiation for orbiting electrons,
Phys. Rep. 307, 163 (1998).

[17] B. A. Juárez-Aubry and D. Moustos, Asymptotic states for
stationary Unruh-DeWitt detectors, Phys. Rev. D 100,
025018 (2019).

[18] M. Good, B. A. Juárez-Aubry, D. Moustos, and M.
Temirkhan, Unruh-like effects: Effective temperatures along
stationary worldlines, J. High Energy Phys. 06 (2020) 059.

[19] S. Biermann, S. Erne, C. Gooding, J. Louko,
J. Schmiedmayer, W. G. Unruh, and S. Weinfurtner, Unruh
and analogue Unruh temperatures for circular motion in

3þ 1 and 2þ 1 dimensions, Phys. Rev. D 102, 085006
(2020).

[20] C. R. D. Bunney and J. Louko, Circular motion analogue
Unruh effect in a 2þ 1 thermal bath: Robbing from the rich
and giving to the poor, Classical Quantum Gravity 40,
155001 (2023).

[21] A. Retzker, J. I. Cirac, M. B. Plenio, and B. Reznik,
Methods for detecting acceleration radiation in a Bose-
Einstein condensate, Phys. Rev. Lett. 101, 110402 (2008).

[22] J. Marino, G. Menezes, and I. Carusotto, Zero-point
excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities, Phys.
Rev. Res. 2, 042009 (2020).

[23] C. Gooding, S. Biermann, S. Erne, J. Louko, W. G. Unruh,
J. Schmiedmayer, and S. Weinfurtner, Interferometric
Unruh detectors for Bose-Einstein condensates, Phys.
Rev. Lett. 125, 213603 (2020).

[24] C. R. D. Bunney, S. Biermann, V. S. Barroso, A.
Geelmuyden, C. Gooding, G. Ithier, X. Rojas, J. Louko,
and S. Weinfurtner, Third sound detectors in accelerated
motion, arXiv:2302.12023.

[25] Z. Liu, J. Zhang, and H. Yu, Entanglement harvesting in the
presence of a reflecting boundary, J. High Energy Phys. 08
(2021) 020.

[26] Z. Liu, J. Zhang, R. B. Mann, and H. Yu, Does acceleration
assist entanglement harvesting?, Phys. Rev. D 105, 085012
(2022).

[27] Z. Liu, J. Zhang, and H. Yu, Entanglement harvesting of
accelerated detectors versus static ones in a thermal bath,
Phys. Rev. D 107, 045010 (2023).

[28] M. Naeem, K. Gallock-Yoshimura, and R. B. Mann, Mutual
information harvested by uniformly accelerated particle
detectors, Phys. Rev. D 107, 065016 (2023).

[29] S. J. Summers and R. Werner, The vacuum violates Bell’s
inequalities, Phys. Lett. 110A, 257 (1985).

[30] S. J. Summers and R. Werner, Bell’s inequalities and
quantum field theory. I. General setting, J. Math. Phys.
(N.Y.) 28, 2440 (1987).

[31] G. V. Steeg and N. C. Menicucci, Entangling power of an
expanding universe, Phys. Rev. D 79, 044027 (2009).

[32] M. Cliche and A. Kempf, Vacuum entanglement enhance-
ment by a weak gravitational field, Phys. Rev. D 83, 045019
(2011).

[33] E. Martín-Martínez, A. R. H. Smith, and D. R. Terno,
Spacetime structure and vacuum entanglement, Phys.
Rev. D 93, 044001 (2016).

[34] S. Kukita and Y. Nambu, Harvesting large scale entangle-
ment in de Sitter space with multiple detectors, Entropy 19,
449 (2017).

CORRELATION HARVESTING BETWEEN PARTICLE DETECTORS … PHYS. REV. D 108, 105017 (2023)

105017-15

https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevA.74.032326
https://doi.org/10.1088/0264-9381/29/22/224001
https://doi.org/10.1016/0375-9601(91)90952-5
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1088/1367-2630/17/3/035001
https://doi.org/10.1088/1367-2630/17/3/035001
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.23.1709
https://doi.org/10.1016/0550-3213(83)90601-6
https://doi.org/10.1016/0550-3213(87)90047-2
https://doi.org/10.1016/0550-3213(87)90047-2
https://doi.org/10.1016/S0370-1573(98)00068-4
https://doi.org/10.1103/PhysRevD.100.025018
https://doi.org/10.1103/PhysRevD.100.025018
https://doi.org/10.1007/JHEP06(2020)059
https://doi.org/10.1103/PhysRevD.102.085006
https://doi.org/10.1103/PhysRevD.102.085006
https://doi.org/10.1088/1361-6382/acde3b
https://doi.org/10.1088/1361-6382/acde3b
https://doi.org/10.1103/PhysRevLett.101.110402
https://doi.org/10.1103/PhysRevResearch.2.042009
https://doi.org/10.1103/PhysRevResearch.2.042009
https://doi.org/10.1103/PhysRevLett.125.213603
https://doi.org/10.1103/PhysRevLett.125.213603
https://arXiv.org/abs/2302.12023
https://doi.org/10.1007/JHEP08(2021)020
https://doi.org/10.1007/JHEP08(2021)020
https://doi.org/10.1103/PhysRevD.105.085012
https://doi.org/10.1103/PhysRevD.105.085012
https://doi.org/10.1103/PhysRevD.107.045010
https://doi.org/10.1103/PhysRevD.107.065016
https://doi.org/10.1016/0375-9601(85)90093-3
https://doi.org/10.1063/1.527733
https://doi.org/10.1063/1.527733
https://doi.org/10.1103/PhysRevD.79.044027
https://doi.org/10.1103/PhysRevD.83.045019
https://doi.org/10.1103/PhysRevD.83.045019
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.1103/PhysRevD.93.044001
https://doi.org/10.3390/e19090449
https://doi.org/10.3390/e19090449


[35] L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. H.
Smith, and J. Zhang, Harvesting entanglement from the
black hole vacuum, Classical Quantum Gravity 35, 21LT02
(2018).

[36] K. K. Ng, R. B. Mann, and E. Martín-Martínez, Unruh-
DeWitt detectors and entanglement: The anti–de Sitter
space, Phys. Rev. D 98, 125005 (2018).

[37] L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. Smith,
and J. Zhang, Entangling detectors in anti-de Sitter space,
J. High Energy Phys. 05 (2019) 178.

[38] W. Cong, C. Qian, M. R. Good, and R. B. Mann, Effects of
horizons on entanglement harvesting, J. High Energy Phys.
10 (2020) 67.

[39] M. P. G. Robbins, L. J. Henderson, and R. B. Mann, En-
tanglement amplification from rotating black holes,
Classical Quantum Gravity 39, 02LT01 (2022).

[40] Q. Xu, S. Ali Ahmad, and A. R. H. Smith, Gravitational
waves affect vacuum entanglement, Phys. Rev. D 102,
065019 (2020).

[41] E. Tjoa and R. B. Mann, Harvesting correlations in
Schwarzschild and collapsing shell spacetimes, J. High
Energy Phys. 08 (2020) 155.

[42] K. Gallock-Yoshimura, E. Tjoa, and R. B. Mann, Harvesting
entanglement with detectors freely falling into a black hole,
Phys. Rev. D 104, 025001 (2021).
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