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We explore TT̄ deformations of warped conformal field theories (WCFTs) in two dimensions as
examples of TT̄ deformed nonrelativistic quantum field theories. WCFTs are quantum field theories with a
Virasoro × Uð1Þ Kac-Moody symmetry. We compute the deformed symmetry algebra of a TT̄ deformed
holographic WCFT, using the asymptotic symmetries of AdS3 with TT̄ deformed Compére, Song, and
Strominger boundary conditions. The U(1) Kac-Moody symmetry survives provided one allows the
boundary metric to transform under the asymptotic symmetry. The Virasoro sector remains but is now
deformed and no longer chiral.
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I. INTRODUCTION

A warped conformal field theory (WCFT) is a quantum
field theory with an SLð2;RÞ × Uð1Þ global symmetry in
two dimensions, which breaks Lorentz invariance. Such
QFTs have translation invariance, but scaling invariance is
restricted to only one coordinate. Finite warped symmetry
transformations take the form [1,2]

z → fðzÞ; z̄ → z̄þ gðzÞ: ð1:1Þ

However, despite not being Lorentz invariant, this class
of two-dimensional quantum field theories still possesses
an infinite-dimensional symmetry algebra, namely, a
Virasoro × Uð1Þ Kac-Moody current algebra. WCFTs are
interesting, as they appear in a number of holographic
systems with an SLð2;RÞ × Uð1Þ symmetry, such as
warped AdS3 [3], the near-horizon geometry of extremal
rotating black holes [4,5], and AdS3 with Dirichlet-
Neumann boundary conditions [6]. Holographic WCFTs
have passed a number of consistency checks, such as
a Cardy formula [2], holographic entanglement entropy
[7–10], and one-loop determinants [11].
Since WCFTs are nonrelativistic, they do not couple to

standard (pseudo-)Riemannian manifolds. One approach is
to couple WCFTs to “warped geometries” [3], a variant
of Newton-Cartan geometries. These geometries can be
found at the boundary of warped AdS3 spacetimes.
Unfortunately, these geometries have certain pathologies,

such as a degenerate metric, which make some calculations
untenable. Another way to couple WCFT to a background
manifold is to allow the manifold to transform with the
warped symmetry transformations. Holographically, this
requires relaxing Dirichlet boundary conditions of the bulk
metric to boundary conditions which allow for asymptotic
symmetry transformations to transform the boundary met-
ric under the warped symmetry transformation of the
boundary WCFT. The Dirichlet-Neumann boundary con-
ditions of Compére, Song, and Strominger (CSS) [6] do
exactly this. This approach bypasses the need for a warped
geometry with degenerate metrics, and we can work with
conventional techniques.
Two-dimensional translationally invariant quantum field

theories admit a class of solvable irrelevant deformations
built from conserved currents, most notable of which is the
TT̄ deformation [12,13]. The TT̄ operator is defined by the
determinant of the energy-momentum tensor of the quan-
tum field theory, and the deformed action obeys the
following flow equation:

∂λSQFTðλÞ ¼ −
1

2

Z
d2x

ffiffiffi
γ

p
OðλÞ

TT̄ ;

OTT̄ ¼ detT ¼ 1

2
ϵμρϵνσTμνTρσ; ð1:2Þ

where the deformation parameter λ is the coupling to the
TT̄ operator OTT̄. This operator is defined using point
splitting, which in the coincident limit produces a well-
defined local operator up to total derivatives. The expect-
ation value of OTT̄ turns out to be a constant, and from this
one can derive the flow of energy eigenstates of the
quantum field theory defined on a cylinder of radius R:

∂En

∂λ
¼ En

∂En

∂R
þ P2

n

R
: ð1:3Þ
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Even though the energy eigenvalues are changed, the
Hilbert space remains undeformed, since there is a
one-one correspondence between the states of the original
and deformed theory. Similarly, other observables can
be calculated in the deformed theory, for example, the
deformed Lagrangian, partition function, two-two scatter-
ing matrices, correlation functions, etc. [14–21].
There are various ways to interpret how the TT̄ defor-

mation acts on holographic CFTs. One proposal by [22] is
to impose Dirichlet boundary conditions for the bulk metric
at a finite radius. Another proposal given by [23] is to
treat the TT̄ deformation as a double-trace deformation,
which will deform the asymptotic behavior of the bulk
fields [24,25]. This approach agrees with the cutoff AdS
proposal when both are valid but has the advantage of
working when there are bulk matter fields and also for
either sign of the deformation parameter, which the former
does not. More recently, there has also been the “glue-on
AdS holography” proposal [26] which also agrees with [23]
for the positive sign of the deformation parameter in the
absence of matter fields.
Using the mixed boundary conditions and Dirichlet

boundary conditions at finite radius, the asymptotic sym-
metry algebra of the bulk dual to TT̄ deformed holographic
CFTwas calculated in [23,27,28]. Despite losing conformal
invariance, the asymptotic symmetry algebra turns out to
still have a Virasoro × Virasoro structure. However, either
the central charge becomes state dependent, or one loses the
holomorphic factorization of the symmetry algebra, which
can also be expressed as a nonlinear deformation of the
standard Virasoro algebra.
In this work, we explore TT̄ deformations of WCFTs

from a holographic perspective. To establish what a TT̄
deformation of a WCFT is, one must first define what the
energy-momentum tensor of a WCFT is. Canonically, for
WCFTs defined on a warped geometry, energy-momentum
tensors are not symmetric, and a determinant is harder to
define, since the metric is degenerate and noninvertible.
The energy-momentum tensor turns out to be a tensor with
components being a chiral stress tensor and a U(1) current.
For WCFTs dual to warped AdS3, it is also not possible to
use the Fefferman-Graham expansion to compute the
energy-momentum tensor for the same reason; the boun-
dary metric is not invertible. However, if we study WCFTs
dual to AdS3 with CSS boundary conditions, for the price
of a boundary metric which is not invariant under warped
transformations, we have an invertible metric, a symmetric
energy-momentum tensor, and a conventional definition for
a determinant. Given these considerations, it is possible to
propose a definition for a TT̄ deformed WCFT which is
dual to AdS3 with TT̄ deformed CSS boundary conditions.
This paper is organized as follows. We first briefly

review the mixed boundary conditions of [23] in Sec. II A.
Then, in Sec. II B, we review the CSS boundary conditions
and derive the Virasoro × Uð1Þ Kac-Moody algebra. In
Sec. III, we derive the TT̄ deformed CSS boundary

conditions to compute the deformed symmetry algebra
of a TT̄ deformed WCFT. We will see that if one imposes
deformed boundary conditions equivalent to Dirichlet
boundary conditions at the radial cutoff surface, we recover
a deformed Virasoro algebra, but we lose the U(1) Kac-
Moody algebra. However, if we allow the Dirichlet-
Neumann boundary conditions to remain at the cutoff
surface, which is what the mixed boundary conditions
suggests is the correct approach, we recover an undeformed
Kac-Moody symmetry. We then conclude and discuss
future directions in Sec. IV.

II. REVIEW

A. Mixed boundary conditions from TT̄

We begin by briefly reviewing the mixed boundary
conditions derived in [23] from the variational principle.
The variation of the boundary QFT action with respect to
the boundary metric sources the energy-momentum tensor
of the QFTand of the bulk dual. The flow of the variation of
the QFT action is equal to the variation of the deformation
which generates the flow. So we have

∂λδS ¼ δ∂λS;

∂λ

�
1

2

Z
∂M

d2x
ffiffiffi
γ

p
TðλÞ
ij δγ

ðλÞij
�

¼ δ

Z
∂M

d2x
ffiffiffi
γ

p
OðλÞ

TT̄ : ð2:1Þ

From this, we can compute the flow equations for the
boundary metric and the energy-momentum tensor with
respect to the deformation parameter λ. Expressing the
equations in terms of the trace-reversed energy-momentum
tensor T̂ij ¼ Tij − γijTi

i, we have

∂λγij ¼ −2T̂ij;

∂λT̂ij ¼ −T̂ilT̂j
l;

∂λðT̂ilT̂j
lÞ ¼ 0: ð2:2Þ

Solving these equations, we can express the deformed
metric and energy-momentum tensor in terms of the
undeformed metric and energy-momentum tensor:

γijðλÞ ¼ γij − 2λT̂ij þ λ2T̂ikT̂jlγ
kl;

T̂ijðλÞ ¼ T̂ij − λT̂ikT̂jlγ
kl; ð2:3Þ

where everything on the right-hand side is undeformed
quantities. The new deformed quantities are now the new
boundary conditions for the bulk fields. To see this, let us
consider pure Einstein gravity.
For pure Einstein gravity in three dimensions, the

Fefferman-Graham expansion of the metric truncates at
second order in 1=r2 [29]:
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ds2 ¼ l2
dr2

r2
þ gabdzadzb

¼ l2
dr2

r2
þ l2r2

�
gð0Þab þ gð2Þab

r2
þ gð4Þab

r4

�
dzadzb; ð2:4Þ

using which we can now express the boundary energy-
momentum tensor in terms of the Fefferman-Graham
expansion:

T̂ab ¼
k
2π

gð2Þab ; ð2:5Þ

where k ¼ l
4GN

. For pure gravity, we also have

gð4Þab ¼ 1

4
gð2Þac g

ð2Þ
db g

cd
ð0Þ: ð2:6Þ

Therefore, we can express the deformed boundary metric
and energy-momentum tensor in terms of the Fefferman-
Graham expansion:

γabðλÞ ¼ l2
�
gð0Þab −

�
2λ

k
2π

�
gð2Þab þ

�
2λ

k
2π

�
2

gð4Þab

�
;

T̂abðλÞ ¼
k
2π

�
gð2Þab −

�
2λ

k
2π

�
gð4Þab

�
: ð2:7Þ

Equating this to the Fefferman-Graham expansion (2.4), it
is easy to see that the deformed boundary metric can be
thought of as being placed at a finite radius rc ¼

ffiffiffiffiffiffiffiffi
− π

kλ

p
.

Indeed, it turns out that the Brown-York energy-momentum
tensor (with the appropriate counterterm) evaluated at this
surface reproduces the deformed energy-momentum tensor
derived here. This makes it clear that, in pure gravity, the
mixed boundary conditions and imposing Dirichlet boun-
dary conditions at rc ¼

ffiffiffiffiffiffiffiffi
− π

kλ

p
are equivalent.1

For a derivation of the mixed boundary conditions from
the Chern-Simons formulation of 3D gravity, see Ref. [30].

B. CSS boundary conditions

Examples of constructing a holographic bulk dual to a
WCFTare either warped AdS3 or AdS3 with CSS boundary
conditions. We shall use the CSS boundary conditions,
since they are amenable to the mixed boundary conditions
from the TT̄ deformation.
Expressing the metric in Fefferman-Graham gauge (2.4),

we have the following Dirichlet-Neumann boundary con-
ditions for the metric [6]:

gð0Þ ¼
�
P0ðzÞ − 1

2

− 1
2

0

�
; gð2Þz̄ z̄ ¼ Δ

k
; ð2:8Þ

where k ¼ l
4GN

and Δ is a constant. These falloff conditions
are chiral, with PðzÞ being an undetermined holomorphic
function. This is to accommodate (1.1), which shifts P0ðzÞ,
and, hence, we must leave it undetermined. Note that this is
unlike the warped geometry in [3], where the warped
geometry metric is invariant under (1.1).
One can compute the full bulk metric with the CSS

boundary conditions by taking the Fefferman-Graham
expansion (2.4) to be

ds2

l2
¼ dr2

r2
þΔ

k
dz̄2−

�
r2þ 2ΔP0ðzÞ

k
þΔLðzÞ

k2r2

�
dzdz̄

þ
�
r2P0ðzÞþ ðLðzÞþΔP0ðzÞÞ2

k
þΔLðzÞP0ðzÞ

k2r2

�
dz2:

ð2:9Þ
Here, both LðzÞ and PðzÞ are undetermined holomorphic
functions and parametrize the phase space of AdS3 with
CSS boundary conditions. A special case is the Banãdos-
Teitelboim-Zanelli black hole when P0ðzÞ ¼ L0ðzÞ ¼ 0
[6,31].
The asymptotic symmetries of this metric are interesting,

as they differ from the usual product of SLð2;RÞ algebras
despite being locally AdS3. To compute asymptotic Killing
vectors, we first require that they preserve radial gauge:

Lξgrμ ¼ 0: ð2:10Þ

This fixes the asymptotic Killing vector ξ to have the form

ξ ¼ rfðz; z̄Þ∂r þ
�
Vaðz; z̄Þ −

Z
gab

r
∂bfðz; z̄Þdr

�
∂a:

ð2:11Þ

Evaluating this for the CSS metric (2.9), we get

ξr ¼ rfðz; z̄Þ;

ξz ¼ Vzðz; z̄Þ − kð∂zfðz; z̄Þ þ ðkr2 þ ΔP0ðzÞÞ∂z̄fðz; z̄ÞÞ
k2r4 − ΔLðzÞ ;

ξz̄ ¼ Vz̄ðz; z̄Þ − k
k2r4 − ΔLðzÞ ððkr

2 þ ΔP0ðzÞÞ∂zfðz; z̄Þ

þ ðð2kr2 þ ΔP0ðzÞÞP0ðzÞ þ LðzÞÞ∂z̄fðz; z̄ÞÞ: ð2:12Þ

If we impose Dirichlet boundary conditions at infinity,

lim
r→∞

Lξgμν ¼ 0; ð2:13Þ

we get conditions on the undetermined functions in ξ:

∂z̄Vaðz; z̄Þ ¼ 0; fðz; z̄Þ ¼ −
1

2
∂zVzðz; z̄Þ;

Vz̄ðz; z̄Þ ¼ P0ðzÞVzðz; z̄Þ; ð2:14Þ
1We will be absorbing the factor of π into the normalization of

λ and OTT̄ from now on to avoid clutter in the equations.
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and so we can write our asymptotic killing vector [where
VðzÞ≡ Vzðz; z̄Þ]

ξðVÞ ¼ −
1

2
V 0ðzÞ∂r þ

�
VðzÞ þ kΔV 00ðzÞ

2ðk2r4 − ΔLðzÞÞ
�
∂z

þ
�
P0ðzÞVðzÞ þ kðkr2 þ ΔP0ðzÞÞ

2ðk2r4 − ΔLðzÞÞV
00ðzÞ

�
∂z̄:

ð2:15Þ

Asymptotic Killing vectors generate flow in the phase
space; i.e.,

Lξgμ;ν ¼ ∂LðzÞgμνδξLðzÞ þ ∂P0ðzÞgμνδξP0ðzÞ: ð2:16Þ

From this, we can compute δL and δP. It turns out that ξ
transforms only LðzÞ and reproduces the infinitesimal
Schwarzian transformation:

δξLðzÞ ¼ VðzÞL0ðzÞ þ 2V 0ðzÞLðzÞ − k
2
V 000ðzÞ; δξP ¼ 0:

ð2:17Þ

To transform PðzÞ, we cannot allow the asymptotic
killing vector to satisfy Dirichlet boundary conditions at
infinity (2.13), since warped symmetry requires changing
the boundary metric. The “asymptotic Killing vector”2

which generates transformations in PðzÞ is

ηðσÞ ¼ σðzÞ∂z̄; ð2:18Þ

and the transformations of the parametrizing functions are

δηL ¼ 0; δηPðzÞ ¼ −σðzÞ: ð2:19Þ

Note that η also generates the warped symmetry trans-
formation z̄ → z̄þ σðzÞ.
We can use the Fefferman-Graham expansion to com-

pute the boundary energy-momentum tensor

Tab ¼
k
2π

ðgð2Þab − gklð0Þg
ð2Þ
kl g

ð0Þ
ab Þ

¼ 1

2π

�
LðzÞ þ ΔP0ðzÞ2 −ΔP0ðzÞ

−ΔP0ðzÞ Δ

�
: ð2:20Þ

At this point, it should be stated that this energy-momen-
tum tensor is not the canonical energy-momentum tensor
for a warped CFT. For a warped CFT defined on a manifold
with warped geometry, the energy-momentum tensor is not

symmetric, since symmetry of the energy-momentum
tensor is a result of Lorentz invariance. However, a warped
CFT dual to AdS3 with CSS boundary conditions is not
defined on a manifold with warped geometry. Rather, the
manifold is not invariant under warped transformations,
but for that price we gain the symmetry of the energy-
momentum tensor.
The conserved charges corresponding to the asymptotic

Killing vectors are

QξðfÞ ¼
1

2π

Z
∂Σ
dϕnaTabξ

b ¼ 1

4π2

Z
2π

0

dϕfðzÞLðzÞ;

QηðfÞ ¼
1

2π

Z
∂Σ
dϕnaTabη

b ¼ Δ
4π2

Z
2π

0

dϕfðzÞðP0ðzÞ − 1Þ;

ð2:21Þ

where ∂Σ is at r → ∞, t ¼ zþz̄
2

constant, ϕ ¼ z−z̄
2

∈ ð0; 2πÞ,
and n ¼ ∂t ¼ ∂z þ ∂z̄.
We can now also compute the charge algebra, using the

Dirac brackets of Einstein gravity:

fQζ1ðfÞ; Qζ2ðgÞg ¼ δζ1ðfÞQζ2ðgÞ: ð2:22Þ

So we have

fQξðfÞ; QξðgÞg ¼ δξðfÞQξðgÞ ¼
1

4π2

Z
2π

0

dϕgðzÞδξðfÞLðzÞ

¼ 1

4π2

Z
2π

0

gðzÞ

×

�
fðzÞL0ðzÞ þ 2f0ðzÞLðzÞ − k

2
f000ðzÞ

�
:

ð2:23Þ
Expanding the functions in modes,

fðzÞ ¼
X
n

fneinz; gðzÞ ¼
X
m

gmeimz;

LðzÞ ¼
X
p

Lpe−ipz: ð2:24Þ

Replacing Dirac brackets with commutators, we obtain the
Virasoro algebra

½Lm; Ln� ¼ ðm − nÞLmþn −
k
2
n3δm;−n: ð2:25Þ

Note that equating k
2
¼ c

12
gives the familiar c ¼ 6k ¼ 3l

2GN
.

Similarly, we obtain a U(1) Kac-Moody algebra from the
commutator of the charges Qη:

½Pm;Pn� ¼ mΔδm;−n: ð2:26Þ

Note that the Virasoro and Kac-Moody algebra is factorized
in this basis. This is presented in this form in [32], which

2The quotes are to indicate that, since this vector does not
satisfy Dirichlet boundary conditions, it is technically not an
asymptotic Killing vector, but, since it generates flows in the
phase space, it will continue to be referred to as such later in this
paper.
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also gives the relation between this and the algebra
presented in [6].

III. TT̄ DEFORMED CSS BOUNDARY
CONDITIONS

To compute the TT̄ deformed bulk metric corresponding
to the TT̄ deformed boundary WCFT, we first compute the
deformed boundary metric using (2.7):

γijðλÞdzidzj ¼ −ðdz̄þ ðλLðzÞ − P0ðzÞÞdzÞ
× ðdzþ λΔðdz̄ − P0ðzÞdzÞÞ: ð3:1Þ

This metric is flat, so we express it in explicitly flat
coordinates with indices a and b:

γabðλÞduadub ¼ −dudv: ð3:2Þ

Equating the two, we can calculate the state-dependent
coordinate transformation for a TT̄ deformed WCFT,
analogous to the ones introduced in [33,34]:

du ¼ dzþ λΔðdz̄ − P0ðzÞdzÞ;
dv ¼ dz̄þ dzðλLðzÞ − P0ðzÞÞ;

dz ¼ du − λΔdv
1 − λ2ΔLðzÞ ;

dz̄ ¼ ðP0ðzÞ − λLðzÞÞduþ ðλΔP0ðzÞ − 1Þdv
1 − λ2ΔLðzÞ : ð3:3Þ

Furthermore, we can use the flow equations to compute the
full bulk metric dual to the TT̄ deformed WCFT:

ds2

l2
¼ dr2

r2
þ ðduðλΔLþ kr2Þ − Δdvðλkr2 þ 1ÞÞ

k2r2ðλ2ΔL − 1Þ2
× ðduðλkr2 þ 1ÞL − dvðλΔLþ kr2ÞÞ; ð3:4Þ

where L≡ Lðu; vÞ ¼ LðzÞ. Note that, on doing so, we lose
the PðzÞ degree of freedom, since this is equivalent to
imposing Dirichlet boundary conditions at the constant

radial surface rc ¼
ffiffiffiffiffiffiffiffi
− 1

kλ

q
. If we are to impose Dirichlet-

Neumann boundary conditions on this surface, we can
recover the U(1) degree of freedom. To do so, we have to
perform the transformation

u → u − λΔPðu; vÞ; v → v − Pðu; vÞ: ð3:5Þ

This is the analog of the warped symmetry transformation
but now in the state-dependent coordinates. Wewill explore
both types of boundary conditions, starting with the simpler
case of only imposing Dirichlet boundary conditions.

A. Asymptotic Killing vectors I:
Dirichlet boundary conditions

We will first compute the TT̄ deformed asymptotic
symmetries which preserve the deformed boundary con-
ditions, which is equivalent to imposing Dirichlet boundary
conditions at the radial cutoff surface.
Preserving radial gauge (2.10), we see that the asymp-

totic Killing vector in the deformed spacetime has the form

ξrðλÞ ¼ rfðu; vÞ;

ξuðλÞ ¼ Vuðu; vÞ − k
k2r4 − ΔL

ðΔð2λkr2 þ λ2ΔLþ 1Þ∂uf
þ ðλΔLð2þ kλr2Þ þ kr2Þ∂vfÞ;

ξvðλÞ ¼ Vvðu; vÞ − k
k2r4 − ΔL

ðLð2λkr2 þ λ2ΔLþ 1Þ∂vf
þ ðλΔLð2þ kλr2Þ þ kr2Þ∂ufÞ: ð3:6Þ

It will be convenient to define

Wuðu;vÞ ¼ Vuðu;vÞ þ kλ∂z̄fðu;vÞ;
Wvðu;vÞ ¼ Vvðu;vÞ þ kλð∂zfðu;vÞ þP0ðu;vÞ∂z̄fðu;vÞÞ;

ð3:7Þ

where, using (3.3), the derivatives in z and z̄ are

∂z̄ ¼ λΔ∂u þ ∂v; ∂z ¼ ∂u þ λLðu; vÞ∂v − P0ðu; vÞ∂z̄:
ð3:8Þ

In terms of Wa, the mixed boundary condition, or,
equivalently, the Dirichlet boundary condition at r ¼ rc,

LξðλÞgμνðλÞjr¼rc ¼ 0; ð3:9Þ

constrains the functions in ξðλÞ to obey

fðu; vÞ ¼ −
1

2

�
1 − λ2ΔL
1þ λ2ΔL

�
ð∂uWu þ ∂vWvÞ;

Wu ¼ −
�

λΔ
1þ λ2ΔL

�
ð∂uWu þ ∂vWvÞ;

Wv ¼ −
�

λL
1þ λ2ΔL

�
ð∂uWu þ ∂vWvÞ: ð3:10Þ

It turns out that this is not enough to solve for δL. In the
undeformed case (2.15), the functions in the asymptotic
Killing vector are all holomorphic functions, so we apply
the holomorphicity property in the deformed case as well:

∂z̄Waðu; vÞ ¼ 0; ∂z̄Lðu; vÞ ¼ 0: ð3:11Þ

Combining the previous two equations, we get the
conditions
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fðu; vÞ ¼ −
1

2
ð1 − λ2ΔLðu; vÞÞ∂uWuðu; vÞ;

∂vLðu; vÞ ¼ −λΔ∂uLðu; vÞ;
∂vWuðu; vÞ ¼ −λΔ∂uWuðu; vÞ;
∂aWvðu; vÞ ¼ −λLðu; vÞ∂aWuðu; vÞ: ð3:12Þ

We can use these equations to eliminate v derivatives of all
the functions and all derivatives of Wv.
Now we have enough information to be able to solve for

δL. To do so, we solve

LξðλÞgμνðλÞ ¼ ∂Lðu;vÞgμνδξLðu; vÞ: ð3:13Þ

There are three equations, but, with the relations in (3.12),
all three equations become identical, and the r dependence
drops out. Solving for δL, we get

δξLðu;vÞ¼ ðWu−λΔWvÞL0

þ1

2
ð4Lþλ2kΔð1−λ2ΔLÞL00Þð1−λ2ΔLÞWu0

þλ2kΔð1−λ2ΔLÞ2L0Wu00−
k
2
ð1−λ2ΔLÞ3Wu000;

ð3:14Þ

where 0 ¼ ∂u. When λ → 0, we recover (2.17). Note that
this depends on two arbitrary functions Wu and Wv.

1. Deformed charge algebra

To compute the symmetry algebra of the TT̄ deformed
holographic WCFT, we must compute the conserved
charge algebra of the dual spacetime. We first compute
the deformed boundary energy-momentum tensor using the
flow equations, which also coincides with the AdS3 Brown-
York energy-momentum tensor evaluated on the constant
radial surface r ¼ rc:

TðλÞ
ij ¼ −

l
2π

 L
1−λ2ΔL

1þλkþλ2ΔL
λ2kð1−λ2ΔLÞ

1þλkþλ2ΔL
λ2kð1−λ2ΔLÞ

Δ
1−λ2ΔL

!
: ð3:15Þ

Conserved charges are defined with respect to a constant
time coordinate t, which is defined in terms of u and v by

u ¼ tþ ϕ; v ¼ t − ϕ: ð3:16Þ

Since L is holomorphic in z, we can express the t derivative
in terms of the ϕ derivative:

∂tL ¼ 1þ λΔ
1 − λΔ

∂ϕL: ð3:17Þ

So we can express the u derivatives of holomorphic
functions only in ϕ derivatives as well:

∂u ¼
1

2
ð∂t þ ∂ϕÞ ¼

1

1 − λΔ
∂ϕ: ð3:18Þ

For constant t, we can now eliminate Wv in (3.14), using
Eqs. (3.12) and (3.18):

∂uWv ¼ −λLðϕÞ∂uWu ⇒ ∂ϕWv ¼ −λLðϕÞ∂ϕWu: ð3:19Þ

Integrating over ϕ, we have

WvðϕÞ ¼
Z

ϕ
dϕ0Lðϕ0Þ∂ϕ0Wuðϕ0Þ: ð3:20Þ

Now we can label the variation of the conserved charges
with only one arbitrary function Wu. Using (2.21) but with
the deformed energy-momentum tensor, the conserved
charge is

Qf ¼ l
4π2

Z
2π

0

dϕfðϕÞ Δ − LðϕÞ
1 − λ2ΔLðϕÞ : ð3:21Þ

We can now compute the charge algebra:

fQW;Qfg ¼ δWQf

¼ l
4π2

Z
2π

0

dϕf

×

�
−δWL

1 − λ2ΔL
þ Δ − L
ð1 − λ2ΔLÞ2 ðλ

2ΔδWLÞ
�
:

ð3:22Þ

Using (3.14) and (3.20), substituting fðϕÞ ¼ eimϕ and
WðϕÞ ¼ einϕ, and removing ϕ derivatives from L using
integration by parts, we have

fQW;Qfg ¼ δWQf ¼ lð1þ λΔÞ
8π2ð1 − λΔÞ2

Z
2π

0

dϕ
1

1 − λ2ΔLðϕÞ
�
2in3kð1 − λΔÞ3eiðmþnÞϕð1 − λ2ΔLðϕÞÞ

þ eimϕLðϕÞ
�
2mnλΔð1 − λΔÞ2

Z
ϕ
einϕ

0
Lðϕ0Þdϕ0 − ieinϕðnλ2kΔð1 − λ2ΔLðϕÞÞ

× ðn2λΔð3 − λΔð3 − λΔÞÞ −m2ÞÞ − 2ð1 − λΔÞ2ððm − nÞ − 2nλΔLðϕÞÞ
��

: ð3:23Þ
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Since L is not independent of t, only the zero modes are
conserved in time. In this choice of basis of functions and
Fourier modes, the central charge term is state dependent.
This is similar to what was found in [23] for a TT̄ deformed
CFT. It is straightforward to verify that, on taking the λ → 0
limit and expressing L in Fourier modes, one recovers the
Virasoro algebra.

B. Asymptotic Killing vectors II:
Dirichlet-Neumann boundary conditions

If we want to impose the same boundary conditions
at the radial cutoff in the TT̄ deformed metric as the
undeformed Dirichlet-Neumann CSS boundary conditions
at infinity of the undeformed metric, we have to find a
global Killing vector which corresponds to translations on
the boundary. It is easy to verify that λΔ∂u þ ∂v is such a
global Killing vector of (3.4). To generate transforma-
tions in the boundary metric, we then promote this global
Killing vector to an “asymptotic Killing vector” analogous
to (2.18):

ηðλ; σÞ ¼ −σðu; vÞðλΔ∂u þ ∂vÞ: ð3:24Þ

To introduce the PðzÞ degree of freedom back into
the metric (3.4), one can make the coordinate transforma-
tion (3.5):

u → u − λΔhðu; vÞ; v → v − hðu; vÞ; ð3:25Þ

which is generated by the asymptotic Killing vector (3.24)
as the analog to the warped transformation z̄ → z̄ − hðzÞ.
The state-dependent coordinate transformation is now

du − λΔdðhðu; vÞÞ ¼ dzþ λΔdðz̄ − PðzÞÞ;
dv − dðhðu; vÞÞ ¼ dz̄þ ðλLðzÞ − P0ðzÞÞdz;

dz ¼ du − λΔdv
1 − λ2ΔL

;

dz̄ ¼ dv − λLduþ ðduþ λΔdvÞP0ðzÞ
1 − λ2ΔL

− ðdðhðu; vÞÞ; ð3:26Þ

where d is the exterior derivative. Note that, since both h
and P are arbitrary functions of ðu; vÞ, we can choose the
gauge where h ¼ P. The coordinate transformation now
becomes much simpler:

du ¼ dzþ λΔz̄; dv ¼ dz̄þ λLðzÞdz;

dz ¼ du − λΔdv
1 − λ2ΔL

; dz̄ ¼ dv − λLdu
1 − λ2ΔL

: ð3:27Þ

The metric now reads

ds2 ¼ l2
dr2

r2
þ l2

k2r2ð1 − λ2ΔLÞ2 ððkr
2ðλ2ΔL − 1Þ∂uh − ð1þ λkr2ÞLÞduþ ðkr2∂vhðλ2ΔL − 1Þ þ λΔLþ kr2ÞdvÞ

× ððΔ∂uhðλ2ΔL − 1Þ − λΔL − kr2Þduþ Δð∂vhðλ2ΔL − 1Þ þ λkr2 þ 1ÞdvÞ: ð3:28Þ
This metric still has the asymptotic Killing vector (3.24), and when σ ¼ 1 it is a global Killing vector. Computing the

flow in phase space generated by (3.24), we have

Lηðλ;σÞgμνðλ;Lðu; vÞ; ∂uhðu; vÞÞ ¼ ∂LgμνδLþ ∂hgμνδh; ð3:29Þ
which, on solving, we see that we recover the undeformed U(1) symmetry:

δL ¼ 0; δh ¼ σ: ð3:30Þ
Now we will see if on performing the warped transformation (3.25) we lose the deformed Virasoro symmetry (3.14). The

vector field which preserves radial gauge is

ξr ¼ rfðu; vÞ;

ξu ¼ Vuðu; vÞ þ k
ðΔL − k2r4Þð1 − λΔ∂uh − ∂vhÞ2

½∂vfðΔλLðΔλ∂uhð−2∂vhþ kλr2 þ 1Þ

þð1 − λkr2Þ∂vh − λkr2 − 2Þ þ Δ∂uhð∂vh − λkr2 − 1Þ þ kr2ð∂vh − 1Þ þ λ3Δ2L2
∂vhðλΔ∂uh − 1ÞÞ

− Δ∂ufð2ðλkr2 þ 1Þðλ2ΔL − 1Þ∂vhþ ð∂vhÞ2ðλ2ΔL − 1Þ2 þ λ2ΔLþ 2λkr2 þ 1Þ�;

ξv ¼ Vvðu; vÞ þ k
ðΔL − k2r4Þð1 − λΔ∂uh − ∂vhÞ2

½∂ufð−∂vhðΔλ2L − 1ÞðΔλLþ kr2Þ

þ Δ∂uhðΔλ2L − 1Þð∂vhðΔλ2L − 1Þ þ kλr2 þ 1Þ − λΔLðλkr2 þ 2Þ − kr2Þ
þ ∂vfð2∂uhðλ2ΔL − 1ÞðΔλLþ kr2Þ − Δð∂uhÞ2ðΔλ2L − 1Þ2 − LðΔλ2Lþ 2kλr2 þ 1ÞÞ�: ð3:31Þ
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To have solutions which preserve the mixed boundary
conditions, we are required to impose holomorphicity of h
in z; z̄ coordinates:

∂z̄h ¼ 0 ⇒ ∂vh ¼ −λΔ∂uh: ð3:32Þ

To simplify the equations, one can introduce the following
definitions:

Wu ¼ Vu − λ3kΔ2ð1 − λ2ΔLÞ∂uf∂uh;
Wv ¼ Vv þ λkð1 − λ2ΔLÞ∂ufð1 − λΔ∂uhÞ;
X ¼ Wu − λΔWv: ð3:33Þ

To compute the variation of the functions L and h, it will be
necessary to impose holomorphicity in z for the functions
Wa, X, and f. We can now compute the variation of the
metric which preserves the mixed boundary conditions or,
equivalently, impose Dirichlet boundary conditions at the
constant radial surface:

Lξðλ;σÞgμνðλ;Lðu; vÞ; ∂uhðu; vÞÞjr¼rc ¼ 0: ð3:34Þ

This is a set of three equations; however, only two are
linearly independent. The conditions we get from solving
the above equations are

fðu;vÞ¼−
1

2

�
1−λ2ΔL
1þλ2ΔL

�
X0ðu;vÞ;

Xðu;vÞ¼Wvðu;vÞ
h00ðu;vÞ −

h0ðu;vÞ−λLð1−λΔh0ðu;vÞÞX0ðu;vÞ
h00ðu;vÞð1þλ2ΔLÞ ;

ð3:35Þ
where 0 ≡ ∂u.
We are now in a position to compute the flow of the

metric in phase space generated by this vector field subject
to the above constraints:

Lξðλ;σÞgμνðλ;Lðu; vÞ; ∂uhðu; vÞÞ ¼ ∂LgμνδLξ þ ∂hgμνδhξ:

ð3:36Þ
As before, this set of three equations subject to the
constraints reduces to two equations and removes any
dependence on the radial coordinate r. The variations of the
functions h and L are

δξh ¼ 0;

δξL ¼ 1

2Θ2h00
ðð2λkL0L2

mLpð2λΔh0 − 1Þh00 þ 3kL3
mL2

pðh00Þ2ÞW00 − kΘL3
mLph00W000

þ X0ð−2λ2kðL0Þ2L2
mh00ð1 − 3λΔh0 þ 2λ2Δ2ðh0Þ2Þ − 6kL3

mL2
pðh00Þ3 þ h00ð−ΘLmðλkL00ð1 − 2λΔh0Þ

þ 4λL2ð1 − λΔh0Þ þ Lð−λ3kΔL00 − 2ð2 − λ4kΔ2L00Þh0ÞÞ þ 6kΘL3
mLph000Þ − L0ð2Θ3

þ λkL2
mð−7þ 8λΔh0 − λ2ΔLð1 − 8λΔh0ÞÞðh00Þ2 þ 2λkΘL2

mð1 − 2λΔh0Þh000Þ − kΘ2L3
mh0000Þ

þW0ðL0ð2Θ2Lp þ 2λkL2
mLpð1 − 2λΔh0Þh000 þ kΘL3

mLph0000Þ − 3kL3
mL2

ph00h000ÞÞ; ð3:37Þ

where

Θ ¼ ∂uh − λLð1 − λΔ∂uhÞ; W ¼ Wv;

Lm ¼ 1 − λ2ΔL; Lp ¼ 1þ λ2ΔL: ð3:38Þ
We see that we still preserve a deformed Virasoro generator
and do not generate a transformation in the U(1) generator.
However, the algebra produced the modes of the charges
will not be closed, as the variation of L depends on the
U(1) generator h. We will not compute a charge algebra
for this, since it is not illuminating but, in principle, can
be computed using the same procedure outlined in the
previous section.
Let us compare the results of this section with Sec. III A.

We find that the TT̄ deformation does not affect the spin 1
currents, and, therefore, the deformed theory should retain
whatever Kac-Moody algebra the undeformed theory has.
This suggests that the results in Sec. III A are only a special
case of this section, where the bulk dual is dual to a state
with zero momentum in the boundary deformed WCFT.

IV. DISCUSSION

In this paper, we computed the TT̄ deformed generators
of a warped CFT, using holographic techniques developed
in [23,27]. Previously, holographic TT̄ techniques have
been used to compute TT̄ deformations of holographic
CFTs. Since the TT̄ deformation is a double-trace defor-
mation, the boundary conditions of the holographic bulk
dual are modified. For the TT̄ deformation, this can be
interpreted as imposing Dirichlet boundary conditions at a
finite radial surface for the bulk metric. However, when
considering a holographic WCFT dual to AdS3, one has to
employ the CSS boundary conditions [6], which are
Dirichlet-Neumann boundary conditions for the bulk metric.
We, therefore, computed the TT̄ deformed CSS boun-

dary conditions, by imposing either only Dirichlet
boundary conditions at the cutoff radial surface or
Dirichlet-Neumann boundary conditions at the same sur-
face. Using this, we computed the TT̄ deformed asymptotic
symmetry algebra for both cases and found that, for a TT̄
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deformed holographic WCFT, the U(1) Kac-Moody gen-
erators are not affected, but the Virasoro generators are
deformed in a nonlinear way. In fact, when considering the
Dirichlet-Neumann boundary conditions at the finite radial
surface, we see that the deformed Virasoro generator will
no longer create a closed algebra with itself, but the full
deformed asymptotic algebra is still closed. This suggests
that the symmetry algebra of the TT̄ deformed WCFT still
contains the U(1) Kac-Moody algebra, which follows from
the fact that the TT̄ deformation preserves translation
invariance.
A natural question to ask now is which of the two

boundary conditions corresponds to the correct TT̄ flow of
the boundary field theory. Since the TT̄ deformation does
not effect spin 1 currents, the deformed theory should not
lose the U(1) Kac-Moody algebra, which suggests that the
second approach yields the correct deformed theory.
This result strengthens and extends the proposals of

[22,23,27] to the case of an example of bottom-up
holography where the boundary theory is not a conformal
field theory but instead a nonrelativistic theory. It will be
interesting to explore how the holographic TT̄ dictionary
extends to other examples of holography and, in particular,
non-AdS holography.

There are many directions one can take from here.
Another starting point for a bulk dual to a nonrelativistic
QFT would be a JT̄ deformation of a CFT dual to AdS3
with a U(1) Chern-Simons matter field, to generate CSS-
like boundary conditions [35]. Since warped CFTs can also
be formulated as dual to modified gravity theories with a
warped AdS bulk, it would also be interesting to use the
Chern-Simons formalism of holographic TT̄ [30] to com-
pute the TT̄ deformations of WCFT dual to warped AdS3 as
a solution to lower spin gravity [3] or as a solution to
massive gravity [36,37]. Stepping away from holography, it
would be interesting to compute the TT̄ deformed WCFT
partition function and explore the deformations of other
nonrelativistic QFTs such as the quantum Lifshitz model in
2þ 1D, which will require understanding TT̄ deformations
in higher dimensions.
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