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We provide a systematic derivation of cluster alphabets of finite types. The construction is based on a
geometric realization of the generalized worldsheets by gluing and folding a pair of polygons. The cross
ratios of the worldsheet z variables are evolved using the Y-system equations. By a new gauge choice, we
obtain a simpler set of cluster alphabets than the known ones.
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I. INTRODUCTION AND SUMMARY

The search for a geometric description and a simple set
of variables has guided the study of scattering amplitudes in
quantum field theory and string theory. Historically, the
Veneziano amplitude consistent with the Regge poles and
crossing symmetry was written down first, then extended to
n-point amplitudes, and the notion of a worldsheet swept
out by the motion of strings emerged only later.
The generalization of the Veneziano amplitude to n

mesons is expressed as [1–3]

In ¼
 Yn−3

ði;jÞ

Z
1

0

d log
ui;j

1 − ui;j

!Yn
i;j

u
α0Xi;j

i;j : ð1Þ

Here the integral is over the n − 3 compatible resonances,
α0 is the Regge slope, and Xi;j are functions of the
Mandelstam variables si;j. It was soon realized that the
u variables may be written as cross ratios of the Koba-
Nielsen z variables [4].

ui;j ¼
zi−1 − zj
zi−1 − zj−1

zi − zj−1
zi − zj

: ð2Þ

This leads to the expression of the integration measure in
the Parke-Taylor form

Q
n
i¼1 dzi=ðzi − ziþ1Þ and the Koba-

Nielsen factor jzi − zjjα0si;j familiar in modern textbooks,
with the residual gauge symmetry used to fix the positions

of three points, e.g., z1 → −1; z2 → 0; zn → ∞. It is now
recognized that this integral describes the tree-level ampli-
tude of open strings, whose worldsheet is a disc with n
marked points at the boundary. The string amplitude enjoys
properties such as crossing symmetry, factorization, and
Regge behavior.
More recently, the factorization property of the string

integral was put on the center stage to define a class of
generalized string integrals associated with Dynkin dia-
grams [5]. The so-called cluster string integrals factorize
at the poles that correspond to the boundaries of the
configuration space of u variables [6,7]. For example, the
An−3 integral (1) factorizes into an An−k−2 integral and an
Ak−2 integral at its poles. The factorization property
is reflected in the geometry of the generalized associa-
hedra [8] and the integrals are interpreted as volume
forms. However, like the multimeson amplitudes, the
integrals are written in terms of the u variables as a
generalization of (1). It was not clear what the underlying
worldsheet picture is.
A second motivation for this work comes from the

structure of field-theory amplitudes. The amplitudes are
expressed in terms of generalized polylogarithms. The
cluster bootstrap program attempts to constrain the form
of the amplitude using a set of symbol alphabets [9–11]. In
a related development [12], a class of alphabets based on
cluster algebras of finite type was proposed using birational
maps from the kinematic variables:

ΦAn−3
¼ ∪

3≤i≤n−1
fzi; 1þ zig ∪ ∪

3≤i<j≤n−1
fzi − zjg;

ΦCn−1
¼ ΦAn−1

ðz3;…; zn; znþ2Þ ∪ ∪
3≤i≤j≤n

fzizj þ znþ2g;
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ΦDn
¼ ΦAn−1

ðz3;…; zn; znþ2Þ ∪ fznþ3; 1þ znþ3g ∪ ∪
3≤i≤n

fzi − znþ3; zi þ znþ2znþ3g

× ∪ ∪
3≤i<j≤n

f−zi þ zj þ zizj − ziznþ2 − ziznþ3 þ znþ2znþ3g: ð3Þ

It was shown that the Feynman integral for the one-loop
Bhabha scattering correspond to the A3 cluster alphabet, a
certain six-dimensional hexagon integral to the D4 cluster
alphabet, etc. However, the cluster alphabets were found by
a clever choice of birational maps, and it was not clear how
to derive them for other finite-type cluster algebras. The
A-type alphabet is the set of gauge-fixed factors in the u
variables (2), as string amplitudes reduce to field-theory
amplitudes in the α0 → 0 limit. It was also not clear whether
the other alphabets have any geometric origin or if there is
an underlying worldsheet at all.
In [13], a systematic derivation of such variables was

proposed based on Y systems, and the results for D types
were presented in detail. The strategy is to construct the
generalized worldsheets through a “gluing” construction.
We solve the u variables in terms of the worldsheet
coordinates. Like in the A type, the elements of an alphabet,
called letters, are the factors that appear in the u variables.
As it stands, there are more ungauged letters than the
number of cluster variables. Upon a choice of gauge, the
alphabets are then read off from the factors. The number of
letters in a cluster alphabet is shown in Table 1.
This paper aims to derive the cluster alphabets for all the

finite types. Our main results are as follows:
(1) Systematic construction of the generalized world-

sheet for all finite types. We provide a systematic
derivation of the gluing construction of the excep-
tional types. We begin by reviewing the gluing
construction of the Dn worldsheet. We show how
the construction extends to the exceptional types,
and derive an explicit cross-ratio representation of
all the E6 u coordinates. For the nonsimply laced
types, we present the folding map that identifies the
worldsheet coordinates. Our results may also be seen
as an explicit verification of Zamolodchikov’s perio-
dicity conjecture for Y systems [14].

(2) New cluster alphabets. In the standard gauge choice,
one may obtain the cluster alphabet for BCD;
E6; F4; G2 types as polynomials of degrees at most
2, 4, 5, 4, respectively. By choosing a different
gauge, we produce a new, simpler set of alphabets.
We obtain a linear alphabet for B type, quadratic

alphabets for CD types, and for E6, E7, E8, F4, G2

types, polynomials of degrees at most 4, 5, 7, 4, 2,
respectively.

II. THE GLUING CONSTRUCTION

A. Review on the gluing construction of the Dn
worldsheet

We review the construction of the D-type worldsheet
based on gluing a pair of A-type worldsheets. The basic
observation is that theDn Dynkin diagram can be written as
a union of a pair of An−1 Dynkin diagrams, as shown in
Fig. 1. We prepare two (nþ 2)-gons. We will call the first
polygon the first sheet and the second polygon the second
sheet. The vertices of the polygons can be given any
labels but for convenience, we will choose them to be
ð1; 2;…; nþ 1; nþ 2Þ and ð1; 2;…; nþ 1; nþ 3Þ, respec-
tively. We glue nþ 1 of the common vertices together,
leaving the last vertex on each polygon alone. The positions
of the vertices z1;…; znþ3 will be our worldsheet variables.
We may choose a snake triangulation. Assigning a node
to each diagonal and an arrow between two consecutive
diagonals ordered counterclockwise around a common
vertex, we see that the underlying graph precisely corre-
sponds to a Dynkin diagram of type Dn [15].
Recall that in an An worldsheet, the u variables are cross

ratios of their respective z variables (2). By a reparamet-
rization u ¼ Y=ð1þ YÞ, it is found that the cross ratios on
the worldsheet satisfy a celebrated set of equations, known
as Y systems:

Yi;jYiþ1;jþ1 ¼ ð1þ Yi;jþ1Þð1þ Yiþ1;jÞ: ð4Þ

This can be seen as a time-evolution equation that maps
Yi;j → Yiþ1;jþ1 in each time step.
The Y-system equations admit a generalization to all

finite types [14]:

Yiðt− 1ÞYiðtÞ ¼
Y
j→i

ð1þ YjðtÞÞ−Ci;j

Y
i→j

ð1þ Yjðt− 1ÞÞ−Ci;j :

ð5Þ

Here Ci;j is the Cartan matrix of the root system. One may
assign an orientation to the edges in the Dynkin diagram
such that each node is either a source or a sink. The
Zamolodchikov periodicity conjecture states that the sol-
utions to (5) are periodic. A solution of Y systems in terms
of cross ratios was used to prove the periodicity conjecture
for the A type [16].

TABLE I. The dimensions of finite-type cluster algebras, which
equal the number of letters in a cluster alphabet.

An−3 Bn=Cn Dn E6 E7 E8 F4 G2

nðn − 3Þ=2 nðnþ 1Þ n2 42 70 128 28 8

PENG ZHAO and YIHONG WANG PHYS. REV. D 108, 105013 (2023)

105013-2



Returning to the worldsheet picture, the n − 2 diagonals
in the triangulation are identified with the initial Y variables
for each common node in the Dynkin diagram Yið0Þ for
i ¼ 1; 2;…; n − 2. The diagonals connecting z1 with znþ1

in the ð1; 2; nþ 1; nþ 2Þ and ð1; 2; nþ 1; nþ 3Þ quadri-
laterals provide Yn−1ð0Þ and Ynð0Þ for the two branched
nodes in the Dynkin diagram, respectively. Now we may
assign cross ratios to the diagonals in the initial triangu-
lation. The YiðtÞ variables at later times are generated
according to the Y-system equations. This process termi-
nates when the Y variables return to their initial values as
guaranteed by periodicity.
Because the Y-system equations are always birational

transformations on the Y variables, the new Y variables
will always be a rational function of the z variables. Let
zi;j ≔ zj − zi. Remarkably, once we introduce the cubic
polynomials

wi;j ¼ z1;nþ3zi;jznþ1;nþ2 − z1;nþ1zi;nþ3zj;nþ2; ð6Þ

the corresponding u variables can be written as generalized
cross ratios of the z, w factors:

ui;j ¼
zi;j−1zi−1;j
zi;jzi−1;j−1

; uj;i ¼
wi;j−1wi−1;j

wi;jwi−1;j−1
;

ui ¼
zi;nþ3wi−1;i

zi−1;nþ3wi;i
; ũi ¼

zi;nþ2wi−1;i

zi−1;nþ2wi;i
; ð7Þ

for nþ 1 ≥ i > j > 1. Here ui and ũi correspond to the two
branched nodes in the Dynkin diagram. Because the Dn
worldsheet is constructed from gluing a pair of An−1
worldsheets, one may think of ui;j with i > j as the
cross-ratio coordinates of zs of the first sheet, and ui;j
with i < j as the cross-ratio coordinates of ws of the
second sheet.
We shall denote the collection of polynomial factors that

appear in the u variables as an “ungauged alphabet.” The
ungauged Dn alphabet is

∪
1≤i≤nþ1

fzi;nþ3g∪ ∪
1≤i<j≤nþ2

fzi;jg∪ ∪
2≤i<j≤n

fwi;jg: ð8Þ

There are n2 þ nþ 3 independent variables. Upon gauge
fixing z1 → −1; z2 → 0; znþ1 → ∞, nþ 3 variables corre-
sponding to z1;2 and zi;nþ1 for all i ≠ nþ 1 are removed,
and we obtain the n2 letters (3).
While the u variables are written nicely as generalized

cross ratios, the interpretation of the w variables remains
mysterious. Here we provide a new, determinant represen-
tation:

wi;j¼det

0
B@

1 1 1

ziþznþ1 z1þzj znþ2þznþ3

ziznþ1 z1zj znþ2znþ3

1
CA: ð9Þ

It is symmetric on the pairs of indices ði; nþ 1Þ, ð1; jÞ,
ðnþ 2; nþ 3Þ, but is antisymmetric when the pairs are
exchanged, much like the symmetries of a Riemann
tensor.

B. The construction of En worldsheets

Consider an En-type Dynkin diagram, where n ¼ 6, 7, 8.
It may be written as a union of An−1 and An−2 diagrams. We
prepare a (nþ 2)-gon and a (nþ 1)-gon and glue n of the
common vertices, leaving one vertex on the first polygon
and two vertices on the second polygon free. We work out
the E6 example explicitly, as shown in Fig. 2. The initial set
of variables are

Y1 Y2

Yn-1

YnYn-2

Y1 Y2 Yn-2

1

2

n+1

n

n+3 n+2

Yn

Yn-3

Yn-3

Yn-3

Yn-2

Yn-1

FIG. 1. The glued-polygon representation of the Dn worldsheet.
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FIG. 2. The glued-polygon representation of the E6 worldsheet.
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Yið0Þ¼fY3;5;Y2;5;Y2;6:Y6;1;Y7;1;Ỹ6;1g;

¼
�
z2;5z3;4
z2;3z4;5

;
z1;5z2;4
z1;2z4;5

;
z1;6z2;5
z1;2z5;6

;
z1;5z6;8
z1;8z5;6

;
z1;6z7;8
z1;8z6;7

;
z1;5z6;9
z1;9z5;6

�
:

ð10Þ

The Y variables are written in terms of the z variables as

Yi;j ¼
zi−1;jzi;j−1
zi−1;izj−1;j

: ð11Þ

Note that on the first sheet, the vertex that comes before z1
is z8; on the second sheet, the vertex that comes before z1
is z9.
We evolve the Y-system equations (5) as before, gen-

erating all the YiðtÞ at later times. Among the nonlinear

factors appearing in this parametrization of the E6 Y
system, there are 12 cubic polynomials of the form

wE
i;j ¼ z1;nþ1zi;jzn;nþ3 − z1;nzi;nþ1zj;nþ3;

w̃E
i;j ¼ z1;nþ2zi;jzn;nþ3 − z1;nzi;nþ2zj;nþ3: ð12Þ

Note that wE
i;j for E6 is slightly different from wi;j for Dn

due to a difference in the labels. There are also four quartic
polynomials of the form

wi;j;k¼ z1;izj;nþ2zk;nþ1zn;nþ3−z1;nþ3znþ2;iznþ1;jzn;k; ð13Þ

and a sextic polynomial

wi;j;k;l ¼ z1;nþ3z1;nzi;nþ2zj;nþ1zk;nþ3zl;n − z1;nþ3z1;nzn;nþ3zi;nþ2zj;kzl;nþ1

þz1;iz1;nzn;nþ3zj;nþ3zk;nþ2zl;nþ1 þ z1;nþ2z1;nþ3zn;nþ1zn;nþ3zi;lzj;k: ð14Þ

The indices are taken to lie in 2 ≤ i < j < k < l ≤ 5 so the last polynomial is simply w2;3;4;5. When some of the indices are
allowed to coincide, the sextic polynomial factorizes into a product of the lower-order polynomials, e.g.,

wi;i;j;k ¼ wE
i;kw̃

E
i;j; wi;j;j;k ¼ z1;nzj;nþ3wi;j;k: ð15Þ

This allows us to write the Y variables, or equivalently the u variables, of E6 compactly as generalized cross ratios1:

uiðtÞ ¼

0
BBBBBBBBBBBBB@

z2;5z3;4
z2;4z3;5

z3;6z4;5
z3;5z4;6

w2;2;2;4z5;6
w2;2;2;5z4;6

w2;3;3;3w2;3;3;5

w2;2;3;5w3;3;3;3

z4;8w3;4;4;4

z3;8w4;4;4;4

z4;7w4;4;4;5

z5;7w4;4;4;4

z5;8z6;7
z5;7z6;8

z1;5z2;4
z1;4z2;5

z2;6z3;5
z2;5z3;6

z4;6w2;2;2;3

z3;6w2;2;2;4

w2;2;2;5w2;3;3;4

w2;2;2;4w2;3;3;5

w2;3;4;5w3;3;3;5

w2;3;3;5w3;3;4;5

w3;4;4;5w4;4;4;4

w3;4;4;4w4;4;4;5

w3;5;5;5w4;5;5;5

w3;4;5;5w5;5;5;5

z1;6z2;5
z1;5z2;6

z3;6w2;2;2;2

z2;6w2;2;2;3

w2;2;2;4w2;3;3;3

w2;2;2;3w2;3;3;4

w2;3;3;5w2;3;4;4

w2;3;3;4w2;3;4;5

w2;4;4;5w3;3;4;5

w2;3;4;5w3;4;4;5

w3;5;5;5w4;4;4;5

w3;4;4;5w4;5;5;5

z1;4w5;5;5;5

z1;5w4;5;5;5

z1;5z6;8
z1;6z5;8

z1;7z2;6
z1;6z2;7

w2;2;2;3w2;2;2;4

w2;2;2;2w2;2;3;4

w2;3;3;4w3;3;3;3

w2;3;3;3w3;3;3;4

w2;3;4;5w3;4;4;4

w2;4;4;5w3;3;4;4

w2;5;5;5w3;4;4;5

w2;4;4;5w3;5;5;5

z1;3w4;5;5;5

z1;4w3;5;5;5

z1;6z7;8
z1;7z6;8

z1;8z2;7
z1;7z2;8

z3;8w2;3;3;3

z2;8w3;3;3;3

z3;7w3;3;3;4

z4;7w3;3;3;3

w2;4;4;5w4;4;4;5

w2;4;5;5w4;4;4;4

z1;2w3;5;5;5

z1;3w2;5;5;5

z1;4z2;3
z1;3z2;4

z1;5z6;9
z1;6z5;9

z1;9z2;6
z1;6z2;9

z2;7w2;2;2;3

z3;7w2;2;2;2

w2;3;3;4w3;3;3;4

w2;3;4;4w3;3;3;3

w2;3;4;5w3;4;4;4

w2;4;4;4w3;3;4;5

w3;4;4;4w3;4;4;5

w3;3;4;5w4;4;4;4

z5;8w4;5;5;5

z4;8w5;5;5;5

1
CCCCCCCCCCCCCA
: ð16Þ

Unlike the Dn case, the cross ratios involving wi;j;k;l are not unique and can be transformed using the identities

wi;i;jþ1;kwi;i;j;kþ1

wi;i;j;kwi;i;jþ1;kþ1

¼ wiþ1;j;k;kwi;jþ1;k;k

wi;j;k;kwiþ1;jþ1;k;k
¼ 1: ð17Þ

In the standard gauge choice ðz1 ¼ −1; z2 ¼ 0; z6 ¼ ∞Þ, the E6 alphabet consists of 42 letters that are polynomials with a
degree of at most 4:

ΦE6
¼ ΦA5

ðz3; z4; z5; z7; z8Þ ∪ fz9; 1þ z9g ∪ ∪
3≤i≤5

fzi;9; zi þ z7z9; zi þ z8z9g ∪

× ∪
3≤i<j≤5

f−zi þ zj þ zizj − ziz7 − ziz9 þ z7z9;−zi þ zj þ zizj − ziz8 − ziz9 þ z8z9;

× zizj − ziz7 þ ziz8 − zjz8 þ ziz8z9 − z7z8z9g ∪

1The u variables for E6 can alternatively be realized by the Grassmannian cluster algebra G(4,7) [17].
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× f−z3z4 þ z3z7 þ z4z5 − z4z7 þ z4z8 − z5z8 þ z3z4z5 − z3z4z7 − z3z4z9 − z3z5z8 þ z3z7z8

þ z3z7z9 þ z4z8z9 − z7z8z9;

− z3z5 þ z4z5 þ z3z4z5 − z3z4z7 þ z3z4z8 − z3z5z8 − z3z5z9 − z3z8z9 þ z4z7z9 þ z5z8z9

þ z3z4z8z9 − z3z7z8z9 − z3z8z29 þ z7z8z29g: ð18Þ

In Sec. V, we shall derive a simpler alphabet by a different
gauge choice.

III. THE BOUNDARY STRUCTURE OF CLUSTER
CONFIGURATION SPACES

Recall that one of the main features of the An−3
worldsheet is that each diagonal divides an n-gon into
an ðn − kþ 1Þ-gon and a (kþ 1)-gon. The string amplitude
factorizes at each pole (boundary of the u space) as

An−k−2 × Ak−2 ⊂ ∂An−3: ð19Þ

We can make similar statements for the other types with
the picture of glued polygons. Each diagonal in the initial
triangulation corresponds to a node on the Dynkin diagram
and slices the polygon into two parts. The D5 example is
shown in Fig. 3.

∂Dn ¼ n

�Xn−2
i¼1

Ai−1 ×Dn−i þ 2An−1

�
: ð20Þ

The multiplicity n is determined by the periodicity n of the
Dn Y system.

The boundaries of the En u space can be obtained
similarly, as shown in Fig. 4 for E6.

∂E6 ¼ 7ðA1 × A2 × A2 þ 2A1 × A4 þ A5 þ 2D5Þ: ð21Þ

There is an overall factor because the E6 system has period
7. Note that for En types, there are more boundaries than
diagonals available. We will only identify the possible
types of boundaries using the initial cluster, and the
remaining boundaries will be obtained by evolving the
Y-system equations. All the uiðtÞ at the same ith node
correspond to the same type of boundary. For example, the
128 boundaries of the E8 worldsheet are

∂E8 ¼ 16ðA2 ×D5 þ A1 × E6 þ A1 × A2 × A4

þ A3 × A4 þ A1 × A6 þ A7 þD7 þ E7Þ: ð22Þ

IV. NONSIMPLY LACED TYPES FROM FOLDING

The worldsheet parametrization for the nonsimply laced
types can be achieved by a process known as folding.
The folding map on the z parameters is derived from the

FIG. 3. The factorizations of the D5 stringy integral as seen on the worldsheet.

FIG. 4. The factorizations of the E6 stringy integral as seen on the worldsheet.
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standard folding of the root systems combined with the
birational map in the ADE types. See Figs. 5 and 6.
A2n−1 → Cn folding. To obtain the Cn worldsheet, we

fold the A2n−1 worldsheet by identifying the diagonals
according to the roots as

Y2n−1¼Y1; Y2n−2¼Y2; � �� Ynþ1¼Yn−1: ð23Þ

Solving the cross-ratio relations, we obtain a fractional map
of the A2n−1 worldsheet variables in terms of the Cn
worldsheet variables:

z2nþ3−i ¼
znþ3z1;2znþ2−i;nþ2 − z1z2;nþ1znþ2;nþ3

z1;2znþ2−i;nþ2 − z2;nþ1znþ2;nþ3

ð24Þ

for i ¼ 1; 2;…; n − 1. In the standard gauge choice
(z1 → −1; z2 → 0; znþ3 → ∞), the folding map (24)
reduces to a simple gauge-fixed map

z2nþ3−i ¼ −
znþ2

znþ2−i
: ð25Þ

We recover the quadratic Cn alphabet from the linear A2n−1
alphabet by examining all the polynomial factors that
appear in the cross ratio (2) under the folding map.
Equivalently, one may perform the folding map directly
on the alphabet (3) and read off all the factors.
Dn → Bn−1 folding. We identify

Yn ¼ Yn−1: ð26Þ

This is equivalent to znþ3 ¼ znþ2.
E6 → F4 folding. To obtain the F4 worldsheet, we fold

the E6 worldsheet by identifying the diagonals according to
the roots as

Y5 ¼ Y1; Y4 ¼ Y2: ð27Þ

Solving the cross-ratio relations, we obtain

z7¼
z6z1;2z3;5−z1z2;3z5;6
z1;2z3;5−z2;3z5;6

; z8¼
z6z1;2z4;5−z1z2;4z5;6
z1;2z4;5−z2;4z5;6

:

ð28Þ

Upon gauge fixing as z1 → −1; z2 → 0; z6 → ∞, this
reduces to a simple map

z7 ¼ −
z5
z3
; z8 ¼ −

z5
z4
: ð29Þ

D4 → G2 folding. To obtain G2, we fold the D4

worldsheet by identifying the diagonals according to the
roots as

Y4 ¼ Y3 ¼ Y1: ð30Þ

Y1 Y2 Y2n-1

1

2

2n+1

n+3

2n+2

Y2n-1

n+1

Y2n-2Yn

Y2n-2

n

Y1 Y2

Yn-1

YnYn-2

1

2

n+1

n

Yn-1

Yn

Yn-2

Yn-3

n+3 n+2

Y1

Y2

n+2 

FIG. 5. The folding from A2n−1 to Cn and Dn to Bn−1.

n+2

n+3

1 n

2

n+1

3 4

5

Y1

Y2

Y3

Y4

Y5

Y6

Y1 Y2 Y3 Y4 Y5

Y6

1

2

3

4

5

7 6

Y1 Y2 Y3

Y4

Y1

Y4

Y3

Y2

FIG. 6. The folding from E6 to F4 and D4 to G2.
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Solving the cross-ratio relations, we obtain

z6 ¼
z5z1;2z3;4 − z1z2;3z4;5
z1;2z3;4 − z2;3z4;5

: ð31Þ

Upon gauge fixing as z1 → −1; z2 → 0; z5 → ∞, this
reduces to a simple map

z6 ¼ −
z4
z3
: ð32Þ

The alphabets of nonsimply laced types may be obtained
by applying the gauge-fixed maps directly to the alphabets
of simply laced types. The results were already quoted
in [13] without derivation. In the next section, we shall
derive a simpler set of alphabets by first applying the
general folding maps and then fixing the gauge.

V. NEW CLUSTER ALPHABETS

In the standard gauge choice, which is usually taken to
be z1 → −1; z2 → 0; zn → ∞, we recover the known clus-
ter alphabets of types A, C, D and obtain new ones for type
E and the nonsimply laced ones. However, it is reasonable
to suspect that we have not found the simplest possible
choice. Unlike the An case, not all worldsheet variables are

on an equal footing. Different gauge choices will lead to
different alphabets. While there is no canonical choice of
the alphabet, choosing a gauge that yields letters that are
polynomials of the lowest order is preferable. We say two
alphabets are equivalent if seen as a collection of hyper-
surfaces, they have the same topological property. That is,
(1) The number of letters equals the dimension of the

cluster algebra.
(2) They give the same point count in the hypersurface

complement.
A simpler Dn alphabet is obtained by the gauge choice

znþ3 → −1; z1 → 0; znþ1 → ∞. Let

ai;j ¼ zi − znþ2 þ zizj − ziznþ2 ð33Þ

be the gauge-fixed version of wi;j. The Dn alphabet is

ΦDn
¼ ΦAn−1

ðz2;…; znÞ ∪ fznþ2g ∪

× ∪
2≤i≤n

fzi;nþ2g ∪ ∪
2≤i<j≤n

fai;jg: ð34Þ

A similar gauge choice (z9 → −1; z1 → 0; z6 → ∞)
removes the terms containing z2i in the E6 alphabet (18). Let

ãi;j ¼ zi − znþ1 þ zizj − ziznþ1;

ai;j;k ¼ zizj − ziznþ1 − zjznþ2 þ znþ1znþ2 þ zizjzk − zizjznþ1 − zizkznþ2 þ ziznþ1znþ2;

ai;j;k;l ¼ zizj − ziznþ1 − zjznþ2 þ znþ1znþ2 þ zizjzk þ zizjzl − zizjznþ1 − zizjznþ2

−zizkznþ1 þ zizkznþ2 − zizlznþ2 þ ziznþ1znþ2 − zjzkznþ2 þ zjznþ1znþ2

þzizjzkzl − zizjzkznþ1 − zizjzlznþ2 þ zizjznþ1znþ2: ð35Þ

be the gauge-fixed versions of w̃E
i;j; wi;j;k; wi;j;k;l, respectively. A new E6 alphabet may be written succinctly as

ΦE6
¼ ΦA4

ðz2;…; z5Þ ∪ fz7; z8; z7;8; a2;3;4;5g ∪ ∪
2≤i≤5

fzi;7; zi;8g ∪ ∪
2≤i<j≤5

fai;j; ãi;jg ∪ ∪
2≤i<j<k≤5

fai;j;kg: ð36Þ

Gauge fix then fold vs fold then gauge fix. To obtain
the alphabet for nonsimply laced types, we may apply the
gauge-fixed folding maps [(25), (26), (29), (32)] to the
alphabets of simply laced types. However, the gauge choice
may not be optimal for the nonsimply laced types.
Alternatively, we can also first fold the ungauged alphabets
using the general maps [(24), (26), (28), (31)], and then
choose the gauge that produces the nicest alphabets for
nonsimply laced types.
If we fold the Dn alphabet to obtain the Bn−1 alphabet,

then some of the letters are still quadratic. If instead the
ungauged Dn alphabet are first folded as znþ3 ¼ znþ2 and
then gauge fixed as z1 → −1; znþ1 → 0; znþ2 → ∞, then
we obtain a linear alphabet

ΦBn−1
¼ ΦAn−1

ðz2;…; znÞ ∪ ∪
2≤i<j≤n

f1 − zi;jg: ð37Þ

We chose this particular gauge because it produces
the simplest possible set of linear letters. Here we see
the advantage of having an ungauged description of the
worldsheet. It is not possible to obtain the linear Bn−1
alphabet from folding the quadratic Dn alphabet because
we have gauge fixed znþ1 → ∞ to obtain the Dn alphabet,
whereas the Bn−1 alphabet corresponds to gauge-fixing
znþ2; znþ3 → ∞. This shows that the B-type alphabet may
be realized by a set of hyperplanes.
ForCn, we were not able to find a gauge choice that leads

to a linear alphabet. The ungauged Cn letters obtained from

CLUSTER ALPHABETS FROM GENERALIZED WORLDSHEETS: … PHYS. REV. D 108, 105013 (2023)

105013-7



the general folding map are quadratic in n − 1 of the
variables. An interesting question would be to find a
map that realizes the Cn alphabet as a hyperplane
arrangement.
To obtain the G2 alphabet, we now need to solve

the folding equation (30) for z2, apply the map on the
ungauged D4 alphabet, and then gauge fix as z1 → −1;
z5 → 0; z6 → ∞. We then arrive at a new G2 alphabet that
is at most quadratic, as opposed to quartic as found
previously from the standard gauge fixing [13]:

ΦG2
¼ ΦB2

ðz3; z4Þ ∪ fz3 − z4 − z3z4; z4 − z23 þ z3z4g:
ð38Þ

Note that as in the Dn → Bn−1 folding, we cannot obtain
a simplified form of the F4 alphabet if we directly folded
the E6 alphabet as (29), where z6 is already fixed at infinity.
Instead, we fold the ungauged alphabet and then gauge fix
as z9 → −1; z1 → 0; z5 → ∞. A new F4 alphabet consists
of 28 letters of polynomial degree of at most 4:

ΦF4
¼ ΦA4

ðz2; z3; z4; z6Þ ∪ ∪
3≤i≤j≤4

fai;j; bi;j; ci;jg ∪ fz2z3 − z2z4 þ z2z6 − z23 − z23z4 þ z2z3z6;

z2z3 − z2z4 þ z2z6 − z3z4 − z3z24 þ z2z3z6; z22z6 þ z2z23 − 2z2z3z4 þ z2z23z6 − z23z
2
4;

2z2z3 − 2z2z4 þ z2z6 − z23 þ z2z23 þ 2z2z3z6 − z2z24 − 2z23z4 þ z2z23z6 − z23z
2
4;

z22z6 − 2z2z3z4 þ z2z24 − 2z2z4z6 þ z2z26 þ 2z23z4 − z23z6 þ z22z
2
6 − 2z2z3z4z6 þ z23z

2
4g; ð39Þ

where

ai;j ¼ z2 þ zizj; bi;j ¼ z2z6 − zizj;

ci;j ¼ z2 þ z6 − zi − zj þ z2z6 − zizj: ð40Þ
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APPENDIX: ALPHABETS FOR E7 AND E8

The alphabets of E7 and E8 may be constructed similarly.
The gauge choice is znþ3 → −1; z1 → 0; zn → ∞. The E7

alphabet consists of letters with a degree of at most 5.
Introduce two new highest-order letters

ai;j;k;l;m ¼ aj;mai;k;l þ znþ2zi;jzk;nþ1zl;m;

ãi;j;k;l;m ¼ ãj;lai;k;m − znþ2zi;jzk;lznþ1;nþ2: ðA1Þ

The 70 letters of the E7 alphabet are

ΦE7
¼ ΦA5

ðz2;…; z6Þ ∪ fz8; z9; z8;9; a2;3;4;5;6; ã2;3;4;5;6g ∪ ∪
2≤i≤6

fzi;8; zi;9g

× ∪ ∪
2≤i<j≤6

fai;j; ãi;jg ∪ ∪
2≤i<j<k≤6

fai;j;kg ∪ ∪
2≤i<j<k<l≤6

fai;j;k;lg: ðA2Þ

The E8 alphabet consists of letters with a degree of at most 7. We introduce six degree-7 letters

c2 ¼ a2;4;6a2;3;5;7 þ z2z10z2;3z4;5z6;7z9;10;

c3 ¼ a3;4;6a2;3;5;7 þ z10z2;3z3;4z5;6z9;10;

c4 ¼ a2;4;7a3;4;5;6 − z10z2;3z4;5z9;10a4;6;

c5 ¼ a2;5;6a3;4;5;7 þ z2;3z5;9z6;7z10ã4;5;

c6 ¼ a3;5;6a2;4;6;7 þ z2z10z3;4z5;6z6;7z9;10;

c7 ¼ a3;5;7a2;4;6;7 þ z10z2;3z4;5z6;7z9;10; ðA3Þ

and three degree-6 letters
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b1 ¼ a3;7a2;4;5;6 þ z10z2;3z6;7a4;5;

b2 ¼ ã2;6a3;4;5;7 þ z10z2;3z6;7ã4;5;

b3 ¼ a2;3;5;6;7z4;10 − z3;4z9;10a2;5;6: ðA4Þ

The 128 letters of the E8 alphabet are

ΦE8
¼ ΦA6

ðz2;…; z7Þ ∪ fz9; z10; z9;10; b1; b2; b3g ∪ ∪
2≤i≤7

fzi;9; zi;10; cig ∪ ∪
2≤i<j≤7

fai;j; ãi;jg

× ∪ ∪
2≤i<j<k≤7

fai;j;kg ∪ ∪
2≤i<j<k<l≤7

fai;j;k;lg ∪ ∪
2≤i<j<k<l<m≤7

fai;j;k;l;m; ãi;j;k;l;mg: ðA5Þ
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