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The semiclassical backreaction equations are solved in closed Robertson-Walker spacetimes containing
a positive cosmological constant and a conformally coupled massive scalar field. Renormalization of the
stress-energy tensor results in higher derivative terms that can lead to solutions that vary on much shorter
time scales than the solutions that would occur if the higher derivative terms were not present. These extra
solutions can be eliminated through the use of order reduction. Four different methods of order reduction
are investigated. These are first applied to the case when only conformally invariant fields, with and without
classical radiation, are present. Then they are applied to the massive conformally coupled scalar field. The
effects of different adiabatic vacuum states for the massive field are considered. It is found that if enough
particles are produced, then the Universe collapses to a final singularity. Otherwise it undergoes a bounce,
but at a smaller value of the scale factor (for the models considered) than occurs for the classical de Sitter
solution. The stress-energy tensor incorporates both particle production and vacuum polarization effects.
An analysis of the energy density of the massive field is done to determine when the contribution from the
particles dominates.
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I. INTRODUCTION

Quantum field theory in curved space predicts interesting
phenomena such as vacuum polarization and particle
production. Semiclassical gravity is an important way to
account for the effects of quantized fields on the spacetime
geometry. The place where semiclassical gravity has been
explored the most thoroughly is cosmology, where the
homogeneity and isotropy of the very early Universe, or at
least the part of it that became the present observable
Universe, makes the equations much more tractable.
Most of the explorations of quantum effects in the early

Universe have been in the context of models in which the
Universe is expanding, including inflationary models. Once
the Universe begins to decelerate, quantum effects become
smaller in time. However, there are interesting models in
which the Universe initially contracts and then undergoes
a bounce at a small but nonzero value of the scale factor.
(For reviews see, e.g., [1–5].) One feature of most con-
tracting models is that quantum effects are expected to
become more important as the bounce is approached.
For many models the bounce occurs at a scale compa-

rable to the Planck scale where semiclassical gravity is not a
valid approximation. However, there are simple models in
which a bounce naturally occurs at length scales well above
the Planck scale and energy scales well below it. One of

these is de Sitter space. In closed cosmological coordinates
(which cover the entire manifold) de Sitter space begins
with an infinite size, contracts down to a minimum size that
depends on the inverse value of the positive cosmological
constant, and then expands to an infinite size. It thus
provides a laboratory in which the effects of semiclassical
gravity can be studied. Further, as has been pointed out
in [6], one can have a model in which there is an effective
cosmological constant that is very large so that the Universe
contracts to a scale comparable to the GUTs scale and then
enters an inflationary phase as it begins expanding.
In this paper we study quantum effects in de Sitter space

by solving the semiclassical backreaction equations for a
massive conformally coupled scalar field when the cosmo-
logical constant is positive and the field is in an adiabatic
vacuum state [7]. The Bunch-Davies state for this field
results in a stress-energy tensor that is a de Sitter invariant [8]
and thus the semiclassical backreaction equations have de
Sitter space as an exact solution. However, this is not the case
for any other adiabatic vacuum state.
Studies of quantum effects for massive conformally

coupled scalar fields in de Sitter space in closed
Robertson-Walker coordinates were previously done in
the context of a background field approximation where
backreaction effects are ignored [9,10]. It was shown that
for adiabatic vacuum states particle production occurs
and as the scale factor approaches its minimum value,
the stress-energy of the particles can become significant.
The conclusion was that de Sitter space can be unstable for
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such states. Here we solve the semiclassical backreaction
equations and validate that prediction.
Higher derivative terms occur in the stress-energy tensor

of a quantum field in most four-dimensional spacetimes
due to the renormalization process. In the context of a
background field expansion there is no problem with such
terms. However, if the semiclassical backreaction equations
are solved, these higher derivative terms can lead to a
variety of extra solutions which in cosmology, depending
on the values of the renormalization parameters, can lead to
solutions that expand or contract extremely rapidly [11–14]
and are generally thought to be unphysical. Various
methods have been used to eliminate these spurious
solutions, see, e.g., [15] and references therein.
One of the methods previously used when only con-

formally invariant fields are considered is that of
order reduction. This was originally applied to cosmology
in [16] where the classical Einstein equations were solved
and then used to eliminate the higher derivative terms.
Perturbation theory was also used to keep the calculations
within the context of the one loop approximation. Order
reduction without the addition of perturbation theory was
used in [17], where it was pointed out that perturbation
theory can miss certain secular effects. Going beyond the
one loop approximation can be justified by working within
the context of a large N expansion [18] where N is the
number of identical quantum fields.
To our knowledge, order reduction has not been used

in cosmology when conformally noninvariant fields are
present and particle production occurs. Particle production
is a nonlocal phenomenon, and in most cases ultraviolet
divergences occur in the nonlocal terms which makes
renormalization nontrivial. As shown in [19], the renor-
malized stress-energy tensor for a conformally coupled
massive scalar field in a Robertson-Walker spacetime has
the unique property that its higher derivative terms are
all local and exactly the same as those for a massless
conformally coupled scalar field. This makes it possible to
obtain a straightforward generalization of previous order
reduction techniques for this case. Further, particle pro-
duction effects are confined to the nonlocal contribution to
the stress-energy tensor, although this part can also contain
vacuum polarization effects since the two cannot usually be
completely separated in dynamical spacetimes.
For the massive conformally coupled scalar field, the

nonlocal contribution to the stress-energy tensor also has
no derivatives of the metric associated with it. The latter
property allows one to have an ultraviolet finite stress-
energy tensor for zeroth-order adiabatic states. In general,
only fourth-order adiabatic states result in stress-energy
tensors that are ultraviolet finite. This property makes it
straightforward to apply the order reduction technique
in [17] for zeroth-order adiabatic states and this is our
first method. It is not obvious how to apply that technique if
higher-order adiabatic states are chosen and/or if scalar

fields with nonconformal coupling to the scalar curvature
are considered.
We also consider three other methods of order reduction

which all involve iteration. The second method consists of
first solving the semiclassical backreaction equations using
the nonlocal contribution to the stress-energy tensor (which
is separately conserved) but not the higher derivative terms.
Then the higher derivative terms are computed in the
background of this solution and used as source terms for
the semiclassical equations. Iterations can be done until the
desired level of convergence is reached.
The higher derivative terms are contained in two sepa-

rately conserved tensors [19]. For one tensor the higher
derivative terms are composed of products and powers of
first and second derivatives of the scale factor. These do not
lead to runaway solutions. The third method involves
solving the semiclassical backreaction equations exactly
using this tensor but initially ignoring the second tensor
which has terms with three and four derivatives of the scale
factor. Then this second tensor is computed in the back-
ground of the solution to the semiclassical equations and
used as a source term for a first iteration. For the second
iteration, the second tensor is computed in the background
spacetime obtained from the first iteration and used as a
source term. One can continue this procedure until the
desired convergence of the solution is achieved.
The fourth method was suggested by Agullo [20]. First

the classical Einstein equations are solved. Then the stress-
energy tensor for the quantum field is computed in that
background and used as a source term for a first iteration.
The stress-energy tensor for the quantum field is next
computed in this background and used as a source term for
a second iteration. The procedure is repeated until the
desired level of convergence has been achieved.
In Sec. II, quantum field theory for a scalar field in a

closed Robertson-Walker universe is reviewed along with
the method of adiabatic regularization. In Sec. III, the four
order reduction methods are described in detail. In Sec. IV,
the order reduction methods are illustrated using two
examples in which a closed Robertson-Walker universe
contains conformally invariant quantum fields in the
conformal vacuum state. In this case there is no particle
production and the exact stress-energy tensor for the fields
is known [7]. One example is a spacetime with a positive
cosmological constant and no classical matter or radiation.
Here the calculations can be done analytically. The second
example adds classical radiation to mimic the effects of the
produced particles. In Sec. V, the four methods are used to
solve the semiclassical backreaction equations in the case
of a conformally coupled massive scalar field in a closed
Robertson-Walker spacetime with a positive cosmological
constant when no other matter or radiation is present.
This allows us to better isolate the effects of the produced
particles. A detailed analysis of the energy density of
the massive conformally coupled scalar field and its
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relationship to particle production is given in Sec. VI.
Section VII contains a summary of our results. A review
of the WKB approximation along with our method to
obtain adiabatic vacuum states is given in Appendix A.
A discussion of the solutions to the classical Einstein
equations when classical radiation and a positive cosmo-
logical constant are present is given in Appendix B.
Throughout we use units such that ℏ ¼ G ¼ c ¼ 1 and
our conventions are those of Ref. [21].

II. QUANTUM FIELD THEORY
IN A CLOSED UNIVERSE

The metric for a closed Robertson-Walker universe can
be written as

ds2 ¼ aðηÞ2
�
−dη2 þ dr2

1 − r2
þ r2dΩ2

�
: ð2:1Þ

A free scalar field with arbitrary mass and conformal
curvature coupling satisfies the equation

□ϕþm2ϕþ 1

6
Rϕ ¼ 0: ð2:2Þ

The scalar field can be expanded in terms of mode
functions

ϕ ¼ 1

aðηÞ
X
k;l;m

�
akYkðxÞψkðηÞ þ a†kY

�
kðxÞψ�

kðηÞ
�
; ð2:3Þ

Δð3ÞYkðxÞ ¼ −ðk2 − 1ÞYkðxÞ; ð2:4aÞ

ψ 00
k þ ½k2 þm2a2�ψk ¼ 0: ð2:4bÞ

The unrenormalized energy density and trace of the
stress-energy tensor are

hρiu ¼ −h0jTη
ηj0iu

¼ 1

4π2a4
X∞
k¼1

k2
�jψ 0

kj2 þ ðk2 þm2a2Þjψkj2
�
;

ð2:5aÞ

h0jTj0iu ¼ −
1

2π2a4
X∞
k¼1

k2m2a2jψkj2: ð2:5bÞ

If we make the change of variable

ψk ¼
fkffiffiffi
a

p ð2:6Þ

and change from conformal time to proper time using the
relation dt ¼ adη, then the mode equation (2.4b) becomes

f̈k þ
�
1

4

ȧ2

a2
−
1

2

ä
a
þ k2

a2
þm2

�
fk ¼ 0 ð2:7Þ

and the energy density and trace are

hρiu ¼ h0jTttj0iu
¼ 1

4π2a4
X∞
k¼1

k2
�
ajḟkj2 −

1

2
ȧðfkḟ�k þ f�kḟkÞ

þ jfkj2
a

�
k2 þm2a2 þ ȧ2

4

��
; ð2:8aÞ

h0jTj0iu ¼ −
1

2π2a5
X∞
k¼1

k2m2a2jfkj2: ð2:8bÞ

A. Adiabatic regularization

We use adiabatic regularization [22–25] to renormalize
the stress-energy tensor. It has proven to be a useful method
for scalar fields in homogeneous cosmological spacetimes.
The renormalized stress-energy tensor is

hTabir ¼ hTabiu − hTabiad: ð2:9Þ

As shown in [26], the adiabatic counterterms hTabiad
consist of an integral rather than a sum. This introduces
some difficulties when calculating the renormalized stress-
energy tensor. These are overcome using the method in [27]
which we briefly describe next.
First, a high frequency WKB approximation is used

to completely isolate the ultraviolet divergent terms in
the stress-energy tensor. Then the difference between the
unrenormalized stress-energy tensor and the high fre-
quency WKB approximation to that tensor is computed.
The approximate stress-energy tensor is then added back
and the adiabatic counter terms are subtracted from it:

hTabir ¼ hTabin þ hTabian; ð2:10aÞ

hTabin ¼ hTabiu − hTabid; ð2:10bÞ

hTabian ¼ hTabid − hTabiad: ð2:10cÞ

The components hT0
0id and hTid are given by the

expressions

hTttid ¼
1

4π2a4
X∞
k¼1

k2
�
kþm2a2

2k
−
m4a4

8k3

�
; ð2:11aÞ

hTid ¼ −
1

4π2a4
X∞
k¼1

k2
�
m2a2

k
−
m4a4

2k3

�
: ð2:11bÞ
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The quantity hTμνin must usually be computed numeri-
cally. The quantity hTμνian was computed analytically
in [27] with the result

hTttian ¼
1

2880π2

�
−
1

6
ð1ÞHtt þ ð3ÞHtt

�
−

m2

288π2
Gtt

−
m4

64π2

�
1

2
þ log

�
μ2a2

4

�
þ 2C

�
; ð2:12aÞ

hTian ¼
1

2880π2

�
−
1

6
ð1ÞHc

c þ ð3ÞHc
c

�
−

m2

288π2
Gc

c

þ m4

16π2

�
1þ log

�
μ2a2

4

�
þ 2C

�
: ð2:12bÞ

Here C is Euler’s constant, μ ¼ m for a massive field,
Gab is the Einstein tensor,

ð1ÞHab ¼ −
1ffiffiffiffiffiffi−gp δ

δgab

Z
d4x

ffiffiffiffiffiffi
−g

p
R2

¼ −2gab□Rþ 2∇a∇bR − 2RRab þ
1

2
gabR2;

ð2:13aÞ
ð3ÞHab ¼ −Rc

aRcb þ
2

3
RRab þ

1

2
gabRcdRcd −

1

4
gabR2:

ð2:13bÞ
Two independent components of these tensors are

Gtt ¼
3ȧ2

a2
þ 3k

a2
; ð2:14aÞ

Ga
a ¼ −

6ä
a

−
6ȧ2

a2
−
6k
a2

; ð2:14bÞ

ð1ÞHtt ¼ −
36⃛a ȧ
a2

þ 18ä2

a2
−
36äȧ2

a3
þ 54ȧ4

a4
þ 36kȧ2

a4
−
18k2

a4
;

ð2:14cÞ

ð1ÞHa
a¼36⃜a

a
þ108⃛aȧ

a2
þ36ä2

a2
−
180äȧ2

a3
−
72kä
a3

; ð2:14dÞ

ð3ÞHtt ¼
3ȧ4

a4
þ 6kȧ2

a4
þ 3k2

a4
; ð2:14eÞ

ð3ÞHa
a ¼ −

12äȧ2

a3
−
12kä
a3

: ð2:14fÞ

Note that the term in hTabian that is proportional to the
Einstein tensor could be taken over to the left-hand side of
the equations, in which case it would provide a finite
renormalization of Newton’s constantG which has been set
equal to 1 here. However, we do not do this because if the
scale factor is slowly varying, then one can use a WKB

approximation for the exact modes if the mass of the field is
nonzero. Using a fourth-order or higher WKB approxima-
tion will cancel all of the terms in hTμνian.1 For this reason
we keep this term on the right-hand side of the semi-
classical backreaction equations.

III. ORDER REDUCTION

The semiclassical backreaction equations when classical
radiation is present are given by�

ȧ
a

�
2

¼ 8π

3

�
cr
a4

þ hρi
�
−

1

a2
þ Λ

3
; ð3:1aÞ

ä
a
¼ −

1

a2
−
ȧ2

a2
−
4π

3
hTi þ 2

3
Λ; ð3:1bÞ

where cra−4 is the energy density of the classical radiation.
After adiabatic regularization is applied to the stress-

energy tensor, Eq. (3.1a) contains terms with up to three
derivatives of the scale factor and (3.1b) contains terms
with up to four derivatives of the scale factor. This can
result in runaway solutions and solutions that don’t grow
quickly but which vary on very short timescales, both of
which seem unlikely to be physically relevant.2 The
purpose of order reduction techniques is to find ways to
eliminate such solutions and focus on those that are better
behaved. Next we describe in detail the four methods of
order reduction that we use in the following sections.
The order reduction techniques developed in [16,17]

were applied to the case of conformally invariant fields in
Robertson-Walker spacetimes which are conformally flat.
Thus the stress-energy tensor is known analytically. For a
massive conformally coupled scalar field, part of the stress-
energy tensor is nonlocal and in most cases must be
computed numerically. There are no derivatives of the
scale factor that explicitly occur in this part. The other part
is the same as the stress-energy tensor for the conformally
invariant scalar field in the conformal vacuum state. The

1For a fourth-order WKB approximation this does not mean
that nothing will be left over. There will be terms that come from
the difference between the sum over the modes for the unrenor-
malized stress-energy tensor and the integral over the modes for
the adiabatic counter terms [26,27].

2Because general relativity is expected to be a low energy
approximation to some other theory, one expects that there will be
higher derivative terms in the gravitational Lagrangian. In a
conformally flat spacetime, the leading-order term in the semi-
classical backreaction equations would be of the form αð1ÞHμν. The
dimensionless constant α must be fixed by experiment or obser-
vation. Starobinsky inflation [28,29] can occur if the value of α is
of order 109 [30]. Starobinsky inflation requires a solution that
grows rapidly during the inflationary phase and during the
reheating phase undergoes rapid oscillations in the scalar curvature
R, although the scale factor itself growsmonotonically. Here we set
the value of α to zero and only include the contribution from ð1ÞHμν

that comes from the stress-energy tensors of the quantum fields.
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fact that there are no derivatives of the scale factor in
the nonlocal part makes it straightforward to adapt the
approach in [17] to this case. Our first method involves
such an adaptation. We also investigate two other methods
developed by us, and one due to Agullo [20].
To understand the first method, it is useful to begin with a

review of the Parker-Simon approach. In their method, the
order ℏ quantum corrections to the semiclassical back-
reaction equations are first omitted so that one is working
only with the classical terms. The classical Einstein
equations contain terms up to and including second-order
derivatives of the scale factor. For a homogenous and
isotropic universe, one component has a term containing
first-order derivatives and it can thus be solved to obtain
the first-order derivative of the scale factor in terms of
quantities such as the energy density and the cosmological
constant. This equation can be differentiated to obtain an
equation for the second derivative of the scale factor. In this
way one can obtain expressions for the third and fourth
derivatives. When these are substituted into the equation for
the stress-energy tensor and used repeatedly, the result is an
expression that contains terms which have at most one
derivative of the scale factor. The stress-energy tensor for
the quantum field is of order ℏ so they solve the resulting
equations using perturbation theory, keeping only terms up
to order ℏ.
It was pointed out in [17] that perturbation theory can

miss secular effects. An alternative method was proposed in
which the order reduction is done in the same way as in
the Parker Simon approach but the equations are solved
exactly rather than with the use of perturbation theory. This
procedure can be justified if one works in the context of a
large N expansion with N being the number of identical
quantized fields. The reason is that the semiclassical
backreaction equations appear at leading order in such
an expansion. In [17] this method was used to solve the
semiclassical backreaction equations for perturbations of de
Sitter space when conformally invariant fields are present.
Our first method of order reduction, which we denote by

M1, is very similar to this. If the quantities hρi and hTi in
the semiclassical backreaction equations (3.1) are omitted,
then the equations for the first four derivatives of the scale
factor are:

ȧ2 ¼ 8πcr
3a2

− 1þ Λa2

3
; ð3:2aÞ

ä ¼ −
8πcr
3a3

þ Λa
3

; ð3:2bÞ

⃛a ¼ 8πcrȧ
a4

þ Λȧ
3

; ð3:2cÞ

⃜a ¼ −
320π2c2r
3a7

þ 32πcr
a5

−
80πcrΛ
9a3

þ Λ2a
9

: ð3:2dÞ

If these expressions are substituted into Eq. (2.14) and
the result is substituted into (2.12), then hρir and hTir
become functions of the scale factor but not its derivatives.
Substituting the order-reduced stress-energy tensor into the
semiclassical backreaction equations (3.1) then results in
equations that are of the same order in terms of derivatives
of the scale factor as the classical Einstein equations.
Unlike the next three methods which all involve iter-

ation, this method does not so long as a zeroth-order
adiabatic state is used for the massive scalar field. If a
second- or higher-order adiabatic state is used, then at the
initial time step there are derivatives of the scale factor on
the right-hand side of the equations and this method cannot
be used, at least in its simplest form. Note also that the
term in hTabian that is proportional to Gab remains on the
right-hand side of the equations and thus the order
reduction process is used on it as well. This results in
finite renormalizations of the radiation, spatial curvature,
and cosmological constant terms on the right-hand side of
the semiclassical backreaction equations.
For the second method, denoted by M2, we first assume

that ð1ÞHμ
μ and ð3ÞHμ

μ are much smaller than the other terms
in hTian for the solutions of interest. Then, we solve
Eq. (3.1) numerically for aðtÞ without including these
terms. We next fit the numerical data for a, ȧ and ä to
polynomial functions of the time t. The functions for ⃛a
and ⃜a are obtained by taking derivatives of the fit for ä.
Then, we use these functions to evaluate ð1ÞHμ

μ and ð3ÞHμ
μ.

Next, Eq. (3.1) is solved again but with ð1ÞHμ
μ and ð3ÞHμ

μ

included as source terms. For the next iteration, the
numerical data for the scale factor and its first two
derivatives is again fitted to polynomial functions of the
time, ð1ÞHμ

μ and ð3ÞHμ
μ are computed from these fits and

used as source terms in the semiclassical backreaction
equations. The process is repeated until the scale factor a
converges to the desired accuracy.
For the third method, denoted by M3, the ð1ÞHμ

μ term in
Eq. (3.1) is treated as a source term while the ð3ÞHμ

μ term is
treated the same as all of the other terms. This tensor has no
terms containing either ⃛a or ⃜a. Then (3.1a) is solved for ȧ
and (3.1b) is solved for ä. The resulting equations are
then solved with ð1ÞHμ

μ set equal to zero. Then the same
procedure is used to evaluate ð1ÞHμ

μ as is used in M2 and
the result is used as a source term for the first iteration.
The rest of the iterations proceed in the same fashion as M2
except that only ð1ÞHμ

μ is treated as a source term.
The fourth method is due to Agullo [20]. For this

method, denoted by M4, first the classical Einstein equa-
tions are solved. Then the full expressions for hρi and hTi
are evaluated in the resulting geometry. For the nonlocal
parts, this involves first solving the mode equation in that
background. For the first iteration, Eq. (3.1) is solved with
these terms used as source terms. Then, hρi and hTi are
computed in the new background geometry and used as a

BACKREACTION AND ORDER REDUCTION IN INITIALLY … PHYS. REV. D 108, 105011 (2023)

105011-5



source for the next iteration. This process continues until
the iterations converge to the desired accuracy.
All four methods described above work for zeroth-order

adiabatic states. M2, M3, and M4 work for second-order
adiabatic states. However, only M4 works for a fourth-
order or higher adiabatic vacuum state. Note that M4 is very
robust and should work for nonconformally coupled scalar
fields as well. For such fields, hTμνid contains terms with
up to four derivatives of the scale factor [27]. Since these
are used to explicitly cancel the divergences in hTμνiu,
methods M1, M2, and M3 will not work, at least not
without some significant modification.

IV. ORDER REDUCTION METHODS APPLIED
TO QUANTIZED CONFORMALLY

INVARIANT FIELDS

In this section we apply the order reduction methods
described in the previous section to the case of quantized
conformally invariant scalar fields in closed Robertson-
Walker spacetimes. Since these are conformally flat space-
times, the stress-energy tensor for any homogeneous and
isotropic state has the form [31]

hTabi ¼ Tcr
ab þ h0jTabj0i; ð4:1Þ

where the first term on the right is the stress-energy tensor
for classical radiation and the second is the stress-energy
tensor if the field is in the conformal vacuum state.

h0jTabj0i ¼ −
1

6
αq

ð1ÞHab þ βq
ð3ÞHab: ð4:2Þ

Here

αq ¼
1

2880π2

	
N0 þ 6N1

2
þ 12N1



; ð4:3aÞ

βq ¼
1

2880π2

	
N0 þ 11N1

2
þ 62N1



; ð4:3bÞ

with N0 the number of conformally invariant scalar fields,
N1

2
the number of massless spin 1

2
fields, and N1 the number

of massless spin 1 fields.
In what follows we consider the case where the fields are

in the conformal vacuum state and the case where they
are in some other homogeneous and isotropic state. The
latter is equivalent to having the quantum fields in the
conformal vacuum state and having classical radiation [31].

A. No classical radiation

The scale factor for de Sitter space in closed cosmo-
logical coordinates is

aðtÞ ¼ 1

H
cosh Ht; ð4:4Þ

withH a positive constant. For this form of the scale factor,
one finds that

ð1ÞHab ¼ 0; ð4:5aÞ
ð3ÞHtt ¼ 3H4; ð4:5bÞ
ð3ÞHc

c ¼ −12H4: ð4:5cÞ

If only conformally invariant fields in the conformal
vacuum state are present, then de Sitter space is an exact
solution to the semiclassical backreaction equations even if
there is no cosmological constant [28]. If a cosmological
constant is also present, then an exact solution to the
semiclassical backreaction equations (3.1) with cr ¼ 0 is
de Sitter space with the scale factor given by (4.4) and

H2 ¼
�
ȧ
a

�
2

þ 1

a2
¼ 1

16πβq

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 32πβqH2

0

q �
;

ð4:6aÞ

H2
0 ¼

Λ
3
: ð4:6bÞ

The solution with the plus sign diverges in the limit
βq → 0, which is the limit that quantum effects vanish.
So this solution is physically unacceptable. The solution
with the minus sign reduces to the de Sitter solution of the
classical Einstein equations, H ¼ H0 in the limit βq → 0.
For comparison with the solutions from the order reduction
methods, it is useful to expand in powers of βq with the
result

H2 ¼ H2
0 þ 8πβqH4

0 þ 128π2β2qH6
0 þ � � � : ð4:7Þ

As discussed in Sec. III, the method M1 involves
using the classical Einstein equations to replace the higher
derivative terms in the stress-energy tensor for the quantum
field. This results in a stress-energy tensor that is simply a
function of the scale factor. The higher derivative terms for
the scale factor when no classical radiation is present are
given in (3.2) with cr ¼ 0. They are the same values one
would obtain for de Sitter space when H ¼ H0. Thus for
method (1), the semiclassical backreaction equations are

�
ȧ
a

�
2

¼ −1
a2

þH2
0 þ 8πβqH4

0 ð4:8Þ

which has the de Sitter solution (4.4) with

H2 ¼ H2
0 þ 8πβqH4

0: ð4:9Þ

This is in agreement with the exact solution (4.7) to first
order in β. This result was previously found in [17].
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For M2, which in this case is equivalent to M4, the
stress-energy tensor for the conformally invariant fields is
ignored on the zeroth iteration, which means that the
classical Einstein equations are solved. On each successive
iteration we compute the stress-energy tensor for the
conformally invariant fields using the metric obtained from
the previous iteration and then use this stress-energy tensor
as a source term for the semiclassical backreaction equa-
tions. When there is no classical radiation, we get a new
de Sitter solution upon each iteration if we only keep terms
in the result up to OðβiÞ. This is reasonable because upon
subsequent iterations the coefficients of these terms do not
change whereas the coefficients of any higher powers of β
do change. Letting Hi−1 be the solution for the previous
iteration we have

H2
i ¼ H2

0 þ 8πβqH4
i−1: ð4:10Þ

Starting with the de Sitter solution to the classical Einstein
equations H ¼ H0, the first iteration then gives an expres-
sion for H2

1 that is equal to the first two terms on the
right in (4.7). After that the ith iteration reproduces the
expansion (4.7) toOðβiÞ along with higher-order terms in β
that have different coefficients.
Because ð1ÞHab ¼ 0 in de Sitter space, M3 is equivalent

to solving the exact semiclassical backreaction equations
and yields the solution (4.6a).

B. Classical radiation

When both classical radiation and a positive cosmologi-
cal constant are present, the solution to the classical
Einstein equations depends on the amount of radiation
and the size of the cosmological constant. In a closed
universe, the solutions of interest start out with infinite size
and either contract to a final singularity or undergo a
bounce and expand to an infinite size.
The energy density for classical radiation is

ρrad ¼
cr
a4

; ð4:11Þ

with cr a positive constant. The trace of the stress-energy
tensor is zero.
To minimize the number of parameters in the classical

solutions, it is useful to work with the following scaled
variables3:

α ¼
ffiffiffiffi
Λ

p
a; ð4:12aÞ

τ ¼
ffiffiffiffi
Λ

p
t: ð4:12bÞ

The semiclassical backreaction equations when radiation
plus conformally invariant fields are present in a closed
Roberson-Walker universe are

�
α0

α

�
2

¼ A
α4

−
1

α2
þ 1

3
þ 8π

3Λ
h0jρj0i; ð4:13aÞ

α00

α
¼ −

�
α0

α

�
2

−
1

α2
þ 2

3
−
4π

3Λ
h0jTj0i; ð4:13bÞ

h0jρj0i ¼ Λ2

�
−
αq
6

�
−
36α000α0

α2
þ 18ðα00Þ2

α2
−
36α00ðα0Þ2

α3

þ 54ðα0Þ4
α4

þ 36ðα0Þ2
α4

−
18

α4

�

þ βq

�
3ðα0Þ4
α4

þ 6ðα0Þ2
a4

þ 3

α4

��
; ð4:13cÞ

h0jTj0i ¼ Λ2

�
−
αq
6

�
36α0000

α
þ 108α000α0

α2
þ 36ðα00Þ2

α2

−
180α00ðα0Þ2

α3
−
72α00

α3

�

þ βq

�
−
12α00ðα0Þ2

α3
−
12α00

α3

��
; ð4:13dÞ

A≡ 8π

3
crΛ: ð4:13eÞ

The equations for method M1 can be obtained by first
transforming the order reduction equations (3.2) to scaled
variables with the result

α02 ¼ A
α2

− 1þ α2

3
; ð4:14aÞ

α00 ¼ −
A
α3

þ α

3
; ð4:14bÞ

α000 ¼ 3Aα0

α4
þ α0

3
; ð4:14cÞ

α0000 ¼ −
15A2

α7
þ 12A

α5
−
10A
3α3

þ α

9
: ð4:14dÞ

Substituting these into (4.13c) gives

�
α0

α

�
2

¼ A
α4

�
1þ 16π

3
Λð2αq þ βqÞ

�
−

1

α2

þ 1

3

�
1þ 8π

3
Λβq

�
þ 8πA2Λβq

α8
: ð4:15aÞ

3Note that these variables only simplify the classical solutions
when classical radiation is present, so we only use them in this
section.
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Substituting this expression into the first term on the
right in (4.13b) and then substituting (4.14) into (4.13d)
gives

α00

α
¼ −

A
α4

�
1þ 16π

3
Λð2αq þ βqÞ

�
þ 1

3

�
1þ 8π

3
Λβq

�

−
24πA2Λβq

α8
: ð4:15bÞ

When only conformally invariant fields and classical
radiation are present, then, as mentioned above, M2 and
M4 are equivalent. For M2 we begin by writing α ¼ α0 and
solving (4.13a) and (4.13b) with h0jρj0i ¼ h0jTj0i ¼ 0
to obtain a classical solution. Then this is substituted
into (4.13c) and (4.13d). For the other terms in (4.13a)
and (4.13b), we write α ¼ α1 and solve them for α1. For a
second iteration, α1 is substituted into (4.13c) and (4.13d).
For the other terms in (4.13a) and (4.13b) we write α ¼ α2
and solve them for α2. In this way one can iterate as many
times as desired. Note that for the first iteration, one can use
analytic derivatives of (4.13b) with h0jTj0i ¼ 0 to obtain
expressions for α0000 and α00000 . However, for the second
iteration, one has only numerical data for α1 and its first
two derivatives. One way to obtain α0001 and α00001 is to fit this
data to a power series in τ over the range of times of interest
and then compute the derivatives analytically. This is what
is done for the example below.
M3 involves separating out the αq term from the βq term

in (4.13c) and (4.13d) and first setting αq ¼ 0. The
resulting second-order equations are then solved after
setting α ¼ α0. The result is substituted into the parts of
(4.13c) and (4.13d) that are proportional to αq and those
parts are used as source terms for the next iteration. For that
iteration, α ¼ α1 is used for the rest of the terms in the
backreaction equations. The iterations proceed in the same
way as they do for M2.

1. Solutions to the semiclassical
backreaction equations

As shown in Appendix B, the solutions to the classical
Einstein equations when classical radiation is present
depend upon the value of A in (4.13e) and on the initial
conditions. The solutions we are interested in begin with
α¼∞ at τ ¼ −∞. As shown in Appendix B, for 0 < A < 3

4

the solutions contract to a minimum nonzero size and
then expand again. For A ¼ 3

4
the solutions contract to a

minimum value of α ¼ 2
3
in the limit τ → ∞. This minimum

value of the scale factor is also its value for the static
solution in this case, which is the Einstein universe. For
A > 3

4
the solutions contract to a final singularity. Thus for a

fixed value of Λ, the late time behavior of the solutions to
the classical Einstein equations that begin with α ¼ ∞
depend upon the amount of classical radiation that is

present. If there is too much radiation, then they collapse
to a final singularity.
When conformally invariant fields are also present,

then quantum effects change the detailed behavior of the
scale factor as a function of time and they change the
specific conditions under which a bounce or collapse to a
singularity occurs. However, we have not found any new
qualitative behaviors when order reduction methods
are used.
To illustrate the various order reduction methods in this

case, we will focus on bounce solutions to the equations.
Near a bounce we can write a power series solution for
the scale factor in terms of τ if we fix the time so that the
bounce is at τ ¼ 0. Then, since by definition α0 ¼ 0 at a
bounce, we have

α ¼ a0 þ a2τ2 þ a3τ3 þ a4τ4 þ � � � : ð4:16Þ

Substituting this into the exact semiclassical backreaction
equations (4.13a) and (4.13b), one finds that a0, a2, and a3
are arbitrary and that for a bounce which by definition is a
minimum

a2 ¼
1

2

�
1

8πΛαqa20

�
Aþ 8πΛðαq þ βqÞ − a20 þ

a40
3

��
1=2

:

ð4:17Þ

There can only be bounce solutions if the quantity in square
brackets is non-negative. This is a rather different condition
than the one for bounce solutions in the classical case. Also
in contrast to the classical case, bounce solutions that are
not time symmetric exist.
For M1, one can substitute (4.16) into (4.15). Then

(4.15a) can be solved for a0 and (4.15b) can be solved
for a2. Thus one finds that, as for the classical solutions, a0
and a2 both have fixed values at a bounce. Computing a
time derivative of (4.15b), one sees that a3 ¼ 0. Computing
successive derivatives shows that all bounce solutions in
this case are time symmetric.
For M2, one substitutes solutions to the classical

equations into (4.13c) and (4.13d) and uses them as source
terms for the first iteration. In these cases the time at which
a bounce solution occurs will usually change on each
iteration because the source terms will not vanish at the
time of the bounce in the previous iteration.
For M3, one initially finds a solution to (4.13b)

when αq ¼ 0 and then for the first iteration uses the terms
proportional to αq as source terms. The iterations proceed
as for M2.
For a single scalar field, backreaction effects are small

at scales above the Planck scale. However, one expects
there to be a large number of quantum fields in the early
Universe, particularly if any of the grand unified theories
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are correct. If there are enough quantum fields, then
backreaction effects will be more significant. One can
see from (4.13) that the terms containing hρi and hTi in
the semiclassical backreaction equations are all multiplied
by Λ. We consider N identical conformally invariant scalar
fields. Then

Λαq ¼ Λβq ¼
NΛ

2880π2
: ð4:18Þ

For illustration purposes, it is useful to have back-
reaction effects be somewhat significant. Thus we
consider the case when NΛ ¼ 100 in Planck units in
Figs. 1–3. We also choose A ¼ 1

2
. In Fig. 1, we show the

solutions for the zeroth, first, and second iterations of M2.
The curve for each iteration has been shifted in time so
that the bounce occurs at approximately the same time for
all curves. The iterations appear to be converging. For the
times shown on the plot, the relative difference between
the zeroth and first iterations is of order 10%, while that
between the first and second iterations is of order 3% or
less. In Fig. 2 we show the solutions for the zeroth, first,
and second iterations for M3. Again the curves have been
shifted so the bounces occur at the same time and again
the iterations appear to be converging by about the same
amount as for M2. In both cases, if one extends the plots
to larger positive and negative times the relative differ-
ence between successive iterations increases. However,
this is at least in part because at large negative times the
scale factor is decreasing exponentially and at large
positive times it is increasing exponentially. Since the
location of the bounce is only approximately being
accounted for, the curves have not been shifted perfectly
so one curve starts expanding exponentially earlier than

the other and this causes at least some of the increase in
the relative difference.
The results for the classical solution, the solution for

M1, the solution for the second iteration using M2, and
the solution for the second iteration using M3 are shown
in Figs. 3 and 4, again with the curves for iterated
solutions shifted so that the bounce occurs at τ ≈ 0.
It can be seen that the bounce occurs at successively
smaller values of the scale factor for M1, M2, and M3.
The curves for M2 and M3, which are for the second
iteration of each method, are the closest together near the
bounce.

1 0.5 0 0.5 1
1.4

1.5

1.6

1.7

FIG. 1. Solutions for the scale factor α are plotted versus the
time τ using M2. The values of the parameters are A ¼ 1

2
,

NΛ ¼ 100. From top to bottom, the curves are for the zeroth
(blue), first (orange), and second (green) iterations. The curves
for the first and second iterations have been translated in time so
that the minimum is at τ ≈ 0.

1 0.5 0 0.5 1
1.4

1.5

1.6

1.7

FIG. 2. Solutions for the scale factor α are plotted versus
the time τ using M3. The values of the parameters are A ¼ 1

2
,

NΛ ¼ 100. From top to bottom, the curves are for the zeroth
(blue), first (orange), and second (green) iterations. The curves
for the first and second iterations have been translated in time so
that the minimum is at τ ≈ 0.

1 0.5 0 0.5 1
1.4

1.5

1.6

1.7

FIG. 3. Solutions for the scale factor α are plotted versus the
time τ using all three methods. The values of the parameters are
A ¼ 1

2
, NΛ ¼ 100. From top to bottom, the curves are for the

classical solution (blue), M1 (orange), the second iteration of M2
(green), and the second iteration of M3 (red). The curves for M2
and M3 have been translated in time so that the minimum of each
is at τ ≈ 0.
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V. CONFORMALLY COUPLED MASSIVE
SCALAR FIELD

In this section we consider backreaction effects due to a
conformally coupled massive scalar field in cases in which
the Universe is initially contracting and classically will
undergo a bounce. For simplicity, we will not consider any
other fields and will not include classical radiation in the
problem. As shown in (2.10), the stress-energy tensor for
the field can be broken into a part that must be computed
numerically in most cases along with an analytic part that
is shown in (2.12). In the limit m → 0 only the first two
terms of the analytic part survive if the field is in the
conformal vacuum state, which was assumed in the
previous section. Thus, effectively the stress-energy ten-
sor for a massive field has the same terms as for the
massless field plus additional terms.
The higher derivative terms in the stress-energy tensor

only occur in the terms that survive in the massless limit.
The extra terms induced by the mass do not have higher
derivatives associated with them. This results in a dis-
tinction between methods M2 and M4 which is not there in
the massless case. In M2, the terms that do not have higher
derivatives of the scale factor are kept in the zeroth-order
iteration because they are separately conserved. In M4 none
of the terms in the stress-energy tensor for the massive
scalar field are included for the zeroth iteration. Then the
zeroth-order solution is simply that for de Sitter space.
As discussed in the Introduction, we consider adiabatic

vacuum states for the conformally coupled massive scalar
field. In general, the vacuum state of the field can be fixed
by specifying starting values for the modes fk and their first
derivatives at some starting time t1. To specify an adiabatic

vacuum state, we use the method of adiabatic matching
which is discussed in Appendix A. For this method the
WKB approximation is used to obtain starting values for
the mode functions fk and dfk

dt at some initial time t1.
4

Different truncations of the WKB expansion result in
different order adiabatic states. Different values of t1, for
a given truncation of the WKB expansion, generate differ-
ent adiabatic states of the same order. Because of the
conformal coupling, it turns out that a renormalized stress-
energy tensor can be obtained from zeroth- and second-
order adiabatic vacuum states so long as the spacetime is
homogeneous and isotropic, which we assume here. We
show results below for zeroth-, second-, and fourth-order
adiabatic states. For scalar fields with nonconformal
coupling to the scalar curvature, it is necessary to use a
fourth-order adiabatic state or higher to obtain a finite
stress-energy tensor.
In what follows, we will again take illustrative examples

in which the quantum effects are large enough to easily be
seen. The mass for the field is set equal to the Planck mass,
thus m ¼ 1 in the units we are using. The cosmological
constant is set to Λ ¼ 0.5 for the zeroth-order adiabatic
states, to Λ ¼ 1 for the second-order adiabatic states where
particle production effects are smaller, and to Λ ¼ 1.5 for
the fourth-order adiabatic states for which particle produc-
tion effects are even smaller.

A. Zeroth-order adiabatic states

A zeroth-order adiabatic state is the simplest to use for
methods M2 and M3, and it is the only adiabatic order for
which we have been able to use M1. For the calculations we
do, the starting values for the modes are obtained using the
method outlined in Appendix A and Eqs. (A4) and (A5a).
We find solutions for m ¼ 1 and Λ ¼ 0.5 at the starting
times t1 ¼ −4 and t1 ¼ −3. For the earlier matching time
there is enough particle production for these values of m
and Λ that the Universe collapses to a singularity instead of
bouncing. For the later matching time, less particle pro-
duction occurs and the solutions undergo a bounce. The
value of the scale factor at the bounce is smaller than it is
for the corresponding classical solution.
The results for the scale factor for the four methods when

t1 ¼ −4 are shown in Fig. 5. M1 does not include any
iterations. Two iterations are implemented for M2, M3,
and M4. A detailed description of how the iterations are
done is given in Sec. III. The behavior of the scale factor
is almost the same for each method before t ≈ 1. The
differences increase as the singularity is approached. Note
that the solutions for M2 and M3 are the closest together

4 2 0 2 4
0

5

10

FIG. 4. Solutions for the scale factor α are plotted versus the
time τ for all three methods. The values of the parameters are
A ¼ 1

2
, NΛ ¼ 100. From top to bottom curves are for the classical

solution (blue), M1 (orange), the second iteration of M2 (green),
and the second iteration of M3 (red). The curves for M2 and M3
have been translated in time so that the minimum of each is at
τ ≈ 0. Note that these curves are so close together that it is
difficult to distinguish them on the scale of the plot.

4For the massive scalar field there is no real advantage to using
the scaled coordinates that were used in Sec. IV, so we go back to
the original coordinates in which the scale factor a is given as a
function of the proper time t.
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while those for M1 and M4 have the largest deviation from
each other.
To better compare the solutions for the different

methods, relative differences between the scale factors
are plotted versus time in Fig. 6. In the figure, the relative
differences are seen to increase exponentially at later
times as the singularity is approached. However, their
differences remain small past the time when the bounce
for the classical solution occurs. The difference between
M2 and M3 is omitted because it is significantly smaller
than the other differences.
The solutions to the semiclassical backreaction equations

for the starting time t1 ¼ −3 are shown in Fig. 7. Again,
there are two iterations for M2, M3, and M4. As can be
seen from the figure, the solutions bounce in this case at
smaller values of the scale factor than the corresponding
classical de Sitter solution.
The relative differences between the scale factors

obtained from the different methods are plotted versus
time in Fig. 8. In general, Figs. 6 and 8 display a similar
pattern. However, the relative differences in Fig. 8 are much
smaller than those in Fig. 6 and do not appear to grow
exponentially at late times. One explanation for this is that
when the matching time t1 ¼ −3 is employed, there is less
particle production, causing the scale factor to bounce

FIG. 5. Solutions for the scale factor a obtained from all four
methods for zeroth-order adiabatic vacuum states with matching
time t1 ¼ −4 are plotted. The values of the parameters are m ¼ 1
and Λ ¼ 0.5. For these values of m and Λ, and this matching
time, there is enough particle production that the scale factor
collapses to a singularity. For the solutions shown, two iterations
are implemented for M2, M3, and M4. There is never an iteration
for M1. The upper curve (blue) is for the classical de Sitter
solution. The inset shows the late-time behaviors of the rest of the
solutions. From top to bottom, the curves are for the solutions
obtained using M4 (dashed black), M2 (dotted green), M3 (dash-
dotted red), and M1 (solid orange). The curves for the solutions
obtained using M2 and M3 overlap and are almost identical.

FIG. 6. The relative differences between the solutions in Fig. 5
are plotted versus time on a semilog plot. Differences with the
solution obtained using M3 are not included because that solution
is almost identical to the one obtained using M2. From top to
bottom, the curves are for the relative differences between the
solutions obtained using M1 and M4 (orange), M1 and M2
(blue), and, M2 and M4 (green). Note that as the singularity is
approached, the relative differences increase exponentially.

FIG. 7. Solutions for the scale factor a obtained using all four
methods for zeroth-order adiabatic vacuum states with matching
time t1 ¼ −3 are plotted. The values of the parameters are m ¼ 1
and Λ ¼ 0.5. For these values of m and Λ, and this matching
time, the amount of particle production is small enough that the
scale factor bounces. Two iterations are implemented for M2,
M3, and M4. The upper curve (blue) is for the classical de Sitter
solution. The inset shows the late-time behaviors of the rest of the
solutions. From top to bottom, the curves are for the solutions
obtained using M4 (dashed black), M2 (dotted green), M3 (dash-
dotted red), and M1 (solid orange). The curves for the solutions
obtained from M2 and M3 overlap and are almost identical. The
bounces occur for smaller values of the scale factor than for the
classical de Sitter solution.
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rather than collapse into a singularity. Quantum effects start
to decrease as the Universe expands after the bounce. So the
differences between the solutions begin to level off.
In Fig. 9, the relative differences between the solutions

obtained for different iterations of M2 are shown for the
case t1 ¼ −4. It can be seen from the plot that the relative
differences increase as the solutions approach the singu-
larity at α ¼ 0. However, the relative difference between
the solutions with one and two iterations is significantly
smaller than that between the solutions with no iterations
and one iteration. Thus it is clear that the iterations are
converging. Evidence is also found for convergence of the
iterations of M3 and M4.

B. Second-order adiabatic states

Solutions to the semiclassical backreaction equations are
discussed in this section for second-order adiabatic states.
For the calculations we do, the starting values for the modes
are obtained using the method outlined in Appendix A
and Eq. (A8).
We do not have a good way to extend M1 to second- or

higher-order adiabatic states. It is possible to extend M2
andM3 to second-order adiabatic states. What is required is
to find self-consistent solutions to (3.1) at the initial time t1.
The problem is that the terms contained in hρin when a
second-order WKB approximation is made for the modes
depend on ȧ. This is also true for the parts of hρian that are
used for the zeroth iterations for M2 and M3. Thus it is
necessary to find a value for ȧðt1Þ that gives a self-
consistent solution to (3.1a). This can be done by starting

with the value of ȧðt1Þ for the corresponding de Sitter space
solution to Einstein’s equations and then iterating. Once the
value of ȧðt1Þ is determined then a similar procedure can be
used to find the self-consistent solution to (3.1b) at time t1.
For subsequent iterations, this procedure needs to be
repeated. In contrast for M4 there is no problem at any
adiabatic order. One simply uses the geometry from the
previous iteration to compute the entire expression for
hTabi and then uses it as a source term for the equations.
Because of this simplicity, we restrict our discussion of
second-order adiabatic states to M4.
We choose m ¼ 1 as before and the slightly larger value

Λ ¼ 1 because quantum effects are somewhat smaller for
this state. The initial time t1 is chosen to be −4. This initial
condition leads to a bounce solution for this state even
though it leads to singular solutions for zeroth-order
adiabatic states. The scale factors obtained for M4 with
two iterations, along with the classical solution are shown
in Fig. 10. The relative difference between the solutions for
the zeroth and first iterations is shown in Fig. 11 along with
the relative difference between the first and second iter-
ations. The relative difference between the first and second
iterations is more than an order of magnitude smaller than
the relative difference between the zeroth and first iter-
ations. So it is clear that the iterations are converging.

FIG. 8. The relative differences between the solutions in Fig. 7
are plotted versus time on a semilog plot. Differences of solutions
with that obtained using M3 are not included because that
solution is almost identical to the one obtained using M2. From
top to bottom, the curves are for the relative differences between
the solutions obtained using M1 and M4 (orange), M1 and M2
(blue), and M2 and M4 (green).

FIG. 9. The relative differences between different iterations of
solutions obtained using M2 are plotted versus time for a zeroth-
order adiabatic state in which the adiabatic matching occurs at
time t1 ¼ −4. The values of the parameters are m ¼ 1 and
Λ ¼ 0.5. From top to bottom, the curves are for the relative
differences between the solutions for the first iteration and no
iteration (blue solid), and between the second iteration and the
first iteration (red dashed). In the inset, the scale factors for the
different iterations at relatively late times are shown. From top to
bottom, the curves are the scale factor for no iterations (solid
blue), one iteration (dash-dotted red), and two iterations (dashed
green). The curves for the scale factors for the first and second
iterations overlap and are almost identical.
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C. Fourth-order adiabatic states

Solutions to the semiclassical backreaction equations are
discussed in this section for fourth-order adiabatic states.
For the calculations we do, the starting values for the modes
are obtained using the method outlined in Appendix A
and Eq. (A8).
We do not have a good way to combine fourth-order

adiabatic regularization with the order reduction methods
M1, M2, and M3. However, for the reasons discussed
above, it is straight forward to use M4 for fourth-order
adiabatic vacuum states.
We find that particle production effects are typically

smaller for the fourth-order states that we use than for the
second-order or zeroth-order adiabatic vacuum states. To
illustrate the backreaction effects we therefore choose
the value Λ ¼ 1.5 which is larger than for our previous
illustrations, but we keep m ¼ 1 and use an adiabatic
matching time of t1 ¼ −4. In this way, backreaction effects
are significant, but not so large as to remove the bounce.
As discussed in Sec. III, M4 involves first solving the

classical Einstein equations, using that solution to com-
pute the stress-energy tensor for the quantum field, and
then solving the semiclassical backreaction equations
using that stress-energy tensor as a source. This is the
first iteration. For the second iteration, the solution from
the first iteration is used to compute the stress-energy
tensor for the quantum field, and so forth. The classical
solution and the results for the first three iterations are
shown in Fig. 12. The relative differences between the first
and second iterations and between the second and third
iterations are shown in Fig. 13.
It is clear from the figures that there is only a relatively

small difference between the first and second iterations.
Thus the iterations appear to be converging as expected.
However, the difference between the second and third
iterations is significantly larger.
After a thorough investigation, we find that one signifi-

cant difference between the second and third iterations is
the accuracy of the fits used to compute ⃛a and ⃜a using the
scale factor obtained from the previous iteration. The fits
are then used to compute hTabi and to compute the starting
values for the mode functions which are discussed in
Appendix A. Since there was no problem with the con-
vergence of iterations for zeroth- and second-order adia-
batic states, we strongly suspect that the primary effect of
the poorer fits for the third iteration is in computing the
starting values for the modes. These do not contain third
and fourth derivatives of the scale factor for zeroth- and
second-order adiabatic states. The errors in the fits effec-
tively change the state of the quantum field. This in turn
results in a different solution to the backreaction equations
than would be obtained with a more accurate fit.
To make the fits, we first fit the numerical data for ä that

comes from the previous iteration. Then derivatives of that

FIG. 10. Solutions for the zeroth, first, and second iterations of
the scale factor a obtained using M4 for a second-order adiabatic
vacuum state with matching time t1 ¼ −4 are plotted along with
the classical solution. The values of the parameters arem ¼ 1 and
Λ ¼ 1. The top curve is the classical de Sitter space solution
(thick blue) which results from the zeroth iteration. The middle
curve (dotted green) is for the first iteration. The bottom curve
(dashed black) is for the second iteration. The curves for the first
and second iteration almost overlap. Their difference is shown in
the inserted plot.

FIG. 11. The relative differences between different iterations of
solutions obtained using M4 for second-order adiabatic vacuum
states with matching time t1 ¼ −4 are plotted on a semilog plot.
The values of the parameters are m ¼ 1 and Λ ¼ 1. The solution
with no iterations in this case is equivalent to the classical de
Sitter solution. From top to bottom, the curves are for the relative
differences between the first and zeroth iterations (blue solid),
and the first and second iterations (red dashed).

BACKREACTION AND ORDER REDUCTION IN INITIALLY … PHYS. REV. D 108, 105011 (2023)

105011-13



fit are used to obtain fits for ⃛a and ⃜a. These derivatives
almost certainly result in less accuracy for these fits than
occurs for the fit for ä. This loss of accuracy should affect
the accuracy of the solutions obtained by the next iteration.
In this way, the accuracy of the results should decrease for

each iteration. Of course in principle one can simply
increase the accuracy of all of the calculations to allow
for more iterations. However, there is still expected to be an
increased error with each iteration and eventually this will
become significant.
The evidence that the fits are less accurate for successive

iterations comes from comparing each fit for ä with the
numerical data used to make the fit. In Fig. 14, the relative
differences between the fit and the data are plotted for the
fits made after the first and second iterations. It is clear that
the accuracy of the fit for the first iteration is significantly
better than the accuracy for the second iteration. In each
case, the fits were obtained by fitting the data to a power
series in the time coordinate t. Terms were added to the
power series until it was found that adding more terms did
not increase the accuracy of the fit. Further, when ä for
the first iteration was fitted, the numerical data was
separated into several overlapping segments to improve
the fit accuracy. However, this strategy did not work for the
second iteration and even made the accuracy worse, so the
fit shown is for the entire data set.

VI. PARTICLE PRODUCTION

In general in a curved spacetime it is not possible to
uniquely separate out particle production from vacuum
polarization effects. However, there is an important excep-
tion: there is no particle production for conformally
invariant quantum fields in conformally flat spacetimes.
In Sec. IVA, the semiclassical backreaction equations were

FIG. 12. Solutions for the scale factor a obtained using M4 for
fourth-order adiabatic vacuum states with matching time t1 ¼ −4
are plotted. The values of the parameters are m ¼ 1 and Λ ¼ 1.5.
Note that the result of the zeroth iteration is the classical de Sitter
solution. From top to bottom, the curves are for the solutions
obtained from the zeroth iteration (solid blue), third iteration
(dashed black), and first iteration (dash-dotted red). The curve for
the second iteration (dashed green) overlaps with the curve for the
first iteration.

FIG. 13. Relative differences between the scale factors for some
of the results in Fig. 12 for various iterations using M4 are
plotted. From top to bottom, the curves are for the relative
differences between the second and third iterations (red dashed),
and the first and second iterations (blue solid).

FIG. 14. The relative differences between the fits for ä and the
numerical data used to make the fits for the numerical compu-
tations of the first and second iterations that are shown in Fig. 12
are plotted. The lower (blue) curve corresponds to the relative
difference for the first iteration and the upper (red) curve
corresponds to the relative difference for the second iteration.
Clearly there is significantly less accuracy for the fit using the
second iteration results than for the fit using the first iteration
results.
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solved when only conformally invariant quantum fields in
the conformal vacuum state are present and the cosmo-
logical constant is positive. It was found that the order
reduction methods resulted in the spacetime remaining
de Sitter space (to the level of approximation appropriate
for each method) but vacuum polarization effects alter the
effective cosmological constant. To take into account in a
classical way the possible effects of particle production,
classical radiation was included along with conformally
invariant fields in Sec. IV B. It was found that if enough
radiation is present, then collapse to a final singularity
occurs for solutions to the semiclassical backreaction
equations for each of the order reduction methods.
Otherwise a bounce occurs.
In Sec. V, the semiclassical backreaction equations were

solved when a massive conformally coupled scalar field
is present. Here one cannot uniquely separate particle
production from vacuum polarization effects. However,
examination of (2.10) and (2.12) shows that the stress-
energy tensor can be divided into a part that is identical to
the stress-energy tensor for a massless conformally coupled
scalar field and a second part that consists of a sum over
products of the mode functions and their derivatives along
with certain subtraction terms that do not contain higher
derivatives of the scale factor. Thus, we can write

hTabir ¼ hTabimassive þ hTabim¼0

hTabimassive ¼ hTabin þ ðhTabian − hTabim¼0Þ

hTabim¼0 ¼
1

2880π2

�
−
1

6
ð1ÞHab þ ð3ÞHab

�
: ð6:1Þ

It is clear that the particle production must come from
hTabimassive. However, this term may also contain vacuum
polarization effects. To investigate how important the
vacuum polarization effects are for this term and for the
stress-energy tensor in general we consider two solutions to
the semiclassical backreaction equations and focus on the
energy density of the field hρi ¼ hTtti.
The first solution we consider is the one discussed in

Sec. VA for a zeroth-order adiabatic vacuum state that
begins at time t1 ¼ −4 and ends in a final singularity. For
this solution m ¼ 1 and Λ ¼ 0.5. We consider the specific
solution that was computed with two iterations using M4.
Because the full stress-energy tensor is computed in the
geometry of the previous iteration for M4, the energy
density shown is that computed with the scale factor
obtained from the first iteration. Both hρimassive and
hρim¼0 are shown in Fig. 15. It is clear that vacuum
polarization effects make a significant contribution to
hρimassive since there is a partial cancellation of this term
by hρim¼0 when the two are added together. This is shown
explicitly in Fig. 16 where the absolute values of these
contributions to the energy density are plotted along with
the total energy density.

To understand why there is so much cancelation when
hρimassive and hρim¼0 are added together, consider the WKB
approximation. It is the WKB approximation (A1) that is
used to compute the renormalization counterterms hTabiad

FIG. 15. Two contributions to the energy density are plotted
versus the proper time t for a solution obtained usingM4 with one
iteration for a zeroth-order adiabatic vacuum state with matching
time t1 ¼ −4. The values of the parameters are m ¼ 1 and
Λ ¼ 0.5. The corresponding solution with two iterations is shown
in Fig. 5. From top to bottom, the curves are for hρim¼0 (red) and
hρimassive (blue).

FIG. 16. The energy density and two contributions to it are
plotted versus the proper time t on a semilog plot for a solution
obtained using M4 with one iteration for a zeroth-order adiabatic
vacuum state with matching time t1 ¼ −4. The values of the
parameters are m ¼ 1 and Λ ¼ 0.5. The corresponding solution
with two iterations is shown in Fig. 5. From top to bottom, the
curves are for hρim¼0 (dashed red), the absolute value of hρimassive
(solid blue), and hρir (dash-dotted black). Note that the curves for
hρim¼0 and jhρimassivej overlap.
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in (2.9) [26]. A fourth-order approximation is used to do
this. The mode functions in hTabiu are computed numeri-
cally without the use of the WKB approximation (except
for their starting values). The strong cancellation indicates
that, over the range of times in the plot, the WKB
approximation must be a good approximation for the exact
modes. Examination of Fig. 5 shows that the scale factor is
approaching the final singularity during the times shown.
One would guess that the WKB approximation would
break down in the final stages of approach to the singularity
due to the rapid change in the scale factor with time.
However, it is difficult to carry out the iterations as the
singularity is approached because the increase in the rate of
change of the scale factor makes it more difficult to fit ä
accurately enough to obtain accurate values for the higher
derivatives in hTabim¼0.
Since there is so much cancellation between hρimassive

and hρim¼0 in this case, we use the total energy density to
investigate how much of a contribution the particles make
to the stress-energy tensor. Because the particles are
massive, we would expect their energy density to go like
a−3 when the scale factor is large. As can be seen from the
mode equation (2.4b), they are effectively massless when
the scale factor is small and we would thus expect their
energy density to go like a−4 in this case. For the range of
times that we consider the particles only provide the
dominant contribution to hρir when they are effectively
massless. In Fig. 17, the quantity a4hρir is plotted.
One can see that there is a range of times for which this
is a constant, which indicates that it is dominated by
particles that are effectively massless. However, at the
latest times in the plot, where the scale factor is smallest,

this quantity increases which indicates that the energy
density is growing faster than a−4. Thus vacuum polari-
zation effects are dominating near the final singularity,
as might be expected.
The second solution we consider is discussed in

Sec. V C. It is for a fourth-order adiabatic state with
m ¼ 1 and Λ ¼ 1.5. It begins at t1 ¼ −4 and undergoes
a bounce. M4 is used and, as in the previous example, hρir
is computed using the scale factor that results from the first
iteration. As in the previous example, it is found for the
range of times investigated, that there is a significant
cancellation between hρimassive and hρim¼0 when they are
added together. This is illustrated in Fig. 18 where the
absolute values of these quantities along with that of hρir
are plotted. As for the previous example, the particles never
dominate hρir when they act like massive particles for the
times considered. However, they provide the dominant
contribution to hρir near the bounce, where they are acting
like massless particles as is shown in Fig. 19.
In [9], the effects of particle production due to a massive

scalar field in de Sitter space in spatially closed coor-
dinates were investigated in the test field approximation
where backreaction effects due to the quantum field
are not taken into account. It is shown in Fig. 11 of that

paper that near the bounce the particles for m ¼ H ¼
ffiffiffi
Λ
3

q
dominated the energy density for a second-order adiabatic
state. In Fig. 12 it is shown that they are effectively
massless near the bounce. Our results in Fig. 19 are
consistent with those results.

FIG. 17. The quantity a4hρir is plotted versus the proper time t
for a solution obtained using M4 with one iteration for a zeroth-
order adiabatic vacuum state with matching time t1 ¼ −4. The
values of the parameters are m ¼ 1 and Λ ¼ 0.5. The corre-
sponding solution with two iterations is shown in Fig. 5.

FIG. 18. The energy density and two contributions to it are
plotted versus the proper time t on a semilog plot for the solution
in Fig. 12 obtained using M4 with one iteration. The matching
time for the fourth-order adiabatic state is t1 ¼ −4 and the values
of the parameters are m ¼ 1, Λ ¼ 1.5. From top to bottom, the
curves are for hρim¼0 (dashed red), jhρimassivej (solid blue), and
hρir (dash-dotted black). Note that the curves for hρim¼0 and
jhρimassivej overlap.
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VII. SUMMARY

We have investigated backreaction effects due to both
conformally invariant fields and conformally coupled
massive scalar fields in closed Roberson-Walker space-
times when a positive cosmological constant is present. It is
assumed that the fields are in homogeneous and isotropic
states so backreaction effects do not destroy the homo-
geneity and isotropy. In one case classical radiation is also
included. Because the spacetimes are conformally flat no
particle production occurs for the conformally invariant
fields. In contrast, the conformally coupled massive scalar
field is not conformally invariant and so particle production
can occur. For this field we consider adiabatic vacuum
states of various orders instead of the Bunch-Davies state.
As argued in [9] there is a sense in which these are more
natural states for this field in a spacetime that begins like
collapsing de Sitter space.
We consider initially collapsing models for two reasons.

One is that there are interesting models that have been
investigated, for example in loop quantum cosmology,
which begin with a collapsing universe that undergoes a
bounce. The other is that backreaction effects usually
become more important as the collapse phase progresses
whereas in many models of an expanding universe they
become less important as the expansion progresses.
The stress-energy tensors for the quantum fields contain

higher derivative terms. For the massive conformally
coupled scalar field these are exactly the same as for
the massless field. None of the terms which involve the
mass contain higher derivatives of the scale factor. We have
used four different methods to reduce the resulting
fourth-order semiclassical backreaction equations to sec-
ond order. The method we call M1 is a direct adaptation

of the Parker-Simon method to the case when particle
production occurs. M2 involves solving the semiclassical
backreaction equations when the terms proportional to
ð1ÞHab and ð3ÞHab in hTabi are ignored for the zeroth
iteration. These terms are evaluated in the resulting metric
and used as source terms for the next iteration. Further
iterations proceed in the same manner. M3 involves solving
the semiclassical equations when only the terms propor-
tional to ð1ÞHab are ignored for the zeroth iteration. These
are the terms that contain third and fourth derivatives of the
scale factor. The iterations work in the same way as for
the second method. M4 is due to Agullo [20]. It involves
starting with the classical solution, evaluating the full
stress-energy tensor for the quantum fields in that
geometry, and using it as a source term for the next
iteration and so forth.
If no classical matter is present and quantum effects are

ignored, then the solution to Einstein’s equations is the
de Sitter solution. It undergoes a bounce at a value of the
scale factor that is inversely proportional to the square root
of the cosmological constant Λ. If classical radiation is
present then the bounce occurs at a smaller value of the
scale factor or, if enough radiation is present, the Universe
collapses to a singularity. This same effect is found for the
massive scalar field when no classical radiation is present.
If enough particle production occurs then the bounce is
removed and appears to be replaced with a singularity.
For the case when there is no classical radiation and

only conformally invariant quantized fields in the con-
formal vacuum state, it turns out that all of the methods
result in exact de Sitter space solutions with various values
of the parameter H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Λeff=3
p

, with Λeff the effective
cosmological constant. For the exact solution to the
semiclassical backreaction equations, H depends on the
value of the actual cosmological constant Λ and
the parameter βq in (4.3b). Because the term proportional
to αq in (4.3a) vanishes for the de Sitter metric, M3 is
equivalent to solving the exact semiclassical backreaction
equations. If H2 is expanded in powers of βq, then M1
results in an expression for H2 that is equal to the zeroth-
and first-order terms in that expansion. M2 and M4 are
equivalent in this case. The ith iteration reproduces the
expansion of the exact solution to order ðβqÞi, but it is not
exactly the same because there are terms proportional to
higher powers of βq.
If classical radiation is present, then exact de Sitter space

is no longer a solution to the classical Einstein equations.
The various possibilities are discussed in Appendix B. For
this paper the focus is on classical solutions which undergo
a bounce. These will occur if there is not too much classical
radiation present. When only conformally invariant quan-
tum fields are present the different methods give slightly
different modifications of the classical solution with boun-
ces that occur at smaller values of the scale factor than the

FIG. 19. The quantity a4hρir is plotted versus the proper time t
for the solution in Fig. 12 obtained using M4 with one iteration.
The matching time for the fourth-order adiabatic state is t1 ¼ −4
and the values of the parameters are m ¼ 1, Λ ¼ 1.5.
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classical solution for the examples investigated. In this case
M2 and M4 are equivalent. It is found that near the bounce
only small differences occur between the classical solution
and the solutions obtained by each method. M2 and M3
involve iterations, and in the examples investigated, it was
found that the iterations appear to converge. However, the
scale factors that the iterations appear to converge to are
slightly different for M2 than M3.
The semiclassical backreaction equations were also

solved when a conformally coupled massive scalar field
was present but there was no classical radiation and no
conformally invariant fields. For this field it turns out that
it is mathematically consistent in a homogeneous and
isotropic spacetime to consider zeroth- and second-order
adiabatic states as well as the fourth-order adiabatic states
that work for arbitrarily coupled scalar fields. All four of
the methods we use work for zeroth-order adiabatic states.
The issue for higher-order adiabatic states is how to fix the
initial conditions. We were not able to adapt the Parker-
Simon approach to second- or fourth-order adiabatic states.
M2, M3, and M4 can also be used for second-order
adiabatic states. However, only M4 works for fourth-order
and higher adiabatic states.
Because particle production occurs for the massive

scalar field, if one starts with a solution that is initially
contracting, there are two possibilities. One is that, as for
the corresponding classical solution, the cosmological
constant causes a bounce to occur. The other is that enough
particle production occurs that there is no bounce and the
Universe contracts to a final singularity. As for the case
when conformally invariant fields are present and no
particle production occurs, the different methods result
in slightly different solutions. In principle there could be
cases in which one method results in a bounce and another
in contraction to a final singularity, but these would only
occur for fine tuning of the initial conditions. For the cases
considered here, the answer to the qualitative question of
whether a bounce or a singularity occurs did not depend
on the choice of method. The solutions for the different
methods tend to get farther apart as time progresses.
However, this happens much more rapidly for the solutions
which approach a final singularity than for those that
undergo a bounce.
We also examined the behavior of the energy density of

the massive scalar field for a solution to the semiclassical
backreaction equations that approaches a final singularity at
a ¼ 0 and one that undergoes a bounce. In both cases we
find that for the range of times considered, the WKB
approximation for the modes of the quantum field is a
relatively good approximation. We come to this conclusion
because there are cancellations between the part of the
energy density that depends directly on the modes and the
part that survives in the massless limit and results entirely
from a fourth-order WKB approximation for the modes.
Particle production is a nonlocal effect and cannot be

obtained directly from the type of WKB approximation we
use here. Our results show that after the cancellations, the
full energy density of the quantum field is dominated by
the particles for a range of times as the singularity is
approached, but vacuum polarization effects become
important at later times. The particles at these times are
effectively massless. For the solution undergoing a bounce
it was found that the energy density is dominated by
particles near the bounce. Again the particles during this
time period are effectively massless. The results for the
second solution are consistent with those found in [9] for a
massive field in de Sitter space when semiclassical back-
reaction effects are not taken into account.
Given that the four methods of order reduction result in

very similar solutions to the semiclassical backreaction
equations, one can ask which method or methods is
preferred. For calculations that involve only conformally
invariant quantum fields, M1 is the easiest to use because it
involves no iteration. If quantum effects are very small then
this is probably the preferred method. If quantum effects
are more significant, then one of the methods involving
iteration may give a more accurate answer. If conformally
noninvariant quantum fields are present then M4 is the
preferred method because it is straightforward to imple-
ment it for a state of any adiabatic order. We have shown
that it gives similar answers to the other methods for
zeroth-order adiabatic states for the massive conformally
coupled scalar field. Thus, there is good reason to believe
that it will be a reliable method of order reduction for
more general cases including spacetime geometries that
are not conformally flat and/or quantum fields that are not
conformally invariant.
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APPENDIX A: WKB APPROXIMATION AND
ADIABATIC VACUUM STATES

The states we consider for the massive scalar field
are adiabatic vacuum states [7]. We construct them using
the WKB approximation for the modes. A zeroth-order
adiabatic state is constructed using a zeroth-order WKB
approximation, a second-order adiabatic state is
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constructed using a second-order adiabatic approximation,
and so forth.
There are two common time coordinates used in cos-

mology. One is the proper time t which we use here when
solving the semiclassical backreaction equations. The
natural form for the time dependent part of the mode
function in this case is fk. The other is the conformal time η
for which the natural time dependent part of the mode
function is ψk. The relation between the times is dt ¼ adη
and that between the mode functions is fk ¼

ffiffiffi
a

p
ψk. One

can derive WKB approximations for both ψk and fk using
the same type of ansatz. For ψk one has

ψk ¼
expð−i R ηη0 WðxÞdxÞffiffiffiffiffiffiffi

2W
p ; ðA1aÞ

W2 ¼ Ω2 −
W00

2W
þ 3

4

W02

W2
; ðA1bÞ

Ω2 ¼ k2 þm2a2; ðA1cÞ

with η0 an arbitrary real number. This can be solved by
iteration with the zeroth-order term being

Wð0Þ
k ¼ Ω: ðA2Þ

For fk, the WKB expansion in terms of proper time is

fk ¼
exp
	
−i
R
t
t0
WðxÞdx



ffiffiffiffiffiffiffi
2W̄

p ; ðA3aÞ

W̄2 ¼ Ω̄2 −
̈W̄
2W̄

þ 3

4

˙̄W2

W̄2
; ðA3bÞ

Ω̄2 ¼ k2

a2
þm2 þ ȧ2

4a2
−
1

2

ä
a
; ðA3cÞ

where t0 is an arbitrary real number.
One can fix an adiabatic vacuum state by choosing a

matching time η1 and using a particular order of the WKB
approximation to obtain starting values for ψk and ψ 0

k. It is
convenient to choose η0 ¼ η1 in which case the zeroth-
order adiabatic approximation gives

ψkðη1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ωðη1Þ
p : ðA4Þ

There is an ambiguity in the first derivative. One can
either choose

ψ 0
kðη1Þ ¼ −i

ffiffiffiffi
Ω
2

r
; ðA5aÞ

or

ψ 0
kðη1Þ ¼ −i

ffiffiffiffi
Ω
2

r
−

Ω0

ð2ΩÞ3=2 : ðA5bÞ

Substitution of (A4) and either (A5a) or (A5b) into (2.5)
and subtracting off the renormalization counterterms results
in finite expressions for the energy density and trace.
Thus both expressions result in acceptable zeroth-order
adiabatic states.
It is worth emphasizing that for any adiabatic state the

solutions to the mode equation are exact solutions. The
WKB approximation is only used to obtain starting values
for these solutions at some time η0.
Since there is a WKB approximation for fk, one would

guess that one could also use the WKB expansion (A3) to
define adiabatic states. While this is correct, it is not as
straightforward as it is when using (A1). To see this,
one can try following the same procedure as above but
using (A3). Then,

fkðt1Þ ¼
1ffiffiffiffiffiffi
2Ω̄

p

ḟkðt1Þ ¼ −i

ffiffiffiffi
Ω̄
2

r
: ðA6Þ

The problem is that if (A6) is substituted into (2.8) and the
adiabatic counterterms are subtracted, one finds that all of
the ultraviolet divergences in hρiu have not been canceled.
Because of this we use the following method to obtain an

adiabatic vacuum state of order n. First iterate (A1b) n
2
times

to obtain the WKB approximation to the correct order.

We will call the solutionWðnÞ
k . Then substitute it into (A1a)

with η0 ¼ η1 and evaluate at time η ¼ η1. Next compute the
time derivative of (A1a) and substitute the WKB expansion
into it, keeping only terms up to and including the terms
with n derivatives of the scale factor. The result is

ψkðη1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2WðnÞ
k ðη1Þ

s
; ðA7aÞ

ψ 0
kðη1Þ ¼ −

WðnÞ0
k ðη1Þ

ð2WðnÞ
k ðη1ÞÞ3=2

− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðnÞ

k ðη1Þ
2

s
; ðA7bÞ

For zeroth-order adiabatic states we use (A2) and

Wð0Þ0
k ¼ 0. For second-order adiabatic states we use

Wð2Þ
k ¼ Wð0Þ

k þ 5m4a2a02

8Wð0Þ
k

5
−

m2a02

4Wð0Þ
k

3
−
m2aa00

4Wð0Þ
k

3
; ðA8aÞ

W0
k
ð2Þ ¼ m2aa0

Wð0Þ
k

; ðA8bÞ
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and for fourth-order adiabatic states we use

Wð4Þ
k ¼ Wð0Þ

k þ 5m4a2a02

8Wð0Þ
k

5
−

m2a02

4Wð0Þ
k

3
−
m2aa00

4Wð0Þ
k

3

−
1105m8a4a04

128Wð0Þ
k

11
þ 221m6a2a04

32Wð0Þ
k

9
−
19m4a04

32Wð0Þ
k

7

þ 221m6a3a02a00

32Wð0Þ
k

9
−
61m4aa02a00

16Wð0Þ
k

7
−
19m4a2a002

32Wð0Þ
k

7

þ 3m2a002

16Wð0Þ
k

5
−
7m4a2a0a000

8Wð0Þ
k

7
þm2a0a000

4Wð0Þ
k

5
þ m2aa0000

16Wð0Þ
k

5
;

ðA9aÞ

W0
k
ð4Þ ¼ m2aa0

Wð0Þ
k

−
25m6a3a03

8Wð0Þ
k

7
þ 2m4aa03

Wð0Þ
k

5
þ 2m4a2a0a00

Wð0Þ
k

5

−
3m2a0a00

4Wð0Þ
k

3
−
m2aa000

4Wð0Þ
k

3
: ðA9bÞ

These can be converted to starting values for fk and ḟk
by substituting the appropriate expressions for a given
adiabatic order into (A7) and using the relations dt ¼ a dη
and fk ¼ a1=2ψk.

APPENDIX B: SOLUTIONS TO THE CLASSICAL
EINSTEIN EQUATIONS WHEN RADIATION AND
A COSMOLOGICAL CONSTANT ARE PRESENT

If we set both h0jρj0i in (4.13a) and h0jTj0i in (4.13b) to
zero, then the classical Einstein equations are

α02 ¼ A
α2

− 1þ α2

3
; ðB1aÞ

α00 ¼ −
A
α3

þ α

3
; ðB1bÞ

where (4.13a) has been used to obtain the second equation.
The solution that gives the Einstein universe occurs for

A ¼ 3
4
and is

α ¼
ffiffiffi
3

2

r
: ðB2Þ

Two exact dynamical solutions are

α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ae�2T þ 3cosh2T

p
; ðB3aÞ

T ≡ τ − τ0ffiffiffi
3

p ; ðB3bÞ

with τ0 an arbitrary constant. Note that α� both are reduced
to the de Sitter solution α ¼ ffiffiffi

3
p

coshT in the limit A → 0.
For A > 0 there are three cases that need to be consid-

ered separately. For A ¼ 3
4
, the αþ solution begins with

αþ ¼ ∞ at T ¼ −∞. It contracts to αþ ¼
ffiffi
3
2

q
at T ¼ ∞.

The solution α− has the opposite behavior, beginning at

α− ¼
ffiffi
3
2

q
at T ¼ −∞ and expanding to an infinite size in

the limit T → ∞.
For 0 ≤ A < 3

4
, solutions reach extrema at

αe� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

3
A

r !vuut : ðB4Þ

One can show by substituting αe� into (B1b) that the plus
sign corresponds to a minimum and thus a bounce while the
minus sign corresponds to a maximum. By successively
taking derivatives with respect to τ of (B1b), it is easy to see
that the solutions are time symmetric about the extrema.
The solutions α� both begin with α� ¼ ∞ at T ¼ −∞,
contract down to the same minimum size given by αeþ, and
then expand to α� ¼ ∞ in the limit T → ∞. There are also
solutions that begin at α ¼ 0, expand to a maximum size
given by αe− and then contract to α ¼ 0.
For A > 3

4
, the αþ solution begins with αþ ¼ ∞ at

T ¼ −∞ and contracts to zero size at a finite value
of T. The α− solution begins with α− ¼ 0 at a finite value
of T and expands to α− ¼ ∞ in the limit T → ∞.
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