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In this paper, we study tree-level scattering amplitudes of scalar particles in the context of effective field
theories. We use tools similar to the soft bootstrap to build an ansatz for cyclically ordered amplitudes and
impose the Bern-Carrasco-Johansson (BCJ) relations as a constraint. We obtain a set of BCJ-satisfying
amplitudes as solutions to our procedure, which can be thought of as special higher-derivative corrections
to SU(N) nonlinear sigma model amplitudes satisfying BCJ relations to arbitrary multiplicity at leading
order. The surprising outcome of our analysis is that BCJ conditions on higher-point amplitudes impose
constraints on lower-point amplitudes, and they relate coefficients at different orders in the derivative
expansion. This shows that BCJ conditions are much more restrictive than soft limit behavior, allowing
only for a very small set of solutions.
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I. INTRODUCTION

In recent years, the study of tree-level scattering ampli-
tudes in effective field theories (EFT) has been an active
area of research, leading to very important insights ranging
from the calculation of amplitudes in the Standard Model
effective field theory (SMEFT) to the intensive study of
amplitudes in EFTs using modern methods such as soft
bootstrap [1–6], scattering equations [7,8] and color-
kinematics duality [9–12,12,13].
A keymodel in these investigations is the SU(N) nonlinear

sigma model (NLSM) which describes the leading-order
dynamics of strong interactions at low energies. Pion
scattering amplitudes vanish in the soft limit, i.e. possess
anAdler zero [14], as a consequence of the shift symmetry of
the Lagrangian. Higher-order corrections are organized in a
derivative expansion in the context of chiral perturbation
theory (χPT) [15,16]. The Wilson coefficients in the χPT
Lagrangian can be determined from experiments, but the
theoretical derivation from the underlying QCD requires
solving the theory at all scales which is incredibly hard.
Tree-level amplitudes in QFT satisfy the important

properties of locality and unitarity, i.e. all poles are located
at P2 ¼ ðpa1 þ � � � þ pamÞ2 ¼ 0 (for massless theories) and
the amplitude factorizes on these poles into a product of
two subamplitudes, schematically

An⟶
P2¼0

An1

1

P2
An−n1þ2: ð1Þ

If the factorization conditions are enough to fix the
amplitude uniquely, one can use (1) as input to reconstruct
the n-point amplitude from lower-point amplitudes using
recursion relations [17,18]. In EFTs, this assumption is not
satisfied because of the presence of contact terms. These
have vanishing residues on all poles and hence are not
constrained by factorization, so further properties of the
amplitudes are needed to specify the model.
The word bootstrap has taken on many meanings in

recent years [19]. Here we refer to the method of searching
the space of all tree-level amplitudes for those that satisfy
certain kinematic conditions as the bootstrap. These con-
ditions may be consequences of some underlying symmetry
of the (a priori unknown) Lagrangian, but here we
construct the amplitude from the bottom-up, without
reference to Lagrangian operators. We use a prefix to
indicate the type of kinematical conditions.
For scalar EFTs, the bootstrap starts with a generic

rational function of variables sij ¼ ðpi þ pjÞ2, with poles
at locations consistent with locality. Next all possible
residue equations (1) are imposed as constraints, followed
by kinematic conditions to fix free parameters. A natural
condition for low-energy EFTs is the soft limit constraint,
i.e. for small momentum p the amplitude behaves as

lim
p→0

An ¼ OðpσÞ; for some integer σ: ð2Þ

Using this soft bootstrap, for σ ¼ 1 we have the standard
Adler zero condition. If all coefficients are then fully
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specified, the amplitude is unique and can be reconstructed
using recursion relations. This is the case for NLSM
amplitudes [3]. If some coefficients are left unfixed, there
are more solutions which can be explained by the existence
of multiple independent Lagrangians.
In this paper, we carry out a Bern-Carrasco-Johansson

(BCJ) bootstrap by replacing the soft limit condition (2) by
the BCJ relations [20]

Xn−1

i¼2

ðs12 þ � � � þ s1iÞAnð2;…; i; 1; iþ 1;…; nÞ ¼ 0; ð3Þ

applied as a constraint to a local ansatz (together with the
standard Kleiss-Kuijf relations [21]). The BCJ relations are
famously satisfied by Yang-Mills amplitudes [20], as well
as NLSM amplitudes [22], and play a crucial role in the
double copy [23,24]. In particular, the double copy of a pair
of Yang-Mills amplitudes gives rise to gravity amplitudes,
while the double copy of NLSM amplitudes produces
special Galileon amplitudes [7]. Further details about the
double copy and the role of the BCJ relations may be found
here [10].
Our goal is to find solutions to the BCJ relations among

ordered scalar amplitudes. These relations turn out to imply
the Adler zero, while also yielding higher-derivative NLSM
corrections. Finally we get constraints on the couplings
across varying multiplicities and orders.
The ordinary χPT construction describes pion self-

interactions systematically in a derivative expansion, and
hence is exact up to a particular derivative order. In this
paper we address whether “BCJ perturbation theory” is
consistent order-by-order and we find that it is not, because
of the existence of cross-order relations. We demonstrate
this both at “lower” orders, and show that it persists to
higher orders and multiplicities.
Another motivation for the BCJ bootstrap is to better

understand the origin of relations between coefficients in
Z-theory. Abelian Z-theory is a known UV completion of
NLSM amplitudes [9]. When thought of as amplitudes in
an EFT, Z-amplitudes contain many relations between
multiplicities and orders. Are these a consequence of
BCJ or are they a special constraint of the string disk
integrals that give the Z-amplitudes? We address this
UV/IR origin in later sections.
Organization of the letter: We begin with a review of

NLSM amplitudes and the soft bootstrap in the context of
NLSM corrections. We then classify all 4-point BCJ-
satisfying amplitudes and formulate the BCJ bootstrap
procedure at 6-point where we proceed up to order
Oðp18Þ with some surprising results. We do limited
consistency checks for eight-point amplitudes and com-
ment on the prospects of the existence of a “BCJ
Lagrangian”. We comment on the connection to the
Z-theory amplitude, an important solution to the BCJ
constraints [9,25] that appears in the context of the CHY

formula and double copy as the “stringy part” of open-
string amplitudes.

II. SOFT BOOTSTRAP
FOR NLSM AMPLITUDES

The tree-level amplitudes in the SU(N) nonlinear sigma
model can be decomposed into flavor-ordered sectors,

ANLSM
n ¼

X

σ

TrðTa1Ta2…TanÞANLSM
n ð1; 2;…; nÞ; ð4Þ

where ANLSM
n ð1; 2;…; nÞ is a cyclically symmetric func-

tion, Ta are the generators of the SU(N) and we sum over
all permutations σ modulo cyclic ones. The only poles of
ANLSM
n are located at P2

ij ¼ ðpi þ � � � þ pj−1Þ2 ¼ 0, and we
use this fact as an input in the ansatz.
At four-point, there are no factorization constraints and

the size of the ansatz is directly equal to the number of
independent four-point amplitudes. The cyclic symmetry
implies that A4 is symmetric in s12 ↔ s23, and we can write
the general form for the powercounting A4 ∼ sm as

Oðp2mÞ∶ A4 ∈ fum−aðsa þ taÞg; ð5Þ

where a¼ 0;2;…;m, s ¼ ðp1 þ p2Þ2, and t ¼ ðp2 þ p3Þ2.
This means that we have m independent four-point ampli-
tudes at order Oðp2mÞ. At leading order, ANLSM

n ∼Oðp2Þ.
Using m ¼ 1 in (5) gives

A4 ¼ ðp1 þ p3Þ2 ¼ u; ð6Þ

the familiar four-pion NLSM amplitude. Power counting of
terms in (5) can also be seen in the context of the
Lagrangian in a derivative expansion,

LχPT ¼ L2 þ L4 þ L6 þ � � � ; ð7Þ

where the Lagrangian L2m contains operators with 2m
derivatives that are invariant under chiral symmetry. The
usual building blocks are

uμ ¼ iðu†∂μu − u∂μu†Þ where u ¼ exp

�
iϕaTa

F
ffiffiffi
2

p
�
; ð8Þ

F is the pion decay constant, which we take F ∼ 1 here for
simplicity. Each Lagrangian L2m contains multiple inde-
pendent terms and construction of all such Lagrangians has
been an active area of research [15,16,26,27].
Four-point amplitudes are special because the soft

behavior is automatic for any nonconstant function
Fðs; t; uÞ because s; t; u → 0 when any pi → 0. The first
nontrivial constraints in the soft bootstrap occur at six-
point. Here our ansatz consists of factorization terms that
are determined by the four-point amplitudes and all
possible contact terms, schematically
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ð9Þ

We could enlarge our ansatz to consider diagrams with
more general kinematical invariants in the numerators, but
using this ansatz is sufficient to guarantee correct factori-
zation on all poles. On the other hand, soft limit behavior is
not guaranteed. Additionally, there is always an ambiguity
in the form of the 4-point amplitude (inserted into the
vertices of the 6-point factorization diagram) as various
equivalent 4-point forms do not agree on 6-point kinemat-
ics. It is convenient to choose the form written only in terms
of external legs (not the internal leg P). The difference from
any other form is just a contact term, which we add in the
ansatz anyway.

ð10Þ

At a fixed-derivative order Oðp2mÞ the contact term
involves A6 ∼ sm, while the factorization terms contain

vertices AðaÞ
4 ∼ sa and AðbÞ

4 ∼ sb where aþ b ¼ mþ 1. For
example at Oðp6Þ we have

ð11Þ

A special case is leading order NLSM i.e. m ¼ a ¼ b ¼ 1.
Here the contact contribution is uniquely fixed by soft
behavior,

ANLSM
6 ¼

�
s13s46
s123

þ s26s35
s345

þ s15s24
s234

�
−
1

2

X

cycl

s13: ð12Þ

In fact, all n-point amplitudes in the NLSM are uniquely
fixed by soft recursion relations [2–4] based on the 4-point
amplitude. This uniqueness is also reflected in the fact that
for massless pions, the leading-orderOðp2Þ term in the χPT
Lagrangian only has one term.
At general Oðp2mÞ order, we have multiple solutions.

The results at 6-point are summarized on the second line of
Table II. A similar analysis has been used to count
independent terms in the χPT Lagrangian [28]. To do this,
one has to calculate higher-point amplitudes because at a

given derivative order, some operators only contribute to
eight- or higher-point amplitudes.
Note two important features of this analysis. First,

constraints in the ansatz are always imposed at a fixed
Oðp2mÞ order, e.g. the cyclic sum of the second type of
diagram in the Oðp6Þ ansatz (11) must satisfy the soft limit
by itself. Though we still find solutions of the form

ð13Þ

in our analysis, the allowed contact term is very special and
it must come from collapsing the propagator in the
factorization diagram, i.e. it must have the form

Acontact
6 ¼

X
sabscdsef; ð14Þ

where legs a; b∈ ð1; 2; 3Þ and c; d; e; f∈ ð4; 5; 6Þ (and
cyclic shifts of external labels). If this were not true, the
coupling constants in the Oðp4Þ Lagrangian would be
linked to theOðp6Þ Lagrangian, which is not possible when
the only constraint placed is chiral symmetry. Secondly, all
constraints are placed at fixed multiplicity i.e. the 6-point
soft bootstrap places no constraints on 4-point coefficients.

III. FOUR-POINT BCJ AMPLITUDES

Our goal is to use BCJ relations to constrain the ansatz
instead of the amplitude’s soft limit. While the Adler zero
and BCJ relations can be imposed separately, every BCJ
solution inherently possesses an Adler zero, as suggested
in [29] (see also [22,30]) and all checks we have performed
up to 6-point at Oðp18Þ confirm this. The 4-point BCJ
relation can be written as

sA4ð1; 2; 3; 4Þ − uA4ð1; 3; 2; 4Þ ¼ 0: ð15Þ

Together with cyclicity this implies that atOðp2mÞ order we
can write the canonically ordered amplitude as

A4ð1; 2; 3; 4Þ≡ A4 ¼ u · Fð2m−2Þðs; t; uÞ; ð16Þ

where Fð2m−2Þ is a symmetric polynomial of degree m − 1
in s, t, u. A basis for all symmetric polynomials is

Fð2mÞ
a;b ∈fðstuÞaðs2þ t2þu2Þbg for 3aþ 2b¼m: ð17Þ

It is easy to see that the number of such terms is ½ðmþ
1Þ=2� − ½ðmþ 1Þ=3� as previously reported [31,32]. The
results are summarized in Table I up to Oðp18Þ.
Note that at Oðp4Þ there are no BCJ solutions, as

the equation 3aþ 2b ¼ 1 has no integer solutions.
Additionally, up to Oðp12Þ there is only one BCJ 4-point
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amplitude at each order, but starting Oðp14Þ there are
two (or more) independent solutions. Any BCJ-satisfying
4-point amplitude can hence be expanded in a basis,

ABCJ
4 ¼

X

m;a;b

αð2mÞ
a;b ðuFð2m−2Þ

a;b Þ: ð18Þ

One particularly special solution to BCJ constraints is the
Z-theory amplitude, the “stringy” part of the Abelian open
string amplitude [9]. The derivative expansion above
coincides with the α0-expansion in this case. The 4-point
Z-amplitude is written as a combination of Γ-functions, the
low energy expansion yields

1

u
AZ-theory
4 ¼ 1þ s2 þ t2 þ u2

24π2
þ ζ3ðstuÞ

π6
þ ðs2 þ t2 þ u2Þ2

480π4

þ ðstuÞðs2 þ t2 þ u2Þðζ2ζ3 þ 2ζ5Þ
4π10

þ 51ζ6ðs2 þ t2 þ u2Þ3 þ 8ðstuÞ2ð31ζ6 þ 32ζ23Þ
512π12

þ � � � ; ð19Þ

where we related α0 and the pion decay constant to align it
with the expansion in χPT. Each term individually satisfies
the 4-point BCJ relations and the full Z-theory amplitude is
one particular combination of them. In particular, starting
Oðp14Þ, there are contributions that are compatible with
4-point BCJ but do not appear in the Z-theory amplitude.
So far the coefficients in (19) are just arbitrary coefficients
in front of terms which individually satisfy BCJ relations.

IV. BCJ AS A BOOTSTRAP CONSTRAINT

We now proceed to discuss 6-point amplitudes. In the
spirit of the soft bootstrap, we fix the derivative order
Oðp2mÞ and write a local ansatz. The factorization dia-
grams consist of products of 4-point BCJ amplitudes of a
given order with unfixed coefficients, while the contact
term is given by a general polynomial ansatz. We then
impose the 6-point BCJ relation

s12A6ð123456Þ þ ðs12 þ s23ÞA6ð132456Þ
− ðs25 þ s26ÞA6ð134256Þ − s26A6ð134526Þ ¼ 0; ð20Þ

which constrains coefficients in both the factorization terms
and the contact term. Constructing the ansatz in this way
guarantees the satisfaction of (20) on all factorization
channels but not for generic kinematics.
The nonexistence of 4-point Oðp4Þ BCJ amplitudes

means that the corresponding factorization diagrams,

ð21Þ

are not in the ansatz, simplifying the analysis. For example,
at Oðp6Þ there is only one factorization diagram consisting
of the Oðp2Þ and Oðp6Þ vertices along with the Oðp6Þ
contact term, i.e. (11) with the middle factorization diagram
missing. One of the terms is

ð22Þ

where we defined

Að2Þ
4 ð123Þ≡ Að2Þ

4 ð1; 2; 3; PÞ ¼ s13;

Að6Þ
4 ð456Þ≡ Að6Þ

4 ð4; 5; 6;−PÞ ¼ αð6Þ0;1s46ðs245 þ s246 þ s256Þ;

where α’s are defined in (18) and we set αð2Þ0;0 ¼ 1. Imposing
the BCJ condition (20) we fix the Oðp6Þ contact term
uniquely and get the BCJ satisfying 6-point amplitude, see
[9] for explicit formula. The same procedure works at
Oðp8Þ level. At Oðp10Þ, there is a new feature—we get
multiple factorization diagrams and some of them do not
have an Oðp2Þ vertex,

ð23Þ
Imposing the BCJ condition we get two solutions: the first
solution consists of the first factorization diagram and a
contact term [i.e. the same form as (10)] and again
corresponds to some special term in the χPT expansion.
The second solution is different,

ð24Þ

where the s123 factorization diagram is now equal to

ðαð6Þ0;1Þ2
s13s46ðs212 þ s213 þ s223Þðs245 þ s246 þ s256Þ

s123
: ð25Þ

TABLE I. Soft and BCJ bootstrap at 4-point with the number of
free coefficients that parametrize Oðp#Þ 4-point amplitudes
compatible with soft behavior and BCJ respectively. No con-
straints from BCJ relations are included.

Oðp#Þ 2 4 6 8 10 12 14 16 18

Soft amplitudes 1 2 2 3 3 4 4 5 5
BCJ amplitudes 1 0 1 1 1 1 2 1 2
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This is similar to the soft bootstrap at order Oðp6Þ where
one factorization diagram had two Oðp4Þ vertices. In that
case, the contact term had a special form (14) and came
from a collapsing propagator. Here the analysis reveals that
in order to satisfy the BCJ relation in (24), we need a
genuine contact term not of the special form, and we get a
unique solution. This means that BCJ relates coefficients in

the ansatz for the Oðp10Þ contact term in (23) to ðαð6Þ0;1Þ2.
The Lagrangian that could generate such amplitudes is
written schematically as

L ¼ c1ð∂6ϕ4Þ þ c2ð∂10ϕ6Þ þ � � � ; ð26Þ

where BCJ now relates coefficients c2 and c21. While this
never happens in the context of χPT where the Lagrangian
coefficients at different Oðp2mÞ orders can not be related
by soft physics, this phenomenon occurs in the study of
enhanced soft limits leading to the Dirac-Born-Infeld and
special Galileon theories [4]. Here such conditions arise
when we impose the BCJ relations. At the next order
Oðp12Þ we identify four solutions to the BCJ conditions,

ð27Þ

The first two solutions correspond to a factorization
diagram, each completed by a particular Oðp12Þ contact
term, while the last two solutions are pure contact terms.
Of course, any linear combination of BCJ amplitudes is a
BCJ-satisfying amplitude. Our results are summarized in
Table II, where the number of soft/BCJ amplitudes gives a

total number of solutions, while the number of contact
terms is a subset of that.

V. FOUR-POINT RELATIONS

In principle, relations between coefficients at various
Oðp2mÞ come from UV physics and should not be
accessible by any IR conditions—certainly not soft limits.
At order Oðp14Þ, we find first evidence of such relations
arising from the BCJ bootstrap. Here something surprising
happens; not all factorization diagrams with BCJ-satisfying
4-point amplitudes can be completed into BCJ-satisfying
6-point amplitudes by the addition of contact terms. The
ansatz for the amplitude takes the form,

ð28Þ

Note that there are two different BCJ-satisfying Oðp14Þ 4-
point amplitudes, so the first factorization diagram repre-
sents two terms. Schematically, the ansatz is

Aans
6 ¼ αð14Þ2;0 ð…Þ þ αð14Þ0;3 ð…Þ þ αð6Þ0;1α

ð10Þ
0;2 ð…Þ þ ðαð8Þ1;0Þ2ð…Þ

þ
X

k

αctk ð…Þ; ð29Þ

where ð…Þ stands for some kinematical expressions. Note
that in this case there are four BCJ-satisfying contact terms
which always appear as solutions to the BCJ conditions,
even if we turn off the factorization terms. Modulo them,
we find three BCJ-satisfying solutions. Naively one would
expect four if all the 4-point BCJ-satisfying amplitudes get
uplifted to 6-point. Instead, the 4-point coefficients must
satisfy a constraint,

αð14Þ2;0 −
8

3
αð14Þ0;3 −

8

3
αð6Þ0;1α

ð10Þ
0;2 −

1

2
ðαð8Þ1;0Þ2 ¼ 0; ð30Þ

which allows us to solve for one of the parameters in terms
of the others. It is interesting to see how the Z-theory
amplitude satisfies this relation. The Oðp14Þ coefficients

have ζ6 and ζ23 parts while αð10Þ0;2 ∼ ζ4, αð8Þ1;0 ∼ ζ3 and

αð6Þ0;1 ∼ ζ2. The equality thus splits into an equation for
the π6 and ζ23 coefficients.
At Oðp16Þ, the situation is similar to the Oðp12Þ case.

Applying the BCJ relations does not place any constraints
on the 4-point coefficients. In other words, each factori-
zation diagram individually leads to a BCJ-satisfying
6-point amplitude after the addition of appropriate contact

TABLE II. Soft and BCJ bootstrap at 6-point: The table shows
the number of free coefficients that parametrize Oðp#Þ 6-point
amplitudes compatible with soft behavior and BCJ respectively,
this includes products of 4-point coefficients that appear in pole
terms and independent contact terms (whose numbers are
separately indicated). The counting takes into account all rela-
tions that stem from 6-point BCJ.

Oðp#Þ 2 4 6 8 10 12 14 16 18

Soft amplitudes 1 2 10 29 83 207 461 945 1819
- from that contacts 0 0 5 22 70 191 434 915 1772
BCJ amplitudes 1 0 1 1 2 4 7 16 36
- from that contacts 0 0 0 0 0 2 4 13 31
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terms. This seems to be related to the fact that there is only
one Oðp16Þ 4-point BCJ amplitude.
At Oðp18Þ order, the ansatz is

ð31Þ
Imposing the BCJ conditions, we find 31 contact terms (out
of 2132 in the ansatz) satisfy our conditions, but not all
factorization terms can be completed individually into BCJ-
satisfying 6-point amplitudes. This is because we get one
constraint on 4-point coupling constants,

αð18Þ2;1 − 8αð18Þ0;4 þ αð6Þ0;1α
ð14Þ
2;0 − 8αð6Þ0;1α

ð14Þ
0;3 − αð8Þ1;0α

ð12Þ
1;1

− 4ðαð10Þ0;2 Þ2 ¼ 0; ð32Þ
which has to be satisfied to get BCJ amplitudes. Hence in
total at Oðp18Þ we have 36 BCJ amplitudes, where we
naively would have expected 37. The Z-theory 4-point
amplitude again satisfies this relation in a nontrivial way,
now dividing into three groups of terms proportional to ζ8,
ζ3ζ5 and ζ2ζ

2
3.

It is important to check if there are any new constraints
coming from 8-point amplitudes. Generating these within
the ansatz presents a challenge due to the extensive
combinatorial complexity of the contact terms—we were
able to check up to Oðp10Þ. The general form of the ansatz
for the 8-point amplitude is

ð33Þ

The power counting conditions are

m ¼ aþ bþ c − 4 ¼ dþ e − 2 ¼ kþ lþ n − 4: ð34Þ

We refer to the two types of diagrams as double- and
single-factorization diagrams. Note that again we use
BCJ-satisfying 4-point amplitudes in the factorization
diagrams in the ansatz. For the 6-point vertex of the
single-factorization diagram and for the 8-point contact
term, we use a generic ansatz. In principle, on finding a
solution, one should cross-check the solution for the
6-point vertex (appearing in the eight-point amplitude)

with the solution for the BCJ-satisfying 6-point contact
term, to find possible 6-point relations. Here, we do not do
this and instead focus only on generating further conditions
on the 4-point BCJ amplitudes.
At Oðp6Þ and Oðp8Þ orders, nothing interesting hap-

pens; we find one BCJ 8-point amplitude at each order and

no constraints on αð6Þ0;1 and αð8Þ1;0. The result takes the general
form of (33), with one insertion of Oðp6Þ [resp. Oðp8Þ]
vertex and rest Oðp2Þ vertices. As there is no quadratic
dependence on higher-derivative terms, we could in prin-
ciple expand both Oðp6Þ and Oðp8Þ BCJ solutions in the
basis of terms in χPT.
At Oðp10Þ in the double-factorization terms in (33), we

have either two Oðp6Þ vertices or one Oðp10Þ vertex (the
rest are Oðp2Þ vertices). The kinematical ansatz is

Aans
8 ¼ αð10Þ0;2 ð…Þ þ ðαð6Þ0;1Þ2ð…Þ þ

X

k

αsf;ctk ð…Þ; ð35Þ

where we grouped all single-factorization (sf) and contact
(ct) terms in the last term, as we focus on the 4-point
couplings here. Naively, we would expect two solutions

which contain double-factorization terms if constants αð10Þ0;2

and αð6Þ0;1 are truly independent. Imposing the BCJ relations
we find 21 solutions, but only one contains double
factorization diagrams. Hence we get the following con-
straint on 4-point couplings,

αð10Þ0;2 ¼ 6

5
ðαð6Þ0;1Þ2: ð36Þ

This is again satisfied by the Z-theory amplitude (19) and
corresponds to the quadratic recurrence of the Riemann
zeta function at even integers. The same is true for the
relevant parts of (30) and (32). Note that the Abelian
Z-theory amplitude (19) that we compare to, can be
obtained by a sum over orderings of bicolored Z-theory
amplitudes. Recently, generalizations of such bicolored
Z-theory amplitudes were proposed [13,33]. The
Abelianization of results in [13,33] can be achieved by a
special selection of Wilson coefficients in our analysis.
Thus, the analysis presented here is more general, leading
to the natural question of whether there exists a different
EFT description of bicolored Z-theory.

VI. OUTLOOK: TOWARDS A BCJ LAGRANGIAN

In this letter, we study the constraints placed on the
coupling constants of higher-derivative scalar amplitudes
by the BCJ relations. Starting with the BCJ-satisfying
4-point amplitude, we learn that when contributing to
6-point and 8-point BCJ amplitudes, the 4-point couplings
must satisfy a number of constraints. BCJ relates terms of
different derivative orders, which is very unlike how the
Adler zero constrains amplitudes that give rise to χPT
Lagrangians LχPT. Indeed the BCJ relations seem to
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interpolate between IR and UV physics, as they both imply
the vanishing soft limit of amplitudes, as well as place
constraints on couplings of various orders. We have shown
that demanding the BCJ relations are satisfied at higher-
point would put even more constraints on lower-point
amplitudes and their couplings.
The fact that BCJ relations constrain couplings at different

multiplicity is linked to the question of the existence of
“BCJ Lagrangians” which give rise to BCJ satisfying
amplitudes. We know one solution to this problem is the
leading-order 2-derivative NLSM Lagrangian. Additionally,
wenowknow that in a putative higher-derivativeLagrangian,
the couplings of various orders must be dependent—we
indeed found some of these dependencies, but more work is
needed to establish if there exists a higher-derivative
Lagrangian that satisfies the BCJ relations at arbitrary
multiplicity. One possible solution to the problem is
Z-theory, whose Lagrangian, though unknown explicitly,
is expected to exist.
It is clear that such aBCJLagrangian is a special version of

χPT Lagrangian with tuned Wilson coefficients as the Adler
zero condition is included in the BCJ constraint. Since the
χPTLagrangian is known formally only up to a relatively low
level Oðp8Þ [27], we can only explore a restricted case.
General Lagrangian operators involve covariant derivatives
[e.g. atOðp10Þ they can include∇αuμ or∇α∇βuμ—see [31]
for details]. However, there is one class of termswe canwrite
down in a closed form to all orders—terms without covariant
derivatives. Starting at OðpnÞ with n pions, for generic
dimension they are given by

Ln
χPT ¼

Xdn

j¼1

cjhuμj1…uμj1…uμjn=2…uμjn=2 i; ð37Þ

where we sum over all symmetric chord diagrams
(dn ¼ 1; 2; 5; 17; 79;…). Interestingly, we find that BCJ
imposes the following condition on the constants cj:

BCJ∶
Xdn

j¼1

cj ¼ 0; for n > 2: ð38Þ

We have verified this conjecture up to Oðp8Þ. It might
represent the structure of a necessary condition on the full
higher-derivative Lagrangian and could be a hint in the
search for a more general BCJ Lagrangian and even an off
shell version of color-kinematics duality.
Our work reinforces that BCJ corrections automatically

satisfy soft behavior constraints. It would be helpful to
construct a formal proof of this observation. Additionally, it
would be useful to understand what these BCJ corrections
double copy to and whether there is a symmetry principle
that selects specifically these corrections to special Galileon
theory.
An even more ambitious goal is to see both the Adler

zero and the BCJ relations arise from some underlying
geometric structure in the framework of positive geometry
[34] such as the amplituhedron [35,36] for planar N ¼ 4
SYM amplitudes or the ABHYAssociahedron for biadjoint
ϕ3 amplitudes [37].
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