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In this paper we study quantum field theory in impulsive plane wave spacetimes. We first analyze the
geodesics and the formation of conjugate planes in these spacetimes. The behaviors of the world function
and the van Vleck determinant near conjugate plane are also considered. For the quantum field, we work
out the mode functions, their Bogoliubov transformations, and the construction of the Wightman functions.
By examining the Wightman function near and on the conjugate plane, we show how the twofold and
fourfold singularity structure of the Wightman function arise when crossing this plane. Lastly, we come to
the stochastic gravity noise kernel which is also the correlation function of the stress energy tensor of the
quantum field. Its explicit form is given in terms of the world function and the van Vleck determinant. We
investigate its limits for small and large geodesic distances. The leading divergent term of the noise kernel
on the conjugate plane are expressed in terms of derivatives of delta functions. Similar to that of the
Wightman functions, we also examine how the singularity structure of the noise kernel near the light cone
changes when crossing the conjugate plane.

DOI: 10.1103/PhysRevD.108.105007

I. INTRODUCTION

Our interest in plane wave spacetimes originates from the
Penrose limiting procedure [1] in which a general space-
time can be transformed into a plane wave one. It basically
describes the spacetime near a null geodesic and one hopes
to capture the essential physics in this region through this
limiting procedure. For example, Shore and collaborators
[2,3] have utilized this limit to prove that photon propa-
gation in QED including the fermion quantum effect is
causal in a general curved spacetime despite the appearance
of superluminal low-frequency phase velocities [4]. More
recently, this method has been used to consider the memory
effect of geodesic congruences in gravitational impulsive
wave spacetimes [5].
Another interest example in this approach is about the

global Green function of a massless scalar field propagating
in curved spacetimes. A prominent case would be that of a
black hole spacetime. Due to the presence of caustic points
around a black hole where the neighboring null geodesics
focus, it has been discovered that the leading singularity
of the retarded Green function near the light cone changes
after passing through such a caustic point [6]. In fact,
this change possesses a fourfold structure, δðσÞ → 1=σ →
−δðσÞ → −1=σ → δðσÞ → � � � [7–9]. This structure is
important in the understanding of wave propagation in
general curved spacetimes. In [10], it has been shown that
these fourfold and sometimes twofold structures emerge for

the Green function in plane wave spacetimes. Through the
Penrose limit, they argue that these patterns are also valid
for general curved spacetimes.
Impulsive plane waves have δ function profiles. Before

the arrival and after the passing of the wave, the spacetimes
are Minkowski. The spacetime is thus simple enough that
exact solutions for the geodesics as well as the mode fun-
ctions of the quantum scalar field can be obtained [11,12].
The authors in [13] have taken advantage of this fact to
consider the memory effect of impulsive gravitational
waves. They have found a velocity memory in which
particles initially at rest moves apart or towards each other
after the passage of the wave. This velocity memory
actually is the reason why neighboring null geodesics
focus to form caustic points. These caustic points are
located on what are called the conjugate planes. The
geodesic distance diverges near these planes [10] so that
the usual construction of correlation functions like the
Wightman function may not apply. Here, with the simple
setting of impulsive plane wave spacetimes, we hope to
study the Wightman function on conjugate planes and their
singular structures near the light cone across these planes in
an analytical way.
In the semiclassical gravity theory, the interaction

between the quantum field and the classical spacetime is
governed by the Einstein equation with the source des-
cribed by the expectation value of the stress energy tensor
of the field [14]. This can be thought of as a mean field
theory. To account for fluctuation and correlation effects,
Hu and Verdaguer have devised an open quantum system*htcho@mail.tku.edu.tw

PHYSICAL REVIEW D 108, 105007 (2023)

2470-0010=2023=108(10)=105007(18) 105007-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8497-1490
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.105007&domain=pdf&date_stamp=2023-11-15
https://doi.org/10.1103/PhysRevD.108.105007
https://doi.org/10.1103/PhysRevD.108.105007
https://doi.org/10.1103/PhysRevD.108.105007
https://doi.org/10.1103/PhysRevD.108.105007


approach [15] called the stochastic gravity theory [16,17].
In stochastic gravity, the environment is the quantum field
and the system the classical spacetime. The effects of the
quantum field, in addition to the expectation value of the
stress energy tensor, are also represented by the dissipation
and the noise kernels. The semiclassical Einstein equation
is replaced by the Einstein-Langevin equation with a
stochastic tensor force. The correlation function of this
force is the noise kernel which is just the correlator of the
quantum field stress tensor [18]. To explore the physics
near a null geodesic in a general curved spacetime, for
example, the quantum energy inequalities [19], one would
like to apply the stochastic gravity approach to plane wave
spacetimes under the Penrose limit. As a first step in this
consideration, we shall in the following take a close look at
the behaviors of the noise kernel near and on the conjugate
planes in these impulsive plane wave spacetimes.
In the next section we solve the geodesic equations in

impulsive plane wave spacetimes. Two different cases are
considered, the degenerate one corresponding to a gravi-
tational plane wave while the nondegenerate one an
electromagnetic wave. We show that the velocity memory
effects occur in both cases, and these effects focus the null
geodesics to form conjugate planes. The world function and
the van Vleck determinant that are needed to construct the
correlation functions like the Wightman function in these
spacetimes are then defined. Finally, we explore the
properties of these bitensors especially when they approach
the conjugate plane.
In Sec. III, we turn our attention to quantum field theory in

these spacetimes. Themain goal is towork out theWightman
function of a scalar field and to study its properties [20]. Todo
that we first obtain the in- and out-mode functions by solving
the corresponding Klein-Gordon equation [11,21]. Then, we
look at their focusing behavior near the conjugate plane as
well as their Bogoliubov transformations. With these mode
functions, we construct the correlation functions, in particu-
lar, the Wightman function. Their explicit form on the
conjugate plane are given. We also show how their sin-
gularity structure near the light cone on both sides of this
plane emerge.
We consider the noise kernel in stochastic gravity in

Sec. IV. Using the method of point-separation, we give the
explicit expression for this noise kernel which is also
the correlation function of the stress energy tensor of
the quantum field [18]. This consideration will be useful
when we apply the stochastic gravity theory to plane wave
spacetimes. We also examine the properties of the noise
kernel on and near the conjugate plane. Lastly, the con-
clusions and discussions are presented in Sec. V.
To facilitate the readers, we summarize here the main

results obtained in this paper. In Sec. II, we show explicitly
how the geodesics focus due to the passage of the impulsive
plane wave. This focusing effect produces conjugate planes
and we show how the bitensors: world function and van

Vleck determinant diverge near these planes. In Sec. III, the
in- and out-modes of a minimally coupled scalar field
are constructed in detail. On the conjugate planes, these
modes are proportional to delta functions which can be
viewed as another focusing phenomenon. The correspond-
ing Bogoliubov coefficients between these two sets of
modes are calculated to explain the lack of particle
production in this plane wave spacetime. Using these mode
functions, the explicit form of the Wightman function is
presented in terms of the bitensors. On the conjugate plane,
although these bitensors diverge, the Wightman function
can still be expressible using delta functions. We then show
how the twofold and fourfold singularity structures of the
Wightman function emerge near the light cone on both
sides of the conjugate plane due mainly to the behaviors of
the van Vleck determinant. Finally, in Sec. IV, the noise
kernel, or the correlator of the stress energy tensor of the
scalar field, is studied. First, the asymptotic behaviors of
this kernel for small and large geodesic distances are given.
On the conjugate plane, we show how the noise kernel is
expressed in terms of the derivatives of delta functions.
Then, its twofold singularity structure near the light cone on
both sides of the conjugate plane is presented.

II. IMPULSIVE PLANE WAVE SPACETIMES:
GEODESICS, MEMORY,

AND CONJUGATE PLANES

In this section we shall examine the geodesics in the
impulsive plane wave spacetime and the corresponding
memory effects that these geodesics entail. The spacetime
can be represented by the metric [22]

ds2 ¼ −2dudvþ
X2
a;b¼1

HabδðuÞxaxbdu2 þ
X2
a¼1

dxadxa;

ð1Þ

in which the impulsive wave is located at u ¼ 0. Without
loss of generality, one can set the 2 × 2 matrix

Hab ¼
�
λ1 0

0 λ2

�
; ð2Þ

where λ1 and λ2 are constants.
Hence, the metric can be rewritten as

ds2 ¼ −2dudvþ δðuÞfðx⃗Þdu2 þ
X2
a¼1

dxadxa; ð3Þ

where fðx⃗Þ ¼ P
a¼1;2 λaðxaÞ2. The only nonvanishing

Ricci tensor component Ruu at the wave front is propor-
tional to the trace of Hab [12]. If Hab is traceless, that is,
Ha

a ¼ 0, then it corresponds to a Ricci flat spacetime.
Then, the wave can be considered as a pure gravitational
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one. A typical case we shall explore in some detail in this
paper is with λ1 ¼ −λ ¼ −λ2. Due to the weak energy
condition, we require λ ≥ 0. Another case we shall also be
interested in is with λ1 ¼ λ2 ¼ −λ. Here the Weyl tensor
vanishes and the wave corresponds to that of a pure
electromagnetic one.

A. Geodesics and memory

The set of geodesic equations corresponding to the
metric in Eq. (3) is

d2u
dη2

¼0;

d2v
dη2

−
1

2
δ0ðuÞ

X
a¼1;2

λaðxaÞ2
�
du
dη

�
2

−2δðuÞ
X
a¼1;2

λaxa
dxa

dη
du
dη

¼0;

d2xa

dη2
−δðuÞλaxa

�
du
dη

�
2

¼0; ð4Þ

where there is no sum over a in the last equation, and η is
an affine parameter. The u equation can be solved readily
to give

uðηÞ ¼
�
du
dη

�
η¼0

ηþ uð0Þ: ð5Þ

From this solution, one can see that it is possible to treat u
as the affine parameter for null and timelike geodesics. If
we take η ¼ u, then the xa equation simplifies to

ẍa ¼ δðuÞλaxa; ð6Þ

where the overdot represents derivative with respect to u.
For u ≠ 0, the solutions are straight lines. For u < 0, take
the boundary conditions, ẋaju¼0 ¼ ẋa0 and x

aju¼0 ¼ xa0 . The
solution is xa< ¼ ẋa0uþ xa0. To obtain the solution for u > 0,
we note that Eq. (6) requires the solutions for u < 0 and
u > 0 to be continuous and their derivatives to differ by

ẋa>ju¼0 − ẋa<ju¼0 ¼ λaxa0: ð7Þ

Therefore,

xa> ¼ ðλaxa0 þ ẋa0Þuþ xa0: ð8Þ

Combining with the xa< result, the solution to the xa

equation can be expressed as

xa ¼ uθðuÞλaxa0 þ ẋa0uþ xa0; ð9Þ

where θðuÞ is the step function.

Next, we consider the v equation, and we note that, using
the geodesic equations, the quantity

ξ≡
�
ds
du

�
2

¼ −2
dv
du

þ δðuÞ
X
a¼1;2

λaðxaÞ2 þ
X
a¼1;2

dxa
du

dxa

du

ð10Þ

is a constant of motion with ξ < 0 and ξ ¼ 0 for timelike
and null geodesics, respectively. The solution to this
equation, with vð0−Þ ¼ v0, is given by

v ¼ v0 −
1

2
ξuþ

X
a¼1;2

�
1

2
ðẋa0Þ2uþ 1

2
θðuÞλaðxa0Þ2

þ uθðuÞ
�
1

2
λ2aðxa0Þ2 þ λaxa0 ẋ

a
0

��
: ð11Þ

vðuÞ is discontinuous across the wave front at u ¼ 0,

vð0þÞ − vð0−Þ ¼ 1

2

X
a¼1;2

λaðxa0Þ2; ð12Þ

as required by the presence of the delta function term
in Eq. (10).
The discontinuity in Eq. (7) has been interpreted as

what is called the memory effect [13]. After the passage of
the impulsive wave, the velocity of the particle changes
abruptly from ẋa<ju¼0 to ẋa>ju¼0. Since this “velocity
memory effect” is proportional to xa0 , neighboring parallel
geodesics will therefore diverge (λa > 0) or converge
(λa < 0) after interacting with the wave.

B. Focusing of geodesics and conjugate planes

Due to the discontinuity of the particle velocities dis-
cussed above, the phenomenon of geodesic focusing or
caustics will occur [12]. To analyze this more concretely,
we consider the degenerate case in which λ1 ¼ λ2 ¼ −λ.
In addition, we take ẋa0 ¼ 0, that is, for perpendicular
incidence, the geodesics are given by Eqs. (9) and (11),

xa ¼ ð1 − uλÞxa0;

v ¼ v0 −
1

2
ξu −

1

2
λð1 − uλÞ

X
a¼1;2

ðxa0Þ2; ð13Þ

for u > 0. At u ¼ 1=λ, irrespective of the value of xa0 , these
geodesics will all focus to a point with xa ¼ 0 and
v ¼ v0 − ξ=2λ.
This focusing of geodesics will also happen in the

nondegenerate case with λ1 ¼ −λ ¼ −λ2. Then, we have
for u > 0,

x1 ¼ x10ð1 − uλÞ; x2 ¼ x20ð1þ uλÞ: ð14Þ
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At the focal plane u ¼ 1=λ, x1 ¼ 0 and x2 ¼ 2x20. The
geodesic congruence will map to a line in the x1 − x2

plane, rather than a point in the previous degenerate case.
The corresponding v coordinate is

v ¼ v0 −
1

2
ξu −

1

2
λ½ðx10Þ2ð1 − uλÞ − ðx20Þ2ð1þ uλÞ�: ð15Þ

At u ¼ 1=λ,

v ¼ v0 −
ξ

2λ
þ λðx20Þ2 ⇒ v ¼ λ

4
ðx2Þ2 þ

�
v0 −

ξ

2λ

�
: ð16Þ

With fixed v0, this is a parabola in the v − x2 plane.
Focusing of geodesics, especially for the null geodesics,

leads to the existence of conjugate planes in this impulsive
plane wave spacetime [10]. To define these conjugate
planes, it is more convenient to describe the geodesics
in terms of their starting position ðv0; x0aÞ and velocity
ðv̇0; ẋ0aÞ. To do so, we express xa0 and ẋa0 in terms of ðv0; x0aÞ
and ðv̇0; ẋ0aÞ from Eq. (9) with u0 < 0,

xa0 ¼ −ẋ0au0 þ x0a; ẋa0 ¼ ẋ0a: ð17Þ
The geodesic equation in Eq. (9) then becomes

xa ¼ ½1þ uθðuÞλa�x0a þ ½ðu − u0Þ − uu0θðuÞλa�ẋ0a: ð18Þ

Similarly, from Eq. (11) and replacing ẋa0 by ẋ0a, we have

v0 ¼ v0 þ 1

2
ξu0 −

1

2

X
a¼1;2

ðẋ0aÞ2u0: ð19Þ

In terms of v0, the geodesic equation for v is

v ¼ v0 −
1

2
ξðu − u0Þ þ

X
a¼1;2

�
1

2
λaθðuÞð1þ uλaÞx0ax0a

þ λaθðuÞðu − u0 − λauu0Þx0aẋ0a

þ
�
1

2
ðu − u0Þ − 1

2
λau0θðuÞð2u − u0 − uu0λaÞ

�
ẋ0aẋ0a

�
ð20Þ

Conjugate planes occur when geodesics focus to a
point or a line. For example, in the degenerate case,
λ1 ¼ λ2 ¼ −λ, the xa coordinates in Eq. (18) depend on
x0a and ẋ0a as

xa ¼ ð1 − uλÞx0a þ ðu − u0 þ uu0λÞẋ0a ð21Þ

for u > 0. All geodesics starting from x0a will focus to the
same point in the x1 − x2 plane no matter what the initial ẋ0a
is if

u − u0 þ uu0λ ¼ 0 ⇒
1

u
−

1

u0
¼ λ: ð22Þ

This is just the lens equation in geometric optics with focal
length 1=λ. It is consistent with our previous result where
geodesics with perpendicular incidence will all focus to a
point at u ¼ 1=λ. For u0 < −1=λ, this equation gives

uc ¼
ju0j

λju0j − 1
> 0 ð23Þ

which is the location of the conjugate plane. Note that no
conjugate planes are produced for 0 > u0 > −1=λ because
null geodesics from these positions diverge rather than
converge after encountering the impulsive wave. In the
same vein, no conjugate planes with locations 1=λ > u > 0
can be produced.
On the conjugate plane, the geodesics focus to a point

with coordinates xac ¼ ð1 − ucλÞx0a and

vc ¼ v0 þ 1

2
ξλð1þ u0λÞ−1u02 − 1

2
λð1þ u0λÞ−1

X
a¼1;2

x0ax0a:

ð24Þ
In the nondegenerate case with λ1 ¼ −λ ¼ −λ2, the

conjugate plane is again located at uc ¼ ju0j=ðλju0j − 1Þ.
From Eqs. (18) and (20), we can obtain the image on this
conjugate plane of the geodesics originating from x0a and
with velocity ẋ0a. Since the image should not depend on the
choice of x0a, we can simplify the expressions by taking
x0a ¼ 0. Then, x1c ¼ 0, x2c ¼ −2λu02ð1þ λu0Þ−1ẋ02, and

vc ¼ v0 þ 1

2
ξλu02ð1þ λu0Þ−1

− λu02ð1 − λu0Þð1þ λu0Þ−1ẋ02ẋ02;

¼ v0 þ 1

2
ξλu02ð1þ λu0Þ−1 − 1

4

�
1 − λ2u02

λu02

�
ðx2cÞ2; ð25Þ

which is again a parabola in the v − x2 plane as in the
perpendicular incidence case.

C. Bitensors: World function
and van Vleck determinant

Closely related to geodesics are various bitensors which
are functions of two spacetime points. They are crucial to
the construction of Green functions we shall discuss in
some detail in the next section. The first bitensor we need to
consider is the world function σðz; z0Þ which is basically
one half of the squared geodesic distance between of the
spacetime points zμ ¼ ðu; v; xaÞ and z0μ ¼ ðu0; v0; x0aÞ.
Another one also of interest to us is the van Vleck
determinant Δðz; z0Þ, which is the determinant of the
second derivative of the world function [10].
To derive the bitensors, it is more convenient to express

the geodesics in terms of the end points zμ and z0μ. From our
previous discussion, we note that the geodesics in the
regions u > 0 and u < 0, that is, away from the impulsive
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wave, are straight lines. Hence, it is easy to see that, for
0 > u > u00 > u0, we have the geodesics

x00a ¼
�
u00 − u0

u − u0

�
xa þ

�
u − u00

u − u0

�
x0a;

v00 ¼
�
u00 − u0

u − u0

�
vþ

�
u − u00

u − u0

�
v0: ð26Þ

For u > u00 > u0 > 0, the geodesics also have the same
equations as above.
For u > 0 and u0 < 0, that is, across the wave front, we

must consider the geodesics before and after encountering
the wave separately, taking in account the discontinuities in
ẋ0a and v as given in Eqs. (7) and (12), respectively. For
0 > u00 > u0, using the solution in Eq. (26),

x00a ¼ −
u00

u0
ðxa0 − x0aÞ þ xa0;

v00 ¼ −
u00

u0
ðv0 − v0Þ þ v0; ð27Þ

where v0 ¼ vð0−Þ, and for u > u00 > 0,

x00a ¼ u00

u
ðxa− xa0Þþ xa0;

v00 ¼ u00

u

�
v−v0−

1

2

X
a¼1;2

λaðxa0Þ2
�
þ
�
v0þ

1

2

X
a¼1;2

λaðxa0Þ2
�
;

ð28Þ
xa0 can be expressed in terms of the end point coordinates by
requiring that the derivative across thewave front in Eqs. (27)
and (28) is consistent with that in Eq. (7). The result is that

xa0 ¼ ðu − u0 − uu0λaÞ−1ðux0a − u0xaÞ: ð29Þ
Similarly, by noting that there is also a discontinuity v̇ from
Eq. (11), v0 can be expressed as

v0 ¼
uv0 − u0v
u − u0

þ
X
a¼1;2

λaxa0
2ðu − u0Þ ½ð−2uþ u0 þ uu0λaÞxa0 þ 2ux0a�

ð30Þ
Now, we are ready to work out the first bitensor, the

world function σðz; z0Þ, defined by

σðz; z0Þ ¼ 1

2
ðu − u0Þ

Z
u

u0
du00gμνðz00Þż00μż00ν: ð31Þ

For both 0 > u > u0 and u > u0 > 0, the spacetime is
Minkowski, and

σðz; z0Þ ¼ −ðu − u0Þðv − v0Þ þ 1

2

X
a¼1;2

ðxa − x0aÞðxa − x0aÞ:

ð32Þ

For u > 0 and u0 < 0, we use Eq. (27) to describe the
geodesic in 0 > u00 > u0 with

gμνż00μż00ν ¼
2

u0
ðv0 − v0Þ þ 1

u02
X
a¼1;2

ðxa0 − x0aÞðxa0 − x0aÞ

ð33Þ
and in u > u00 > 0 with

gμνż00μż00ν ¼ −
2

u

�
v − v0 −

1

2

X
a¼1;2

λaðxa0Þ2
�

þ 1

u2
X
a¼1;2

ðxa0 − xaÞðxa0 − xaÞ: ð34Þ

Putting these results into Eq. (31), we obtain the world
function across the wave front

σðz; z0Þ ¼ 1

2
ðu−u0Þ

�Z
0

u0
du00gμνðz00Þż00μż00ν

þ
Z

u

0

du00gμνðz00Þż00μż00ν
�
;

¼ 1

2
ðu−u0Þ

�
−2ðv−v0Þþ

X
a¼1;2

ðu−u0 −uu0λaÞ−1

× ½ð1−u0λaÞðxaÞ2þð1þuλaÞðx0aÞ2− 2xax0a�
�
;

ð35Þ
where we have substituted xa0 and v0 by the end point
coordinates as given in Eqs. (29) and (30).
In terms of the world function, one can define another

bitensor, the van Vleck determinant

Δðz; z0Þ ¼ −
det½−∇μ∇ν0σðz; z0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det gαβðzÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det gα0β0 ðz0Þ
p : ð36Þ

In Minkowski spacetime, that is, for both 0 > u > u0 and
u > u0 > 0, Δðz; z0Þ ¼ 1. It is more interesting to look at
the case across the wave front with the world function given
by Eq. (35). Then,

∂v∂u0σðz; z0Þ ¼ ∂u∂v0σðz; z0Þ ¼ 1;

∂v∂v0σðz; z0Þ ¼ ∂x1∂x02σðz; z0Þ ¼ ∂x2∂x01σðz; z0Þ
¼ 0 ¼ ∂v∂x0aσðz; z0Þ ¼ ∂xa∂v0σðz; z0Þ ¼ 0;

∂xa∂x0aσðz; z0Þ ¼ −ðu − u0Þðu − u0 − uu0λaÞ−1: ð37Þ
Since for u ≠ 0, det gαβðzÞ ¼ −1, the van Vleck determi-
nant for u > 0 and u0 < 0 is just

Δðz; z0Þ ¼ ½∂x1∂x01σðz; z0Þ�½∂x2∂x02σðz; z0Þ�;
¼ ðu − u0Þ2ðu − u0 − uu0λ1Þ−1ðu − u0 − uu0λ2Þ−1:

ð38Þ
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For both the world function in Eq. (35) and the van Vleck determinant in Eq. (38), there are terms proportional to
ðu − u0 − uu0λaÞ−1. Hence, these two bitensors will divergent when u approaches the conjugate plane of u0. For example, in
the degenerate case, λ1 ¼ λ2 ¼ −λ, near the conjugate plane with uc ¼ ju0j=ðλju0j − 1Þ,

σðz; z0Þ ¼ ðu − ucÞ−1
�
−

λu2c
2ð1 − λucÞ

�X
a¼1;2

½ðxa − ð1 − λucÞx0a�2

þ
�

λu2c
1 − λuc

ðv − v0Þ þ 1

2

X
a¼1;2

ðxa − ð1 − λucÞx0aÞ2 þ
1

2
λ2u2c

X
a¼1;2

ðx0aÞ2
�

− ðu − ucÞ
�
ðv − v0Þ þ 1

2
λð1 − λucÞ

X
a¼1;2

ðx0aÞ2
�

ð39Þ

and

Δðz; z0Þ ¼ ðu − ucÞ−2ðλ2u4cÞ þ ðu − ucÞ−1ð−2λu2cÞð1 − λucÞ þ ð1 − λucÞ2: ð40Þ

We see that in this case the world function diverges as ðu − ucÞ−1 and the van Vleck determinant as ðu − ucÞ−2 when u
approaches uc.
In the nondegenerate case, with λ1 ¼ −λ ¼ −λ2, similar expansions about u ¼ uc give

σðz; z0Þ ¼ ðu − ucÞ−1
�
−

λu2c
2ð1 − λucÞ

ðx1 − ð1 − λucÞx01Þ2
�

þ
�

λu2c
1 − λuc

ðv − v0Þ þ 1

2
ðx1 − ð1 − λucÞx01Þ2 þ

1

2
λ2u2cðx01Þ2

þ 1 − 2λuc
4ð1 − λucÞ

ðx2Þ2 þ 1

4
ð1þ λucÞðx02Þ2 −

1

2
x2x02

�
þ � � � ð41Þ

and

Δðz; z0Þ ¼ ðu − ucÞ−1
�
−
λu2c
2

�
þ 1

4
ð3 − 2λucÞ þ ðu − ucÞ

�
−

1

8λu2c

�
þ � � � : ð42Þ

In this case, both the world function and the van Vleck
determinant diverge as ðu − ucÞ−1 as u approaches uc.
Note that our results in Eqs. (39)–(42), as well as the

location of the conjugate plane in Eq. (23), are the same as
those in [10] when their consideration is specialized to the
case of impulsive waves. In fact, their approach is general
enough to be applicable to plane waves with arbitrary
profile, rather than the delta function one studied here.

III. WIGHTMAN FUNCTION: WITHIN AND
BEYOND THE NORMAL NEIGHBORHOOD

In the previous section we have considered the classical
properties of impulsive plane wave spacetimes including
the geodesics, conjugate planes and various bitensors. Here
in this section we turn to examine the properties of a
quantum scalar field in these spacetimes. We shall first
calculate the mode functions corresponding to the in and
the out vacua. Then we examine the Bogoliubov coef-
ficients connecting these modes. In addition, using these

mode functions we shall construct the Wightman function
starting from which various two-point correlation functions
can be derived.

A. In- and out-mode functions

Here we look at a minimally coupled massive scalar field
ϕ in the impulsive plane wave spacetime [21]. From the
metric in Eq. (3), Klein-Gordon equation in this spacetime
can be expressed as

ð□ −m2ÞϕðzÞ ¼ 0

⇒
�
−2

∂

∂u
∂

∂v
þ

X
a¼1;2

∂

∂xa
∂

∂xa
− fðx⃗ÞδðuÞ ∂

2

∂v2
−m2

�
ϕðzÞ

¼ 0: ð43Þ

Since the metric is independent of v, it is apparent that one
can write the Fourier mode of ϕ as e−ik−vψk−ðu; x⃗Þ. Here
k− is the component of the momentum kμ ¼ ðk−; kþ; k⃗Þ
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where k� ¼ ðω� kzÞ=
ffiffiffi
2

p
with ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ k2z þm2

q
.

Since ω ≥ jkzj, one has 0 ≤ k� < ∞. Then the mode
equation becomes�
2ik−

∂

∂u
þ

X
a¼1;2

∂

∂xa
∂

∂xa
þfðx⃗ÞδðuÞk2− −m2

�
ψk−ðu; x⃗Þ ¼ 0:

ð44Þ
In Minkowski spacetime, fðx⃗Þ ¼ 0, and the Fourier
mode is

ψk−k⃗
ðu; x⃗Þ ¼ Nk−e

− i
2k−

ðk⃗2þm2Þueik⃗·x⃗: ð45Þ
The normalization constant Nk− can be determined by the
scalar product

hϕ1;ϕ2i ¼ −i
Z
u
dv

Y
a¼1;2

dxaðϕ1∂vϕ
�
2 − ϕ�

2∂vϕ1Þ: ð46Þ

Requiring that hϕk−k⃗
;ϕk0−k⃗

0 i ¼ δðk− − k0−Þδðk⃗ − k⃗0Þ gives

Nk−k⃗
¼ ½ð2πÞ3ð2k−Þ�−1=2. Usually in the definition of the

scalar product, the integration is over some Cauchy surface
of the spacetime. However, the impulsive plane wave
spacetime is not globally hyperbolic and it possesses no
Cauchy surface. To find a substitute, it is observed that for
particles interacting with the impulsive wave, the corre-
sponding geodesics will always cross constant u surfaces.
As a result, to study the mode functions of these particles,
the constant u surface can be used as a substitute Cauchy
surface to define the inner product between them [11,12].
For impulsive plane wave spacetime, Eq. (44) can be

rewritten as

2ik−
∂

∂u
ðlnψÞ þ 1

ψ

X
a¼1;2

∂

∂xa
∂

∂xa
ψ þ fðx⃗ÞδðuÞk2− −m2 ¼ 0:

ð47Þ

The presence of the delta function indicates that lnψ across
the impulsive wave at u ¼ 0 is discontinuous. This dis-
continuity can be obtained by integrating over u ∼ ð−ϵ; ϵÞ
and then taking the limit ϵ → 0.

lnψk−ð0þx⃗Þ − lnψk−ð0−; x⃗Þ ¼
i
2
k−fðx⃗Þ

⇒ ψk−ð0þ; x⃗Þ ¼ e
i
2
k−fðx⃗Þψk−ð0−; x⃗Þ: ð48Þ

For an in-mode in this impulsive spacetime, the mode
function is that of the Minkowski mode for u < 0 before
the interaction with the wave. That is, ψ in

k−k⃗
ð0−; x⃗Þ ¼

Nk−e
ik⃗·x⃗. Hence, from Eq. (48), we have ψ in

k−k⃗
ð0þ; x⃗Þ ¼

Nk−e
ik⃗·x⃗e

i
2
k−fðx⃗Þ. This can be used as an initial condition to

work out ψ in
k−k⃗

ðu; x⃗Þ for u > 0. Take the Fourier transform

ψ in
k−k⃗

ðu; x⃗Þ ¼
Z

d2k0

2π
eik⃗

0·x⃗ψ̃ in
k−k⃗

ðu; k⃗0Þ ð49Þ

for u > 0. Putting this into Eq. (44), we have�
2ik−

∂

∂u
− k⃗02 −m2

�
ψ̃ in
k−k⃗

ðu; k⃗0Þ ¼ 0; ð50Þ

with the initial condition

ψ̃ in
k−k⃗

ð0; k⃗0Þ ¼ Nk−

Z
d2x0

2π
eiðk⃗−k⃗

0Þ·x⃗0ei
2
k−fðx⃗0Þ: ð51Þ

The solution to this is just, for u > 0,

ψ̃ in
k−k⃗

ðu; k⃗0Þ ¼ Nk−e
− i
2k−

ðk⃗02þm2Þu
Z

d2x0

2π
eiðk⃗−k⃗

0Þ·x⃗0ei
2
k−fðx⃗0Þ:

ð52Þ

Finally, we have the in-mode function ϕin
k−k⃗

ðu; v; x⃗Þ [23].

For u < 0, we have from Eq. (45) the in-mode

ϕin
k−k⃗

ðzÞ ¼ Nk−e
−ik−ve−

i
2k−

ðk⃗2þm2Þueik⃗·x⃗; ð53Þ

which is the same as the Minkowski mode function. For
u > 0, we have from Eq. (52),

ϕin
k−k⃗

ðzÞ ¼ Nk−e
−ik−veik⃗·x⃗

Z
d2x0d2k0

ð2πÞ2 e−iðk⃗−k⃗
0Þ·ðx⃗−x⃗0Þ

× e
i
2
k−fðx⃗0Þe−

i
2k−

ðk⃗02þm2Þu: ð54Þ

In a similar fashion, we can also obtain the out-mode
function ϕout

k−k⃗
ðzÞ. This out-mode function is just the

Minkowski mode function for u > 0. The delta function
term in Eq. (44) is then used to derive the discontinuity of
ψk−k⃗

at u ¼ 0. This discontinuity gives a boundary con-
dition to calculate the mode function for u < 0. The result
is that for u < 0,

ϕout
k−k⃗

ðzÞ ¼ Nk−e
−ik−veik⃗·x⃗

Z
d2x0d2k0

ð2πÞ2 e−iðk⃗−k⃗
0Þ·ðx⃗−x⃗0Þ

× e−
i
2
k−fðx⃗0Þe−

i
2k−

ðk⃗02þm2Þu; ð55Þ

while for u > 0,

ϕout
k−k⃗

ðzÞ ¼ Nk−e
−ik−ve−

i
2k−

ðk⃗2þm2Þueik⃗·x⃗: ð56Þ

B. Focusing of modes

In our previous consideration of geodesics, we have
encountered the phenomenon of geodesic focusing at the
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conjugate plane. For example, geodesics with perpendi-
cular incidence in spacetimes with fðx⃗Þ ¼ P

a¼1;2 λaðxaÞ2
will focus to a point in the x1 − x2 plane in the degenerate
case with λ1 ¼ λ2 ¼ −λ or to a line in the nondegenerate
case with λ1 ¼ −λ ¼ −λ2 at focal point u ¼ 1=λ. In fact,
similar focusing effect also occur for the in- and out-modes
that we have just examined [12]. To explore this phenome-
non, we first further simplify the mode functions
for fðx⃗Þ ¼ P

a¼1;2 λaðxaÞ2.
With this form of fðx⃗Þ, the integrals over k⃗0 and x⃗0 in

Eq. (54) are all Gaussian. To render the integrals con-
vergent, we put in an infinitesimal negative imaginary part
to u, that is, u → u − iϵ. Then, one can use the formulaZ

dx eiax
2þibx ¼

ffiffiffiffiffi
iπ
a

r
e−ib

2=4a; ð57Þ

where a and b are constants with Im a > 0, to arrive at the
in-mode for u > 0,

ϕin
k−k⃗

ðzÞ ¼ Nk−e
−k−ve−

im2

2k−
ðu−iϵÞe

ik−
2ðu−iϵÞx⃗

2

×
Y
a¼1;2

½1þ λaðu − iϵÞ�−1=2e− i
2k−

ð 1
u−iϵþλaÞ−1ðka−k−xa

u−iϵ Þ
2

:

ð58Þ

Similarly, we can also work out the out-mode function for
u < 0.

ϕout
k−k⃗

ðzÞ ¼ Nk−e
−k−ve−

im2

2k−
ðu−iϵÞe

ik−
2ðu−iϵÞx⃗

2

×
Y
a¼1;2

½1 − λaðu − iϵÞ�−1=2e− i
2k−

ð 1
u−iϵ−λaÞ−1ðka−k−xa

u−iϵ Þ
2

:

ð59Þ

Now, we can examine the focusing effect of these mode
functions. In the degenerate case with λ1 ¼ λ2 ¼ −λ, the
in-mode for u > 0 becomes

ϕin
k−k⃗

ðzÞ ¼ Nk−e
−k−ve−

im2

2k−
ðu−iϵÞe

ik−
2ðu−iϵÞx⃗

2 ½1 − λðu − iϵÞ�−1

×
Y
a¼1;2

e−
i

2k−
ð 1
u−iϵ−λÞ−1ðka−k−xa

u−iϵ Þ
2

: ð60Þ

We can immediately see that at the focal point u ¼
1=λ;ϕin

k−k⃗
is singular as ϵ → 0 due to the presence of terms

like ð1 − λðu − iϵÞÞ−1. Let us examine this expression more
closely. Take u ¼ 1=λ, and we have

ϕin
k−k⃗

ðzÞj
u¼1=λ

¼ lim
ϵ→0

Nk−e
−k−ve−

im2

2k−λe
i
2
k−λx⃗2ðiλϵÞ−1

×
Y
a¼1;2

e
− 1

2k−λ2ϵ
ðka−k−λxaÞ2 : ð61Þ

The singularity in this expression as ϵ → 0 can be described
by the delta function since one has

lim
ϵ→0

1ffiffiffi
ϵ

p e
− 1

2k−λ2ϵ
ðka−k−λxaÞ2 ¼

ffiffiffiffiffiffi
2π

k−

s
δ

�
xa −

ka

k−λ

�
: ð62Þ

Therefore,

ϕin
k−k⃗

j
u¼1=λ

¼ Nk−

�
−i2π
k−λ

�
e−ik−ve

i
2k−λðk⃗2−m2Þ

×
Y
a¼1;2

δ

�
xa −

ka

k−λ

�
: ð63Þ

At the plane with u ¼ 1=λ the focal length, the in-mode
function focuses in such a way that it is nonzero only when
xa ¼ ka=k−λ, a ¼ 1, 2, which is a point on the x1 − x2

plane. On this point the mode function is described by a
two-dimensional delta function. Actually, a direct evalu-
ation of the integrals in Eq. (54) while putting u ¼ 1=λ will
also produce Eq. (63) with the delta functions.
For the out-mode, focusing occurs at u ¼ −1=λ, giving

ϕout
k−k⃗

j
u¼−1=λ

¼ Nk−

�
i2π
k−λ

�
e−k−ve−

i
2k−λðk⃗2−m2Þ

×
Y
a¼1;2

δ

�
xa þ ka

k−λ

�
ð64Þ

Next, we consider the nondegenerate case with λ1 ¼
−λ ¼ −λ2 in which focusing of modes also happens. This
time the mode function focuses to a line in the x1 − x2 plane
instead of a point in the previous case. In particular, at
u ¼ 1=λ, the in-mode

ϕin
k−k⃗

ðzÞj
u¼1=λ

¼ Nk−

ffiffiffiffiffiffiffiffi
−iπ
k−λ

s
e−ik−ve

i
2k−λððk1Þ2−m2Þ

× e−
i

4k−λ½ðk2−k−λx2Þ2−2k2−λ2ðx2Þ2�δ
�
x1 −

k1

k−λ

�
;

ð65Þ
where we have an one-dimensional delta function this time.
For the out-mode at u ¼ −1=λ,

ϕout
k−k⃗

ðzÞj
u¼−1=λ

¼ Nk−

ffiffiffiffiffiffiffiffi
iπ
k−λ

s
e−ik−ve−

i
2k−λððk1Þ2−m2Þ

× e
i

4k−λ½ðk2þk−λx2Þ2−2k2−λ2ðx2Þ2�δ
�
x1 þ k1

k−λ

�
:

ð66Þ

C. Bogoliubov coefficients

In the impulsive plane wave spacetimes, we have devel-
oped two sets of mode functions ϕin

k−k⃗
ðzÞ and ϕout

k−k⃗
ðzÞ.
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Here, we examine the Bogoliubov transformations between
them [12].

ϕout
l− l⃗
ðzÞ ¼

Z
∞

0

dk−

Z
d2k½αl− ⃗l;k−k⃗ϕin

k−k⃗
ðzÞ þ βl− l⃗;k−k⃗ϕ

in�
k−k⃗

ðzÞ�:

ð67Þ

The Bogoliubov coefficients αl− ⃗l;k−k⃗ and βl− ⃗l;k−k⃗ are given by

αl− l⃗;k−k⃗ ¼hϕout
l− l⃗
ðzÞ;ϕin

k−k⃗
ðzÞi; βl− l⃗;k−k⃗ ¼−hϕout

l− l⃗
ðzÞ;ϕin

k−k⃗
ðzÞi;
ð68Þ

where the inner product is as defined in Eq. (46).
We first look at the coefficient βl− ⃗l;k−k⃗ becauseP
k−k⃗

jβl− ⃗l;k−k⃗j2 is related to the spectrum of the particle
produced starting with the in-vacuum. By definition the
inner product is independent of the constant u plane chosen
to evaluate it. If we take u < 0, then ϕin

k−k⃗
ðzÞ is given by

Eq. (53) and ϕout
l− ⃗l
ðzÞ by Eq. (55).

βl− ⃗l;k−k⃗ ¼
Z

dv
Z

d2xNl−Nk−ðk− − l−Þ

× e−iðl−þk−Þveið⃗lþk⃗Þ·x⃗e−
i

2k−
ðk⃗2þm2Þu

×
Z

d2x0d2l0

ð2πÞ2 e−ið⃗l−⃗l
0Þ·ðx⃗−x⃗0Þe−

i
2l−

ð⃗l02þm2Þue−i
2
l−fðx⃗0Þ:

ð69Þ

Integrating over v, x⃗, and ⃗l0, we have

βl− ⃗l;k−k⃗ ¼ Nl−Nk−2πðk− − l−Þδðk− þ l−Þ

×
Z

d2x0 eiðk⃗þ⃗lÞ·x⃗0þi
2
k−fðx⃗0Þ; ð70Þ

which is indeed independent of u. Since both momenta
k−; l− ≥ 0, we have k− þ l− ≥ 0. The presence of the delta
function δðk− þ l−Þ would require βl− ⃗l;k−k⃗ ¼ 0. This means
that there is no particle production in the impulsive plane
wave spacetime. The positive frequency in-modes will not
mix with the negative frequency out-modes and one can
identify the in- and the out-vacua.
Although βl− ⃗l;k−k⃗ vanishes, αl− ⃗l;k−k⃗ does not. To see that

we again take u < 0, and

αl− ⃗l;k−k⃗ ¼ jNk− j2ð4πk−Þδðk− − l−Þ
Z

d2x0 e−iðk⃗−⃗lÞ·x⃗0−i
2
k−fðx⃗0Þ:

ð71Þ

For fðx⃗Þ ¼ P
a¼1;2 λaðxaÞ2, we can further simplify the

expression giving

αl− ⃗l;k−k⃗ ¼
�

1

2πik−

�
δðk− − l−Þ

Y
a¼1;2

ðλaÞ−1=2e
i

2k−λa
ðka−laÞ2 :

ð72Þ

The nonzero value of this Bogoliubov coefficient indicates
that although the positive frequency in-modes of do not mix
with the negative frequency out-modes, they do mix with
the positive frequency ones. This comes about due to the
interaction of the quantum field with the impulsive wave
at u ¼ 0.

D. Wightman functions in impulsive plane
wave spacetime

After the development of complete sets of mode func-
tions, we are in the position to use them to construct various
kinds of two-point functions. These two-point functions
will be crucial in the calculation and understanding of
different quantum processes. The most basic one would be
the Wightman function, which is defined by the expectation
value of two quantum field operators at different space-
time points [14,24]. The positive Wightman is given by
Gþðz; z0Þ ¼ hϕðzÞϕðz0Þi, while the negative Wightman
function G−ðz; z0Þ ¼ hϕðz0ÞϕðzÞi. For a real scalar field,
G−ðz; z0Þ ¼ Gþðz; z0Þ�. Hence, both the Pauli-Jordan
function Gðz; z0Þ ¼ −ih½ϕðzÞ;ϕðz0Þ�i and the Hadamard
elementary function Gð1Þðz; z0Þ ¼ hfϕðzÞ;ϕðz0Þgi are real.
This is also true for the retarded Green functionGRðz; z0Þ ¼
−θðu − u0ÞGðz; z0Þ and the advanced Green function
GAðz; z0Þ ¼ θðu0 − uÞGðz; z0Þ. The Wightman function will
be important for our consideration of the noise kernel in the
next section. The retarded Green function is, of course,
crucial in discussing initial value problems.
In terms of the mode functions, the Wightman function

can be expressed as

Gþðz; z0Þ ¼
Z

∞

0

dk−

Z
d2kϕin

k−k⃗
ðzÞϕin�

k−k⃗
ðz0Þ: ð73Þ

For u; u0 < 0, we have the Minkowski Wightman function

Gþðz; z0Þ ¼
Z

∞

0

dk−
2k−

Z
d2k
ð2πÞ3 e

−ik−ðv−v0Þeik⃗·ðx⃗−x⃗0Þ

× e−
i

2k−
ðk⃗2þm2Þðu−u0Þ;

¼ −i
8π2ðu − u0Þ

Z
∞

0

dk−e−ik−ðv−v
0Þe−

im2

2k−
ðu−u0Þ

× e
ik−

2ðu−u0Þðx⃗−x⃗0Þ2 : ð74Þ

We shall work out this Minkowski Wightman function in
some detail [20] because the Wightman function with other
spacetime points can be analyzed in the same fashion. The
integral over k− above is singular. To make this singularity
more transparent, we first take a derivative with respect to
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d≡ ðx⃗ − x⃗0Þ2. Hence, we write Gþðz; z0Þ ¼ ∂FðdÞ=∂d,
where

FðdÞ ¼ −
1

4π2

Z
∞

0

dk−
k−

e−ik−ðv−v0Þe−
im2

2k−
ðu−u0Þe

ik−d
2ðu−u0Þ; ð75Þ

where FðdÞ is a convergent integral.
To continue we consider the u > u0 and u < u0 cases

separately. For u > u0, we define T ¼ ðu − u0Þ=2k−,
and FðdÞ ¼ −ð1=4π2Þ R∞

0 dT T−1e−im
2Tþiσ=2T , where

σ ¼ −ðu − u0Þðv − v0Þ þ d=2 is just the world function we
have defined previously. For u < u0, we need to define
T ¼ −ðu − u0Þ=2k− for T to be positive. Then, FðdÞ ¼
−ð1=4π2Þ R∞

0 dT T−1eim
2T−iσ=2T which is the complex con-

jugate of the function for u > u0.
Next, we need to distinguish cases with σ > 0 and

σ < 0, that is, cases with spacelike and timelike separa-
tions, respectively. We shall use the formulas [25], for
a, b > 0,

Z
∞

0

dx
x
sin

�
a2xþ b2

x

�
¼ πJ0ð2abÞ;

Z
∞

0

dx
x
cos

�
a2xþ b2

x

�
¼ −πN0ð2abÞ;Z

∞

0

dx
x
sin

�
a2x −

b2

x

�
¼ 0;

Z
∞

0

dx
x
cos

�
a2x −

b2

x

�
¼ 2K0ð2abÞ; ð76Þ

where JnðxÞ and NnðxÞ are Bessel functions of the first and second kind, respectively, and KnðxÞ is the modified Bessel
function. Then, we have for u > u0 and σ < 0,

FðdÞ ¼ −
1

4π2

Z
∞

0

dT
T

�
cos

�
m2T −

σ

2T

�
− i sin

�
m2T −

σ

2T

��
;

¼ 1

4π
½iJ0ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ þ N0ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ�: ð77Þ

For u < u0 and σ < 0, we have FðdÞ ¼ ½−iJ0ðm
ffiffiffiffiffiffiffiffiffi
−2σ

p Þ þ N0ðm
ffiffiffiffiffiffiffiffiffi
−2σ

p Þ�=4π, the complex conjugate of Eq. (77). For σ > 0,
we have FðdÞ ¼ −K0ðm

ffiffiffiffiffi
2σ

p Þ=2π2, which is real so the expressions for u > u0 and u < u0 are the same.
Collectively, using the step functions, one can express FðdÞ for all u, u0, and σ as

FðdÞ ¼ 1

4π
θðu − u0Þθð−σÞ½iJ0ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ þ N0ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ�

þ 1

4π
θðu0 − uÞθð−σÞ½−iJ0ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ þ N0ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ� þ θðσÞ

�
−

1

2π2

�
K0ðm

ffiffiffiffiffi
2σ

p
Þ: ð78Þ

Now, the positive Wightman function is given by the derivative of FðdÞ. We note that ∂θð�σÞ=∂d ¼ �δðσÞ=2, and we have
finally for u; u0 < 0

Gþðz; z0Þ ¼ −
i
8π

ϵðu − u0ÞδðσÞ þ im

8π
ffiffiffiffiffiffiffiffiffi
−2σ

p ϵðu − u0Þθð−σÞJ1ðm
ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ

þ m

8π
ffiffiffiffiffiffiffiffiffi
−2σ

p θð−σÞN1ðm
ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ þ m

4π2
ffiffiffiffiffi
2σ

p θðσÞK1ðm
ffiffiffiffiffi
2σ

p
Þ; ð79Þ

where ϵðu − u0Þ ¼ θðu − u0Þ − θðu0 − uÞ.
For u; u0 > 0, the in-mode function is given by

Eq. (54). The positive Wightman is then given by

Eq. (73). After the integration over k⃗, the terms with
fðx⃗Þ just canceled each other, and the resulting expres-
sion is the same as that in Minkowski spacetime given
by Eq. (74).
We now come to the more interesting case with u > 0

and u0 < 0, that is, across the wave front. Then, from the
mode functions in Eqs. (53) and (54),

Gþðz; z0Þ ¼
Z

∞

0

dk−
2k−

e−ik−ðv−v0Þe−
im2

2k−
ðu−u0Þ

Z
d2x00ei

2
k−fðx⃗00Þ

×
Z

d2k
ð2πÞ2 e

iu
2k−

k⃗2e−ik⃗·ðx⃗0−x⃗00Þ

×
Z

d2k00

ð2πÞ2 e
− iu
2k−

k⃗002eik⃗
00·ðx⃗−x⃗00Þ: ð80Þ

For fðx⃗Þ ¼ P
a¼1;2 λaðxaÞ2, the integrations over k⃗, k⃗00, and

x⃗00 are all Gaussian and can be done readily. Hence, we have
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Gþðz; z0Þ ¼ −
i

8π2

Z
∞

0

dk−e−ik−ðv−v
0Þe−

im2

2k−
ðu−u0Þ

×
Y
a¼1;2

ðu − u0 − λ1Þ−1=2e
ik−
2
ðu−u0−uu0λaÞ−1½ð1−u0λaÞðxaÞ2−ð1−uλaÞðx0aÞ2−2xax0aÞ�: ð81Þ

Because u > u0, we can set T ¼ ðu − u0Þ=2k−, which is positive. So the positive Wightman function becomes

Gþðz; z0Þ ¼ −
i

16π2
½ðu − u0Þ2ðu − u − uu0λ1Þ−1ðu − u0 − uu0λ2Þ−1�1=2

×
Z

∞

0

dT
T2

e−im
2Te

i
2Tðu−u0Þf−ðv−v0Þþ1

2

P
a¼1;2

ðu−u0−uu0λaÞ−1½ð1−u0λaÞðxaÞ2þð1þuλaÞðx0aÞ2−2xax0aÞ�g: ð82Þ

From Eq. (38), we immediate recognize that the prefactor in front of the integral is just the square root of the van Vleck
determinant Δðz; z0Þ. Also, from Eq. (35), the expression in the curly bracket is related to the world function σðz; z0Þ.
Therefore, the positive Wightman function can be written compactly as

Gþðz; z0Þ ¼ −
i

16π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þ

p Z
∞

0

dT
T2

e−im
2Teiσðz;z0Þ=2T: ð83Þ

This expression is also valid for 0 > u > u0 and u > u0 > 0. In those cases, Δðu; u0Þ ¼ 1 and σðz; z0Þ has the Minkowski
value as in Eq. (32). Then, Eq. (83) reduces to that in Minkowski spacetime. Using the result in Eq. (79), we immediately
have the final expression for the positive Wightman function valid for all u and u0.

Gþðz; z0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þ

p �
−

i
8π

ϵðu − u0ÞδðσÞ þ im

8π
ffiffiffiffiffiffiffiffiffi
−2σ

p ϵðu − u0Þθð−σÞJ1ðm
ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ

þ m

8π
ffiffiffiffiffiffiffiffiffi
−2σ

p θð−σÞN1ðm
ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ þ m

4π2
ffiffiffiffiffi
2σ

p θðσÞK1ðm
ffiffiffiffiffi
2σ

p
Þ
�
: ð84Þ

As we have found that both the world function and the van Vleck determinant diverge when they approach the conjugate
plane, the above expression is valid only within these planes. In such a normal neighborhood, using the series expansions of
the Bessel functions, one can develop a Hadamard form for the positive Wightman functions [24,26].

Gþðz; z0Þ ¼
1

8π2

�
Uðz; z0Þ

σ þ iðu − u0Þϵþ Vðz; z0Þ ln
�
m2σ

2
þ iðu − u0Þϵ

�
þWðz; z0Þ

�
ð85Þ

as ϵ → 0, where we have used the formulas

1

σ þ iϵ
¼ P

1

σ
− iπδðσÞ; lnðσ þ iϵÞ ¼ ln jσj þ iπθð−σÞ; ð86Þ

where P means the principal value. The functions Vðz; z0Þ, Uðz; z0Þ, and Wðz; z0Þ can be expressed as power series of σ as

Uðz; z0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þ

p
;

Vðz; z0Þ ¼ m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þp
2

X∞
n¼0

1

n!ðnþ 1Þ!
�
m

ffiffiffiffiffi
2σ

p

2

�2n

;

Wðz; z0Þ ¼ −
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þp
2

X∞
n¼0

1

n!ðnþ 1Þ! ðψðnþ 1Þ þ ψðnþ 2ÞÞ
�
m

ffiffiffiffiffi
2σ

p

2

�2n

; ð87Þ

where ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the digamma function. From this, we also see that as m → 0, that is, for the massless case,

Gþðz; z0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þp
8π2

�
1

σ
− iπϵðu − u0ÞδðσÞ

�
; ð88Þ

where ϵðu − u0Þ ¼ θðu − u0Þ − θðu0 − uÞ, which we have defined before.
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E. Two-point functions beyond the normal
neighborhood

As we have mentioned in the last subsection, the
expressions in Eqs. (84) and (85) are no longer valid when
u approaches the conjugate plane where both σðz; z0Þ and
Δðu; u0Þ diverge. However, the mode functions wework out
earlier are actually valid for all spacetime points. Therefore,
we expect that they can also be used to construct the two-
point functions, notably the Wightman function, with any
spacetime points, even for those on the conjugate plane.
These two-point functions are called global two-point
functions because they are defined everywhere even
beyond the normal neighborhood. Recently, there is much
interest in understanding the fourfold or twofold changes in
singular properties near the light cone of these global two-
point functions across a conjugate plane or a caustic point
[6,8,10]. The impulsive plane wave spacetime is an
example in which this change of singular properties can
be shown in simple terms. We shall elucidate this in the
following.
Consider the degenerate casewith λ1 ¼ λ2 ¼ −λ. Near the

conjugate plane, the world function and van Vleck determi-
nant diverge according to Eqs. (39) and (40), respectively.
Then, the positive Wightman function becomes

Gþðz; z0Þ ¼ −
i

16π2
ðu − ucÞ−1ðλu2cÞ

×
Z

∞

0

dT
T2

e−im
2Te

−iucu0λ
4Tðu−ucÞ

P
a¼1;2

ðxa−ucx0a
u0 Þ2

× e
i
4Tf2λucu0ðv−v0Þþ

P
a¼1;2

½ðxa−ucx0a
u0 Þ2þλ2u2cðx0aÞ2�g:

ð89Þ

As u → uc, delta functions emerge in the limit similar to that
in Eq. (62) giving

Gþðz; z0Þju→uc ¼ −
i

16π2

ffiffiffiffi
Δ̃

p Z
∞

0

dT
T

e−im
2Teiσ̃=2T

×
Y
a¼1;2

δ

�
xa −

ucx0a

u0

�
: ð90Þ

Instead of the world function σ and the van Vleck determi-
nant Δ which diverge on the conjugate plane, we have the
expression σ̃ ¼ −ðuc − u0Þ½ðv − v0Þ þ ucλx⃗02=2u0� and Δ̃ ¼
−ð4πuc=u0Þ2 which are both well defined there. Due to the
delta functions, the positive Wightman function on the
conjugate plane is nonzero only at the point x⃗ ¼ ucx⃗0=u0.
This can also be interpreted as the focusing effect of the two-
point functions on the conjugate plane.
Away from the conjugate plane, the world function and

the van Vleck determinant are well-defined. Hence, the
expression for the positiveWightman function in Eq. (84) is
also valid even when z is beyond the normal neighborhood
of z0. In this form it is possible to explore the singular

properties of the positive Wightman function near the light
cone in which σ → 0 on both sides of the conjugate plane.
To continue, we shall consider separately the real and the
imaginary parts of Gþðz; z0Þ. The real part is related to the
Hadamard elementary function. The imaginary part is
related to the Pauli-Jordan function that is also used to
construct the retarded and the advanced Green functions.
For the degenerate case that we are considering,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þp ¼ ðu − u0Þ=ðu − u0 þ uu0λÞ. First, this function

is real. Moreover,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þp

> 0 for uc > u > 0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu; u0Þp

< 0 for u > uc. From Eq. (84), for uc > u,
the leading and subleading singularities of the real part of
Gþðz; z0Þ near the light cone are

ReðGþðz; z0ÞÞ ¼
ffiffiffiffi
Δ

p

8π2σ
þ m2

16π2
ffiffiffiffi
Δ

p
ln

�
m2jσj
2

�
þ � � � ; ð91Þ

where � � � represents the nonsingular part. Hence, across
the conjugate plane the leading singularity goes from
1=σ → −1=σ and the subleading singularity goes from
ln jσj → − ln jσj. In addition, the singular structure of the
imaginary part goes like

ImðGþðz;z0ÞÞ¼−
1

8π

ffiffiffiffi
Δ

p
δðσÞþ m2

16π

ffiffiffiffi
Δ

p
θð−σÞþ… ð92Þ

Hence, across the conjugate plane the leading singularity
goes from −δðσÞ → δðσÞ and the subleading singularity
goes from θð−σÞ → −θðσÞ. This represents a twofold
singularity structure discussed recently for the retarded
Green function in spacetimes with caustics [8,10].
Next, we examine the nondegenerate case with

λ1 ¼ −λ ¼ −λ2. Here, the divergences of the world func-
tion and the van Vleck determinant as u → uc are given by
Eqs. (41) and (42). Then, on the conjugate plane u ¼ uc the
positive Wightman function can be expressed as

Gþðz; z0Þju→uc ¼ −
i

16π2

ffiffiffiffi
˜̃Δ

q Z
∞

0

dT

T3=2 e
−im2Tei ˜̃σ=2T

× δ

�
x1 −

ucx01

u0

�
; ð93Þ

where ˜̃Δ ¼ i2πuc=u0 and

˜̃σ ¼ −ðuc − u0Þ
�
ðv− v0Þ þ ucλ

2u0
ðx01Þ2

þ 1

4ucu0λ
½ð1− u0λÞðx2Þ2 þ ð1þ ucλÞðx02Þ2 − 2x2x02�

�
:

ð94Þ

We can see that on the conjugate plane the positive
Wightman function is nonzero along the line enforced
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by the delta function. This is the focusing effect of the two-
point function in this nondegenerate case.
As we have discussed before, the expression for the

positive Wightman function in Eq. (84) is valid everywhere
except on the conjugate plane. However, in this non-
degenerate case,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðu;u0Þp ¼ðu−u0Þðu−u0 þuu0λÞ−1=2×

ðu−u0−uu0λÞ−1=2, which is real and positive for uc >
u > 0, but after crossing the conjugate plane it is multiplied
by −i due to the factor ðu − ucÞ−1=2. In this way, the real
and the imaginary part of the positive Wightman function
will interchange. Before crossing the conjugate plane, the
real part ofGþðz; z0Þ is given by Eq. (91). After crossing the
plane, we have

ReðGþðz; z0ÞÞ ¼ −
1

8π

ffiffiffiffiffiffiffi
jΔj

p
δðσÞ þ m2

16π

ffiffiffiffiffiffiffi
jΔj

p
θð−σÞ þ…

ð95Þ
Hence, across the conjugate plane in this nondegenerate
case, the leading singularity goes from 1=σ → −δðσÞ, while
the subleading singularity goes from ln jσj → θð−σÞ.
Similarly, for the imaginary part, after crossing the con-
jugate plane

ImðGþðz; z0ÞÞ ¼ −
ffiffiffiffiffiffiffijΔjp

8π2σ
−

m2

16π2
ffiffiffiffiffiffiffi
jΔj

p
ln

�
m2jσj
2

�
þ � � � :

ð96Þ
The leading singularity goes from −δðσÞ → −1=σ and the
subleading singularity from θð−σÞ → − ln jσj. This would
constitute a fourfold transformation across the conjugate
plane: δðσÞ → 1=σ → −δðσÞ → −1=σ → δðσÞ → � � � for
the leading singularity and θð−σÞ → − ln jσj → −θð−σÞ →
ln jσj → θð−σÞ → � � � for the subleading singularity. This is
related to the recently found fourfold transformation of the
retarded Green function across caustics in black hole
spacetimes [6].
Therefore, we see that twofold or fourfold transforma-

tions of singularities near the light cone of the two-point
functions across conjugate planes are mainly controlled by
the behavior of the van Vleck determinant [8]. Our
consideration of impulsive plane wave spacetimes gives
simple examples of this phenomenon. Moreover, through
the Penrose limiting procedure, it has been argued that the
singularity structure elaborated above is actually a property
for two-point functions, especially the retarded Green
function, in general curved spacetimes [10].

IV. NOISE KERNEL: ACROSS THE CONJUGATE
PLANE

In the semiclassical gravity, the effect of quantum fields
on the classical spacetime is given by the expectation value
of the stress energy tensor Tμν [14]. This expectation value
is usually divergent. Regularization and renormalization
procedures have to be devised to obtain finite results.

Using the point-separation method [27], one can define
the renormalized expectation value of the stress energy
tensor as

hTμνðzÞiren ¼ lim
z0→z

1

2
T μνG

ð1Þ
renðz; z0Þ; ð97Þ

where, for the minimally coupled scalar field that we are
considering, the differential operator is given by

T μν ¼
1

2
ðgα0μ ∇α0∇νþgα

0
ν ∇α0∇μÞ−

1

2
gμνgρα

0∇ρ∇α0 −
1

2
m2gμν;

ð98Þ

where gα
0

μ ðz; z0Þ is the parallel propagator. Gð1Þ
renðz; z0Þ is the

renormalized Hadamard elementary function. Note that
Gð1Þðz; z0Þ is twice the real part of the positive Wightman

function.Gð1Þ
renðz; z0Þ is obtained by subtracting the divergent

part of Gð1Þðz; z0Þ when the z0 → z is taken. Under the
assumption that hTμνiren should vanish for a free field in

the Minkowski vacuum, we should have Gð1Þ
ren ¼ 0 in

Minkowski spacetime. From Sec. III D, we have found
that the positive Wightman functions for 0 > u > u0 and
u > u0 > 0 are just the Minkowski one. Therefore, we have
hTμνiren ¼ 0 in the impulsive plane wave spacetime.
Even though the renormalized expectation value of the

stress energy tensor is zero in the impulsive plane wave
spacetime, it does not mean that its fluctuations and
correlations are also vanishing. It is therefore interesting
to examine the properties of the stress energy tensor
correlators. In semiclassical gravity, only the mean value
of Tμν is taken into account. To further consider the effects
of fluctuations and correlations, the theory of stochastic
gravity is put forth by Hu and Verdaguer [16,17]. This is an
open quantum system approach in which gravity is the
system and quantum field is the environment. The influence
of the environment on the system is manifested as noise
and dissipative effects. The corresponding noise kernel is
actually given by the correlator of the stress energy tensor
Nμνα0β0 ðz;z0Þ¼hðTμνðzÞ−hTμνðzÞiÞðTα0β0 ðz0Þ−hTα0β0 ðz0ÞiÞi.
In the following we shall examine the properties of this
noise kernel in the impulsive plane wave spacetime.

A. Noise kernel by point-separation method

Using the point-separation method, a general formula for
the noise kernel is given in [18]. For a minimally coupled
scalar field, it is

Nμνα0β0 ¼ ReðÑμνα0β0 þ gμνÑα0β0 þ gα0β0Ñ0
μν þ gμνgα0β0ÑÞ;

ð99Þ

where

Ñμνα0β0 ¼ G;μα0G;νβ0 þ G;μβ0G;να0 ; ð100Þ
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Ñ0
μν ¼ −G;μα0Gα0

;ν −m2G;μG;ν; ð101Þ

Ñ ¼ 1

2
G;μα0G;μα0 þ 1

2
m2ðG;μG;μ þG;α0G;α0 Þ þ 1

2
m4G2;

ð102Þ

whereG is the positiveWightman function. Note that theþ
index has been omitted to simplify notation.

Here in our case of the impulsive plane wave space-
time, the positive Wightman function as given in Eq. (84),
can be written as Gðz; z0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δðu; u0Þp
gðσÞ with the

van Vleck determinant a function of u and u0 and the rest
gðσÞ a function of the world function σ. Since G satisfies
the Klein-Gordon equation, we have 2σg00 þ 4g0 −m2g¼ 0.
Together with the identities: σ;μσ;μ ¼ 2σ and σ;μðlnΔÞ;μ ¼
4 − σμ;μ, the noise kernel components can be expressed
as follows:

Ñμνα0β0 ¼ Δ
��

g0
�
σ;μα0 −

2σ;μσ;α0

σ
þ 1

2
σ;μðlnΔÞ;α0 þ

1

2
σ;α0 ðlnΔÞ;μ

�

þ g

�
m2σ;μσ;α0

2σ
þ 1

2
ðlnΔÞ;μα0 þ

1

4
ðlnΔÞ;μðlnΔÞ;α0

���
g0
�
σ;νβ0 −

2σ;νσ;β0

σ
þ 1

2
σ;νðlnΔÞ;β0 þ

1

2
σ;β0 ðlnΔÞ;ν

�

þ g
�
m2σ;νσ;β0

2σ
þ 1

2
ðlnΔÞ;νβ0 þ

1

4
ðlnΔÞ;νðlnΔÞ;β0

��
þ ðμ ↔ νÞ

�
; ð103Þ

Ñ0
μν ¼ Δ

�
g02

�
−
1

2
σ;μα0σ;ν

α0 þ 2σ;μσ;ν
σ

−
1

2
m2σ;μσ;ν −

σ;μσ;νσ;α0
α0

σ
−
1

2
σ;μα0σ;νðlnΔÞ;α0

þ 1

2
σ;μðlnΔÞ;ν þ

1

4
σ;μσ;α0

α0 ðlnΔÞ;ν −
1

4
σðlnΔÞ;μðlnΔÞ;ν

�

þ gg0
�
m2σ;μσ;ν

2σ
þm2σ;μσ;νσ;α0

α0

4σ
−
�
m2 þ σ;α0

α0

2σ
−
2

σ

�
σ;μðlnΔÞ;ν

þ σ;μσ;α0

σ
ðlnΔÞ;να0 −

1

2
σ;μα0 ðlnΔÞ;να0 −

1

2

�
1 −

1

4
σ;α0

α0
�
ðlnΔÞ;μðlnΔÞ;ν

−
1

4
σ;μα0 ðlnΔÞ;νðlnΔÞ;α0 −

1

4
σ;α0 ðlnΔÞ;μðlnΔÞ;να0

�

þ g2
�
−
m4σ;μσ;ν

4σ
−
m2σ;μ
2σ

ðlnΔÞ;ν þ
m2σ;μσ;α0

α0

8σ
ðlnΔÞ;ν −

m2σ;μσ;α0

4σ
ðlnΔÞ;να0

−
1

8
m2ðlnΔÞ;μðlnΔÞ;ν

�
þ ðμ ↔ νÞ

�
; ð104Þ

Ñ ¼ Δ
2

�
g02

�
−8þ σ;μ

μ þ σ;α0
α0 þ 1

2
σ;μ

μσ;α0
α0 þ σ;μα0σ

;μα0 þ 4m2σ

�

þ gg0
�
10m2 − 2m2σ;μ

;μ − 2m2σ;α0
α0 −

16

σ
þ 4σ;μ

μ

σ
þ 4σ;α0

α0

σ
−
σ;μ

μσ;α0
α0

σ

−
2σ;μσ;α0

σ
ðlnΔÞ;μα0 þ σ;μα0 ðlnΔÞ;μα0 þ

1

2
σ;μα0 ðlnΔÞ;μðlnΔÞ;α0

�

þ g2
�
2m4 þ 4m2

σ
−
m2σ;μ

μ

σ
−
m2σ;α0

α0

σ
þm2σ;μ

μσ;α0
α0

4σ
þm2σ;μσ;α0

2σ
ðlnΔÞ;μα0

��
: ð105Þ

Since we are interested in the correlation function across the wave front, we take u0 < 0 and u > 0. In the next subsection,
we shall consider the singularity of the noise kernel near the light cone. Here, we concentrate on the case with σ ≠ 0, and

gðσÞ ¼ im

8π
ffiffiffiffiffiffiffiffiffi
−2σ

p θð−σÞHð2Þ
1 ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ þ m

4π2
ffiffiffiffiffi
2σ

p θðσÞK1ðm
ffiffiffiffiffi
2σ

p
Þ: ð106Þ
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As we can see from Eqs. (99)–(105), the expressions for the
noise kernel components are in general quite complicated.
We therefore look at some limiting cases below for small
and large geodesic separations. These would apply to cases
in and beyond the normal neighborhood.
For small geodesic distance, or σ ≪ 1, the function

gðσÞ ¼ 1

8π2σ
þ � � � ⇒ g0ðσÞ ¼ −

1

8π2σ2
þ � � � ð107Þ

This indicates that near the light cone the behavior is like
that of a massless scalar field in Minkowski spacetime,
except that the van Vleck determinant is not of unity and the
world function is given by Eq. (35) instead. As a result the
leading contribution to the noise kernel is given by terms
proportional to g02 and with the higher power of σ in the
denominator.

Nμνα0β0 ¼
Δ

16π4

�
σ;μσ;νσ;α0σ;β0

σ6

�
þ � � � : ð108Þ

To give an explicit expression, we consider the energy
density correlator Nuuu0u0 ¼ hTuuTu0u0 i. To make the
expression manageable, we set, without loss of generality,
z0 ¼ ðu0; 0; 0⃗Þ. Further simplification can be obtained if we
set λ1 ¼ λ2 ¼ −λ, that is, for the degenerate case. To
approach the light cone, we take

v ¼ ð1þ u0λÞ
2ðu − u0 þ uu0λÞ

X
a

ðxaÞ2 þ δv; ð109Þ

where δv → 0 corresponds to the small σ limit. Then, we
have

Nuuu0u0 ¼
�ðu − u0Þ6ð1þ u0λÞ4ðPaðxaÞ2Þ4

256π4ðu − u0 þ uu0λÞ10
�

1

σ6

þ ðu − u0Þ5ð1þ u0λÞ3ðPaðxaÞ2Þ3
512π4ðu − u0 þ uu0λÞ10

×

�
4ðu − u0 þ uu0λÞð−4þ λðu − u0 þ uu0λÞÞ

−m2ðu − u0Þð1þ u0λÞ
X
a

ðxaÞ2
�
1

σ5
þ � � � ;

ð110Þ

which is consistent with Eq. (108).
For large timelike geodesic separation, σ → −∞,

gðσÞ ¼ im

8π
ffiffiffiffiffiffiffiffiffi
−2σ

p Hð2Þ
1 ðm

ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ;

¼ e−im
ffiffiffiffiffiffi
−2σ

p
−i3π=4

�
−

3i

64ð2Þ3=4π3=2m1=2

�
1

ð−σÞ5=4

×

�
1þ i8ð2Þ1=2m

3
ð−σÞ1=2 þ � � �

�
: ð111Þ

Therefore, the noise kernel components Nμνα0β0 are domi-
nated by sinð2m ffiffiffiffiffiffiffiffiffi

−2σ
p Þ or cosð2m ffiffiffiffiffiffiffiffiffi

−2σ
p Þ with negative

powers of (−σ). For example, for the Nuuu0u0 , as σ → −∞,

Nuuu0u0 ¼
m3

512π3ð1þ u0λÞ4
1

ð−σÞ3=2 ½
ffiffiffi
2

p
ðm2ð1þ 2u0λÞ

− λ2ð2 −m2u02Þ sinð2m
ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ

− 4mλð1þ u0λÞ cosð2m
ffiffiffiffiffiffiffiffiffi
−2σ

p
Þ� þ � � � : ð112Þ

Here, we have assumed that z0 ¼ ðu0; 0; 0⃗Þ and z ¼ ðu; v; 0⃗Þ
to simplify the expression. Then, σ ¼ −ðu − u0Þv and the
limit σ→−∞ is reached by taking ðu− u0Þ ¼ ð−σÞ1=2 →∞
and v ¼ ð−σÞ1=2 → ∞.
For large spacelike geodesic separation, σ → ∞,

gðσÞ ¼ m

4π2
ffiffiffiffiffi
2σ

p K1ðm
ffiffiffiffiffi
2σ

p
Þ;

¼ π1=2

23=4m1=2

e−m
ffiffiffiffi
2σ

p

σ1=4

�
1þ 3

ffiffiffi
2

p

16m
1ffiffiffi
σ

p þ � � �
�
: ð113Þ

The noise kernel in this limit is given mainly by e−2m
ffiffiffiffi
2σ

p

with negative powers of σ. Again, we look at the
energy density correlator with ðu − u0Þ ¼ ðσÞ1=2 → ∞
and v ¼ ðσÞ1=2 → ∞. The leading contribution is

Nuuu0u0 ¼
m3

256
ffiffiffi
2

p
π3ð1þ u0λÞ4 ð

ffiffiffi
2

p
λ −mð1þ u0λÞÞ2

×

�
e−2m

ffiffiffiffi
2σ

p

σ3=2

�
þ � � � ; ð114Þ

which is indeed suppressed by a factor e−2m
ffiffiffiffi
2σ

p
.

B. On and across the conjugate plane

From what we have discussed in Secs. II and III, both
σðz; z0Þ and Δðu; u0Þ diverge as one approaches the con-
jugate plane at u ¼ uc. However, the positive Wightman
function can still be described on the conjugate plane in
terms of Dirac delta functions located at specific points
or lines on the x1 − x2 plane. Since the noise kernel
Nμνα0β0 ðz; z0Þ are expressed in terms of various derivatives
of the Wightman functions, we expect that on the conjugate
plane Nμνα0β0 ðz; z0Þ could also be expressed in terms of
product of delta functions and its derivatives.
To make the discussion more concrete, we consider the

degenerate case with λ1 ¼ λ2 ¼ −λ. Near the conjugate
plane with u ¼ uc ¼ u0=ð1þ u0λÞ, the world function
diverges as ðu − ucÞ−1 as shown in Eq. (39). To study
the noise kernel near and on the conjugate plane, it is best to
use the representation of the positive Wightman function in
Eqs. (89) and (90). From Eqs. (99) and (102), we can see
that the noise kernel is basically given by the derivatives of
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the Wightman function. We take the noise kernel compo-
nent Nuuu0u0 as an example. Using Eq. (89),

Nuuu0u0 ¼ Reð2G2
;uu0 Þ;

¼ Re

�
2

�
iλu4c
8π2u02

ðu − ucÞ−3

×
Z

∞

0

dT
T2

e−im
2Te

−iucu0λ
4Tðu−ucÞ

P
a¼1;2

ðxa−ucx0a
u0 Þ2

× e
i
4Tf2λucu0ðv−v0Þþ

P
a¼1;2

½ðxa−ucx0a
u0 Þ2þλ2u2cðx0aÞ2�g

�
2

þ � � �
�
; ð115Þ

where we have shown the most divergent term as u → uc.
Note that the divergent quantity here can be expressed as
derivatives on delta function.

lim
u→uc

ðu − ucÞ−3e
−iucu0λ
4Tðu−ucÞ

P
a¼1;2

ðxa−ucx0a
u0 Þ2

¼
�
−

T2

2u2cu02λ2

�
∇⃗2∇⃗2 lim

u→uc
ðu − ucÞ−1

× e
−iucu0λ
4Tðu−ucÞ

P
a¼1;2

ðxa−ucx0a
u0 Þ2 ;

¼
�
i2πT3

u3cu03λ3

�
∇⃗2∇⃗2

δ

�
x⃗ −

ucx⃗0

u0

�
; ð116Þ

where ∇⃗2 ¼ ∂
2=∂ðx1Þ2 þ ∂

2=∂ðx2Þ2. As a result, the noise
kernel component is given by

Nuuu0u0 ¼ Re

�
2

��
i

16π2λ2u04

�
∇⃗2∇⃗2

δ

�
x⃗ −

ucx⃗0

u0

� ffiffiffiffi
Δ̃

p

×
Z

∞

0

dT Te−im
2Te

i
2Tσ̃

�
2

þ � � �
�
; ð117Þ

where Δ̃ and σ̃ are defined as in Eq. (90). This noise kernel
component is indeed expressed in terms of delta function
and its derivatives, and we expect the other component to
behave similarly.
Next, we study the singular structure of the noise kernel

near the light cone. For the Wightman function, this is
given by Eqs. (91) and (92). From Eqs. (99) and (102), we
can see that the noise kernel is basically the square of
the second derivative of the Wightman function. Hence, the
most divergent contribution to the noise kernel near the
light cone would be ∼Δ½δ00ðσÞ�2, while the next subleading
term would be ∼Δ½δ00ðσÞ�½δ0ðσÞ�. For the degenerate case
(λ1 ¼ λ2 ¼ −λ) that we are working on here, as evident
from Eq. (40), the van Vleck determinant does not change
sign crossing the conjugate plane. Therefore, the singu-
larity structure of the noise kernel near the light cone are the
same on both sides of the plane.

In the nondegenerate case, λ1 ¼ −λ ¼ −λ2, the
Wightman function near and on the conjugate plane u ¼ uc
are given by Eqs. (93) and (94). Using a similar consid-
eration as that for the degenerate case above, the noise
kernel component Nuuu0u0 on the conjugate plane can be
expressed as

Nuuu0u0 ¼ Re

�
2

��
−

i
16π2λ2u04

��
∂

∂x1

�
4

δ

�
x1 −

ucx01

u0

�

×

ffiffiffiffi
˜̃Δ

q Z
∞

0

dT T1=2e−im
2Te

i
2T
˜̃σ

�
2

þ � � �
�
; ð118Þ

where we have shown the most divergent term in the noise

kernel component. The functions ˜̃Δ and ˜̃σ are defined as
in Eq. (93).
For the singular structure of the noise kernel near the

light cone in the nondegenerate case, we see from Eq. (42)
that the van Vleck determinant changes sign after crossing
the conjugate plane. Hence, for u < uc, the leading
singularity of the noise kernel near the light cone is
jΔj½δ00ðσÞ�2 and the subleading one is jΔj½δ00ðσÞ�½δ0ðσÞ�.
Whereas for u > uc, the leading singularity becomes
−jΔj½δ00ðσÞ�2 and the subleading one −jΔj½δ00ðσÞ�½δ0ðσÞ�.

V. CONCLUSIONS AND DISCUSSIONS

The main results in this paper are about the properties of
the Wightman function and the stochastic gravity noise
kernel of a scalar field in impulsive plane wave spacetimes.
The existence of conjugate planes where caustic points are
located is an important feature of these spacetimes. We
have shown that on these conjugate planes the two-point
correlation functions, in particular the positive Wightman
function, are described by Dirac delta functions. This
means that the Wightman function vanishes on the con-
jugate plane except at the focusing points or lines where
the function diverges. On the other hand, the singularity
structure of the Wightman function near the light cone can
be traced to the behaviors of the van Vleck determinant. In
the simple setting of an impulsive plane wave spacetime,
the twofold or fourfold transformations of the singularity
structure can be shown quite explicitly. Through the
Penrose limit, one can argue that these structures are also
valid in general curved spacetimes.
In the theory of stochastic gravity, fluctuation, and

correlation effects of the quantum field are accounted for
by the dissipation and the noise kernels. The noise kernel is
given by the correlation function of the quantum field stress
energy tensor. In this paper, we have worked out the explicit
form of this noise kernel in terms of the world function
σðz; z0Þ and the van Vleck determinant Δðu; u0Þ as well as
their derivatives. The leading contribution of the noise
kernel is of 1=σ6 for small σ. For large spacelike σ, the
noise kernel is suppressed by e−2m

ffiffiffiffi
2σ

p
, while for large
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timelike σ, its leading contributions are proportional to
ð−σÞ−3=2 multiplying sinð2m ffiffiffiffiffiffiffiffiffi

−2σ
p Þ or cosð2m ffiffiffiffiffiffiffiffiffi

−2σ
p Þ. On

the conjugate plane, the leading term of the noise kernel is
given by the square of the fourth derivative of the delta
function. For the singularity structure near the light cone in
the degenerate case, the leading singularity of the noise
kernel is ∼½δ00ðσÞ�2 on both sides of the conjugate plane
since the van Vleck determinant Δðu; u0Þ does not change
sign crossing the conjugate plane in this case. On the other
hand, in the nondegenerate case, Δðu; u0Þ changes sign
when crossing the conjugate plane. Hence, in this case, the
singularity changes from ∼½δ00ðσÞ�2 to ∼ − ½δ00ðσÞ�2. These
divergences can be dealt with if we consider the noise
kernel as a bidistribution, either by point-separation method
[18,27] or integrating with smearing functions [28]. For the
divergences near the light cone, since the noise kernel is
usually integrated with field variables, the degree of
divergence is lessen and sometimes rendered finite after
integrations. While for the coincident limit divergences,
further renormalization procedures are needed in most
cases to obtain finite results.
Under the Penrose limit, the spacetime near a null

geodesic can be viewed as a plane wave spacetime.
Hence, we like to apply the semiclassical stochastic gravity
theory to plane wave spacetime to capture the essential

physics, like for example, the quantum energy inequalities
[19], of a quantum field near a null geodesic. Our study of
the stochastic gravity noise kernel can be viewed as a first
step towards this goal. In our future works, we plan to
further our considerations to include the dissipation kernel
which is related to the retarded Green function, and also to
the influence action which summaries the effects of the
quantum field on the classical spacetime. Furthermore, we
would extend our study to more general plane wave
spacetimes, for example, that of sandwich waves in which
the wave profiles are of finite extend [11,12]. We are also
interested in spacetimes that are Penrose limit near space-
time singularities [22]. For example, the singular homo-
geneous plane wave spacetime is the Penrose limit near a
black hole singularity [29]. This would be relevant to our
future investigations of the quantum field effects near
spacetime singularities.
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