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In this paper, the study of canonical quantization of a free real massive scalar field in the Schwarzschild
spacetime is continued. The normalization constants for the eigenfunctions of the corresponding radial
equation are calculated, providing the necessary coefficients for the doubly degenerate scatteringlike states
that are used in the expansion of the quantum field. It is shown that one can pass to a new type of states such
that the spectrum of states with energies larger than the mass of the field splits into two parts. The first part
consists of states that resemble properly normalized plane waves far away from the black hole, so they just
describe the theory for an observer located in that area. The second part consists of states that live relatively
close to the horizon and whose wave functions decrease when one goes away from the black hole. The
appearance of the second part of the spectrum, which follows from the initial degeneracy of the
scatteringlike states, is a consequence of the topological structure of the Schwarzschild spacetime.
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I. INTRODUCTION

The problem of quantization of fields in a curved
background is widely discussed in the literature; see, for
example, the well-known monograph [1] and references
therein. Among the variety of backgrounds, one of the most
interesting cases is a black hole, whereas the most famous
effect related to black holes, for which a consistent
quantum field theory is needed, is the Hawking effect.
The simplest black hole solution is the Schwarzschild
solution, for which the problem of field quantization is
discussed in a huge number of papers, starting from the
pioneering papers [2,3]. It is well known that, in order to
describe the Hawking effect, it is necessary to take into
account the areas both below and above the black hole
horizon. The latter can be done by passing to the Kruskal-
Szekeres coordinates [4,5], which describe the maximal
analytic extension of the Schwarzschild spacetime.
However, a mathematically rigorous approach to descrip-
tion of the Hawking effect [6–9] relies on the knowledge of
wave functions of states above the black hole horizon.
Indeed, depending on which vacuum is supposed to be the
physical one, i.e., the Boulware vacuum [2], the Hartle-
Hawking vacuum [3], or the Unruh vacuum [10,11], the
contribution of wave functions of states above the black
hole horizon to the “actual” wave functions is different.
However, there is a controversy in the scientific literature

concerning the properties of one-particle solutions of field
equations for the simplest case of the scalar field. In
particular, in the well-known paper [12], it is stated that

the spectrum of states of the corresponding radial equation
for E < M (here, E is the energy of the state and M is the
mass of the field) is discrete (though each state has an
infinite norm), whereas in Refs. [13,14] it is shown that this
part of the spectrum is continuous and the radial solutions
can be expressed in terms of the Heun functions. In
Ref. [15], it is stated that from the quantum mechanical
point of view the whole theory is ill behaved. So, in
Ref. [16], a detailed examination of solutions of the field
equation in the case of a real massive scalar field was
carried out and a rigorous procedure of canonical quanti-
zation in the area above the horizon was performed. It was
explicitly demonstrated that the area below the horizon
(i.e., the black hole itself) is indeed not necessary for
obtaining a self-consistent quantum field theory (i.e., the
theory in which the canonical commutation relations are
satisfied exactly and the Hamiltonian has the standard form
without pathologies) at least in the simplest case of the
scalar field.1 This result is in agreement with the results
presented in several recent papers by ’t Hooft [20–22], in
which an attempt was made to solve some problems with
the physical interpretation of the quantum theory in the
presence of a black hole (taking into account the appear-
ance of the second, so-called “white hole” and the well-
known problem with locality due to the existence of the
white hole in our Universe or even in a parallel world).
Namely, in the approach proposed in [20–22], the interior
regions of both holes do not play any role in the evolution
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1The quantum scalar field only outside the horizon of the
Schwarzschild black hole has already been considered in the
literature; see, for example, recent papers [17–19].
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and turn out to be mathematical artifacts that do not have a
direct physical interpretation.2

Usually, even when the quantum scalar field is consid-
ered only outside the horizon of the Schwarzschild black
hole (again see, for example, [17–19]), the expansion of
solutions of the field equation in spherical harmonics is
used. In Ref. [16], the field is expanded in the scatteringlike
states, which are close to slightly modified plane waves if
we go far away from the black hole, thus resembling wave
functions of free particles in Minkowski spacetime.3

However, an unexpected result is that there exist two
different states that look like slightly modified plane waves
far away from the black hole. However, since the normali-
zation constants for the radial solutions were not calculated
in [16], the coefficients in front of these modified plane
waves were not calculated either. So, it was not clear what
these modified plane waves correspond to.
In the present paper, I calculate the normalization

constants for the eigenfunctions of the corresponding radial
equation, which provide the necessary coefficients for the
scatteringlike states. It turns out that, with explicit values
of the coefficients, it becomes possible to combine two
different scatteringlike states in such a way that there arise
two different types of quantum states. Namely, the first type
corresponds to states that resemble properly normalized
plane waves far away from the black hole, so these states
just describe the theory for an observer located in that area.
The second type corresponds to states that live relatively
close to the horizon and whose wave functions decrease
when one goes away from the black hole.
This paper strongly relies on the results obtained in [16].

It is organized as follows. In Sec. II, the basic setup is
described. In Sec. III, the normalization constants of the
radial solutions are obtained. In Sec. IV, the coefficients for
asymptotics of the scatteringlike states are obtained. In
Sec. V, new states are defined, which are even more useful
for describing the quantum theory than the scatteringlike
states that were introduced in [16]. In Sec. VI, the resulting
quantum field theory is discussed. In Sec. VII, the main
results obtained in the present paper are discussed. The
Appendix contains auxiliary material.

II. SETUP

As in Ref. [16], let us take a real massive scalar
field ϕðt; x⃗Þ in a curved background described by the
Schwarzschild metric. First, we will consider the field at
the classical level. Since the Schwarzschild metric is static,
the equation of motion for the scalar field takes the form

ffiffiffiffiffiffi
−g

p
g00ϕ̈þ ∂ið

ffiffiffiffiffiffi
−g

p
gij∂jϕÞ þM2 ffiffiffiffiffiffi

−g
p

ϕ ¼ 0; ð1Þ

where ϕ̇ ¼ ∂0ϕ. The scalar field ϕðt; x⃗Þ can be expanded in
solutions of the form

e�iEtϕlmðE; x⃗Þ ¼ e�iEtYlmðθ;φÞflðE; rÞ; ð2Þ

where

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − jmjÞ!
ðlþ jmjÞ!

s
Pjmj
l ðcos θÞeimφ;

l ¼ 0; 1; 2;…; m ¼ 0;�1;�2;… ð3Þ

are spherical harmonics in the convention of [25], leading
to the radial equation

E2
r

r−r0
flðE;rÞ−M2flðE;rÞþ

1

r2
d
dr

�
rðr−r0Þ

dflðE;rÞ
dr

�

−
lðlþ1Þ

r2
flðE;rÞ¼ 0 ð4Þ

for the functions flðE; rÞ. Without loss of generality, the
functions flðE; rÞ can be chosen to be real and one can set
E ≥ 0. Let us also restrict ourselves to the domain r > r0,
where r0 is the Schwarzschild radius. Equation (4) suggests
the form of the orthogonality condition for flðE; rÞ,
which is

Z∞

r0

r3

r − r0
flðE; rÞflðE0; rÞdr ¼ 0 for E ≠ E0; ð5Þ

as well as the form of the norm

Z∞

r0

r3

r − r0
f2l ðE; rÞdr: ð6Þ

It is convenient to introduce the dimensionless variables
and a new function:

μ ¼ Mr0; ϵ ¼ Er0;

z ¼ r
r0

þ ln

�
r
r0

− 1

�
; ψ lðϵ; zÞ ¼ rflðE; rÞ: ð7Þ

In these variables, Eq. (4) can be expressed in the form of a
one-dimensional Schrödinger equation:

−
d2ψ lðϵ; zÞ

dz2
þ VlðzÞψ lðϵ; zÞ ¼ ϵ2ψ lðϵ; zÞ; ð8Þ

2It should be noted that the approach has a drawback
consisting in possible emergence of closed timelike curves [22].

3The use of scattering states for examining scattering of scalar
waves in the Schwarzschild metric can be found, for example,
in [23,24].
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where the potential has the form [14]

VlðzÞ ¼
rðzÞ − r0
rðzÞ

�
μ2 þ lðlþ 1Þr20

r2ðzÞ þ r30
r3ðzÞ

�
ð9Þ

with rðzÞ defined by (7). The potential VlðzÞ is such that
VlðzÞ → 0 for z → −∞ and VlðzÞ → μ2 for z → ∞. Since
for z → ∞ one gets rðzÞ ≈ r0ðz − lnðzÞÞ, at large z the
potential takes the form

VlðzÞ ≈ μ2
�
1 −

1

z

�
: ð10Þ

In Fig. 1, some examples of VlðzÞ are presented. One can
see that it is a standard quantummechanical problem, so the
basic properties of the eigenfunctions (we are interested in
physically relevant solutions, which are supposed to be
bounded for z�∞) are quite clear [14,16]. Indeed, for
ϵ < μ and fixed l, there exists one solution parametrized by
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ϵ2

p
with the asymptotics ∼e−qz at z → ∞. For

ϵ > μ and fixed l, there exist two linearly independent
solutions parametrized by q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − μ2

p
. As was noted

above, these solutions can be chosen to be real. Let us
denote them by ψ lpðq; zÞ, where p ¼ 1, 2.
Applying transformations (7) to the initial norm (6),

we get

Z∞

r0

r3

r − r0
f2l ðE; rÞdr →

Z∞

−∞

ψ2
l ðϵ; zÞdz: ð11Þ

This form of the norm also follows directly from Eq. (8). In
what follows, the normalization condition

Z∞

−∞

ψ lpðq; zÞψ lp0 ðq0; zÞdz ¼ δpp0δðq − q0Þ ð12Þ

will be used for solutions with ϵ > μ instead of the
condition

Z∞

−∞

ψ lpðϵ; zÞψ lp0 ðϵ0; zÞdz ¼ δpp0δðϵ − ϵ0Þ ð13Þ

used in [16].

III. NORMALIZATION CONSTANTS
OF THE RADIAL SOLUTIONS

As was shown in [14], for ϵ > μ there exist two linearly
independent solutions of Eq. (8) with potential (9). Let us
find the asymptotics of these solutions. For z → ∞, the
equation takes the form

−
d2ψ lpðq; zÞ

dz2
þ μ2

�
1 −

1

z

�
ψ lpðq; zÞ ¼ ϵ2ψ lpðq; zÞ; ð14Þ

where only the leading terms in the potential VlðzÞ
are retained. So, both solutions for z → ∞ can be
represented as

ψ lpðq; zÞ ¼ Cþ
lpðqÞ sin

�
qzþ μ2

2q
lnðzÞ þ κlpðqÞ

�
; ð15Þ

where ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ μ2

p
. Here, the unknown phases κlpðqÞ

can be defined in such a way that Cþ
lpðqÞ > 0. Note that the

coefficients Cþ
lpðqÞ are also unknown at the moment. The

term ∼ lnðzÞ in (15) is due to the term 1
z in (14).

Analogously, for z → −∞ the equation takes the form

−
d2ψ lpðq; zÞ

dz2
¼ ϵ2ψ lpðq; zÞ; ð16Þ

where again only the leading terms are retained. Both
solutions for z → −∞ can be represented as

ψ lpðq; zÞ ¼ C−
lpðqÞ sin ðϵzþ γlpðqÞÞ: ð17Þ

Here, the unknown phases γlpðqÞ can be defined in such a
way that C−

lpðqÞ > 0; the coefficients C−
lpðqÞ are also
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FIG. 1. VlðzÞ for μ ¼ 1: l ¼ 0 (left plot) and l ¼ 2 (right plot). Dashed lines stand for μ2. The figure is taken from [16].
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unknown. In Ref. [16], an assertion was made that these
solutions can be chosen so that the normalization constants
Cþ
lpðqÞ and C−

lpðqÞ do not depend on l. In such a case, one
can write Cþ

p ðqÞ and C−
pðqÞ for all l. However, explicit

values of Cþ
p ðqÞ and C−

pðqÞ were not calculated in [16].
Below, it will be shown that an even more stringent
constraint can be imposed on Cþ

lpðqÞ and C−
lpðqÞ and

explicit values of these constants will be obtained for
solutions satisfying the constraint.

Let us figure out how the values of the constants Cþ
lpðqÞ

and C−
lpðqÞ contribute to the normalization conditions (12).

It is well known that, since the normalization integrals for
eigenfunctions in such quantummechanical systemsdiverge,
the normalization constants are determined by the behavior
of eigenfunctions in the asymptotic regions; see [26]. So,
below, we will use the trick that was used in §21 of [26] for
calculating normalization constants in a similar case.
First, let us rewrite the integral in the lhs of (12) as

Z∞

−∞

ψ lpðq; zÞψ lp0 ðq0; zÞdz ≈
Z−L

−∞

C−
lpðqÞC−

lp0 ðq0Þ sin ðϵzþ γlpðqÞÞ sin ðϵ0zþ γlp0 ðq0ÞÞdz

þ
Z∞

L

Cþ
lpðqÞCþ

lp0 ðq0Þ sin
�
qzþ μ2

2q
lnðzÞ þ κlpðqÞ

�
sin

�
q0zþ μ2

2q0
lnðzÞ þ κlp0 ðq0Þ

�
dz

þ
ZL

−L

ψ lpðq; zÞψ lp0 ðq0; zÞdz; ð18Þ

where L is such that for jzj > L asymptotic solutions (15) and (17) can be utilized with a sufficient accuracy. Since the third
integral in the rhs of (18) is finite and can be neglected in comparison with an overall infinite value of the normalization
integral, one can replace this finite integral in (18) by any other finite value, for example, by

ZL

−L

ψ lpðq; zÞψ lp0 ðq0; zÞdz →
Z0

−L

C−
lpðqÞC−

lp0 ðq0Þ sin ðϵzþ γlpðqÞÞ sin ðϵ0zþ γlp0 ðq0ÞÞdz

þ
ZL

0

Cþ
lpðqÞCþ

lp0 ðq0Þ sin
�
qzþ μ2

2q
lnðzÞ þ κlpðqÞ

�
sin

�
q0zþ μ2

2q0
lnðzÞ þ κlp0 ðq0Þ

�
dz: ð19Þ

Then, for (18) we get

Z∞

−∞

ψ lpðq; zÞψ lp0 ðq0; zÞdz ≈
Z0

−∞

C−
lpðqÞC−

lp0 ðq0Þ sin ðϵzþ γlpðqÞÞ sin ðϵ0zþ γlp0 ðq0ÞÞdz

þ
Z∞

0

Cþ
lpðqÞCþ

lp0 ðq0Þ sin
�
qzþ μ2

2q
lnðzÞ þ κlpðqÞ

�
sin

�
q0zþ μ2

2q0
lnðzÞ þ κlp0 ðq0Þ

�
dz: ð20Þ

Now let us consider the second integral in the rhs of formula (20). For q → q0, in the leading order this integral can be
rewritten as

Z∞

0

Cþ
lpðqÞCþ

lp0 ðq0Þ sin
�
qzþ μ2

2q
lnðzÞ þ κlpðqÞ

�
sin

�
q0zþ μ2

2q0
lnðzÞ þ κlp0 ðq0Þ

�
dz

≈ −
1

4

Z∞

0

Cþ
lpðqÞCþ

lp0 ðqÞðeið2qzþ
μ2

q lnðzÞþκlpðqÞþκlp0 ðqÞÞ þ e−ið2qzþ
μ2

q lnðzÞþκlpðqÞþκlp0 ðqÞÞ

− eiððq−q
0ÞzþκlpðqÞ−κlp0 ðqÞÞ − eiððq

0−qÞzþκlp0 ðqÞ−κlpðqÞÞÞdz: ð21Þ
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It is clear that the first two terms in the brackets in the rhs of formula (21) are purely oscillating and cannot contribute to the
normalization integral. As for the last two terms, one easily gets

1

4

Z∞

0

Cþ
lpðqÞCþ

lp0 ðqÞðeiððq−q0ÞzþκlpðqÞ−κlp0 ðqÞÞ þ eiððq
0−qÞzþκlp0 ðqÞ−κlpðqÞÞÞdz

¼ 1

4

Z∞

−∞

Cþ
lpðqÞCþ

lp0 ðqÞeiðq−q0Þz cos ðκlpðqÞ − κlp0 ðqÞÞdz

−
1

2

Z∞

0

Cþ
lpðqÞCþ

lp0 ðqÞ sin ððq0 − qÞzÞ sin ðκlpðqÞ − κlp0 ðqÞÞdz: ð22Þ

We are interested in the limit q → q0, in which sin ððq0 − qÞzÞ → 0. So, the second integral in the rhs of (22) vanishes. As for
the first integral in the rhs of (22), one gets

1

4

Z∞

−∞

Cþ
lpðqÞCþ

lp0 ðqÞeiðq−q0Þz cos ðκlpðqÞ − κlp0 ðqÞÞdz ¼ π

2
Cþ
lpðqÞCþ

lp0 ðqÞ cos ðκlpðqÞ − κlp0 ðqÞÞδðq − q0Þ; ð23Þ

leading to

Z∞

0

Cþ
lpðqÞCþ

lp0 ðq0Þ sin
�
qzþ μ2

2q
lnðzÞ þ κlpðqÞ

�
sin

�
q0zþ μ2

2q0
lnðzÞ þ κlp0 ðq0Þ

�
dz

¼ π

2
Cþ
lpðqÞCþ

lp0 ðqÞ cos ðκlpðqÞ − κlp0 ðqÞÞδðq − q0Þ: ð24Þ

A fully analogous procedure can be performed for the first integral in the rhs of formula (20), resulting in

Z0

−∞

C−
lpðqÞC−

lp0 ðq0Þ sin ðϵzþ γlpðqÞÞ sin ðϵ0zþ γlp0 ðq0ÞÞdz ¼ π

2
C−
lpðqÞC−

lp0 ðqÞ cos ðγlpðqÞ − γlp0 ðqÞÞδðϵ − ϵ0Þ

¼ π

2
C−
lpðqÞC−

lp0 ðqÞ cos ðγlpðqÞ − γlp0 ðqÞÞ ϵ
q
δðq − q0Þ: ð25Þ

Combining (24) and (25), and taking into account (12) and (20), one can get

π

2

�
ϵ

q
C−
lpðqÞC−

lp0 ðqÞ cos ðγlpðqÞ − γlp0 ðqÞÞ þ Cþ
lpðqÞCþ

lp0 ðqÞ cos ðκlpðqÞ − κlp0 ðqÞÞ
�

¼ δpp0 : ð26Þ

The latter means that

ϵ

q
ðC−

lpðqÞÞ2 þ ðCþ
lpðqÞÞ2 ¼

2

π
ð27Þ

for p ¼ p0 and

ϵ

q
C−
l1ðqÞC−

l2ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ þ Cþ
l1ðqÞCþ

l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ ¼ 0 ð28Þ

for p ≠ p0.
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There may arise a question concerning orthogonality
condition (28). Indeed, a finite value of the integral in the
lhs of (19) can be neglected in comparison with the infinite
value of the normalization integral, so it can be replaced by
a different finite integral. However, one can think that this
cannot be done in the case of two different eigenfunctions,
because formally the finite integral cannot be neglected
in comparison with the zero value of the orthogonality
integral for these different eigenfunctions. The point is that,
in the case of two linearly dependent solutions correspond-
ing to the same eigenvalue, the orthogonality integral is
also infinite, not finite. The latter can be easily checked
by considering the standard sets of eigenfunctions with a
continuous spectrum, for example, the one of the Fourier
transform. Thus, the replacement in (19) does not affect the
derivation of the orthogonality condition (28), which, as the
normalization condition (27), includes only the parameters
of eigenfunctions at z → �∞. So, if condition (28) is not
fulfilled, the corresponding solutions are not orthogonal.
Recall that for two linearly independent solutions

ψ l1ðq; zÞ and ψ l2ðq; zÞ the Wronskian is a constant:

dψ l1ðq; zÞ
dz

ψ l2ðq; zÞ −
dψ l2ðq; zÞ

dz
ψ l1ðq; zÞ ¼ const; ð29Þ

which means that

lim
z→−∞

�
dψ l1ðq;zÞ

dz
ψ l2ðq;zÞ−

dψ l2ðq;zÞ
dz

ψ l1ðq;zÞ
�

¼ lim
z→∞

�
dψ l1ðq;zÞ

dz
ψ l2ðq;zÞ−

dψ l2ðq;zÞ
dz

ψ l1ðq;zÞ
�
: ð30Þ

Because of (15) and (17), relation (30) results in

ϵ

q
C−
l1ðqÞC−

l2ðqÞ sin ðγl1ðqÞ − γl2ðqÞÞ

¼ Cþ
l1ðqÞCþ

l2ðqÞ sin ðκl1ðqÞ − κl2ðqÞÞ: ð31Þ

The latter relation will be used below.
Suppose that we have two orthogonal solutions ψ l1ðq; zÞ

and ψ l2ðq; zÞ. Then, the solutions

ψ̂ l1ðq; zÞ ¼ cos αψ l1ðq; zÞ þ sin αψ l2ðq; zÞ; ð32Þ

ψ̂ l2ðq; zÞ ¼ − sin αψ l1ðq; zÞ þ cos αψ l2ðq; zÞ ð33Þ

are also orthogonal. Let us consider ψ̂ l1ðq; zÞ. Repeating
the steps presented above for obtaining normalization
condition (27), one can show that the contribution of the
interval z → −∞ to the normalization integral is

π

2

ϵ

q
cos2αððC−

l1ðqÞÞ2 þ ðC−
l2ðqÞÞ2tan2αþ 2C−

l1ðqÞC−
l2ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ tan αÞ; ð34Þ

whereas the contribution of the interval z → ∞ is

π

2
cos2αððCþ

l1ðqÞÞ2 þ ðCþ
l2ðqÞÞ2tan2αþ 2Cþ

l1ðqÞCþ
l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ tan αÞ: ð35Þ

Combining these two contributions, one gets

ϵ

q
cos2αððC−

l1ðqÞÞ2 þ ðC−
l2ðqÞÞ2tan2αþ 2C−

l1ðqÞC−
l2ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ tan αÞ

þ cos2αððCþ
l1ðqÞÞ2 þ ðCþ

l2ðqÞÞ2tan2αþ 2Cþ
l1ðqÞCþ

l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ tan αÞ ¼
2

π
; ð36Þ

compare with its analog (27).
Now let us ask the question whether it is possible to find

such a value of the angle α that contributions of the
intervals z → −∞ [formula (34)] and z → ∞ [formula (35)]
to normalization condition (36) are proportional to each

other with the same proportionality coefficient for any l.
Note that the parameters Cþ

lpðqÞ > 0 [recall that C−
lpðqÞ can

be expressed through Cþ
lpðqÞ by means of (27)], κlpðqÞ, and

γlpðqÞ can be arbitrary. Thus, let us consider the relation

ϵ

q
ððC−

l1ðqÞÞ2 þ ðC−
l2ðqÞÞ2tan2αþ 2C−

l1ðqÞC−
l2ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ tan αÞβ2ðqÞ

¼ ðCþ
l1ðqÞÞ2 þ ðCþ

l2ðqÞÞ2tan2αþ 2Cþ
l1ðqÞCþ

l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ tan α; ð37Þ
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where βðqÞ is the proportionality coefficient which does not depend on l. This relation is just a quadratic equation for tan α:

tan α

�
2Cþ

l1ðqÞCþ
l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ − β2ðqÞ ϵ

q
2C−

l1ðqÞC−
l2ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ

�

þ ðCþ
l1ðqÞÞ2 − β2ðqÞ ϵ

q
ðC−

l1ðqÞÞ2 þ tan2α

�
ðCþ

l2ðqÞÞ2 − β2ðqÞ ϵ
q
ðC−

l2ðqÞÞ2
�

¼ 0: ð38Þ

Note that in the general case the angle α depends on l and q but the corresponding argument and subscript are skipped in
order not to clutter up the formulas. The discriminant of this equation is

D ¼ 4

�
Cþ
l1ðqÞCþ

l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ − β2ðqÞ ϵ
q
C−
l1ðqÞC−

l2ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ
�

2

− 4

�
ðCþ

l2ðqÞÞ2 − β2ðqÞ ϵ
q
ðC−

l2ðqÞÞ2
��

ðCþ
l1ðqÞÞ2 − β2ðqÞ ϵ

q
ðC−

l1ðqÞÞ2
�
: ð39Þ

It is not difficult to show that the terms in (39) can be rearranged in such a way that the discriminant takes the form

D ¼ 4

�
β2ðqÞ ϵ

q

�
Cþ
l1ðqÞC−

l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ − Cþ
l2ðqÞC−

l1ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞ
�

2

þ ðCþ
l1ðqÞÞ2

�
β2ðqÞ ϵ

q
ðC−

l2ðqÞÞ2 − ðCþ
l2ðqÞÞ2

�
sin2ðκl1ðqÞ − κl2ðqÞÞ

− β2ðqÞ ϵ
q
ðC−

l1ðqÞÞ2
�
β2ðqÞ ϵ

q
ðC−

l2ðqÞÞ2 − ðCþ
l2ðqÞÞ2

�
sin2ðγl1ðqÞ − γl2ðqÞÞ

�
: ð40Þ

With the help of

sin2ðγl1ðqÞ − γl2ðqÞÞ ¼
q2ðCþ

l1ðqÞÞ2ðCþ
l2ðqÞÞ2

ϵ2ðC−
l1ðqÞÞ2ðC−

l2ðqÞÞ2
sin2ðκl1ðqÞ − κl2ðqÞÞ; ð41Þ

which follows from (31), discriminant (40) can be brought to the form

D ¼ 4β2ðqÞ ϵ
q

�
ðCþ

l1ðqÞC−
l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ − Cþ

l2ðqÞC−
l1ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞÞ2

þ ðCþ
l1ðqÞÞ2

ðC−
l2ðqÞÞ2

sin2ðκl1ðqÞ − κl2ðqÞÞ
�

1

β2ðqÞ
q
ϵ
ðCþ

l2ðqÞÞ2 − ðC−
l2ðqÞÞ2

��
β2ðqÞ q

ϵ
ðCþ

l2ðqÞÞ2 − ðC−
l2ðqÞÞ2

��
: ð42Þ

One can easily see that, for β2ðqÞ≡ 1,

D ¼ 4
ϵ

q

�
ðCþ

l1ðqÞC−
l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ − Cþ

l2ðqÞC−
l1ðqÞ cos ðγl1ðqÞ − γl2ðqÞÞÞ2

þ ðCþ
l1ðqÞÞ2

ðC−
l2ðqÞÞ2

�
q
ϵ
ðCþ

l2ðqÞÞ2 − ðC−
l2ðqÞÞ2

�
2

sin2ðκl1ðqÞ − κl2ðqÞÞ
�

≥ 0 ð43Þ

for any Cþ
l1ðqÞ and Cþ

l2ðqÞ. It means that for any param-
eters of asymptotic solutions (15) and (17) there always
exists such a value of angle α (recall that in the general case
α depends on l and q) that the proportionality coefficient
βðqÞ is the same for all l and q and is just equal to unity.
It is clear that the solution ψ̂ l1ðq; zÞ can be represented in

the form

ψ̂ l1ðq;zÞ¼ Ĉþ
l1ðqÞsin

�
qzþ μ2

2q
lnðzÞþ κ̂l1ðqÞ

�
for z→∞;

ð44Þ

ψ̂ l1ðq; zÞ ¼ Ĉ−
l1ðqÞ sin ðϵzþ γ̂l1ðqÞÞ for z → −∞; ð45Þ
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where the phases κ̂l1ðqÞ and γ̂l1ðqÞ can be defined in
such a way that Ĉþ

l1ðqÞ > 0 and Ĉ−
l1ðqÞ > 0. The fact that

β2ðqÞ≡ 1 for this solution implies that

ϵ

q
ðĈ−

l1ðqÞÞ2 ¼ ðĈþ
l1ðqÞÞ2: ð46Þ

On the other hand, the normalization condition implies

ϵ

q
ðĈ−

l1ðqÞÞ2 þ ðĈþ
l1ðqÞÞ2 ¼

2

π
; ð47Þ

see (27). Combining (46) and (47), we finally get

Ĉþ
l1ðqÞ ¼

1ffiffiffi
π

p ; Ĉ−
l1ðqÞ ¼

ffiffiffiffiffi
q
πϵ

r
: ð48Þ

The orthogonal solution ψ̂ l2ðq; zÞ can be also repre-
sented in the analogous form

ψ̂ l2ðq;zÞ¼ Ĉþ
l2ðqÞsin

�
qzþ μ2

2q
lnðzÞþ κ̂l2ðqÞ

�
for z→∞;

ð49Þ
ψ̂ l2ðq; zÞ ¼ Ĉ−

l2ðqÞ sin ðϵzþ γ̂l2ðqÞÞ for z → −∞; ð50Þ

where Ĉþ
l2ðqÞ > 0 and Ĉ−

l2ðqÞ > 0. With (48), it follows
from the orthogonality condition (28) and condition (31)
that

ffiffiffi
ϵ

q

r
Ĉ−
l2ðqÞ cos ðγ̂l1ðqÞ − γ̂l2ðqÞÞ

¼ −Ĉþ
l2ðqÞ cos ðκ̂l1ðqÞ − κ̂l2ðqÞÞ; ð51Þ

ffiffiffi
ϵ

q

r
Ĉ−
l2ðqÞ sin ðγ̂l1ðqÞ − γ̂l2ðqÞÞ

¼ Ĉþ
l2ðqÞ sin ðκ̂l1ðqÞ − κ̂l2ðqÞÞ; ð52Þ

leading to

ϵ

q
ðĈ−

l2ðqÞÞ2 ¼ ðĈþ
l2ðqÞÞ2: ð53Þ

On the other hand, from the normalization condition [again,
see (27)] it follows that

ϵ

q
ðĈ−

l2ðqÞÞ2 þ ðĈþ
l2ðqÞÞ2 ¼

2

π
: ð54Þ

Combining (53) and (54), we finally get

Ĉþ
l2ðqÞ ¼

1ffiffiffi
π

p ; Ĉ−
l2ðqÞ ¼

ffiffiffiffiffi
q
πϵ

r
: ð55Þ

Thus, for ϵ > μ, one can always choose the set of
eigenfunctions of problem (8) with (9) in such a form that

Cþ
lpðqÞ ¼

1ffiffiffi
π

p ; C−
lpðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ μ2

p
s

ð56Þ

for any l and p.4 One can see that this choice is even more
stringent than the one used in [16]: Here, the coefficients
C�
lpðqÞ do not depend not only on l but on p as well.

Moreover, the coefficients Cþ
lpðqÞ, which are necessary for

the subsequent analysis, do not depend on q.

IV. SCATTERINGLIKE STATES

Now let us return to the Schwarzschild coordinates and,
with the help of (7), obtain the explicit form of flpðk; rÞ
from solutions (15) and (17). Taking into account (56), for
r → ∞ the result is

flpðk;rÞ≈
1ffiffiffi
π

p
r
sin

�
krþð2k2þM2Þr0

2k
lnðkrÞ−πl

2
þ δ̃lpðkÞ

�
;

ð57Þ

where k ¼ q
r0

and δ̃lpðkÞ ¼ κ̂lpðkr0Þ − ð2k2þM2Þr0
2k lnðkr0Þ þ

πl
2
are phase shifts; whereas for r → r0 the result is

flpðk;rÞ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
s

1

r0

×sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2þM2
p

r0 lnðkðr−r0ÞÞþ γ̃lpðkÞ
�
; ð58Þ

where γ̃lpðkÞ ¼ γ̂lpðkÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
r0ð1 − lnðkr0ÞÞ.

Now let us turn to the scatteringlike states. Let us define
these states as

ϕpðk⃗; x⃗Þ ¼
1

4πk

X∞
l¼0

ð2lþ 1Þeiðπl2þδ̃lpðkÞÞPl

�
k⃗ x⃗
kr

�
flpðk; rÞ;

ð59Þ

where Plð…Þ are the Legendre polynomials, δ̃lpðkÞ are

phase shifts defined by representation (57), k ¼ jk⃗j,
r ¼ jx⃗j, and n⃗ ¼ x⃗

r. Formula (59) differs from the one used

in [16] only in the absence of the factor
ffiffi
k

p
ðk2þM2Þ1=4—this

factor is not necessary here, because normalization con-
dition (12) is used from the very beginning instead of
condition (13) that was used in [16].
Using the results of [16], one can easily show that at

large r

4An alternative derivation of (56) can be found in the
Appendix.
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ϕpðk⃗; x⃗Þ≈
1ffiffiffi

2
p ð2πÞ32

�
eiðk⃗ x⃗−

ð2k2þM2Þr0
2k lnðkrÞÞ þApðk⃗; n⃗;rÞ

eikr

r

�
;

p¼ 1;2; ð60Þ

where the functions Apðk⃗; n⃗; rÞ are defined as [16]

Apðk⃗; n⃗; rÞ ¼
1

2ik

X∞
l¼0

ð2lþ 1ÞPl

�
k⃗ x⃗
kr

�

×
�
eið2δ̃lpðkÞþ

ð2k2þM2Þr0
2k lnðkrÞÞ − e−i

ð2k2þM2Þr0
2k lnðkrÞ

�
:

ð61Þ

The functions Apðk⃗; n⃗; rÞ look similar to the standard
scattering amplitudes, but they explicitly depend on r
[pay attention to the slowly varying terms with lnðkrÞ],
so formally they are not actual scattering amplitudes. The
extra slowly varying phase ∼ lnðkrÞ in the plane wave

solution eiðk⃗ x⃗−
ð2k2þM2Þr0

2k lnðkrÞÞ reflects the influence of the
long-range potential ∼ 1

r, which is similar to the case of the
standard Coulomb potential in quantum mechanics [26].
Note that, unlike the result obtained in [16], here one gets

formula (60) with the exact value of the overall factor [the
coefficient 1ffiffi

2
p ð2πÞ32

in (60)]. As we will see in the next

section, knowing this coefficient turns out to be important
for defining new, more useful states.

V. PASSING TO THE NEW STATES ϕ+ AND ϕ−
The value of the overall coefficient 1ffiffi

2
p ð2πÞ32

in (60)

suggests the following combinations of the scatteringlike
states:

ϕþðk⃗; x⃗Þ ¼
1ffiffiffi
2

p ðϕ1ðk⃗; x⃗Þ þ ϕ2ðk⃗; x⃗ÞÞ; ð62Þ

ϕ−ðk⃗; x⃗Þ ¼
1ffiffiffi
2

p ðϕ1ðk⃗; x⃗Þ − ϕ2ðk⃗; x⃗ÞÞ: ð63Þ

From the results of [16], it follows that these states satisfy
the following orthogonality conditions:

Z

r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�

lmðE; x⃗Þϕ�ðk⃗; x⃗Þd3x ¼ 0; ð64Þ

Z

r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�þðk⃗; x⃗Þϕ−ðk⃗0; x⃗Þd3x ¼ 0; ð65Þ

Z

r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�þðk⃗; x⃗Þϕþðk⃗0; x⃗Þd3x ¼ δð3Þðk⃗ − k⃗0Þ; ð66Þ

Z

r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�

−ðk⃗; x⃗Þϕ−ðk⃗0; x⃗Þd3x ¼ δð3Þðk⃗ − k⃗0Þ; ð67Þ

where ϕlmðE; x⃗Þ are defined by (2) with (3) and describe the
states with E < M; see [16] for details. Together with
ϕlmðE; x⃗Þ, they also form a complete set of eigenfunctions;
the corresponding completeness relation can be easily
obtained from the one found in [16] and takes the form

X∞
l¼0

Xl

m¼−l

ZM

0

ϕ�
lmðE; x⃗ÞϕlmðE; y⃗ÞdE

þ
Z

ϕ�
−ðk⃗; x⃗Þϕ−ðk⃗; y⃗Þd3k

þ
Z

ϕ�þðk⃗; x⃗Þϕþðk⃗; y⃗Þd3k ¼ δð3Þðx⃗ − y⃗Þffiffiffiffiffiffi−gp
g00

: ð68Þ

Thus, any localized wave packet (such that it vanishes at
r → r0 and at r → ∞) at a fixed point in time can be
expanded in the eigenfunctions ϕlmðE; x⃗Þ, ϕ−ðk⃗; x⃗Þ, and
ϕþðk⃗; x⃗Þ.
For large r, the functions ϕþðk⃗; x⃗Þ and ϕ−ðk⃗; x⃗Þ have the

form

ϕþðk⃗; x⃗Þ ≈
1

ð2πÞ32 e
iðk⃗ x⃗−ð2k2þM2Þr0

2k lnðkrÞÞ

þ 1

2ð2πÞ32 ðA1ðk⃗; n⃗; rÞ þ A2ðk⃗; n⃗; rÞÞ
eikr

r
; ð69Þ

ϕ−ðk⃗; x⃗Þ ≈
1

2ð2πÞ32 ðA1ðk⃗; n⃗; rÞ − A2ðk⃗; n⃗; rÞÞ
eikr

r
: ð70Þ

In particular, for r → ∞, one can write

ϕþðk⃗; x⃗Þ ≈
1

ð2πÞ32 e
iðk⃗ x⃗−ð2k2þM2Þr0

2k lnðkrÞÞ; ð71Þ

ϕ−ðk⃗; x⃗Þ ≈ 0: ð72Þ

A remarkable feature of (71) is that, apart from the term
∼ lnðkrÞ, this formula resembles the properly normalized
eigenfunctions in the case of Minkowski spacetime:

ϕðk⃗; x⃗Þ ¼ 1

ð2πÞ32 e
ik⃗ x⃗: ð73Þ

This similarity is very logical. Indeed, far away from the
black hole, the spacetime is almost flat, and we expect that
there should exist such a set of eigenfunctions that it
resembles the set of plane waves of Minkowski spacetime
in that area. Taking into account the fact that the larger r is,
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the slower the term ∼ lnðkrÞ varies with r, in a finite area at
r → ∞ the functions ϕþðk⃗; x⃗Þ are just plane waves with
some extra phase. These arguments also suggest that the
functions A1ðk⃗; n⃗; rÞ and A2ðk⃗; n⃗; rÞ are not singular.
Let us discuss a little more the states ϕþðk⃗; x⃗Þ and

ϕ−ðk⃗; x⃗Þ. Although the calculations that will be presented
below are not mathematically rigorous, they can reveal
some possible properties of the states under consideration.
To begin with, let us consider the integral

Z

r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�þðk⃗; x⃗Þϕþðk⃗; x⃗Þd3x ¼ δð3Þð0Þ: ð74Þ

This relation follows directly from the orthogonality con-
dition (66). Let us consider such r1 that

ffiffiffiffiffiffi−gp ≈1 and g00 ≈1
for r ≥ r1 with a good accuracy. Also, in the leading order
ϕ�þðk⃗; x⃗Þϕþðk⃗; x⃗Þ ≈ 1

ð2πÞ3 for r ≥ r1. Thus, one gets

Z

r>r1

ffiffiffiffiffiffi
−g

p
g00ϕ�þðk⃗; x⃗Þϕþðk⃗; x⃗Þd3x ≈

4π

ð2πÞ3
Z∞

r1

r2dr: ð75Þ

Now let us consider the case of Minkowski spacetime. One
gets

δð3Þð0Þ ¼
Z

ϕ�ðk⃗; x⃗Þϕðk⃗; x⃗Þd3x ¼ 4π

ð2πÞ3
Z∞

0

r2dr

¼ 4π

ð2πÞ3
�Zr1

0

r2drþ
Z∞

r1

r2dr

�
: ð76Þ

It is clear that the first integral in the rhs of the latter relation
is finite, so it can be neglected in comparison with the
infinite value of δð3Þð0Þ. So, we can write

4π

ð2πÞ3
Z

∞

r1

r2dr ¼ δð3Þð0Þ: ð77Þ

Combining (75) and (77), we arrive at
Z

r>r1

ffiffiffiffiffiffi
−g

p
g00ϕ�þðk⃗; x⃗Þϕþðk⃗; x⃗Þd3x ¼ δð3Þð0Þ: ð78Þ

Formula (78) implies that the area r0 < r < r1 in the
Schwarzschild spacetime does not give a significant

contribution to the normalization integral (74). On the
other hand, the area r0 < r < r1 is not similar to the ball
of radius r1 in Minkowski spacetime providing a finite
contribution to the normalization integral; it has a different
topology. Indeed, now let us consider the integral

Z

r>r0

ffiffiffiffiffiffi
−g

p
g00ϕ�

−ðk⃗; x⃗Þϕ−ðk⃗; x⃗Þd3x ¼ δð3Þð0Þ: ð79Þ

Since ϕ�
−ðk⃗; x⃗Þϕ−ðk⃗; x⃗Þ ∼ 1

r2 for r ≥ r1, one cannot get

somewhat proportional to δð3Þð0Þ by taking the integral
Z

r>r1

ffiffiffiffiffiffi
−g

p
g00ϕ�

−ðk⃗; x⃗Þϕ−ðk⃗; x⃗Þd3x: ð80Þ

Indeed, the degree of divergence of this integral turns out
to be smaller than the one of (77). But it means that,
according to (79),

Z

r0<r<r1

ffiffiffiffiffiffi
−g

p
g00ϕ�

−ðk⃗; x⃗Þϕ−ðk⃗; x⃗Þd3x ¼ δð3Þð0Þ: ð81Þ

Thus, the reasoning presented above suggests that the state
ϕ−ðk⃗; x⃗Þ lives relatively close to the horizon. Here, the term
“relatively close” is used in the sense that the wave function
of the state falls off for r → ∞ (as ∼ 1

r), but its decrease is
not so fast as the exponential one of the state ϕlmðE; x⃗Þ (for
which one can say that it lives in the vicinity of the horizon
as it looks like in the Schwarzschild coordinates). On the
other hand, this reasoning also suggests that the state
ϕþðk⃗; x⃗Þ lives far away from the horizon, whereas its wave
function falls off somehow as r → r0. Unfortunately, the
behavior of the functions ϕ�ðk⃗; x⃗Þ at r → r0 in more detail
is unknown at the moment, because the phases γ̃lpðkÞ in
radial solutions (58) are still unknown.

VI. QUANTUM THEORY

Now we are ready to consider the scalar field at the
quantum level. As was already mentioned in the
Introduction, usually the quantum scalar field ϕðt; x⃗Þ is
expanded in spherical harmonics when the Schwarzschild
spacetime is considered. In Ref. [16], a different expansion
was used, which is

ϕðt; x⃗Þ ¼
X∞
l¼0

Xl

m¼−l

ZM

0

dEffiffiffiffiffiffi
2E

p ðe−iEtϕlmðE; x⃗ÞalmðEÞ þ eiEtϕ�
lmðE; x⃗Þa†lmðEÞÞ

þ
X2
p¼1

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

pp
�
e−i

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕpðk⃗; x⃗Þapðk⃗Þ þ ei

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕ�

pðk⃗; x⃗Þa†pðk⃗Þ
�
; ð82Þ
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where ϕlmðE; x⃗Þ is defined by (2) with (3) and ϕpðk⃗; x⃗Þ is defined by (59). In this expansion, the creation and annihilation
operators satisfy the standard commutation relations

½almðEÞ; a†l0m0 ðE0Þ� ¼ δll0δmm0δðE − E0Þ; ð83Þ

½apðk⃗Þ; a†p0 ðk⃗0Þ� ¼ δpp0δð3Þðk⃗ − k⃗0Þ; ð84Þ

all other commutators being equal to zero. However, it is easy to see that with (62) and (63) expansion (82) can be
transformed into

ϕðt; x⃗Þ ¼
X∞
l¼0

Xl

m¼−l

ZM

0

dEffiffiffiffiffiffi
2E

p ðe−iEtϕlmðE; x⃗ÞalmðEÞ þ eiEtϕ�
lmðE; x⃗Þa†lmðEÞÞ

þ
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

pp
�
e−i

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕ−ðk⃗; x⃗Þbðk⃗Þ þ ei

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕ�

−ðk⃗; x⃗Þb†ðk⃗Þ
�

þ
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

pp
�
e−i

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕþðk⃗; x⃗Þaðk⃗Þ þ ei

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

p
tϕ�þðk⃗; x⃗Þa†ðk⃗Þ

�
; ð85Þ

where the new creation and annihilation operators are
defined by means of the transformation

a1ðk⃗Þ ¼
1ffiffiffi
2

p ðaðk⃗Þ þ bðk⃗ÞÞ; ð86Þ

a2ðk⃗Þ ¼
1ffiffiffi
2

p ðaðk⃗Þ − bðk⃗ÞÞ: ð87Þ

One can easily check that for these new operators the
standard commutation relations

½aðk⃗Þ; a†ðk⃗0Þ� ¼ δð3Þðk⃗ − k⃗0Þ; ð88Þ

½bðk⃗Þ; b†ðk⃗0Þ� ¼ δð3Þðk⃗ − k⃗0Þ ð89Þ

hold, all other commutators also being equal to zero.
In the previous sections, though the theory was consid-

ered at the classical level, the term “state” was still used,
since it was already assumed that the classical solutions
discussed above would be related to the corresponding
quantum states. In the present section, we consider
the quantum theory, so we should define the one-particle
quantum states. Since the functions ϕlmðE; x⃗Þ, ϕ−ðk⃗; x⃗Þ,
and ϕþðk⃗; x⃗Þ form a complete set of eigenfunctions,
they can be used in determining the corresponding one-
particle Hilbert space.5 For example, for E > M the
one-particle quantum states can be defined in the standard
way as

jk⃗þi ¼
ffiffiffiffiffiffi
2E

p
a†ðk⃗Þj0i; ð90Þ

jk⃗−i ¼
ffiffiffiffiffiffi
2E

p
b†ðk⃗Þj0i; ð91Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. In such a case,

h0jϕðt; x⃗Þjk⃗þi ¼ e−iEtϕþðk⃗; x⃗Þ; ð92Þ

h0jϕðt; x⃗Þjk⃗−i ¼ e−iEtϕ−ðk⃗; x⃗Þ ð93Þ

are just the coordinate representations of the one-particle
wave functions of the states jk⃗þi and jk⃗−i, respectively. In
particular, according to (71), for r → ∞ the wave function
h0jϕðt; x⃗Þjk⃗þi behaves as a slightly modified plane wave,
which is similar to the case of Minkowski spacetime.
Analogously, for E < M the one-particle quantum states

can be defined as

jE; l; mi ¼
ffiffiffiffiffiffi
2E

p
a†lmðEÞj0i: ð94Þ

Using the results presented in [16] for expansion (82),
one can easily check that for expansion (85) the canonical
commutation relations

½ϕðt; x⃗Þ; πðt; y⃗Þ� ¼ iδð3Þðx⃗ − y⃗Þ; ½ϕðt; x⃗Þ;ϕðt; y⃗Þ� ¼ 0;

½πðt; x⃗Þ; πðt; y⃗Þ� ¼ 0; ð95Þ

where the canonically conjugate momentum is

πðt; x⃗Þ≡ ∂L

∂ϕ̇ðt; x⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðx⃗Þ

p
g00ðx⃗Þϕ̇ðt; x⃗Þ; ð96Þ5Since here the eigenfunctions have an infinite norm, strictly

speaking one should consider the rigged Hilbert space [27].
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are exactly satisfied. The Hamiltonian of the system takes
the form

H ¼
X∞
l¼0

Xl

m¼−l

ZM

0

Ea†lmðEÞalmðEÞdE

þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p

ðb†ðk⃗Þbðk⃗Þ þ a†ðk⃗Þaðk⃗ÞÞd3k; ð97Þ

where the irrelevant c-number terms are dropped.
Hamiltonian (97) can be easily obtained from the
Hamiltonian derived in [16] with the help of (86) and
(87). It resembles the well-known Hamiltonian of the real
scalar field in Minkowski spacetime:

H ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p

a†ðk⃗Þaðk⃗Þd3k: ð98Þ

The difference between this Hamiltonian and the one in
(97) is the existence of the states with E < M that are
localized near the horizon and the extra states with E > M
[the term with the operators bðk⃗Þ and b†ðk⃗Þ].

VII. DISCUSSION AND CONCLUSION

In this paper, discussion of canonical quantization in the
Schwarzschild spacetime is continued. In Ref. [16], the
quantum states for energies larger than the mass of the field
were chosen such that they represent the scatteringlike
states. A remarkable feature of the spectrum is that there
exist two different scatteringlike states parametrized by the
same asymptotic momentum k⃗. In the resulting theory,
the canonical commutation relations are satisfied exactly
and the Hamiltonian has the standard form. However, the
coefficients in the asymptotics of the scatteringlike states

were not calculated in [16], so it was not clear what these
scatteringlike states correspond to.
In the present paper, exact values of the corresponding

coefficients for the scatteringlike states are calculated. The
result suggests that for energies larger than the mass of the
field it is more useful to pass to the different orthogonal
quantum states ϕþðk⃗; x⃗Þ and ϕ−ðk⃗; x⃗Þ parametrized by
the same asymptotic momentum k⃗, each being a linear
combination of the two initial scatteringlike states. In the
resulting theory, the canonical commutation relations are
also satisfied exactly and the Hamiltonian also has the
standard form. Since the theory is derived from the one
obtained in [16], the Schwarzschild black hole interior is
not necessary for the resulting quantum field theory outside
the black hole and does not affect it.
The states ϕþðk⃗; x⃗Þ and ϕ−ðk⃗; x⃗Þ have the following

properties. The wave function of the state ϕþðk⃗; x⃗Þ is
such that at r → ∞ it looks like a slightly modified
properly normalized plane wave. Meanwhile, some
reasoning suggests that the wave function falls off for
r → r0.

6 On the other hand, the wave function of the state
ϕ−ðk⃗; x⃗Þ is such that it falls off as ∼ 1

r at large r. Suppose
that we have a localized wave packet that is located at large
distance from the black hole. It is clear that contribution of
the states ϕ−ðk⃗; x⃗Þ in the formation of the wave packet is
negligible. Thus, if one considers scattering processes in
some finite area far away from the black hole (of course, if
the theory contains an interaction potential), only the states
ϕþðk⃗; x⃗Þ would contribute to the corresponding processes,
because the wave functions of ϕ−ðk⃗; x⃗Þ can be neglected in
comparison with those of ϕþðk⃗; x⃗Þ at large r. Moreover, the
states ϕ−ðk⃗; x⃗Þ would not show up as the virtual states,
because contributions of the states ϕ−ðk⃗; x⃗Þ to the Green
function

Gðt; t0; x⃗; y⃗Þ ¼
X∞
l¼0

Xl

m¼−l

ZM

0

ZM

0

dEdẼ
e−iEðt−t0ÞϕlmðẼ; x⃗Þϕ�

lmðẼ; y⃗Þ
2πðẼ2 − E2Þ

þ
Z∞

M

dE
Z

d3k
e−iEðt−t0Þðϕ−ðk⃗; x⃗Þϕ�

−ðk⃗; y⃗Þ þ ϕþðk⃗; x⃗Þϕ�þðk⃗; y⃗ÞÞ
2πðM2 þ k⃗2 − E2Þ

ð99Þ

can be also neglected at large r. Since the wave functions of

the states ϕþðk⃗; x⃗Þ are just slightly modified plane waves,
at large r one gets a theory that is almost identical to the
standard theory in Minkowski spacetime.
On the other hand, it looks as if the states ϕ−ðk⃗; x⃗Þ

dominate close to the horizon, whereas contribution of the
states ϕþðk⃗; x⃗Þ is suppressed in this area (of course, in this
area the states with energies less than the mass of the field

also show up, but they live much closer to the horizon and,
thus, are not interesting for the present analysis). So, close
to the horizon the theory is described by the states ϕ−ðk⃗; x⃗Þ

6It should be mentioned once again that, though the reasoning
presented in Sec. V [starting from formula (74)] is not rigorous
from the mathematical point of view, it can hint at possible
properties of the states.
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[and, formally, also by the states ϕlmðE; x⃗Þ]. One expects
that there exists an intermediate zone, in which the wave
functions of the states ϕþðk⃗; x⃗Þ and ϕ−ðk⃗; x⃗Þ are compa-
rable, so both types of the states with energies larger than
the mass of the field can contribute to the corresponding
scattering processes.
Thus, we see that there exists a degeneracy of states

parametrized by the same vector parameter k⃗. This
degeneracy is a consequence of the degeneracy found
in [16], which, in turn, is a consequence of the topological
structure R2 × S2 of the Schwarzschild spacetime (recall
that the topological structure of Minkowski spacetime is
R4). Note that such a degeneracy of states is not expected
for a very compact object, because such an object does
not change the spacetime topology, but is expected for a
traversable wormhole of the Morris-Thorne type [28–30]

that connects two different universes [16]. Since the states
ϕ−ðk⃗; x⃗Þ live relatively close to the horizon and are not
seen directly by an observer located far away from the
black hole, one can speculate that these states may
constitute dark matter. This problem calls for a further
analysis.
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APPENDIX: AN ALTERNATIVE DERIVATION OF (56)

Transformation (32) with (44) implies that, for r → ∞,

cos αCþ
l1ðqÞ sin

�
qzþ μ2

2q
lnðzÞ þ κl1ðqÞ

�
þ sin αCþ

l2ðqÞ sin
�
qzþ μ2

2q
lnðzÞ þ κl2ðqÞ

�

¼ Ĉþ
l1ðqÞ sin

�
qzþ μ2

2q
lnðzÞ þ κ̂l1ðqÞ

�
: ðA1Þ

This relation can be rewritten as

ðCþ
l1ðqÞ cos α cos κl1ðqÞ þ Cþ

l2ðqÞ sin α cos κl2ðqÞÞ sin
�
qzþ μ2

2q
lnðzÞ

�

þ ðCþ
l1ðqÞ cos α sin κl1ðqÞ þ Cþ

l2ðqÞ sin α sin κl2ðqÞÞ cos
�
qzþ μ2

2q
lnðzÞ

�

¼ Ĉþ
l1ðqÞ sin

�
qzþ μ2

2q
lnðzÞ þ κ̂l1ðqÞ

�
; ðA2Þ

which leads to

ðCþ
l1ðqÞ cos α cos κl1ðqÞ þ Cþ

l2ðqÞ sin α cos κl2ðqÞÞ2
þ ðCþ

l1ðqÞ cos α sin κl1ðqÞ þ Cþ
l2ðqÞ sin α sin κl2ðqÞÞ2 ¼ ðĈþ

l1ðqÞÞ2: ðA3Þ

The latter relation can be rewritten as

ðCþ
l1ðqÞÞ2cos2αþ ðCþ

l2ðqÞÞ2sin2αþ 2Cþ
l1ðqÞCþ

l2ðqÞ sin α cos α cos ðκl1ðqÞ − κl2ðqÞÞ ¼ ðĈþ
l1ðqÞÞ2; ðA4Þ

which leads to the quadratic equation on tan α:

ððCþ
l2ðqÞÞ2 − ðĈþ

l1ðqÞÞ2Þtan2αþ 2Cþ
l1ðqÞCþ

l2ðqÞ cos ðκl1ðqÞ − κl2ðqÞÞ tan αþ ððCþ
l1ðqÞÞ2 − ðĈþ

l1ðqÞÞ2Þ ¼ 0: ðA5Þ

The discriminant of this equation is
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D ¼ 4ðCþ
l1ðqÞÞ2ðCþ

l2ðqÞÞ2cos2ðκl1ðqÞ − κl2ðqÞÞ − 4ððCþ
l2ðqÞÞ2 − ðĈþ

l1ðqÞÞ2ÞððCþ
l1ðqÞÞ2 − ðĈþ

l1ðqÞÞ2Þ
¼ 4ðĈþ

l1ðqÞÞ2ððCþ
l1ðqÞÞ2 þ ðCþ

l2ðqÞÞ2Þ − 4ðĈþ
l1ðqÞÞ4 − 4ðCþ

l1ðqÞÞ2ðCþ
l2ðqÞÞ2sin2ðκl1ðqÞ − κl2ðqÞÞ: ðA6Þ

Now let us consider relations (28) and (31). Using these relations, one can get

ϵ2

q2
ðC−

l1ðqÞÞ2ðC−
l2ðqÞÞ2 ¼ ðCþ

l1ðqÞÞ2ðCþ
l2ðqÞÞ2: ðA7Þ

Using (27), the latter relation can be rewritten as

�
2

π
− ðCþ

l1ðqÞÞ2
��

2

π
− ðCþ

l2ðqÞÞ2
�

¼ ðCþ
l1ðqÞÞ2ðCþ

l2ðqÞÞ2; ðA8Þ

resulting in

ðCþ
l1ðqÞÞ2 þ ðCþ

l2ðqÞÞ2 ¼
2

π
: ðA9Þ

With (A9), for the discriminant one gets

D ¼ 8

π
ðĈþ

l1ðqÞÞ2 − 4ðĈþ
l1ðqÞÞ4 − 4ðCþ

l1ðqÞÞ2
�
2

π
− ðCþ

l1ðqÞÞ2
�
sin2ðκl1ðqÞ − κl2ðqÞÞ: ðA10Þ

The maximal value of the term ðCþ
l1ðqÞÞ2ð2π − ðCþ

l1ðqÞÞ2Þ is 1
π2
; it is attained at ðCþ

l1ðqÞÞ2 ¼ 1
π, so for the discriminant one can

write

D ≥
8

π
ðĈþ

l1ðqÞÞ2 − 4ðĈþ
l1ðqÞÞ4 −

4

π2
¼ −4

�
ðĈþ

l1ðqÞÞ2 −
1

π

�
2

: ðA11Þ

Thus,D ≥ 0 [which implies that there exists a solution of Eq. (A5) for any values of Cþ
l1ðqÞ, κl1ðqÞ, and κl2ðqÞ] for all l only

if Ĉþ
l1ðqÞ ¼ 1ffiffi

π
p . Since relations (27) and (A9) are valid for the coefficients Ĉþ

l1ðqÞ and Ĉþ
l2ðqÞ too, using these relations one

can easily obtain (56).
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