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We compute the relative entropy between the vacuum and a coherent state for a massive scalar field in
de Sitter spacetime, using Tomita-Takesaki modular theory and the Araki-Uhlmann formula for the relative
entropy. Embedding de Sitter spacetime as a hyperboloid in the ambient Minkowski space, we can restrict
the Minkowski wedge and the corresponding modular operator to de Sitter, and we verify that this
construction gives the correct modular flow. We check that the relative entropy is positive and jointly
convex, relate it to the Noether charge of translations along the trajectories of the modular flow, and
determine the local temperature as seen by an observer that moves along these trajectories.
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I. INTRODUCTION

Entanglement entropy, computed as the von Neumann
entropy SvNðρÞ ¼ −trðρ ln ρÞ of the reduced density matrix
ρR of the degrees of freedom localized in some region or
subsystem R, is an important measure of entanglement in
statistical physics. However, its application to quantum
field theory shows some problems. First, it is a divergent
quantity in the continuum (see for example Ref. [1] and
references therein); the entanglement entropy S of a region
in an n-dimensional spacetime computed with an UV cutoff
ϵ behaves like S ∼ Aϵ2−n in the limit ϵ → 0, where A is the
(n − 2)-dimensional area of the region’s boundary. Second,
the proportionality coefficient depends on the number of
fields in the theory and the details of their interaction.
While this formula correctly reproduces the area depend-
ence of the famous Bekenstein-Hawking formula for the
entropy of a black hole horizon [2–5], the latter is not only
finite (with the UV cutoff replaced by the Planck length
lPl), but also universal with a model-independent coef-
ficient of proportionality equal to 1=4.
To be able to obtain the Bekenstein-Hawking formula

from entropy considerations in quantum field theory, one
therefore has to study finite quantities such as the relative
entropy

SðρkσÞ ¼ trðρ ln ρ − ρ ln σÞ; ð1Þ

which compares two different density matrices ρ and σ.
In particular, if ρ and σ are the reduced density matrices of
two different states, one obtains the relative entanglement
entropy that compares the entanglement of these states.
Since the divergences in the entanglement entropy essen-
tially result from the high-frequency modes which are
common to all states (including the vacuum, which results
in the Reeh-Schlieder theorem [6]), the relative entangle-
ment entropy can be finite also in quantum field theory in
the limit of a vanishing UV cutoff ϵ. That this is indeed so,
is shown by the Araki-Uhlmann formula [7–9]

SðΨkΦÞ ¼ −hΨj lnΔΨjΦjΨi; ð2Þ

which relates the relative entropy between two states jΨi
and jΦi to the expectation value of the relative modular
Hamiltonian lnΔΨjΦ associated to these states and a given
von Neumann algebra A. This formula was obtained in the
framework of Tomita-Takesaki modular theory [10,11],
where the von Neumann algebra A can be taken to be the
algebra of fields in a certain region (such as a wedge or a
double cone), and where the states jΨi and jΦi must be
cyclic and separating for A.
In quantum mechanics, the relative modular Hamiltonian

can be written in terms of the reduced density matrices ρΨ
and ρΦ associated to the states jΨi and jΦi. In fact, on the
tensor product Hilbert space describing the bipartite quan-
tum system (of the region of interest and its complement) it
has the very simple expression [12]

lnΔΨjΦ ¼ lnðρ−1Φ ⊗ ρΨÞ; ð3Þ

such that the Araki-Uhlmann formula (2) reduces to
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SðΨkΦÞ ¼ −tr½ρΨ lnðρ−1Φ ⊗ ρΨÞ� ¼ SðρΨkρΦÞ; ð4Þ

the correct expression (1) for the relative entropy in terms
of density matrices. In quantum field theory, the determi-
nation of the relative modular Hamiltonian is more difficult.
One important subcase is when the states jΨi and jΦi are
obtained as coherent excitations of another state jΩi, for
which the modular Hamiltonian lnΔΩ is known. In this
case, one has jΨi ¼ UjΩi and jΦi ¼ VjΩi with unitary
operators U;V ∈A, and it is easy to show [12–14] that
lnΔΨjΦ ¼ V lnΔΩV† and consequently,

SðΨkΦÞ ¼ −hΩjU†V lnΔΩV†UjΩi: ð5Þ

In this way and using the known result for the modular
Hamiltonian in wedges (the Bisognano-Wichmann
theorem [15,16]), the relative entropy for coherent excita-
tions of the vacuum of a free massive scalar field, restricted
to a wedge in Minkowski spacetime, was computed by
various authors [13,17].
For the exterior of a Schwarzschild black hole, the

modular Hamiltonian of free scalar fields in the Hartle-
Hawking state is also known [18–21], and in fact propor-
tional to the generator of time translations; if one restricts to
the black hole horizon or null infinity, these become
rescalings of the corresponding null coordinates [22].
Using this fact, the Araki-Uhlmann formula for the relative
entropy of coherent states (5) and the Raychaudhuri
equation, Hollands and Ishibashi [23] have shown that
the variation of the sum of relative entropy and one quarter
of the horizon area is exactly given by the flux at future null
infinity, in line with the Bekenstein-Hawking formula for
the entropy of a black hole horizon. These results have been
further generalized to apparent horizons by D’Angelo
[24,25]. On the other hand, Iyer and Wald [26,27] have
shown that black hole entropy can be alternatively defined
as the Noether charge of diffeomorphisms associated with
the Killing vector field of the black hole horizon, integrated
over it. However, a connection between the two approaches
has not been made.
In this article, we make a related but different connec-

tion. First, we generalize the results of [13,17] to wedges in
the de Sitter spacetime, and compute the relative entropy
for a coherent excitation of the de Sitter vacuum of a free
massive scalar field. We confirm that the relative entropy is
positive and convex as required, and finally relate it to the
Noether charge of translations along the Killing vector that
is tangent to the modular flow. De Sitter spacetime is of
course important as a model of both the primordial infla-
tionary phase of the Universe and the current exponential
expansion [28–30]. At the same time, it can be obtained
from an embedding in Minkowski spacetime of one higher
dimension and is a maximally symmetric solution of the
Einstein equations with cosmological constant, therefore
one of the simplest curved spacetimes. Among others, this

also manifests in the fact that the modular Hamiltonian for
wedges in de Sitter spacetime is known as well [31–33],
and in fact coincides with the restriction of the modular
Hamiltonian of the wedge in the embedding Minkowski
spacetime to the de Sitter hyperboloid.
The remainder of this article is structured as follows: In

Sec. II, we review the embedding of de Sitter space, the
restriction of the Minkowski Killing vectors to the de Sitter
hyperboloid, and the wedges in both Minkowski and
de Sitter spacetime. Section III is devoted to the algebra
of the free scalar field and modular theory, and we
determine explicitly the modular flow and the Kubo-
Martin-Schwinger (KMS) property for the de Sitter vacuum
state restricted to a wedge, following in part Ref. [32]. In
Sec. IV, we then determine the relative entropy between the
de Sitter vacuum and a coherent state using the Araki-
Uhlmann formula (5) and verify its positivity and joint
convexity. Section V is concerned with the relation of the
relative entropy to a Noether charge, and its thermody-
namic interpretation. We give an outlook on future exten-
sions of this work in Sec. VI, and leave the details of the
covariant canonical quantization to Appendix A, some
further relations that are satisfied by the commutator
function to Appendixes B and C, and details of the
computation for a tilted Cauchy surface to Appendix D.
Conventions: We take mostly plus metric signature, and

choose Rμν ¼ ðn − 1ÞH2gμν for n-dimensional de Sitter
spacetime of radius H−1. All formulas for special functions
were taken from Ref. [34]. Greek indices μ; ν;…∈
f0;…; n − 1g range over space and time, while lowercase
Latin indices i; j;…∈ f1;…; n − 1g denote purely spatial
components, and uppercase Latin indices A;B;…∈
f0;…; ng refer to the embedding (or ambient) space.
We set ℏ ¼ c ¼ 1.

II. de Sitter SPACETIME

As stated in the introduction, n-dimensional de Sitter
spacetime dSn can be obtained from an embedding in an
(nþ 1)-dimensional Minkowski spacetime Rn;1 (called
ambient space). Choosing Cartesian coordinates XA for
the ambient space, dSn is the submanifold of points
satisfying XAXA ¼ H−2 with a constant H, the Hubble rate
or inverse de Sitter radius. The relevant part of dSn is the
so-called expanding Poincaré patch (with X0 − Xn > 0),
which can be parametrized by coordinates x0 ¼ t∈R and
x∈Rn−1 according to

X0 ¼ 1

H
sinhðHtÞ þH

2
eHtx2; ð6aÞ

Xi ¼ eHtxi; ð6bÞ

Xn ¼ −
1

H
coshðHtÞ þH

2
eHtx2: ð6cÞ
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It is easy to verify that these satisfy the hyperboloid
condition XAXA ¼ H−2, and the induced metric of the
Poincaré patch reads

ds2 ¼ ηABdXAdXB ¼ −dt2 þ e2Htdx2: ð7Þ

The causal structure of the de Sitter spacetime is inherited
through the embedding, and the distance between points
can be determined from the ambient space as well. It is
characterized by the invariant

Zðx; x0Þ ¼ H2ηABXAðxÞXBðx0Þ

¼ 1 −
H2

2
½XAðxÞ − XAðx0Þ�½XAðxÞ − XAðx0Þ�; ð8Þ

which in terms of the Poincaré patch coordinates (6) reads

Zðx; x0Þ ¼ cosh½Hðt − t0Þ� −H2

2
eHðtþt0Þðx − x0Þ2: ð9Þ

From Eq. (8), we see that spacelike separated points have
Zðx; x0Þ < 1, lightlike separation renders Zðx; x0Þ ¼ 1, and
if Zðx; x0Þ > 1 the points x and x0 are timelike separated.
The ambient space has ðnþ 1Þðnþ 2Þ=2 Killing vec-

tors, of which nþ 1 generate translations and nðnþ 1Þ=2
generate rotations and boosts. While the translation gen-
erators TA ¼ ∂A do not leave the hyperboloid invariant, the
rotation and boost generators MAB ¼ XA∂B − XB∂A trans-
form the hyperboloid into itself and hence descend to
Killing vectors in dSn. Expressing the Poincaré patch
coordinates (6) using the embedding coordinates, we obtain

t ¼ H−1 ln½HðX0 − XnÞ�; ð10aÞ

xi ¼ Xi

HðX0 − XnÞ ; ð10bÞ

which allows us to compute the explicit expression of the
rotation and boost generators in terms of t and x.
Concretely, we find

M0i ¼ −
H
2
Ki −

1

2H
Pi; Mij ¼ Lij;

Min ¼ −
H
2
Ki þ

1

2H
Pi; M0n ¼ −D; ð11Þ

in terms of the intrinsic de Sitter Killing vectors

D≡ −H−1
∂t þ xi∂i ðdilationsÞ; ð12aÞ

Ki ≡ ðx2 −H−2e−2HtÞ∂i − 2xiD ðboostsÞ; ð12bÞ

Pi ≡ ∂i ðtranslÞ; ð12cÞ

Lij ≡ xi∂j − xj∂i ðrotationsÞ: ð12dÞ

Following Ref. [32], we can then define wedges in dSn
as the intersection of a wedge in the ambient space with the
de Sitter hyperboloid. In the ambient space, these are the
regions Wj ≡ fX∈Rn;1∶Xj > jX0jg (for a right wedge in
the j direction) or Xj < −jX0j (for a left wedge), and thus
we define the (right) de Sitter wedges

Wj ≡ fX∈Rn;1∶XAXA ¼ H−2; Xj > jX0jg: ð13Þ

In the coordinates (6) of the Poincaré patch, these are
the regions

Wj ¼ fðt; xÞ∶2Hxj ≥ j1 − e−2Ht þH2x2jg ð14Þ

which are somewhat difficult to visualize, and we therefore
depict them in Fig. 1.
In the ambient space, the boost generators M0j map the

wedge Wj into itself. This can be seen easily, taking for
example j ¼ 1: the ambient wedge W1 is composed of
trajectories XAðsÞ ¼ ðX0ðsÞ; X1ðsÞ; X⊥Þ with

X0ðsÞ ¼ X1ð0Þ sinhðsÞ; ð15aÞ

X1ðsÞ ¼ X1ð0Þ coshðsÞ; ð15bÞ

satisfying X1ðsÞ> jX0ðsÞj. Their generator is exactly −M01,
i.e., we have ∂sXAðsÞ ¼ −M01XAðsÞ, and each point in the
wedge lies on one such trajectory. Since the boost gen-
erators are tangent to the hyperboloid, they also map the
de Sitter wedges W1 into themselves, and concretely we
obtain the trajectories

FIG. 1. Cross sections of the wedgeW1 in the Poincaré patch of
de Sitter spacetime with coordinates ðt; x1; x⊥Þ for different jx⊥j.
With growing jx⊥j, the cross sections become smaller and shift to
earlier times.
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tðsÞ ¼ H−1 ln

�
1þHxjð0Þ sinhðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2x2ð0Þ
p �

; ð16aÞ

xjðsÞ ¼ xjð0Þ coshðsÞ
1þHxjð0Þ sinhðsÞ ; ð16bÞ

x⊥ðsÞ ¼ x⊥ð0Þ
1þHxjð0Þ sinhðsÞ ; ð16cÞ

with some examples of trajectories depicted in Fig. 2.
Using the explicit expression of the Killing vector

M0j¼−
1

2H
ð1−e−2HtþH2x2Þ∂jþHxjxk∂k−xj∂t; ð17Þ

it is laborious, but straightforward, to verify that −M0j is
their generator, and it is also straightforward to verify
that the trajectories stay in the wedge (14) as long as
1þHxjð0Þ sinhðsÞ ≥ 0. In fact, the range s∈ ðsmin;∞Þ
with smin ¼ − ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2½xjð0Þ�2

p
Hxjð0Þ

�
already corresponds to

the full range tðsÞ∈R. That a maximum value for s exists
in the expanding Poincaré patch is clear from the condition
X0 − Xn > 0, since for negative enough s one obtains
X0ðsÞ − XnðsÞ ¼ X1ð0Þ sinhðsÞ − Xn < 0, which is a point
in the contracting Poincaré patch. To obtain a better
parametrization of the trajectories (16) in the expanding
patch only, we can express s in terms of tðsÞ. This results in

xjðtÞ ¼ e−Hðt−t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj0Þ2 þ

ðeHðt−t0Þ − 1Þ2
H2

s
; ð18aÞ

x⊥ðtÞ ¼ e−Hðt−t0Þx⊥0 ; ð18bÞ

where the point ðt0; xj0; x⊥0 Þ∈W1 must be chosen to lie
inside the wedge (14). In this form, the existence of the
trajectories for all t∈R in the expanding Poincaré patch is
now manifest.
Furthermore, left wedges are defined by

W−j ≡ fX∈Rn;1∶XAXA ¼ H−2; Xj < −jX0jg; ð19Þ

and for them analogous results hold. Of importance for
modular theory is the fact that all points in the left wedge
W−j are spacelike related to any point in the right wedge
Wj, and that the union Wj ∪ W−j contains a Cauchy
surface for the full de Sitter space.

III. SCALAR FIELDS AND MODULAR THEORY

We start with a quick review of Tomita-Takesaki modular
theory [10,11], and refer to Ref. [35] for a thorough
mathematical exposition and Ref. [12] for a more physical
one. Modular theory concerns itself with a von Neumann
algebra A ⊂ BðHÞ of bounded operators acting on a
Hilbert space H, and states jΨi, jΦi which are cyclic
and separating for A. The state jΨi is said to be separating
forA if ajΨi ¼ 0 for a∈A implies a ¼ 0, and it is cyclic if
the set fajΨi∶a∈Ag ⊂ H is a dense subset of the Hilbert
space. We also need the commutant algebraA0, which is the
set of all operators a0 ∈BðHÞ which commute with all
elements in A.
Consider then the map SΨjΦ which acts according to

SΨjΦajΨi ¼ a†jΦi for a∈A. Tomita proved that this is an
unbounded, densely defined and closable operator, and we
can take its closure, which we denote by the same symbol.
SΨjΦ is called the relative Tomita operator, and the adjective
“relative” is dropped when one considers a single state such
that Ψ ¼ Φ. We perform its (unique) polar decomposition
SΨjΦ ¼ JΨjΦΔ

1=2
ΨjΦ into an antiunitary operator JΨjΦ called

the relative modular conjugation, and a Hermitian positive-
definite operator Δ1=2

ΨjΦ called the relative modular operator,

and again the adjectives “relative” are dropped when one
considers a single state. The logarithm of the relative
modular operator KΨjΦ ¼ lnΔΨjΦ is known as the relative
modular Hamiltonian, since the modular operator induces
an automorphism α of A according to

αsðaÞ ¼ Δis
ΨjΦaΔ

−is
ΨjΦ ¼ eisKΨjΦae−isKΨjΦ ∈A ð20Þ

for a∈A, which can be seen as a sort of internal time
evolution, called the modular flow. While conjugation by
Δis

ΨjΦ thus maps the algebra into itself (and analogously

the commutant A0 into itself), conjugation by the relative
modular conjugation JΨjΦ as well as byΔ1=2

ΨjΦ exchanges the

two algebras. Lastly, we note that the automorphism (20) is
actually independent of the choice of jΨi, and that the state

FIG. 2. Example trajectories with generator M01 mapped from
the ambient space to the de Sitter hyperboloid. For simplicity, we
chose x⊥ð0Þ ¼ 0.
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jΦi is a thermal state with respect to the modular flow,
which satisfies the KMS condition.
In our case, we take A to be the algebra generated by

the Weyl operators WðfÞ≡ eiϕðfÞ of a free massive scalar
field, with the test function f restricted to the wedge:
supp f ⊂ W1. Since the field ϕ is Hermitean, we can
further restrict to real f, which we will do in the following.
Using the Baker-Campbell-Hausdorff (BCH) formula [36]
and the commutator (B8), one finds that

WðfÞWðhÞ ¼ eiϕðfÞeiϕðhÞ

¼ eiϕðfÞþiϕðhÞþ i
2
ðf;ΔhÞ

¼ e
i
2
ðf;ΔhÞWðf þ hÞ; ð21Þ

such that these really generate an algebra. Moreover, since
the commutator function Δ is antisymmetric one sees
immediately that the Weyl operators are invertible with
inverse ½WðfÞ�−1 ¼ Wð−fÞ. The Hilbert space H is noth-
ing else but the Fock space of the scalar field, and the
de Sitter-invariant Bunch-Davies vacuum state [37–39]
whose construction is reviewed in Appendix A is cyclic
and separating [32]. Since theWeyl operators are invertible,
also the coherent states jfi≡WðfÞjΩi (without restriction
on the support of f) are cyclic and separating, and one can
thus define relative modular operators for them.
In fact, let us take jΨi ¼ jfi and jΦi ¼ jhi for two test

functions f and h. We use the representation of the smeared
field ϕðfÞ in terms of initial data (B15)

ϕðfÞ ¼ −iσðϕ;ΔfÞ; ð22Þ

where σð·; ·Þ is the symplectic product (A5) supported on a
Cauchy surface Σ, and choose Σ contained in the union
W1 ∪ W−1. This Cauchy surface thus splits into two parts
contained in the respective wedges, Σ ¼ Σ1 ∪ Σ−1 with
Σ1 ⊂ W1 and Σ−1 ⊂ W−1. Accordingly, we split the
smeared commutator on the Cauchy surface ΔfjΣ into
two parts ðΔfÞþ and ðΔfÞ− whose support lies in the
respective half of the Cauchy surface, i.e., such that
ðΔfÞþjΣ−1

¼ 0 and ðΔfÞ−jΣ1
¼ 0. It follows that

WðfÞ ¼ eσðϕ;ΔfÞ

¼ eσðϕ;ðΔfÞþÞeσðϕ;ðΔfÞ−Þ ≡UþðfÞU−ðfÞ; ð23Þ

where we used the BCH formula, the commutator (B18),
and the fact that

σððΔfÞþ; ðΔfÞ−Þ ¼ 0; ð24Þ

since the supports of ðΔfÞþ and ðΔfÞ− are disjoint by
construction. It follows that also ½UþðfÞ; U−ðfÞ� ¼ 0, and
using that WðfÞ† ¼ Wð−fÞ also U�ðfÞ† ¼ U�ð−fÞ. By
construction, UþðfÞ∈A, while the other unitary U−ðfÞ is

an element of the algebra of fields restricted to the left
wedge W−1.

1 In Ref. [32] it is shown that wedge duality
holds, hence this algebra is the commutant of the algebra of
fields restricted to the right wedge and U−ðfÞ∈A0.
We are thus in the situation jΨi ¼ UþðfÞU−ðfÞjΩi,

jΦi ¼ UþðhÞU−ðhÞjΩi with Uþ ∈A and U− ∈A0. The
relative Tomita operator SΨjΦ acts according to

SΨjΦaUþðfÞU−ðfÞjΩi ¼ a†UþðhÞU−ðhÞjΩi
¼ U−ðhÞ½Uþð−hÞa�†jΩi ð25Þ

for a∈A, where we used that U− commutes with both a
and Uþ and that UþðhÞ† ¼ Uþð−hÞ. Multiplying with
U−ðhÞ† ¼ U−ð−hÞ and then with UþðfÞ† ¼ Uþð−fÞ, we
obtain further

Uþð−fÞU−ð−hÞSΨjΦU−ðfÞaUþðfÞjΩi
¼ ½Uþð−hÞaUþðfÞ�†jΩi; ð26Þ

where we also used that U−ðfÞ commutes with both UþðfÞ
and a. By definition of the Tomita operator for the state jΩi,
we have ½Uþð−hÞaUþðfÞ�†jΩi ¼ S0Uþð−hÞaUþðfÞjΩi,
and hence

Uþð−fÞU−ð−hÞSΨjΦU−ðfÞaUþðfÞjΩi
¼ S0Uþð−hÞaUþðfÞjΩi: ð27Þ

Since jΩi is separating and this equation needs to
hold for all a∈A, we can read off that
Uþð−fÞU−ð−hÞSΨjΦU−ðfÞ ¼ SΩUþð−hÞ, or

SΨjΦ ¼ U−ðhÞUþðfÞS0Uþð−hÞU−ð−fÞ: ð28Þ

Using the Hermitian properties of the modular conjugation
J and the modular operator Δ, it also follows that

ΔΨjΦ ¼ S†ΨjΦSΨjΦ

¼ U−ðfÞUþðhÞS†ΩSΩUþð−hÞU−ð−fÞ
¼ U−ðfÞUþðhÞΔΩUþð−hÞU−ð−fÞ: ð29Þ

It thus only remains to determine the modular operator
ΔΩ for the de Sitter vacuum state jΩi, or alternatively the
modular Hamiltonian KΩ ¼ lnΔΩ. Instead of using its
definition, however, we show that the flow of the two-point
function along the trajectories (16) satisfies the KMS
condition. Since the modular flow is the unique one for
which this is true, its generator is guaranteed to be the
modular Hamiltonian KΩ, up to a rescaling to fix the

1This is the same decomposition that is used in the more
mathematical literature [40–42], and which was derived in
Ref. [13] in more detail.

RELATIVE ENTROPY IN A DE SITTER SPACETIME IS A … PHYS. REV. D 108, 105004 (2023)

105004-5



(modular) temperature at β ¼ 1. Consider thus the flowed
two-point function

Fðs; s0Þ≡ hΩjϕðxðsÞÞϕðx0ðs0ÞÞjΩi; ð30Þ

where the trajectory xðsÞ is given in Eq. (16). The explicit
form of the two-point function is given in Eq. (A20), and
depends on the causal relation between x and x0 and the
de Sitter-invariant distance Zðx; x0Þ (9). For our purposes,
it is easier to use the expression (8) of Z in terms of the
embedding coordinates XA, since those have a simple
expression (15) along the trajectories. We obtain

ZðxðsÞ; x0ðs0ÞÞ ¼ H2X1ðxÞX1ðx0Þ coshðs − s0Þ
þH2X⊥ðxÞ · X⊥ðx0Þ; ð31Þ

where we wrote x ¼ xð0Þ and x0 ¼ x0ð0Þ to shorten the
expression. If the points xðsÞ and x0ðsÞ are spacelike
separated [which entails Zðx; x0Þ < 1] such that the iϵ
prescription in the two-point function (A20) is irrelevant,
we thus obtain Fðs; s0Þ ¼ Fðs − s0Þ ¼ Fðs0 − sÞ. On the
other hand, if they are timelike separated [such that
Zðx; x0Þ > 1] this prescription determines on which side
of the branch cut one has to evaluate the hypergeometric
function, resulting in the expression (A22). We can
combine both by considering instead Zϵ (A24), for which
we compute

ZϵðxðsÞ; x0ðs0ÞÞ ¼ ZðxðsÞ; x0ðs0ÞÞ −H2ϵ2

− iϵH2½X1ðxÞ sinhðsÞ − X1ðx0Þ sinhðs0Þ�:
ð32Þ

The KMS condition [43–45] states that the function F
can be analytically continued in some strip parallel to the
real axis, and when the differences of the imaginary parts
of their arguments are equal to the inverse temperature β
one obtains the complex conjugate function. In our case,
we see that

Zϵðxðs − iπÞ; x0ðs0 þ iπÞÞ ¼ Z�
ϵðxðsÞ; x0ðs0ÞÞ; ð33Þ

and since the hypergeometric function (off the branch cut)
is an analytic function of its argument, we obtain
Fðs − iπ; s0 þ iπÞ ¼ F�ðs; s0Þ.2 It follows that with respect
to the evolution whose generator is −M0j, the de Sitter
Bunch-Davies vacuum state has temperature β ¼ 2π.
Rescaling to obtain β ¼ 1 and using that each Killing vector
corresponds to a self-adjoint operator on the Fock space of

the free scalar field which we denote by calligraphic
letters (B21), it follows that:

lnΔΩ ¼ KΩ ¼ −2πM0j ¼
π

H
ðH2Ki þ PiÞ; ð34Þ

which is the result previously derived in Ref. [32].

IV. RELATIVE ENTROPY

With the modular Hamiltonian (34) at our disposal,
we can now use the Araki-Uhlmann formula (2) to compute
the relative entropy between two coherent excitations
jfi≡WðfÞjΩi and jhi. We decompose the Weyl operators
WðfÞ and WðhÞ according to Eq. (23), and use the
formula (29) for the relative modular operator. Because
conjugation by unitary operators extends to functions of an
operator, we also have

lnΔfjh ¼ U−ðfÞUþðhÞ lnΔΩUþð−hÞU−ð−fÞ; ð35Þ

and hence

SðfkhÞ ¼ −hΩjUþð−fÞUþðhÞ lnΔΩUþð−hÞUþðfÞjΩi;
ð36Þ

which coincides with Eq. (5) given in the introduction
since UþðfÞ∈A.
Using the BCH formula and the commutator (B18),

we first compute

Uþð−hÞUþðfÞ ¼ e−σðϕ;ðΔhÞþÞeσðϕ;ðΔfÞþÞ

¼ eσðϕ;ðΔðf−hÞÞþÞe12σððΔhÞþ;ðΔfÞþÞ

¼ Uþðf − hÞe12σððΔhÞþ;ðΔfÞþÞ; ð37Þ

such that Eq. (36) reduces to

SðfkhÞ ¼ −hΩjUþðh − fÞ lnΔΩUþðf − hÞjΩi; ð38Þ

taking into account the antisymmetry of the symplectic
product σ when we exchange its arguments. We see that
only the difference of test functions enters, such that
SðfkhÞ ¼ Sðf − hkΩÞ, the relative entropy between the
vacuum jΩi and the coherent excitation Wðf − hÞjΩi. We
thus may and will set h ¼ 0 in the following. The same
simplification happens in Minkowski space [13], and in
fact is a general property of the relative entropy for coherent
excitations [41].
To compute this expectation value, we employ the

identity

e−ivBAeivB ¼ Aþ i
Z

v

0

e−iuB½A;B�eiuBdu; ð39Þ2The other possible analytic continuation s→ sþ iπ, s0→ s0− iπ
would cross the branch cut and is thus not permissible.
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which is easily proven by noting that it holds for v ¼ 0,
and that both sides have the same derivative with respect
to v. From the explicit expression for the modular
Hamiltonian (34), we know that

i½lnΔΩ;ϕðxÞ� ¼ −2πM0jϕðxÞ; ð40Þ
or after smearing with a test function and using the
symmetry properties (B20)

i½lnΔΩ;ϕðfÞ� ¼ −2πðf;M0jϕÞ
¼ 2πðM0jf;ϕÞ ¼ 2πϕðM0jfÞ; ð41Þ

which is linear in ϕ. Therefore, its commutator with ϕ is
proportional to the identity operator, such that using (39)
twice we obtain

e−ivϕðfÞ lnΔΩeivϕðfÞ ¼ lnΔΩ þ iv½lnΔΩ;ϕðfÞ�

−
v2

2
½½lnΔΩ;ϕðfÞ�;ϕðfÞ�: ð42Þ

Since the vacuum is invariant under the de Sitter sym-
metries (i.e., the generators Ki and Pi are normal-ordered
operators annihilating jΩi), we have hΩj lnΔΩjΩi ¼ 0, and
also hΩjϕðxÞjΩi ¼ 0 from the expansion (A15). Setting
v ¼ 1, it follows that

hΩje−iϕðfÞ lnΔΩeiϕðfÞjΩi ¼ −
1

2
½½lnΔΩ;ϕðfÞ�;ϕðfÞ�

¼ −iπσðΔM0jf;ΔfÞ; ð43Þ
where we also used the expression (B16) for the commu-
tator in terms of the symplectic product.
Using the initial-value formulation (B15) of the smeared

field to write ϕðfÞ ¼ −iσðϕ;ΔfÞ, Eq. (43) is almost in a

form that can be used for the relative entropy (38). The only
missing part is to express ΔM0jf as a function of Δf.
For this, we compute using the symmetry properties
of M0j (B20) that

ðΔM0jfÞðxÞ ¼ ðΔðx; ·Þ;M0jfÞ
¼ −ðM0jΔðx; ·Þ; fÞ; ð44Þ

where in the last expression M0j acts on the second
argument of Δ. Using the results (C1) and (C3), it then
follows that ðM0jΔðx; ·Þ; fÞ ¼ −M0jðΔðx; ·Þ; fÞ with M0j

acting now on the external point x, and thus

ðΔM0jfÞðxÞ ¼ M0jðΔðx; ·Þ; fÞ ¼ ðM0jΔfÞðxÞ: ð45Þ

Equation (43) therefore simplifies to

hΩje−σðϕ;ΔfÞ lnΔΩeσðϕ;ΔfÞjΩi ¼ −iπσðM0jΔf;ΔfÞ; ð46Þ

and replacingΔf by ðΔfÞþ we obtain our first result for the
relative entropy (38),

SðfkΩÞ ¼ iπσðM0jðΔfÞþ; ðΔfÞþÞ: ð47Þ

From this expression and the previously derived SðfkhÞ ¼
Sðf − hkΩÞ, we already see that the relative entropy is
symmetric: SðfkΩÞ ¼ SðΩkfÞ. In particular, the relative
entropy between the vacuum and a coherent excitation is
the same as between a coherent excitation and the vacuum.
A more explicit expression for the relative entropy can

be obtained by evaluating the sympletic product in (47)
explicitly. On the Cauchy surface t ¼ 0 that is adapted to
the Poincaré patch, and with the explicit expression (17)
for M0j, we obtain

SðfkΩÞ ¼ π

Z �
xj∂tðΔfÞþðxÞ∂tðΔfÞþðxÞ − xjðΔfÞþðxÞ∂2t ðΔfÞþðxÞ þ

H
2
x2∂jðΔfÞþðxÞ∂tðΔfÞþðxÞ

−
H
2
x2ðΔfÞþðxÞ∂j∂tðΔfÞþðxÞ −Hxjxk∂kðΔfÞþðxÞ∂tðΔfÞþðxÞ

þHxjxkðΔfÞþðxÞ∂k∂tðΔfÞþðxÞ − ðΔfÞþðxÞ∂jðΔfÞþðxÞ
�
t¼0

dn−1x: ð48Þ

To simplify this expression, we first have to consider the
precise form of the splitting of the smeared commutator
into the parts ðΔfÞþ and ðΔfÞ−. Setting t ¼ 0 in the wedge
Wj (14), we see that the intersection of the Cauchy surface
with Wj is the region

Rj ¼ fð0; xÞ∶2xj ≥ Hx2g

¼
�
ð0; xÞ∶Hjx⊥j ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 −HxjÞ2

q �
: ð49Þ

Defining the indicator function

χjðxÞ≡
�
1 x∈Rj

0 x ∉ Rj

�
¼ Θð2xj −Hx2Þ; ð50Þ

we therefore set ðΔfÞþðxÞ≡ χjðxÞðΔfÞðxÞ. Using that Δ
fulfills the Klein-Gordon equation (A3) and integrating
spatial derivatives by parts, Eq. (48) can then be
simplified to
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SðfkΩÞ ¼ 2π

Z
χjðxÞxjT00ðΔfÞdn−1x

þ πH
Z

χjðxÞðx2δkj − 2xjxkÞ

× ∂kðΔfÞðxÞ∂tðΔfÞðxÞdn−1x
þ SbdyðfkΩÞ; ð51Þ

where

T00ðhÞ≡ 1

2
ð∂thÞ2 þ

1

2
∂
kh∂khþ 1

2
m2h2 ð52Þ

is the classical energy density of a free scalar field on the
Cauchy surface t ¼ 0. The last term SbdyðfkΩÞ are con-
tributions located at the boundary of the region (49) coming
from integration by parts. Their treatment is somewhat
delicate, since naively terms appear which are not uniquely
defined. In fact, with a smoothed version of the indicator
function (50) a direct computation gives

SbdyðfkΩÞ ¼ −π
Z �

H
2
ð2xjxk − x2δkjÞ∂t½ðΔfÞðxÞ�2

þ δkj ½ðΔfÞðxÞ�2
�
t¼0

χjðxÞ∂kχjðxÞdn−1x: ð53Þ

In the flat-space limit H → 0, we have χjðxÞ → ΘðxjÞ
such that

lim
H→0

SbdyðfkΩÞ¼−πΘð0Þ
Z

½ðΔfÞðxÞ�2t;xj¼0
dn−2x⊥; ð54Þ

and the boundary contribution to the relative entropy
depends on the value of the regularized Θð0Þ. To determine
the correct value, one has to delve into the mathematical
details of convergence in an appropriate function space,
which was done in Ref. [13] for the Minkowski case.
There it was shown that one needs to exhaust the wedge
region from within, i.e., take an approximation for which
Θð0Þ ¼ 0 such that the boundary terms (54) vanish.

Generalizing their arguments to the de Sitter case, we have
to take an approximation for which χjðxÞ∂kχjðxÞ → 0

such that the boundary terms (53) vanish in general and
SbdyðfkΩÞ ¼ 0.
While the classical energy density (52) is clearly positive

and xj ≥ 0 in the region Rj (49) such that the first
contribution to the relative entropy (51) is positive, already
the second term does not have a definite sign. Since general
considerations [12,41] enforce the positivity of the relative
entropy, we have to conclude that the Cauchy surface t ¼ 0
is not suitable to obtain a manifestly positive expression for
the relative entropy. Nevertheless, we have already the
correct flat-space limit [13]

lim
H→0

SðfkΩÞ ¼ 2π

Z
xj≥0

xjT00ðΔfÞjt¼0d
n−1x: ð55Þ

However, since the symplectic product (A8) is independent
of the choice of Cauchy surface, we can evaluate it on any
other such surface. In particular, we can choose the surface
X0 ¼ 0, which is adapted to the Wedge Wj. In the
coordinates (6) of the Poincaré patch, this is the surface (D1)

Σ ¼ fðt; xÞ∶2Htþ lnð1þH2x2Þ ¼ 0g; ð56Þ

which has the future-pointing unit normal vector (D3)

nμjΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p
ð1;−HxiÞμ ð57Þ

and the induced metric (D5a)

γij ¼
δij

1þH2x2
−

H2xixj
ð1þH2x2Þ2 : ð58Þ

The sympletic product on this Cauchy surface is given
in Eq. (D10), such that we can evaluate the relative
entropy (47) using also the identities (D12) and (D13).
This results in

SðfkΩÞ ¼ π

Z
xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2x2
p ½∂nðΔfÞþðxÞ∂nðΔfÞþðxÞ þ ½ð1þH2x2Þδkl −H2xkxl�∂̂kðΔfÞþðxÞ∂̂lðΔfÞþðxÞ

þm2½ðΔfÞþðxÞ�2 þ ðΔfÞþðxÞð∇2 −m2ÞðΔfÞþðxÞ�Σ
ffiffiffi
γ

p
dn−1x ð59Þ

with ∂n ≡ nμ∂μ and ∂̂μ ≡ ∂μ þ nμ∂n, which still can be
simplified. For this, we again need to be precise about the
splitting of the smeared commutator. Since the Cauchy
surface X0 ¼ 0 is adapted to the wedge Wj, this is easier
than before, and computing the intersection of Σ (56)
with the wedge Wj (14), we see that we can simply
obtain xj ≥ 0 and hence χjðxÞ ¼ ΘðxjÞ. Using the explicit

expressions (D7) for ∂n and ∂̂k on the Cauchy surface Σ,
we compute

∂nðΔfÞþðxÞ ¼ χjðxÞ∂nðΔfÞðxÞ; ð60aÞ

∂̂kðΔfÞþðxÞ ¼ χjðxÞ∂̂kðΔfÞðxÞ þ δjkðΔfÞðxÞδðxjÞ; ð60bÞ
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and using also the Klein-Gordon equation (D9) we com-
pute furthermore

ð∇2 −m2ÞðΔfÞþðxÞ
¼ χjðxÞð∇2 −m2ÞðΔfÞðxÞ
þ ð1þH2x2Þ½δ0ðxjÞðΔfÞðxÞ þ 2δðxjÞ∂jðΔfÞðxÞ�;

ð61Þ

where all expressions are understood to be restricted to the
Cauchy surface Σ. The first term on the right-hand side
vanishes since the commutator function Δ satisfies the
Klein-Gordon equation, while the other terms result in
boundary contributions. Inserting these results into Eq. (59),
we obtain

SðfkΩÞ ¼ 2π

Z
χjðxÞQjðΔfÞjΣ

ffiffiffi
γ

p
dn−1xþ SbdyðfkΩÞ;

ð62Þ

where we defined

QjðhÞjΣ ≡ xj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p ½∂nh∂nhþm2h2

þ ½ð1þH2x2Þδkl −H2xkxl�∂̂kh∂̂lh�Σ; ð63Þ

and the boundary terms are formally given by

SbdyðfkΩÞ ¼ π

Z
xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p
½½ðΔfÞðxÞδðxjÞ�2

þ 2χjðxÞδðxjÞ∂j½ðΔfÞðxÞ�2
þ χjðxÞδ0ðxjÞ½ðΔfÞðxÞ�2�Σ

ffiffiffi
γ

p
dn−1x: ð64Þ

We see that they are again undefined since χjðxÞδ0ðxjÞ can
take arbitrary values depending on the regularization. More-
over, also divergent terms appear since ½δðxjÞ�2 ¼ ∞, but
there is extra xj in front of everything which lowers the
degree of divergence. To obtain a proper result, we have
again to take a smoothed-out version of the indicator
function χj, which then results in

SbdyðfkΩÞ ¼ −π
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2x2
p

½ðΔfÞðxÞ�2Σ
× χjðxÞ∂jχjðxÞ

ffiffiffi
γ

p
dn−1x ð65Þ

up to terms that vanish for any smoothing. Without
smoothing, we would obtain χjðxÞ∂jχjðxÞ ¼ Θð0ÞδðxjÞ,
which clearly has the same flat-space limit (54) as the result
for the other Cauchy surface at t ¼ 0. As in the flat-space
case [13], the proper smoothing is such that one exhausts the
wedge from within, taking an approximation for which
χjðxÞ∂jχjðxÞ → 0. The boundary terms (65) then vanish and

SbdyðfkΩÞ ¼ 0 as before, such that only the bulk terms
involving Qj (63) contribute to the relative entropy (62).
We have thus obtained

SðfkΩÞ ¼ 2π

Z
ΘðxjÞQjðΔfÞjΣ

ffiffiffi
γ

p
dn−1x ð66Þ

withQjðhÞ given by Eq. (63). Since for positive xj we have
QjðhÞ ≥ 0

3 for any test function h with equality only if
h ¼ 0, the positivity of the relative entropy is now manifest:
SðfkΩÞ ≥ 0 and SðfkΩÞ ¼ 0 only if f ¼ 0. It is also easy
to see that it is jointly convex, i.e., that

λSðfkΩÞ þ ð1 − λÞSðhkΩÞ ≥ Sðλf þ ð1 − λÞhkΩÞ ð67Þ

for all test functions f, h and λ∈ ½0; 1�. However, this is
immediate since the relative entropy SðfkΩÞ is quadratic in
the test function f, such that

Sðλf þ ð1 − λÞhkΩÞ
¼ λ2SðfkΩÞ þ ð1 − λÞ2SðhkΩÞ
þ λð1 − λÞ½SðfkΩÞ þ SðhkΩÞ − Sðf − hkΩÞ�

¼ λSðfkΩÞ þ ð1 − λÞSðhkΩÞ − λð1 − λÞSðf − hkΩÞ:
ð68Þ

Positivity of the relative entropy shows that the last term is
negative, −λð1 − λÞSðf − hkΩÞ ≤ 0, and the joint convex-
ity (67) follows, with a strict inequality if f ≠ h.

V. NOETHER CHARGE AND THERMODYNAMICS

It remains to relate the relative entropy (66) to a Noether
charge. Those are given by integrating the normal compo-
nent of a conserved current over a Cauchy surface, and
since the relative entropy is already given by an integral
over a Cauchy surface, we only need to determine the
corresponding conserved current. From the explicit form
of Q (63) as well as the fact that the energy density (52)
appears, we infer that the current involves the stress tensor.
Because the modular Hamiltonian (34) generates trans-
lations along the trajectories (16) whose tangent vector is a
Killing vector, it is further probable that the current is
obtained by contracting the stress tensor Tμν with the

Killing vector −M0j ¼ ξνðjÞ∂ν (17): Jμ ≡ TμνξðjÞν . Namely,

in this case we obtain

∇μJμ ¼ ∇ðμξ
ðjÞ
νÞ T

μν þ ξðjÞν ∇μTμν ¼ 0; ð69Þ

3The matrix ½ð1þH2x2Þδkl −H2xkxl� is positive definite,
since its eigensystem is given by a single eigenvector xk with
eigenvalue 1 and (n − 2) transverse eigenvectors ðδklx2 − xkxlÞvl
with eigenvalue ð1þH2x2Þ for constant vl, so all eigenvalues are
strictly positive.
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employing the Killing equation ∇ðμξ
ðjÞ
νÞ ¼ 0 (since the

stress tensor is symmetric) and the conservation of the
stress tensor ∇μTμν ¼ 0 which holds on shell.
It turns out that this indeed holds, and with the canonical

scalar stress tensor

TμνðhÞ≡ ∂μh∂νh −
1

2
gμνðgρσ∂ρh∂σhþm2h2Þ ð70Þ

we compute on the Cauchy surface Σ (56)

nμξνðjÞTμνðhÞ ¼ QjðhÞ: ð71Þ

Since the commutator function Δ fulfills the Klein-Gordon
equation, the classical stress tensor (70) evaluated on

h ¼ Δf is conserved, such that the current Jμ ¼
ξðjÞν TμνðΔfÞ is conserved as well. It follows that
QjðΔfÞ, the integrand of the relative entropy (66), is its
normal component, and so the relative entropy SðfkΩÞ is
the Noether charge—if f is supported in the wedgeWj (14)
such that Δf, restricted to the Cauchy surface, has support
only where xj ≥ 0 and ΘðxjÞ ¼ 1. Otherwise, because Qj

is negative for xj < 0 as can be seen from the explicit
expression (63), the Noether charge is strictly smaller than
the relative entropy.
The definition of the relative entropy SðρkσÞ (1) leads

directly to its microscopic interpretation [46], namely as
the average amount of information that is gained from
measurements when the system is mistakenly described
by the density matrix σ, while its true density matrix is
given by ρ. In other words, after making a large number N
of measurements, the probability p to mistakenly describe
the system by σ while it actually is in the state described
by ρ is proportional to e−NSðρkσÞ. However, it is also
possible to give a macroscopic interpretation in a thermo-
dynamic context. Instead of the usual von Neumann
entropy, also relative entropy can be used to formulate
the thermodynamic laws [47,48]. In particular, the second
law according to which entropy can only increase in a
physical process can be reformulated as the statement that
relative entropy in some given spacetime volume can only
decrease, such that the states become less distinguishable,
and the third law can be replaced by the statement that
the relative entropy between the ground state and a
thermodynamic equilibrium state (in either the canonical
or grand-canonical ensembles) vanishes in the limit of
vanishing temperature T → 0. Instead, the first law still
involves the entropy S itself, and in the microcanonical
ensemble reads

δSðρkσmÞ ¼ −δSðρÞ þ βδEðρÞ − βμδNðρÞ: ð72Þ

Here, ρ is the density matrix of an arbitrary state with
the same volume, energy E, and particle number N as the

microcanonical density matrix σm, β is the inverse temper-
ature and μ the chemical potential. In the canonical and
grand-canonical ensembles, a similar relation holds.
Consider now the relative entropy for two different

coherent excitations with test functions h and hþ δh.
For a coherent excitation, we have ρh ¼ UðhÞρU−1ðhÞ
with the unitary UðhÞ ¼ eiϕðhÞ, from which it follows that
fðρhÞ ¼ UðhÞfðρÞU−1ðhÞ for reasonable functions f.
Consequently, we have trðρf ln ρfÞ ¼ trðρ ln ρÞ and the
von Neumann entropies SðρÞ and SðρfÞ are equal. It
follows that one can obtain the (inverse) temperature β
associated to the state by deriving the relative entropy of a
coherent excitation with respect to the energy, while the
chemical potential is obtained by deriving it with respect to
the particle number. Now our result (66) is of the form

SðfkΩÞ ¼
Z

βμTμνðΔfÞnνjΣ
ffiffiffi
γ

p
dn−1x ð73Þ

with the local temperature vector

βμ ¼ 2πΘðxjÞξμðjÞ: ð74Þ

This is clearly a generalization of the global thermody-
namic laws to the case where quantities such as the
temperature can vary with the position. Consider then an
observer who follows the trajectories (16), such that their
four-velocity uμ is proportional to the Killing vector ξμðjÞ.
On the Cauchy surface Σ, using Eqs. (17) and (D1) we
compute that

uμjΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p

xj
ξμðjÞjΣ ¼ nμjΣ; ð75Þ

which is normalized to uμuμ ¼ −1, such that the local
temperature vector (74) can be written as βμ ¼ βuμ with the
local temperature

βðxÞjΣ ¼ 2πΘðxjÞ xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p : ð76Þ

Indeed, with these definitions the relative entropy (73) can
be written in the form

SðfkΩÞ ¼
Z

βeðΔfÞjΣ
ffiffiffi
γ

p
dn−1x ð77Þ

with the local energy density eðΔfÞ≡ uμuνTμνðΔfÞ, and
the local inverse temperature β is correctly obtained as
the variation of the relative entropy with respect to the
energy density that the observer sees. In the flat-space
limit H → 0, we moreover recover the known result
βðxÞjΣ → 2πΘðxjÞxj [49,50].
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VI. DISCUSSION

We have considered the relative entropy between the
vacuum and a coherent excitation thereof for a massive
scalar field in de Sitter spacetime. The result (66) reads

SðfkΩÞ ¼ 2π

Z
xj≥0

QjðΔfÞjΣ
ffiffiffi
γ

p
dn−1x ð78Þ

with QjðhÞ ¼ nμξνðjÞTμνðhÞ (71), and is equal to the

Noether charge of translations along the flow of the
Killing vector field −M0j ¼ ξνðjÞ∂ν if f has support in

the wedge Wj (14). While we have derived this result in
all detail for the case of free scalar fields, we expect it to
hold more generally because of the following reasons:
by the Bisognano-Wichmann theorem [15,16] the modular
Hamiltonian lnΔΩ for the vacuum state restricted to
wedges in Minkowski spacetime is equal to −2πM0j,
even for interacting fields. Since the generators M0j are
tangent to the de Sitter hyperboloid, also the modular
Hamiltonian for de Sitter wedges is equal to −2πM0j [32].
BecauseM0j generates Lorentz or de Sitter symmetries, the
action of M0j on quantum fields is given by the commu-
tator with the stress tensor, contracted with the Killing
vector ξνðjÞ, and this holds also for interacting theories. Of

course, what may happen is that the commutator with the
Weyl operators WðfÞ ¼ eiϕðfÞ does not result anymore in
the classical stress tensor evaluated on Δf, and this is why
we cannot ascertain that our result will hold in general. It is
also possible that the result in this case may depend on
the renormalization freedom of the stress tensor in the
quantum theory [51], and it would therefore be very
interesting to study the interacting case in detail, even at
first order in perturbation theory.
We have further verified that the relative entropy SðfkΩÞ

is positive, for which we needed to choose a suitable
Cauchy surface (56) to make positivity manifest. We have
to also checked its joint convexity (67), which for the free
scalar field follows more or less straightforwardly from
positivity. Since these two properties follow from general
considerations for the relative entropy [8,12], they provide
a useful check on the computation, and of course will also
hold in more general situations including interactions.
Lastly, we have determined the local temperature that is
seen by an observer who is following the flow trajectories
of the Killing vector field −M0j, generalizing the result for
wedges in flat spacetime [49,50]. We have done this by
employing the reformulation of thermodynamic laws using
relative entropy [47,48], which for a coherent excitation
tells us that the local inverse temperature can be obtained as
the derivative of the relative entropy with respect to the
energy density that the observer sees.
Another important property of relative entropy is its

convexity with respect to inclusions [52]. For this, let us

consider instead of a single wedge Wj a family of regions
RðλÞ depending on a parameter λ, which are such that the
modular automorphism αs (20) with positive flow param-
eter s moves operators into regions with larger λ. That is,
given WðfÞ with supp f ⊂ Rðλ0Þ, for each λ ≥ λ0 there
exists some s ≥ 0 such that supp αsðWðfÞÞ ⊂ RðλÞ. Such a
construction is known as half-sided modular inclusion,
and holds for example for a family of wedges in Minkowski
spacetime which are translated in a null direction
[41,52,53]. Computing the relative entropy SλðfkΩÞ for
this family of regions, its convexity is the statement that
∂
2
λSλðfkΩÞ ≥ 0. For the null translated Minkowski wedges,
it turns out that the second derivative of the relative entropy
is given by (see Theorem 3.6 in Ref. [41])

∂
2
λSλðfkΩÞ ¼ 2π

Z
vμvνTμνðΔfÞjt¼xj¼λd

n−2x⊥; ð79Þ

where vμ ¼ δμ0 þ δμj is the lightlike vector tangent to the
upper null boundary of the wedge Wj. The pointwise
condition vμvνTμν ≥ 0 is known as the null energy con-
dition (NEC), and expresses the fact that light rays are
always focused and never repelled by matter. While
classical matter usually does obey this condition as well
as other energy conditions (and in fact the NEC does hold
for the case at hand [41]), in the quantum theory
pointwise conditions are violated, and moreover one
can find states in which the energy density at any single
point can have arbitrarily negative expectation values
[54,55]. However, it is possible to derive averaged energy
conditions (see Refs. [56,57] and references therein),
where the pointwise condition is smeared with a test
function, at least for the weak energy condition where the
stress tensor is contracted with the tangent vector of a
timelike worldline. While the lower bound depends on the
test function and can be negative in general, at least it is
finite. The situation becomes better in the limit where the
test function f becomes a constant, and the corresponding
condition is called averaged. In particular, the averaged
NEC (ANEC) very often holds, in many cases even with a
lower bound of 0 [58–61].
Clearly, the (pointwise) NEC implies convexity of the

relative entropy (79), but the reverse is not necessarily
true. Moreover, also the ANEC does not imply convexity,
since the integral in Eq. (79) is over directions transverse
to the null boundary and not along it. Nevertheless, the
convexity of the relative entropy is related to a NEC of a
different type, dubbed the quantum NEC (QNEC), which
reads vμvνhΨjTμνðxÞjΨi ≥ S00

Ψ. Here, Ψ is a state restricted
to a region whose boundary contains x, and S00

Ψ is the
second derivative of the von Neumann entropy with
respect to null translations of this region along vμ.
Even though the von Neumann entropy itself is divergent,
its derivative can be finite, and the QNEC has been argued
to hold in general [62–64]. Moreover, the relation between
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the QNEC, the ANEC and modular theory has been
elucidated [65–67].
It would of course be interesting to prove convexity for

inclusions also in the de Sitter case, and to see if one could
relate it to a QNEC or ANEC. However, the wedges Wj in
de Sitter space are rather artificial regions, as can be seen
from Fig. 1. The regions which play a more physical role
are the double cones or diamonds inside the static patch,
which are the regions that a geodesic observer can causally
influence. The modular Hamiltonian for double cones in de
Sitter has been determined recently [68], and we plan to
extend our computation also to this setting. Moreover, the
diamonds can be chosen such that their (future or past)
boundary coincides with the cosmological horizon, which
allows us to study the generalized second law [2,3] (with
the generalized entropy being given by the sum of the
matter entropy and the Bekenstein-Hawking entropy of the
horizon) from a rigorous field-theoretic perspective [69].
In turn, we could then compare the obtained results with
the ones obtained in the de Sitter holographic correspon-
dence [70–72], where the horizon horizon entropy can be
understood as the entanglement entropy between the right
and left dual conformal field theories (CFTs) that appear in
the correspondence, or between the past and future dual
CFTs [73–79].
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APPENDIX A: COVARIANT CANONICAL
QUANTIZATION

Here we recall the covariant canonical quantization of a
scalar field; see Refs. [80,81] for a more detailed dis-
cussion. The Lagrangian density for a massive scalar field
with mass m in a curved spacetime reads

L ¼ −
1

2
ð∇μϕ∇μϕþm2ϕ2Þ ffiffiffiffiffiffi

−g
p

¼ 1

2
eðn−1ÞHt½ϕ̇2 − e−2Ht

∂
iϕ∂iϕ −m2ϕ2�; ðA1Þ

where the second expression holds in the expanding
Poincaré patch with metric (7), and we denote the deriva-
tive with respect to the cosmological time t by a dot. In the
following, we write xμ ¼ ðt; xÞ and yμ ¼ ðs; yÞ. The covar-
iant canonical momentum is defined from the Lagrangian
density by

πμ ≡ 1ffiffiffiffiffiffi−gp ∂L
∂ð∇μϕÞ

¼ −∇μϕ; ðA2Þ

and the Euler-Lagrange equation for ϕ is the Klein-Gordon
equation (with △≡ ∂

i
∂i)

ð∇2 −m2Þϕ ¼
h
−∂2t − ðn − 1ÞH∂t þ e−2Ht△ −m2

i
ϕ ¼ 0:

ðA3Þ

For any two solutions ϕð1Þ and ϕð2Þ, it follows that the
covariant symplectic current

Jμð1;2Þ ≡ i
�
ϕ�
ð1Þπ

μ
ð2Þ − ϕð2Þπ

μ�
ð1Þ
�

ðA4Þ

is covariantly conserved: ∇μJ
μ
ð1;2Þ ¼ 0. Consequently, the

covariant symplectic product

σðϕð1Þ;ϕð2ÞÞ≡
Z
Σ
Jμð1;2Þnμd

n−1Σ; ðA5Þ

where Σ is a Cauchy surface, nμ the future-directed unit
vector normal to Σ and dn−1Σ the normalized surface
element, is independent of the choice of the Cauchy surface
(assuming the solutions fall off fast at spatial infinity). This
follows straightforwardly; we have

0 ¼
Z
V
∇μJ

μ
ð1;2Þ

ffiffiffiffiffiffi
−g

p
dnx

¼
Z
V
∂μðJμð1;2Þ

ffiffiffiffiffiffi
−g

p Þdnx

¼
Z
∂V

Jμð1;2Þ
ffiffiffiffiffiffi
−g

p
nμdn−1S ðA6Þ

for any region V with boundary ∂V by Gauß’ divergence
theorem, where nμ is the outward-directed unit vector
normal to the boundary ∂V and dn−1S the normalized
surface element of the boundary. Choosing V to be the
complete volume between two Cauchy surfaces Σ1 and Σ2

such that ∂V ¼ Σ1 ∪ Σ2 ∪ S∞, where S∞ is the part of the
boundary at spatial infinity, assuming that the solutions fall
off fast at spatial infinity such that Jμð1;2Þ vanishes there, and
flipping the normal vector of the earlier Cauchy surface Σ1

such it is also future-pointing, we obtain

0 ¼
Z
Σ1

Jμð1;2ÞnμdΣ −
Z
Σ2

Jμð1;2Þnμd
n−1Σ ðA7Þ

with dn−1Σ ¼ ffiffiffiffiffiffi−gp
dn−1S, and thus the independence of

the covariant symplectic product from the Cauchy surface.
For our purposes, we can choose the Cauchy surface Σ to be
at constant time t ¼ 0 such that nμ ¼ δ0μ and

ffiffiffiffiffiffi−gp ¼ 1,
such that

σðϕð1Þ;ϕð2ÞÞ

¼ i
Z

½ϕ�
ð1Þð0; xÞϕ̇ð2Þð0; xÞ − ϕð2Þð0; xÞϕ̇�

ð1Þð0; xÞ�dn−1x;

ðA8Þ
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where we recall that a dot denotes a derivative with
respect to time. In the embedding coordinates (6), this
corresponds to the surface X0 − Xn ¼ H−1, and also the
antisymmetry

σðϕð2Þ;ϕð1ÞÞ ¼ −σðϕ�
ð1Þ;ϕ

�
ð2ÞÞ ðA9Þ

is manifest.
Since the symplectic product is nondegenerate, we

obtain a complete set of normalizable mode solutions
fpðt; xÞ to the Klein-Gordon equation,

fpðt; xÞ ¼ cðpÞe−n−1
2
Hteipx

�
Jμ

	jpj
H

e−Ht



þ iYμ

	jpj
H

e−Ht


�
;

ðA10Þ

where μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1Þ2

4
− m2

H2

q
, J and Y are the Bessel functions

of the first and second kind, and the factor cðpÞ can be
determined from the normalization. Note that for small
masses m2 ≤ ðn − 1Þ2=4H2, μ is real, but for large masses
it becomes purely imaginary: in this case, one has to use the
appropriate real and imaginary parts J̃ and Ỹ [34]. In the
following, we consider only real μ, and leave the straight-
forward modifications for purely imaginary μ to the reader.
Since for real argument and parameter the Bessel functions
are real [34], we obtain

f�pðt; xÞ ¼ c�ðpÞe−n−1
2
Hte−ipx

×

�
Jμ

	jpj
H

e−Ht



− iYμ

	jpj
H

e−Ht


�
; ðA11Þ

and using Bessel function identities, for the symplectic
product (A5) of two modes4 we obtain

σðfp; fqÞ ¼ ð2πÞn−1δn−1ðp − qÞjcðpÞj2 4H
π

: ðA12Þ

We thus choose jcðpÞj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð4HÞp

, and leave the phase
factor undetermined, since it will not affect the result.5

Similarly, we obtain

σðf�p; fqÞ ¼ 0 ¼ σðfp; f�qÞ; ðA13aÞ

σðf�p; f�qÞ ¼ ð2πÞn−1δn−1ðp − qÞ; ðA13bÞ

which reflects the orthogonality of the set of mode
functions. Moreover, we have a second orthogonality
relation in Fourier space, which reads

i
Z

½f�pðt; xÞḟpðt; yÞ − fpðt; xÞḟ�pðt; yÞ�
dn−1p
ð2πÞn−1

¼ e−ðn−1ÞHtδn−1ðx − yÞ: ðA14Þ

The field is then canonically quantized as

ϕðxÞ ¼
Z

½aðpÞfpðt; xÞ þ a†ðpÞf�pðt; xÞ�
dn−1p
ð2πÞn−1

¼ ϕ†ðxÞ; ðA15Þ

where the creation and annihilation operators fulfill the
commutation relations

½aðpÞ; a†ðqÞ� ¼ σðfp; fqÞ ¼ ð2πÞn−1δn−1ðp − qÞ; ðA16aÞ

½aðpÞ; aðqÞ� ¼ 0 ¼ ½a†ðpÞ; a†ðqÞ�; ðA16bÞ

and can be obtained from the field by computing the
sympletic product with the mode functions,

σðfp;ϕÞ ¼ aðpÞ; σðf�p;ϕÞ ¼ a†ðpÞ: ðA17Þ

The vacuum vector jΩi is annihilated by all annihilation
operators aðpÞ, and for the above choice of mode functions
is known as the Bunch-Davies vacuum [37–39]. Using
the second orthogonality relation, it follows that ϕ and
nμπμ ¼ ϕ̇ fulfill the covariant canonical commutation
relations on the Cauchy surface Σ ¼ fðt; xÞ∶t ¼ constg:

½ϕðxÞ; ϕ̇ðyÞ�jΣ ¼ ie−ðn−1ÞHtδn−1ðx − yÞ ¼ i
δn−1ðx − yÞffiffiffiffiffiffi−gp :

ðA18Þ

From the expansion of ϕ in modes (A15) and the
explicit form of the modes (A10), we can now compute
the Wightman two-point function

hΩjϕðxÞϕðx0ÞjΩi ¼
Z

fpðxÞf�pðx0Þ
dn−1p
ð2πÞn−1 : ðA19Þ

The computation of the integral is quite involved, and is
done in detail in Appendix A in Ref. [83]. It results in

hΩjϕðxÞϕðx0ÞjΩi ¼ Hn−2

ð4πÞn2 Iμðx; x
0Þ; ðA20Þ

with the function

4Even though the modes do not decay at spatial infinity, one
can nevertheless easily see explicitly that their symplectic product
is time-independent by reinstating a factor

ffiffiffiffiffiffi−gp ¼ eðn−1ÞHt in the
covariant symplectic product (A5) and evaluating it at a generic
time t.

5To obtain the correct flat-space limit of the modes, one has to
choose the phase factor as in Ref. [82].
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Iμðx; x0Þ ¼
Γðn−1

2
þ μÞΓðn−1

2
− μÞ

Γðn
2
Þ lim

ϵ→0þ 2F1

�
n − 1

2
þ μ;

n − 1

2
− μ;

n
2
;
1þ Zðx; x0Þ

2
− iϵ sgnðt − t0Þ

�
ðA21Þ

depending on the de Sitter-invariant distance Zðx; x0Þ (9). For spacelike separation with Zðx; x0Þ < 1, we can take the limit
ϵ → 0 inside the hypergeometric function, while for timelike separation with Zðx; x0Þ > 1 we first have to use a
transformation of variables [see Eq. (15.8.3) in Ref. [34]] to obtain

Iμðx; x0Þ ¼
2
n−3
2
−μΓðn−1

2
þ μÞΓð−μÞffiffiffi
π

p ½Zðx; x0Þ − 1�−n−1
2
−μe−iπðn−12 þμÞsgnðt−t0Þ

× 2F1

	
1

2
þ μ;

n − 1

2
þ μ; 1þ 2μ;−

2

Zðx; x0Þ − 1



þ ðμ → −μÞ: ðA22Þ

It is also useful to write the result (A21) in a slightly
different form, taking into account that the causal structure
of de Sitter space is inherited from the ambient space, such
that sgnðt − t0Þ ¼ sgnðX0ðxÞ − X0ðx0ÞÞ if the points are
timelike separated. Using the expression of Z in terms
of embedding coordinates (8) we obtain

lim
ϵ→0þ

�
1þ Zðx; x0Þ

2
− iϵ sgnðt − t0Þ

�
¼ lim

ϵ→0þ

1þ Zϵðx; x0Þ
2

ðA23Þ

with

Zϵðx; x0Þ ¼ −H2½X0ðxÞ − iϵ�½X0ðx0Þ þ iϵ�
þH2XiðxÞXiðx0Þ þH2XnðxÞXnðx0Þ; ðA24Þ

since in the limit ϵ → 0 only the sign is relevant.

APPENDIX B: COMMUTATOR AND
SYMPLECTIC PRODUCT

From the mode functions (A10), one also computes the
advanced and retarded propagators

Gretðx; yÞ ¼ −iΘðt − sÞ
Z

½fpðt; xÞf�pðs; yÞ

− f�pðt; xÞfpðs; yÞ�
dn−1p
ð2πÞn−1 ; ðB1aÞ

Gadvðx; yÞ ¼ Gretðy; xÞ; ðB1bÞ

which are easily checked to be fundamental solutions of the
Klein-Gordon equation, using again the second orthogon-
ality relation:

½−∂2t − ðn − 1ÞH∂t þ e−2Ht△ −m2�Gret=advðx; yÞ

¼ e−ðn−1ÞHtδðt − sÞδn−1ðx − yÞ ¼ δnðx − yÞffiffiffiffiffiffi−gp : ðB2Þ

Finally, the commutator function

Δðx; yÞ≡Gadvðx; yÞ −Gretðx; yÞ

¼ i
Z

½fpðt; xÞf�pðs; yÞ − f�pðt; xÞfpðs; yÞ�
dn−1p
ð2πÞn−1 ;

ðB3Þ

which satisfies the Klein-Gordon equation (A3), deter-
mines the spacetime commutator of two fields,

½ϕðxÞ;ϕðyÞ� ¼ −iΔðx; yÞ: ðB4Þ

For the commutator function we have the important identity
Δðt; x; t; yÞ ¼ 0, which is proven by changing p → −p in
the second term of Eq. (B3), and reflects the fact that the
fields commute at spatial separations. Analogously, we
obtain ∂s∂tΔðx; yÞjs¼t ¼ 0, which encodes the vanishing of
the canonical momenta at spatial separations. Furthermore,
using the second orthogonality relation (A14), it also holds
that

∂tΔðx; yÞjs¼t ¼ e−ðn−1ÞHtδn−1ðx − yÞ; ðB5Þ

which reflects that the field and momentum have the
nonvanishing equal-time commutator (A18).
In general, we consider fields smeared with a test

function f

ϕðfÞ ¼
Z

fðxÞϕðxÞ ffiffiffiffiffiffi
−g

p
dnx; ðB6Þ

where f∈SðRnÞ is a Schwartz function, and for two test
functions define an inner product

ðf; hÞ≡
Z

f�ðxÞhðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
dnx: ðB7Þ

It follows that the commutator (B4) can be written in
the form

½ϕðfÞ;ϕðhÞ� ¼ −iðf�;ΔhÞ ¼ −iðΔf�; hÞ; ðB8Þ
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where

ðΔhÞðxÞ≡
Z

Δðx; yÞhðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
dny ðB9Þ

is the smeared commutator function.
Consider now two functions f and h, where at least one of them has compact support in spatial directions. Then Green’s

identity (i.e., integration by parts) results inZ
t1≤x0≤t2

½f�ðxÞð∇2 −m2ÞhðxÞ − hðxÞð∇2 −m2Þf�ðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
dnx

¼ −
Z �

eðn−1ÞHtf�ðt; xÞḣðt; xÞ − eðn−1ÞHthðt; xÞḟ�ðt; xÞ�t2t1dn−1x: ðB10Þ

We take f to be a solution of the Klein-Gordon equation,
and instead of h the two combinations

hret=advðxÞ ¼
Z

Gret=advðx; yÞhðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðyÞ

p
dny; ðB11Þ

where h has compact support in spatial directions. Since the
retarded and advanced Green’s functions (B1) have support
only inside the light cone, for all t1 ≤ t ≤ t2 also hret=adv has
compact support in spatial directions. It follows that

Z
t1≤t≤t2

f�ðxÞhðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
dnx

¼ −
Z �

eðn−1ÞHtf�ðt; xÞḣret=advðt; xÞ

− eðn−1ÞHthret=advðt; xÞḟ�ðt; xÞ
�
t2
t1
dn−1x: ðB12Þ

Since in the limit t → −∞, the retarded combination hretðxÞ
vanishes, while for t → ∞ the advanced combination
hadvðxÞ vanishes, we can take t1 ¼ −∞, t2 ¼ 0 for hret
and t1 ¼ 0, t2 ¼ ∞ for hadv, and obtain

Z
t≤0

f�ðxÞhðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
dnx

¼ −
Z �

f�ð0; xÞḣretð0; xÞ − hretð0; xÞḟ�ð0; xÞ
�
dn−1x;

ðB13aÞ
Z
0≤t

f�ðxÞhðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
dnx

¼
Z �

f�ð0; xÞḣadvð0; xÞ − hadvð0; xÞḟ�ð0; xÞ
�
dn−1x:

ðB13bÞ

Combining both and using the definition of the commutator
function (B3), it follows that

ðf; hÞ ¼
Z

f�ðxÞhðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p
dnx

¼
Z �

f�ðt; xÞ∂tðΔhÞðt; xÞ

− ðΔhÞðt; xÞḟ�ðt; xÞ�t¼0
dn−1x

¼ −iσðf;ΔhÞ; ðB14Þ

since both f (by assumption) and Δh are solutions of
the Klein-Gordon equation, such that their symplectic
product σð·; ·Þ [given in Eq. (A8)] is well-defined and time
independent. Taking into account that ϕ is self-adjoint,
we thus obtain

ϕðfÞ ¼ ðϕ; fÞ ¼ −iσðϕ;ΔfÞ; ðB15Þ

which expresses the smeared field in terms of its initial data
on a Cauchy surface. Moreover, it also follows that the
commutator of two smeared fields (B8) can be expressed
using the symplectic product:

½ϕðfÞ;ϕðhÞ� ¼ −iðΔf�; hÞ ¼ −σðΔf�;ΔhÞ: ðB16Þ

Furthermore, using the definition of the symplectic
product (A8) we obtain

σðϕ; fÞ ¼ i
Z

½ϕð0; xÞḟð0; xÞ − fð0; xÞπð0; xÞ�dn−1x;

ðB17Þ

and hence using the canonical commutation relation (A18)

½σðϕ; fÞ; σðϕ; gÞ� ¼ −σðf�; gÞ: ðB18Þ

Lastly, we note that the de Sitter Killing vectors define
(after multiplication with i) operators that are symmetric
with respect to the inner product; for test functions f and h
we compute
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ðD†f; hÞ ¼ ðf;DhÞ

¼
ZZ

f�ðt; xÞð−H−1
∂t þ xi∂iÞhðt; xÞeðn−1ÞHtdnx

¼ −
ZZ

Df�ðt; xÞhðt; xÞeðn−1ÞHtdnx

¼ −ðDf; hÞ; ðB19Þ

and analogously

ðf; KjhÞ ¼ −ðKjf; hÞ; ðf; PjhÞ ¼ −ðPjf; hÞ; ðB20Þ

such that iD, iKj, and iPj are symmetric; ðiDÞ† ¼ iD etc.
Since the embedding space Killing vectors are constant
linear combinations of these, also they are symmetric with
respect to the inner product. Using the Noether method, one
can then construct symmetric operators D, Kj, and Pj on

the Fock space of the free scalar field, representing them as
commutators:

i½D;ϕðxÞ� ¼ DϕðxÞ; i½Kj;ϕðxÞ� ¼ KjϕðxÞ;
i½Pj;ϕðxÞ� ¼ PjϕðxÞ: ðB21Þ

For the proof that these operators are in fact self-adjoint on
Fock space, we refer the reader to Ref. [32].

APPENDIX C: COVARIANCE OF THE
COMMUTATOR

Since the commutator function Δðx; yÞ is de Sitter
invariant, subjecting both x and y to the same trans-
formation it stays invariant. Let us show this explicitly
for the generators of translations Pj and boosts Kj (12). For
translations, this is very simple: with the explicit expression
(B3) of Δ in terms of the modes (A10), we compute

ðPx
j þ Py

jÞΔðx; yÞ ¼ i
Z

½∂jfpðt; xÞf�pðs; yÞ − ∂jf�pðt; xÞfpðs; yÞ þ fpðt; xÞ∂jf�pðs; yÞ − f�pðt; xÞ∂jfpðs; yÞ�
dn−1p
ð2πÞn−1

¼ i
Z

½ipjfpðt; xÞf�pðs; yÞ þ ipjf�pðt; xÞfpðs; yÞ − fpðt; xÞipjf�pðs; yÞ − f�pðt; xÞipjfpðs; yÞ�
dn−1p
ð2πÞn−1

¼ 0; ðC1Þ

where we denote the point on which the generators act by a superscript. For the boosts, the computation is much more
involved, and we have to use the identities

xifpðt; xÞ ¼ −i∂pifpðt; xÞ − i
pi

p2

�
H−1

∂tfpðt; xÞ þ
n − 1

2
fpðt; xÞ

�
; ðC2aÞ

pixixjfpðt; xÞ ¼ −pi∂pi∂pjfpðt; xÞ þ pjH−2e−2Htfpðt; xÞ −H−1
∂pj∂tfpðt; xÞ −H−1 p

j

p2
pi∂pi∂tfpðt; xÞ −

n − 1

2
∂pjfpðt; xÞ

−
n − 1

2

pj

p2
pi∂pifpðt; xÞ þ

pj

Hp2
∂tfpðt; xÞ −

ðn − 1Þðn − 3Þ
4

pj

p2
fpðt; xÞ þ

m2pj

H2p2
fpðt; xÞ; ðC2bÞ

x2fpðt; xÞ ¼ −△pfpðt; xÞ þH−2e−2Htfpðt; xÞ −
2pj

Hp2
∂pj∂tfpðt; xÞ − ðn − 1Þ p

j

p2
∂pjfpðt; xÞ

−
n − 3

Hp2
∂tfpðt; xÞ −

ðn − 1Þð3n − 7Þ
4p2

fpðt; xÞ þ
m2

H2p2
fpðt; xÞ ðC2cÞ

and their complex conjugates, and integrate the derivatives
with respect to p by parts to obtain

ðKx
j þ Ky

jÞΔðx; yÞ ¼ 0: ðC3Þ

APPENDIX D: TILTED CAUCHY SURFACE

We consider the surface

Σ ¼ fðt; xÞ∶2Htþ lnð1þH2x2Þ ¼ 0g; ðD1Þ

whose normalized future-pointing normal vector reads

nμ ¼ −Nð1þH2x2; HxiÞμ; ðD2aÞ

nμ ¼ Nð1þH2x2;−e−2HtHxiÞμ; ðD2bÞ

N ≡ ½ð1þH2x2Þ2 − e−2HtH2x2�−1
2; ðD2cÞ

that on the surface itself reduces to
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nμjΣ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2x2
p ð1þH2x2; HxiÞμ; ðD3aÞ

nμjΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p
ð1;−HxiÞμ; ðD3bÞ

NjΣ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p : ðD3cÞ

The induced metric γij can be obtained from

ds2jΣ ¼ γijdxidxj ðD4Þ

and reads

γij ¼
δij

1þH2x2
−

H2xixj
ð1þH2x2Þ2 ; ðD5aÞ

γij ¼ ð1þH2x2Þδij þH2ð1þH2x2Þxixj; ðD5bÞ
ffiffiffi
γ

p ¼ ð1þH2x2Þ−n
2: ðD5cÞ

All derivatives can be decomposed into a derivative
normal to the surface ∂n ≡ nμ∂μ, and tangential ones ∂̂μ≡
ðδνμ þ nμnνÞ∂ν, such that ∂μ ¼ ∂̂μ − nμ∂n, and we compute

∂n ¼ Nð1þH2x2Þ∂t − e−2HtNHxi∂i; ðD6aÞ

∂̂t ¼ ∂t − Nð1þH2x2Þ∂n
¼ −e−2HtN2½H2x2∂t − ð1þH2x2ÞHxk∂k�; ðD6bÞ

∂̂i¼∂i−NHxi∂n

¼∂iþe−2HtN2H2xixk∂k−N2Hð1þH2x2Þxi∂t; ðD6cÞ

and on the surface itself

∂njΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p
ð∂t −Hxk∂kÞ; ðD7aÞ

∂̂tjΣ ¼ −H2x2∂t þ ð1þH2x2ÞHxk∂k; ðD7bÞ

∂̂ijΣ ¼ ∂i þH2xixk∂k −Hxi∂t: ðD7cÞ

We can then use the relation

∂̂t ¼ e−2Ht Hxi

1þH2x2
b∂i ðD8Þ

to replace ∂̂t in all expressions and keep only ∂n and ∂̂j. The
Klein-Gordon equation (A3) then reduces to

ð∇2 −m2ÞϕjΣ ¼ −∂2nϕ − ðn − 3ÞH2xk∂̂kϕ −m2ϕ

þ ½ð1þH2x2Þδkl −H2xkxl�∂̂k∂̂lϕ; ðD9Þ

and the symplectic product (A5) on Σ reads

σðϕð1Þ;ϕð2ÞÞ ¼ i
Z

½ϕ�
ð1ÞðxÞ∂nϕð2ÞðxÞ

− ϕð2ÞðxÞ∂nϕ�
ð1ÞðxÞ�Σ

ffiffiffi
γ

p
dn−1x: ðD10Þ

For the Killing vector M0j (17), using Eq. (D6) we
compute

M0j ¼ −
N
2
xjð3þH2x2 − e−2HtÞ∂n

þ ð1þH2x2 − e−2HtÞ
	

Hxjxk

1þH2x2
∂̂k −

1

2H
∂̂j



;

ðD11Þ

and from this the commutator

½M0jh∂nh − h∂nM0jh�Σ ¼ −
xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2x2
p ½∂nh∂nhþ ½ð1þH2x2Þδkl −H2xkxl�∂̂kh∂̂lhþm2h2 þ hð∇2 −m2Þh�Σ

−
�
∂̂k

�
xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þH2x2
p H2xkxlh∂̂lh − xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2x2

p
h∂̂kh

��
Σ
: ðD12Þ

The last term is a boundary term inside the surface Σ and thus vanishes after integration over the Cauchy surface. This can
be seen also explicitly by computingZ

∂̂kfðxÞjΣ
ffiffiffi
γ

p
dn−1x ¼

Z
∂̂kfðxÞenHt2Hδ½2Htþ lnð1þH2x2Þ�dnx

¼ −2H
Z

enHtfðxÞ½∂k þH2xkxj∂j −Hxk∂t�δ½2Htþ lnð1þH2x2Þ�dnx ¼ 0; ðD13Þ

where the last equality follows after performing the derivatives on the Dirac δ.
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Poincaré 70, 23 (1999), http://www.numdam.org/item/
AIHPA_1999__70_1_23_0/; 70, 560(E) (1999), http://
www.numdam.org/item/AIHPA_1999__70_5_560_0/.

[33] D. Buchholz, O. Dreyer, M. Florig, and S. J. Summers,
Geometric modular action and space-time symmetry
groups, Rev. Math. Phys. 12, 475 (2000).

[34] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain, NIST digital
library of mathematical functions, https://dlmf.nist.gov/
(2023), Release 1.1.9 of 2023-03-15.

[35] M. Takesaki, Theory of operator algebras II, Encyclopaedia
of Mathematical Sciences Vol. 125 (Springer-Verlag, Berlin,
Heidelberg, Germany, 2003), 10.1007/978-3-662-10451-4.

[36] R. Achilles and A. Bonfiglioli, The early proofs of the
theorem of Campbell, Baker, Hausdorff, and Dynkin, Arch.
Hist. Exact Sci. 66, 295 (2012).

[37] N. A. Chernikov and E. A. Tagirov, Quantum theory
of scalar field in de Sitter space-time, Ann. Inst. Henri
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