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Relative entropy in de Sitter spacetime is a Noether charge
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We compute the relative entropy between the vacuum and a coherent state for a massive scalar field in
de Sitter spacetime, using Tomita-Takesaki modular theory and the Araki-Uhlmann formula for the relative
entropy. Embedding de Sitter spacetime as a hyperboloid in the ambient Minkowski space, we can restrict
the Minkowski wedge and the corresponding modular operator to de Sitter, and we verify that this
construction gives the correct modular flow. We check that the relative entropy is positive and jointly
convex, relate it to the Noether charge of translations along the trajectories of the modular flow, and
determine the local temperature as seen by an observer that moves along these trajectories.
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I. INTRODUCTION

Entanglement entropy, computed as the von Neumann
entropy Syn(p) = —tr(pIn p) of the reduced density matrix
pr of the degrees of freedom localized in some region or
subsystem R, is an important measure of entanglement in
statistical physics. However, its application to quantum
field theory shows some problems. First, it is a divergent
quantity in the continuum (see for example Ref. [1] and
references therein); the entanglement entropy S of a region
in an n-dimensional spacetime computed with an UV cutoff
€ behaves like S ~ Ae2™" in the limit € — 0, where A is the
(n — 2)-dimensional area of the region’s boundary. Second,
the proportionality coefficient depends on the number of
fields in the theory and the details of their interaction.
While this formula correctly reproduces the area depend-
ence of the famous Bekenstein-Hawking formula for the
entropy of a black hole horizon [2-5], the latter is not only
finite (with the UV cutoff replaced by the Planck length
¢p), but also universal with a model-independent coef-
ficient of proportionality equal to 1/4.

To be able to obtain the Bekenstein-Hawking formula
from entropy considerations in quantum field theory, one
therefore has to study finite quantities such as the relative
entropy

S(pllo) = tr(plnp —plno), (1)
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which compares two different density matrices p and o.
In particular, if p and o are the reduced density matrices of
two different states, one obtains the relative entanglement
entropy that compares the entanglement of these states.
Since the divergences in the entanglement entropy essen-
tially result from the high-frequency modes which are
common to all states (including the vacuum, which results
in the Reeh-Schlieder theorem [6]), the relative entangle-
ment entropy can be finite also in quantum field theory in
the limit of a vanishing UV cutoff e. That this is indeed so,
is shown by the Araki-Uhlmann formula [7-9]

S(P[|®@) = —(¥[In Ayjo|¥), (2)

which relates the relative entropy between two states |¥)
and |®) to the expectation value of the relative modular
Hamiltonian In Ayq associated to these states and a given
von Neumann algebra .A. This formula was obtained in the
framework of Tomita-Takesaki modular theory [10,11],
where the von Neumann algebra .4 can be taken to be the
algebra of fields in a certain region (such as a wedge or a
double cone), and where the states |¥) and |®) must be
cyclic and separating for A.

In quantum mechanics, the relative modular Hamiltonian
can be written in terms of the reduced density matrices py
and pg associated to the states |¥) and |®). In fact, on the
tensor product Hilbert space describing the bipartite quan-
tum system (of the region of interest and its complement) it
has the very simple expression [12]

InAyie = In(pg' ® py), (3)

such that the Araki-Uhlmann formula (2) reduces to
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S(¥[@) = —trlpy In(pg' ® py)] = S(pyllpe). (4)

the correct expression (1) for the relative entropy in terms
of density matrices. In quantum field theory, the determi-
nation of the relative modular Hamiltonian is more difficult.
One important subcase is when the states |¥) and |®) are
obtained as coherent excitations of another state |Q), for
which the modular Hamiltonian In Ag is known. In this
case, one has |¥) = U|Q) and |®) = V|Q) with unitary
operators U,V € A, and it is easy to show [12-14] that
InAyp = VInAgV™ and consequently,

S(?||®@) = —(QUTVInAgVTU|Q). (5)

In this way and using the known result for the modular
Hamiltonian in wedges (the Bisognano-Wichmann
theorem [15,16]), the relative entropy for coherent excita-
tions of the vacuum of a free massive scalar field, restricted
to a wedge in Minkowski spacetime, was computed by
various authors [13,17].

For the exterior of a Schwarzschild black hole, the
modular Hamiltonian of free scalar fields in the Hartle-
Hawking state is also known [18-21], and in fact propor-
tional to the generator of time translations; if one restricts to
the black hole horizon or null infinity, these become
rescalings of the corresponding null coordinates [22].
Using this fact, the Araki-Uhlmann formula for the relative
entropy of coherent states (5) and the Raychaudhuri
equation, Hollands and Ishibashi [23] have shown that
the variation of the sum of relative entropy and one quarter
of the horizon area is exactly given by the flux at future null
infinity, in line with the Bekenstein-Hawking formula for
the entropy of a black hole horizon. These results have been
further generalized to apparent horizons by D’Angelo
[24,25]. On the other hand, Iyer and Wald [26,27] have
shown that black hole entropy can be alternatively defined
as the Noether charge of diffeomorphisms associated with
the Killing vector field of the black hole horizon, integrated
over it. However, a connection between the two approaches
has not been made.

In this article, we make a related but different connec-
tion. First, we generalize the results of [13,17] to wedges in
the de Sitter spacetime, and compute the relative entropy
for a coherent excitation of the de Sitter vacuum of a free
massive scalar field. We confirm that the relative entropy is
positive and convex as required, and finally relate it to the
Noether charge of translations along the Killing vector that
is tangent to the modular flow. De Sitter spacetime is of
course important as a model of both the primordial infla-
tionary phase of the Universe and the current exponential
expansion [28-30]. At the same time, it can be obtained
from an embedding in Minkowski spacetime of one higher
dimension and is a maximally symmetric solution of the
Einstein equations with cosmological constant, therefore
one of the simplest curved spacetimes. Among others, this

also manifests in the fact that the modular Hamiltonian for
wedges in de Sitter spacetime is known as well [31-33],
and in fact coincides with the restriction of the modular
Hamiltonian of the wedge in the embedding Minkowski
spacetime to the de Sitter hyperboloid.

The remainder of this article is structured as follows: In
Sec. II, we review the embedding of de Sitter space, the
restriction of the Minkowski Killing vectors to the de Sitter
hyperboloid, and the wedges in both Minkowski and
de Sitter spacetime. Section III is devoted to the algebra
of the free scalar field and modular theory, and we
determine explicitly the modular flow and the Kubo-
Martin-Schwinger (KMS) property for the de Sitter vacuum
state restricted to a wedge, following in part Ref. [32]. In
Sec. IV, we then determine the relative entropy between the
de Sitter vacuum and a coherent state using the Araki-
Uhlmann formula (5) and verify its positivity and joint
convexity. Section V is concerned with the relation of the
relative entropy to a Noether charge, and its thermody-
namic interpretation. We give an outlook on future exten-
sions of this work in Sec. VI, and leave the details of the
covariant canonical quantization to Appendix A, some
further relations that are satisfied by the commutator
function to Appendixes B and C, and details of the
computation for a tilted Cauchy surface to Appendix D.

Conventions: We take mostly plus metric signature, and
choose R,, = (n—1)H?g,, for n-dimensional de Sitter
spacetime of radius H~'. All formulas for special functions
were taken from Ref. [34]. Greek indices u,v,...€
{0, ...,n — 1} range over space and time, while lowercase
Latin indices i, j, ... €{l,...,n — 1} denote purely spatial
components, and uppercase Latin indices A,B,...€
{0,...,n} refer to the embedding (or ambient) space.
Weset h =c = 1.

II. de Sitter SPACETIME

As stated in the introduction, n-dimensional de Sitter
spacetime dS, can be obtained from an embedding in an
(n + 1)-dimensional Minkowski spacetime R™! (called
ambient space). Choosing Cartesian coordinates X* for
the ambient space, dS, is the submanifold of points
satisfying XAX, = H~? with a constant H, the Hubble rate
or inverse de Sitter radius. The relevant part of dS,, is the
so-called expanding Poincaré patch (with X° — X" > 0),
which can be parametrized by coordinates x = r€R and
x € R"! according to

1 H
X0 = Esinh(Ht) + EeH’xz, (6a)
X' = eflixt, (6b)
X" = ——cosh(Ht) + —ef''x?. (6¢)
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It is easy to verify that these satisfy the hyperboloid
condition X4X, = H?, and the induced metric of the
Poincaré patch reads

ds? = nupdXAdX8 = —dr* + *H'dx?. (7)

The causal structure of the de Sitter spacetime is inherited
through the embedding, and the distance between points
can be determined from the ambient space as well. It is
characterized by the invariant

Z(x,x') = H*napX* (x) X5 (x')
2
= 1= T X0 = X (XA () - X)L (8)

which in terms of the Poincaré patch coordinates (6) reads

2
Z(x. ') = coshlH (1 ~ )] ~ 2 e+ (x ~ 2. (9)
From Eq. (8), we see that spacelike separated points have
Z(x,x") < 1, lightlike separation renders Z(x, x’) = 1, and
if Z(x,x") > 1 the points x and x’ are timelike separated.
The ambient space has (n+ 1)(n +2)/2 Killing vec-
tors, of which n + 1 generate translations and n(n + 1)/2
generate rotations and boosts. While the translation gen-
erators T4, = d4 do not leave the hyperboloid invariant, the
rotation and boost generators M5 = X,0p — Xp0, trans-
form the hyperboloid into itself and hence descend to
Killing vectors in dS,. Expressing the Poincaré patch
coordinates (6) using the embedding coordinates, we obtain

t = H-' In[H(X° — X)), (10a)
v ﬁ , (10b)

which allows us to compute the explicit expression of the
rotation and boost generators in terms of ¢ and x.
Concretely, we find

H 1
MOi__EKi_ﬁPiv M;; = L,
H 1
Min__EKi_FﬁPiv Mon:—D, (11)

in terms of the intrinsic de Sitter Killing vectors

D =-H"'9,+x'0; (dilations), (12a)
K; = (x* — H2e72")9; — 2x;,D (boosts),  (12b)
P;=0; (transl), (12c)
L;; =x;0; —x;0; (rotations). (124)

Ht
2t 0 Hlz'|=0
Hlzt| =1
1t 0 Hlzt| =2
it . L Ha!
1 2
_1+
_92L
FIG. 1. Cross sections of the wedge WV, in the Poincaré patch of

de Sitter spacetime with coordinates (¢,x!,x") for different |x|.

With growing |x*|, the cross sections become smaller and shift to
earlier times.

Following Ref. [32], we can then define wedges in dS,,
as the intersection of a wedge in the ambient space with the
de Sitter hyperboloid. In the ambient space, these are the
regions W, = {X e R™": X7 > |X°|} (for a right wedge in
the j direction) or X/ < —|X?| (for a left wedge), and thus
we define the (right) de Sitter wedges

W, = (X ERM XX, = H2.X > X}, (13)

In the coordinates (6) of the Poincaré patch, these are
the regions

W; ={(t.x):2Hx) > |1 — e + Hx?|}  (14)

which are somewhat difficult to visualize, and we therefore
depict them in Fig. 1.

In the ambient space, the boost generators M(); map the
wedge W; into itself. This can be seen easily, taking for
example j = 1: the ambient wedge W, is composed of
trajectories X (s) = (X%(s), X'(s), X*) with

XO(s) = X'(0) sinh(s), (15a)

X'(s) = X'(0) cosh(s), (15b)
satisfying X' (s) > |X°(s)|. Their generator is exactly —M,
i.e., we have 0,X"(s) = =M, X*(s), and each point in the
wedge lies on one such trajectory. Since the boost gen-
erators are tangent to the hyperboloid, they also map the
de Sitter wedges ¥V, into themselves, and concretely we
obtain the trajectories
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B Hzx'(0)=05
B Hz'(0)=1.5

B Hzx'(0) =15

_2t
FIG. 2. Example trajectories with generator M,; mapped from

the ambient space to the de Sitter hyperboloid. For simplicity, we
chose x*(0) = 0.

1 + Hx/(0) sinh(s)

t(s)=H 'ln ) | (16a)
vy x/(0)cosh(s)
) = T Hx (0 sinh(5) (16b)
XL (s) *(0) (16¢)

~ 1+ Hx/(0) sinh(s)’

with some examples of trajectories depicted in Fig. 2.
Using the explicit expression of the Killing vector

1
Mo~ =2

(1—e '+ H?x?)0; + Hx/x* 0, —x/9,,  (17)
it is laborious, but straightforward, to verify that —M,; is
their generator, and it is also straightforward to verify
that the trajectories stay in the wedge (14) as long as
1 + Hx/(0) sinh(s) > 0. In fact, the range s € (s, )

14++/1+H?[x/ (0)]?

with s,;, = —In 0)

already corresponds to

the full range 7(s) € R. That a maximum value for s exists
in the expanding Poincaré patch is clear from the condition
X% — X" > 0, since for negative enough s one obtains
X(s) — X" (s) = X'(0) sinh(s) — X" < 0, which is a point
in the contracting Poincaré patch. To obtain a better
parametrization of the trajectories (16) in the expanding
patch only, we can express s in terms of #(s). This results in

) . eH(i—10) _ 1)2
/(1) = e \/ e

(18a)

xt(1) = e Hio)xd (18b)

where the point (to,xé,xé-) €)W, must be chosen to lie
inside the wedge (14). In this form, the existence of the
trajectories for all # € R in the expanding Poincaré patch is
now manifest.

Furthermore, left wedges are defined by

W_j={XeR" XX, = H2, X/ < -|xX°]}, (19)

and for them analogous results hold. Of importance for
modular theory is the fact that all points in the left wedge
W_; are spacelike related to any point in the right wedge
W;, and that the union W; UW_; contains a Cauchy
surface for the full de Sitter space.

ITI. SCALAR FIELDS AND MODULAR THEORY

We start with a quick review of Tomita-Takesaki modular
theory [10,11], and refer to Ref. [35] for a thorough
mathematical exposition and Ref. [12] for a more physical
one. Modular theory concerns itself with a von Neumann
algebra A C B(H) of bounded operators acting on a
Hilbert space H, and states |¥), |®) which are cyclic
and separating for A. The state |¥) is said to be separating
for Aif a|¥) = 0 for a € Aimplies a = 0, and it is cyclic if
the set {a|¥):a € A} C H is a dense subset of the Hilbert
space. We also need the commutant algebra A, which is the
set of all operators a’' € B(H) which commute with all
elements in A.

Consider then the map Sy which acts according to
Sypa|¥) = a’|®) for a € A. Tomita proved that this is an
unbounded, densely defined and closable operator, and we
can take its closure, which we denote by the same symbol.
Sy|o 18 called the relative Tomita operator, and the adjective
“relative” is dropped when one considers a single state such
that ¥ = ®. We perform its (unique) polar decomposition

12
Syjo = J‘P|<I>A\{J/‘q>

the relative modular conjugation, and a Hermitian positive-

1/2
¥l

and again the adjectives “relative” are dropped when one
considers a single state. The logarithm of the relative
modular operator Ky = In Aye is known as the relative
modular Hamiltonian, since the modular operator induces
an automorphism «a of A according to

into an antiunitary operator Jye called

definite operator A/ called the relative modular operator,

a,(a) = Aifq(paAl;i\ip = el¥kvegeKve € 4 (20)
for a € A, which can be seen as a sort of internal time
evolution, called the modular flow. While conjugation by

Aif,‘q) thus maps the algebra into itself (and analogously

the commutant A’ into itself), conjugation by the relative

1/2
9D

two algebras. Lastly, we note that the automorphism (20) is
actually independent of the choice of |¥), and that the state

modular conjugation Jyq as well as by Ay, exchanges the
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|®) is a thermal state with respect to the modular flow,
which satisfies the KMS condition.

In our case, we take A to be the algebra generated by
the Weyl operators W(f) = e'?(/) of a free massive scalar
field, with the test function f restricted to the wedge:
supp f C Wy. Since the field ¢ is Hermitean, we can
further restrict to real f, which we will do in the following.
Using the Baker-Campbell-Hausdorff (BCH) formula [36]
and the commutator (B8), one finds that

W(f)W(h) = ei#eidh)
— Qi) g () (1. AR)

= SFANW(f + h), (21)

such that these really generate an algebra. Moreover, since
the commutator function A is antisymmetric one sees
immediately that the Weyl operators are invertible with
inverse [W(f)]~! = W(—f). The Hilbert space H is noth-
ing else but the Fock space of the scalar field, and the
de Sitter-invariant Bunch-Davies vacuum state [37-39]
whose construction is reviewed in Appendix A is cyclic
and separating [32]. Since the Weyl operators are invertible,
also the coherent states |f) = W(f)|Q) (without restriction
on the support of f) are cyclic and separating, and one can
thus define relative modular operators for them.

In fact, let us take |¥) = |f) and |®) = |h) for two test
functions f and h. We use the representation of the smeared
field ¢(f) in terms of initial data (B15)

P(f) = —io(¢. Af). (22)

where o (-, -) is the symplectic product (A5) supported on a
Cauchy surface X, and choose X contained in the union
W, U W_,. This Cauchy surface thus splits into two parts
contained in the respective wedges, X =X, U X_; with
2y CW; and X_; C W_,. Accordingly, we split the
smeared commutator on the Cauchy surface Af|y into
two parts (Af), and (Af)_ whose support lies in the
respective half of the Cauchy surface, i.e., such that
(Af)ils, = 0and (Af)_|y, = 0. It follows that

W(f) — ea(¢~Af)
= e? ()@ (AN-) = U L (AU_(S), (23)

where we used the BCH formula, the commutator (B18),
and the fact that

o((Af). (Af)-) =0, (24)

since the supports of (Af), and (Af)_ are disjoint by
construction. It follows that also [U, (f), U_(f)] = 0, and
using that W(f)" = W(—f) also UL(f)" = UL(-f). By
construction, U, (f) € A, while the other unitary U_(f) is

an element of the algebra of fields restricted to the left
wedge W_, !In Ref. [32] it is shown that wedge duality
holds, hence this algebra is the commutant of the algebra of
fields restricted to the right wedge and U_(f) € A'.

We are thus in the situation |¥) = U, (f)U_(f)|Q),
|®) = U, (h)U_(h)|Q) with U, € A and U_€ A’". The
relative Tomita operator Sy|q acts according to

Sywal. (f)U_(f)|Q) = a"U.(h)U_(h)|Q)
= U_(W)[U.(=h)a]'|Q)  (25)

for a € A, where we used that U_ commutes with both a
and U, and that U, (h)" = U, (—h). Multiplying with
U_(h)" = U_(=h) and then with U, ()" = U, (—=f), we
obtain further

U.(-f) U—(_h)S\P\q>U—(f)aU+(f)|Q>
= [U,(=h)aU(f)]"1Q). (26)

where we also used that U_(f) commutes with both U__(f)
and a. By definition of the Tomita operator for the state |Q),
we have (U, (~h)aU (/)]1Q) = SyU (~h)aU.. ()|<2),
and hence

U (=F)U_(=h)SwaU_()al , ()2)
= SoU. (~h)aU, (F)]<2). (27)

Since |Q) is separating and this equation needs to
hold for all a€ A, we <can read off that

U, (= )U_(=h)SwoU_(f) = SaU(=h), or
Swo = U_(MU, (NSoU, (~m)U_(=f).  (28)

Using the Hermitian properties of the modular conjugation
J and the modular operator A, it also follows that

Ayio = Sy pSvio
= U_(N)U1(n)SaSaU (=) U_(=)
= U_(NU(M)AU(=h)U_(=f). (29)

It thus only remains to determine the modular operator
Ag for the de Sitter vacuum state |Q), or alternatively the
modular Hamiltonian Kq = InAgq. Instead of using its
definition, however, we show that the flow of the two-point
function along the trajectories (16) satisfies the KMS
condition. Since the modular flow is the unique one for
which this is true, its generator is guaranteed to be the
modular Hamiltonian K, up to a rescaling to fix the

"This is the same decomposition that is used in the more
mathematical literature [40-42], and which was derived in
Ref. [13] in more detail.
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(modular) temperature at f = 1. Consider thus the flowed
two-point function

F(s,s") = (Qlp(x(s))p(x'(s))1€2), (30)

where the trajectory x(s) is given in Eq. (16). The explicit
form of the two-point function is given in Eq. (A20), and
depends on the causal relation between x and x’ and the
de Sitter-invariant distance Z(x, x") (9). For our purposes,
it is easier to use the expression (8) of Z in terms of the
embedding coordinates X4, since those have a simple
expression (15) along the trajectories. We obtain

Z(x(s),x'(s")) = H>X'(x) X" (x") cosh(s — ")
+ H>X1(x) - X1 (X)), (31)

where we wrote x = x(0) and x’ = x’(0) to shorten the
expression. If the points x(s) and x'(s) are spacelike
separated [which entails Z(x,x") < 1] such that the ie
prescription in the two-point function (A20) is irrelevant,
we thus obtain F(s,s’) = F(s—s') = F(s’ —s). On the
other hand, if they are timelike separated [such that
Z(x,x") > 1] this prescription determines on which side
of the branch cut one has to evaluate the hypergeometric
function, resulting in the expression (A22). We can
combine both by considering instead Z, (A24), for which
we compute

Z(x(s).x'(s)) = Z(x(s). X'(s')) — H?¢?
—ieH?[X"(x) sinh(s) — X' (x) sinh(s")].
(32)

The KMS condition [43-45] states that the function F
can be analytically continued in some strip parallel to the
real axis, and when the differences of the imaginary parts
of their arguments are equal to the inverse temperature
one obtains the complex conjugate function. In our case,
we see that

Z(x(s —im), x'(s' +in)) = Z(x(s),x'(s")), (33)

and since the hypergeometric function (off the branch cut)
is an analytic function of its argument, we obtain
F(s —in,s' +iz) = F*(s,s').> It follows that with respect
to the evolution whose generator is —M,;, the de Sitter
Bunch-Davies vacuum state has temperature f = 27x.
Rescaling to obtain # = 1 and using that each Killing vector
corresponds to a self-adjoint operator on the Fock space of

*The other possible analytic continuation s — s+ iz, s’ > s’ —ix
would cross the branch cut and is thus not permissible.

the free scalar field which we denote by calligraphic
letters (B21), it follows that:

InAg = Kq = —22M,; = % (HK; +P;). (34)

which is the result previously derived in Ref. [32].

IV. RELATIVE ENTROPY

With the modular Hamiltonian (34) at our disposal,
we can now use the Araki-Uhlmann formula (2) to compute
the relative entropy between two coherent excitations
If) = W(f)|Q) and |h). We decompose the Weyl operators
W(f) and W(h) according to Eq. (23), and use the
formula (29) for the relative modular operator. Because
conjugation by unitary operators extends to functions of an
operator, we also have

InAg, = U_(HU(h) In AU, (-h)U_(=f),  (35)
and hence

S(fllh) = =(QU (=) U (h) In AU, (=h)U . (f)|R).
(36)

which coincides with Eq. (5) given in the introduction
since U, (f) € A.

Using the BCH formula and the commutator (B18),
we first compute

U, (=h)U., (f) = e~o@81))eo( (7))
— e"(d’a(A(f_h))Jr)e%”((Ah)+’<Af>+>

= U_(f — h)er((Ah).(81),) (37)
such that Eq. (36) reduces to
S(fllh) = =(QIU (h = f)In AU (f — h)|Q),  (38)

taking into account the antisymmetry of the symplectic
product ¢ when we exchange its arguments. We see that
only the difference of test functions enters, such that
S(f||h) = S(f — h||2), the relative entropy between the
vacuum |Q) and the coherent excitation W(f — h)|Q). We
thus may and will set 2 = 0 in the following. The same
simplification happens in Minkowski space [13], and in
fact is a general property of the relative entropy for coherent
excitations [41].

To compute this expectation value, we employ the
identity

e—ivBAein — A+ l/v e'i“B[A, B]eiquu’ (39)
0

105004-6
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which is easily proven by noting that it holds for v = 0,
and that both sides have the same derivative with respect
to v. From the explicit expression for the modular
Hamiltonian (34), we know that

i[ln Ag, p(x)] = —2”M0/¢(x)7 (40)

or after smearing with a test function and using the
symmetry properties (B20)

illnAg, ¢(f)] = =2x(f. M)
= 2”(M01f7 45) = 2”¢(M0jf)» (41)

which is linear in ¢. Therefore, its commutator with ¢ is
proportional to the identity operator, such that using (39)
twice we obtain

e ) In Age™) = In Ag + iv[ln Ag. ¢(f)]
2
v
-2 (B0 4] 40 (42)
Since the vacuum is invariant under the de Sitter sym-
metries (i.e., the generators K; and P; are normal-ordered
operators annihilating |Q)), we have (Q|1In A,|Q) = 0, and
also (Q|p(x)|Q) =0 from the expansion (A15). Setting
v = 1, it follows that

(@Ie- 1) 1n AgeH#]2) =~ [[In g, ()] (1)
= —ino(AMy;f. Af). (43)

where we also used the expression (B16) for the commu-
tator in terms of the symplectic product.

Using the initial-value formulation (B15) of the smeared
field to write ¢(f) = —io(¢p, Af), Eq. (43) is almost in a
|

form that can be used for the relative entropy (38). The only
missing part is to express AM;f as a function of Af.

For this, we compute using the sSymmetry properties
of My; (B20) that

(AM;f)(x) = (A(x, ), Mo;f)
= —(My;A(x,-), f), (44)

where in the last expression M; acts on the second
argument of A. Using the results (C1) and (C3), it then
follows that (M;A(x,-), f) = —=My;(A(x,-), f) with My,
acting now on the external point x, and thus

(AMo;f)(x) = Mo;(A(x, ). ) = (Mo;Af)(x).  (45)
Equation (43) therefore simplifies to
(Qle=AN) In Aqe?PAD|Q) = —ino(M,Af, Af),  (46)

and replacing Af by (Af), we obtain our first result for the
relative entropy (38),

S(fll€) = izo(Mo;(Af) 1. (Af))- (47)

From this expression and the previously derived S(f||h) =
S(f — h||Q), we already see that the relative entropy is
symmetric: S(f||Q) = S(Q|f). In particular, the relative
entropy between the vacuum and a coherent excitation is
the same as between a coherent excitation and the vacuum.

A more explicit expression for the relative entropy can
be obtained by evaluating the sympletic product in (47)
explicitly. On the Cauchy surface ¢ = O that is adapted to
the Poincaré patch, and with the explicit expression (17)
for M,;, we obtain

SU19) = = [ [50,81), (1347). () =/ (A1) (ORAT) (0 + 5 0,(61) (904D, (0

2

+ Hx/x(Af) | (x)0,0,(Af) 4 (x) = (Af)+(x)5j(Af)+(X)]

To simplify this expression, we first have to consider the
precise form of the splitting of the smeared commutator
into the parts (Af), and (Af)_. Setting ¢ = 0 in the wedge
W; (14), we see that the intersection of the Cauchy surface
with W; is the region

R; ={(0.x):2x/ > Hx*}

= {(0,x):H|xL| <y\/1-(1 —fo)2}. (49)

(A, (0,0,(81). (x) — Heix*0,(Af), (x)0,(Af) . (x)

dmlx. (48)
=0

|
Defining the indicator function

x(x) = {1 *ER; } = 0(2x/ - Hx?),  (50)
0 x¢R;

we therefore set (Af), (x) = y;(x)(Af)(x). Using that A
fulfills the Klein-Gordon equation (A3) and integrating
spatial derivatives by parts, Eq. (48) can then be
simplified to
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S(19) = 25 [ 16 Tw(Ax

+ nH/;(j(x) (x26% — 2xixF)

X 0 (Af)(x)0,(Af)(x)d"'x
+ Shay (f11€2), (51)

where

1 1
TOO(h) = (0,h)2 + E 6khakh + 5 m2h2 (52)

1
2
is the classical energy density of a free scalar field on the
Cauchy surface t = 0. The last term Syqy(f|€2) are con-
tributions located at the boundary of the region (49) coming
from integration by parts. Their treatment is somewhat
delicate, since naively terms appear which are not uniquely
defined. In fact, with a smoothed version of the indicator
function (50) a direct computation gives

S (199 = =s [ |2 (2t - 2aal(an(oP

FAANWP| 200 W x. (5
=

In the flat-space limit H — 0, we have y;(x) — O(x/)
such that

lim Sy (719 =-70(0) [N, @5, (54

and the boundary contribution to the relative entropy
depends on the value of the regularized ©(0). To determine
the correct value, one has to delve into the mathematical
details of convergence in an appropriate function space,
which was done in Ref. [13] for the Minkowski case.
There it was shown that one needs to exhaust the wedge
region from within, i.e., take an approximation for which
®(0) =0 such that the boundary terms (54) vanish.

|

X
SU1) = |

Generalizing their arguments to the de Sitter case, we have
to take an approximation for which y;(x)dgyr;(x) = 0
such that the boundary terms (53) vanish in general and
dey(fHQ) =0.

While the classical energy density (52) is clearly positive
and x/ >0 in the region R ; (49) such that the first
contribution to the relative entropy (51) is positive, already
the second term does not have a definite sign. Since general
considerations [12,41] enforce the positivity of the relative
entropy, we have to conclude that the Cauchy surface t = 0
is not suitable to obtain a manifestly positive expression for
the relative entropy. Nevertheless, we have already the
correct flat-space limit [13]

ImS(19) = 2% | 5 Ta(ap)d ' (59

x/>0
However, since the symplectic product (A8) is independent
of the choice of Cauchy surface, we can evaluate it on any
other such surface. In particular, we can choose the surface

X% =0, which is adapted to the Wedge W;. In the
coordinates (6) of the Poincaré patch, this is the surface (D1)

¥ = {(t,x):2Ht + In(1 + H>x?) = 0}, (56)
which has the future-pointing unit normal vector (D3)
'y = V1 + Hx2(1, —Hx')" (57)
and the induced metric (D5a)

. 51] Hzx,-xj
14+ H? (14 H?)?

Vij (58)

The sympletic product on this Cauchy surface is given
in Eq. (D10), such that we can evaluate the relative
entropy (47) using also the identities (D12) and (D13).
This results in

[0,(AF) (x)0, (Af) 4 (x) + [(1 + H?x)8" — H2x*x'|0, (Af) , (x)0,(Af) 1 ()

+m[(Af) ()] + (Af) (1) (V2 = m?)(Af), (x)]5y/rd"'x (59)

with 9, =n*d, and 0, =d, + n,d,, which still can be
simplified. For this, we again need to be precise about the
splitting of the smeared commutator. Since the Cauchy
surface X = 0 is adapted to the wedge W;, this is easier
than before, and computing the intersection of X (56)
with the wedge W; (14), we see that we can simply
obtain x/ > 0 and hence y;(x) = ©(x/). Using the explicit

expressions (D7) for 0, and ék on the Cauchy surface Z,
we compute

0u(AS) 4 (x) = x(x)0,(Af)(x), (60a)

O(Af)(x) = ;(x)9(Af) (x) + 5L(Af) (x)8(x7).  (60D)
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and using also the Klein-Gordon equation (D9) we com-
pute furthermore

(V2 —m?)(Af),(x)
= 2j(x) (V2 = m?)(Af)(x)
+ (1 4+ H?x?)[6 (x/) (Af) (x) +25(x7)0;(Af) (x)],

(61)

where all expressions are understood to be restricted to the

Cauchy surface X. The first term on the right-hand side

vanishes since the commutator function A satisfies the

Klein-Gordon equation, while the other terms result in

boundary contributions. Inserting these results into Eq. (59),
we obtain

S(f11) = 2”/)(j(x) Q;i(Af)|zvrd"™'x + Spay (f1I).
(62)
where we defined

x/
2vV1 + H?x?
+[(1 + H?x?)5" — Hx*x'|0.hojh)z,  (63)

Q;(h)|s = [0,h0,h + m*h?

and the boundary terms are formally given by

Soay(fIQ) =7 [ ¥V 1+ HX*[[(Af)(x)8(x/)]?

+25(x)5(x7)0;[(Af) (x)]?
+x;(0)8 (N [(Af) () Plgy/rd™ e (64)

We see that they are again undefined since y;(x)& (x/) can
take arbitrary values depending on the regularization. More-
over, also divergent terms appear since [5(x/)]* = oo, but
there is extra x/ in front of everything which lowers the
degree of divergence. To obtain a proper result, we have
again to take a smoothed-out version of the indicator
function y;, which then results in

Sy (f11Q) = —7 / VIt (A (1)
X 1, (2)07, ()T (65)

up to terms that vanish for any smoothing. Without
smoothing, we would obtain y;(x)dx;(x) = ©(0)5(x/),
which clearly has the same flat-space limit (54) as the result
for the other Cauchy surface at + = 0. As in the flat-space
case [13], the proper smoothing is such that one exhausts the
wedge from within, taking an approximation for which

x(x)0;x;(x) = 0. The boundary terms (65) then vanish and

Spay(f]|Q) = 0 as before, such that only the bulk terms
involving Q; (63) contribute to the relative entropy (62).
We have thus obtained

(@) = 27 / O(x/)Q,(Af)syFd™'x  (66)

with Q;(h) given by Eq. (63). Since for positive x/ we have
Q;(h) > 0® for any test function i with equality only if
h = 0, the positivity of the relative entropy is now manifest:
S(f|€2) = 0 and S(f]|Q) = 0 only if f = 0. It is also easy
to see that it is jointly convex, i.e., that

AS(FI1Q) + (1 = A)S(h[|Q) = S(Af + (1 = H)A||Q)  (67)

for all test functions f, & and 1€ [0, 1]. However, this is
immediate since the relative entropy S(f]|Q) is quadratic in
the test function f, such that

S(f + (1= A)h(Q)
= 2S(fIIQ) + (1 - 2)>S(h]|L)
+ 41 =)[S(F1Q) + S(h|Q) - S(f - hl|Q)]
= AS(f11Q) + (1 = HS(h[|Q) — (1 = H)S(f = Q).
(68)

Positivity of the relative entropy shows that the last term is
negative, —A(1 — 1)S(f — h||Q) < 0, and the joint convex-
ity (67) follows, with a strict inequality if f # h.

V.NOETHER CHARGE AND THERMODYNAMICS

It remains to relate the relative entropy (66) to a Noether
charge. Those are given by integrating the normal compo-
nent of a conserved current over a Cauchy surface, and
since the relative entropy is already given by an integral
over a Cauchy surface, we only need to determine the
corresponding conserved current. From the explicit form
of Q (63) as well as the fact that the energy density (52)
appears, we infer that the current involves the stress tensor.
Because the modular Hamiltonian (34) generates trans-
lations along the trajectories (16) whose tangent vector is a
Killing vector, it is further probable that the current is
obtained by contracting the stress tensor 7,, with the

Killing vector —M,; = Zj’(’j)d,, 7). J¢ = T’“’ef,gj ), Namely,
in this case we obtain

V=V T+ 8V, T =0, (69)

The matrix [(1 + H2x2)6" — H2x*x!] is positive definite,
since its eigensystem is given by a single eigenvector x; with
eigenvalue 1 and (1 — 2) transverse eigenvectors (5yx> — x.x;)v!
with eigenvalue (1 + H?x?) for constant v/, so all eigenvalues are
strictly positive.
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employing the Killing equation V(Mﬁg) =0 (since the
stress tensor is symmetric) and the conservation of the
stress tensor V,7** = 0 which holds on shell.

It turns out that this indeed holds, and with the canonical
scalar stress tensor

1
T,,(h) = d,hd,h — Eg,w(gp"apha(,h +m?h?)  (70)

we compute on the Cauchy surface X (56)

Since the commutator function A fulfills the Klein-Gordon
equation, the classical stress tensor (70) evaluated on

h=Af 1is conserved, such that the current J¥ =

&l >T’“’(A f) is conserved as well. It follows that
Q;(Af), the integrand of the relative entropy (66), is its
normal component, and so the relative entropy S(f[|Q) is
the Noether charge—if f is supported in the wedge W, (14)
such that Af, restricted to the Cauchy surface, has support
only where x/ > 0 and O(x/) = 1. Otherwise, because Q;
is negative for x/ < 0 as can be seen from the explicit
expression (63), the Noether charge is strictly smaller than
the relative entropy.

The definition of the relative entropy S(p||o) (1) leads
directly to its microscopic interpretation [46], namely as
the average amount of information that is gained from
measurements when the system is mistakenly described
by the density matrix o, while its true density matrix is
given by p. In other words, after making a large number N
of measurements, the probability p to mistakenly describe
the system by ¢ while it actually is in the state described
by p is proportional to e V5¢ll9) However, it is also
possible to give a macroscopic interpretation in a thermo-
dynamic context. Instead of the usual von Neumann
entropy, also relative entropy can be used to formulate
the thermodynamic laws [47,48]. In particular, the second
law according to which entropy can only increase in a
physical process can be reformulated as the statement that
relative entropy in some given spacetime volume can only
decrease, such that the states become less distinguishable,
and the third law can be replaced by the statement that
the relative entropy between the ground state and a
thermodynamic equilibrium state (in either the canonical
or grand-canonical ensembles) vanishes in the limit of
vanishing temperature 7 — 0. Instead, the first law still
involves the entropy S itself, and in the microcanonical
ensemble reads

68(pllow) = ~6S(p) + BE(p) — pusN(p).  (72)

Here, p is the density matrix of an arbitrary state with
the same volume, energy E, and particle number N as the

microcanonical density matrix o,,, f is the inverse temper-
ature and y the chemical potential. In the canonical and
grand-canonical ensembles, a similar relation holds.
Consider now the relative entropy for two different
coherent excitations with test functions & and h + 6h.
For a coherent excitation, we have p, = U(h)pU~'(h)
with the unitary U(h) = e'#("), from which it follows that
flpn) =U(h)f(p)U ' (h) for reasonable functions f.
Consequently, we have tr(p;Inp;) =tr(plnp) and the
von Neumann entropies S(p) and S(p;) are equal. It
follows that one can obtain the (inverse) temperature /3
associated to the state by deriving the relative entropy of a
coherent excitation with respect to the energy, while the
chemical potential is obtained by deriving it with respect to
the particle number. Now our result (66) is of the form

S19) = [ PTa@ s (13)
with the local temperature vector

= 270(x/ )é’('j). (74)
This is clearly a generalization of the global thermody-
namic laws to the case where quantities such as the
temperature can vary with the position. Consider then an
observer who follows the trajectories (16), such that their
four-velocity u* is proportional to the Killing vector 5@.).

On the Cauchy surface X, using Egs. (17) and (DI) we
compute that

V1 + H’x?
Wy = T§€;)|z = ntls. (75)
which is normalized to wu, = —1, such that the local

temperature vector (74) can be written as # = fu* with the
local temperature

x/

V1+ HS?

Indeed, with these definitions the relative entropy (73) can
be written in the form

Px)ls = 220(x) (76)

S(FlQ) = / Pe(Af)lgy/7d"x (77)

with the local energy density e(Af) = u*u*T,,(Af), and
the local inverse temperature 8 is correctly obtained as
the variation of the relative entropy with respect to the
energy density that the observer sees. In the flat-space
limit H - 0, we moreover recover the known result
B(x)]s — 270 (x/)x/ [49,50].
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VI. DISCUSSION

We have considered the relative entropy between the
vacuum and a coherent excitation thereof for a massive
scalar field in de Sitter spacetime. The result (66) reads

Sl =2 [ Qiaplsvies  (18)

with Q;(h) = n”éﬁi)Tm(h) (71), and is equal to the
Noether charge of translations along the flow of the
Killing vector field —Mo; = ¢(;)0, if f has support in
the wedge W; (14). While we have derived this result in
all detail for the case of free scalar fields, we expect it to
hold more generally because of the following reasons:
by the Bisognano-Wichmann theorem [15,16] the modular
Hamiltonian InAg for the vacuum state restricted to
wedges in Minkowski spacetime is equal to —2z.M,;,
even for interacting fields. Since the generators M,; are
tangent to the de Sitter hyperboloid, also the modular
Hamiltonian for de Sitter wedges is equal to —2z.M,; [32].
Because M); generates Lorentz or de Sitter symmetries, the
action of M; on quantum fields is given by the commu-
tator with the stress tensor, contracted with the Killing
vector 5’(’1.), and this holds also for interacting theories. Of

course, what may happen is that the commutator with the
Weyl operators W(f) = ¢¢/) does not result anymore in
the classical stress tensor evaluated on Af, and this is why
we cannot ascertain that our result will hold in general. It is
also possible that the result in this case may depend on
the renormalization freedom of the stress tensor in the
quantum theory [51], and it would therefore be very
interesting to study the interacting case in detail, even at
first order in perturbation theory.

We have further verified that the relative entropy S(f||€2)
is positive, for which we needed to choose a suitable
Cauchy surface (56) to make positivity manifest. We have
to also checked its joint convexity (67), which for the free
scalar field follows more or less straightforwardly from
positivity. Since these two properties follow from general
considerations for the relative entropy [8,12], they provide
a useful check on the computation, and of course will also
hold in more general situations including interactions.
Lastly, we have determined the local temperature that is
seen by an observer who is following the flow trajectories
of the Killing vector field —M,;, generalizing the result for
wedges in flat spacetime [49,50]. We have done this by
employing the reformulation of thermodynamic laws using
relative entropy [47,48], which for a coherent excitation
tells us that the local inverse temperature can be obtained as
the derivative of the relative entropy with respect to the
energy density that the observer sees.

Another important property of relative entropy is its
convexity with respect to inclusions [52]. For this, let us

consider instead of a single wedge V; a family of regions
R (1) depending on a parameter 4, which are such that the
modular automorphism «a, (20) with positive flow param-
eter s moves operators into regions with larger 4. That is,
given W(f) with supp f C R(4y), for each 1 > 4, there
exists some s > 0 such that supp a,(W(f)) € R(4). Such a
construction is known as half-sided modular inclusion,
and holds for example for a family of wedges in Minkowski
spacetime which are translated in a null direction
[41,52,53]. Computing the relative entropy S;(f]|€2) for
this family of regions, its convexity is the statement that
07S,(f]/22) > 0. For the null translated Minkowski wedges,
it turns out that the second derivative of the relative entropy
is given by (see Theorem 3.6 in Ref. [41])

%&wmzh/wwmmm”ww%%<w>

where v = & + &, is the lightlike vector tangent to the
upper null boundary of the wedge W;. The pointwise
condition 9T, > 0 is known as the null energy con-
dition (NEC), and expresses the fact that light rays are
always focused and never repelled by matter. While
classical matter usually does obey this condition as well
as other energy conditions (and in fact the NEC does hold
for the case at hand [41]), in the quantum theory
pointwise conditions are violated, and moreover one
can find states in which the energy density at any single
point can have arbitrarily negative expectation values
[54,55]. However, it is possible to derive averaged energy
conditions (see Refs. [56,57] and references therein),
where the pointwise condition is smeared with a test
function, at least for the weak energy condition where the
stress tensor is contracted with the tangent vector of a
timelike worldline. While the lower bound depends on the
test function and can be negative in general, at least it is
finite. The situation becomes better in the limit where the
test function f becomes a constant, and the corresponding
condition is called averaged. In particular, the averaged
NEC (ANEC) very often holds, in many cases even with a
lower bound of 0 [58-61].

Clearly, the (pointwise) NEC implies convexity of the
relative entropy (79), but the reverse is not necessarily
true. Moreover, also the ANEC does not imply convexity,
since the integral in Eq. (79) is over directions transverse
to the null boundary and not along it. Nevertheless, the
convexity of the relative entropy is related to a NEC of a
different type, dubbed the quantum NEC (QNEC), which
reads 0" (¥|T,, (x)|¥) > S{,. Here, W is a state restricted
to a region whose boundary contains x, and Sy is the
second derivative of the von Neumann entropy with
respect to null translations of this region along v*.
Even though the von Neumann entropy itself is divergent,
its derivative can be finite, and the QNEC has been argued
to hold in general [62—-64]. Moreover, the relation between
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the QNEC, the ANEC and modular theory has been
elucidated [65-67].

It would of course be interesting to prove convexity for
inclusions also in the de Sitter case, and to see if one could
relate it to a QNEC or ANEC. However, the wedges JV; in
de Sitter space are rather artificial regions, as can be seen
from Fig. 1. The regions which play a more physical role
are the double cones or diamonds inside the static patch,
which are the regions that a geodesic observer can causally
influence. The modular Hamiltonian for double cones in de
Sitter has been determined recently [68], and we plan to
extend our computation also to this setting. Moreover, the
diamonds can be chosen such that their (future or past)
boundary coincides with the cosmological horizon, which
allows us to study the generalized second law [2,3] (with
the generalized entropy being given by the sum of the
matter entropy and the Bekenstein-Hawking entropy of the
horizon) from a rigorous field-theoretic perspective [69].
In turn, we could then compare the obtained results with
the ones obtained in the de Sitter holographic correspon-
dence [70-72], where the horizon horizon entropy can be
understood as the entanglement entropy between the right
and left dual conformal field theories (CFTs) that appear in
the correspondence, or between the past and future dual
CFTs [73-79].
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APPENDIX A: COVARIANT CANONICAL
QUANTIZATION

Here we recall the covariant canonical quantization of a
scalar field; see Refs. [80,81] for a more detailed dis-
cussion. The Lagrangian density for a massive scalar field
with mass m in a curved spacetime reads

L=~ (V9,0 + ) /5

:%e(n—l)Ht[dIZ_e—ZHtai¢ai¢_m2¢2]’ (Al)
where the second expression holds in the expanding
Poincaré patch with metric (7), and we denote the deriva-
tive with respect to the cosmological time ¢ by a dot. In the
following, we write x* = (¢,x) and y* = (s,y). The covar-
iant canonical momentum is defined from the Lagrangian
density by

1 oL
W= = K,
V=T

and the Euler-Lagrange equation for ¢ is the Klein-Gordon
equation (with A = 9'9;)

(A2)

(V2= m2)p = |=0% = (n = 1)HO, + 1A — m? | = 0.
(A3)

For any two solutions ¢(;) and ¢(,), it follows that the
covariant symplectic current

T2 = 1(452‘1)”’(2) - ¢<2>”'fl*>> (Ad)
is covariantly conserved: VMJ’(‘1 2= 0. Consequently, the
covariant symplectic product

() b)) = LJ’G;)"ud’l‘]Z’ (A5)
where X is a Cauchy surface, n, the future-directed unit
vector normal to ¥ and d"”'Y the normalized surface
element, is independent of the choice of the Cauchy surface

(assuming the solutions fall off fast at spatial infinity). This
follows straightforwardly; we have

O:K/Vﬂjﬁz)d—gd”x
:[/()ﬂ(.l’(‘l.z)\/—g)d”x

_ /0 TS (A6)
for any region V with boundary 0V by Gaul}’ divergence
theorem, where n, is the outward-directed unit vector
normal to the boundary 0V and d"~'S the normalized
surface element of the boundary. Choosing V to be the
complete volume between two Cauchy surfaces X; and %,
such that 0V =X, U £, U S, where S, is the part of the
boundary at spatial infinity, assuming that the solutions fall
off fast at spatial infinity such that J’(’ 12) vanishes there, and
flipping the normal vector of the earlier Cauchy surface X,
such it is also future-pointing, we obtain

0:/ J’(‘Lz)nﬂdZ—/ lel’z)nﬂd”_lz (A7)
% )

with d""'S = ,/=gd""'S, and thus the independence of
the covariant symplectic product from the Cauchy surface.
For our purposes, we can choose the Cauchy surface X to be
at constant time ¢t = 0 such that n, = 62 and \/—_g =1,
such that

o(pn) )
N i/ [671)(0.%)h(2) (0.%) = h(2) (0.x)b; (0.x)Jd" .,
(A8)
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where we recall that a dot denotes a derivative with
respect to time. In the embedding coordinates (6), this
corresponds to the surface X° — X" = H™!, and also the
antisymmetry
o(). b)) = —o(d(y) ) (A9)
is manifest.
Since the symplectic product is nondegenerate, we

obtain a complete set of normalizable mode solutions
f»(t.x) to the Klein-Gordon equation,

) = e, (B v, (B
(A10)

—1)2 2
where u = (”4) -,

of the first and second kind, and the factor ¢(p) can be
determined from the normalization. Note that for small
masses m*> < (n —1)?/4H?, y is real, but for large masses
it becomes purely imaginary: in this case, one has to use the
appropriate real and imaginary parts J and Y [34]. In the
following, we consider only real u, and leave the straight-
forward modifications for purely imaginary p to the reader.
Since for real argument and parameter the Bessel functions
are real [34], we obtain

J and Y are the Bessel functions

f3(1.%) = ¢ (ple~THre

(B - (B, an

and using Bessel function identities, for the symplectic
product (A5) of two modes* we obtain

ofp fa) = 22V '8~ g)lelp) P (A12)

We thus choose |c(p)| = \/7/(4H), and leave the phase
factor undetermined, since it will not affect the result.’
Similarly, we obtain

o(fp-fq) =0 =0(fp. fo)- (Al3a)

o(fp.fo) = 2n)""'"(p—q).  (Al3b)

“Even though the modes do not decay at spatial infinity, one
can nevertheless easily see explicitly that their symplectic product
is time-independent by reinstating a factor \/—g = e("=DH in the
covariant symplectic product (AS) and evaluating it at a generic
time 7.

To obtain the correct flat-space limit of the modes, one has to
choose the phase factor as in Ref. [82].

which reflects the orthogonality of the set of mode
functions. Moreover, we have a second orthogonality
relation in Fourier space, which reads

) . . dn—l
[ Uiy (0) = 0000 5
= e~ (=DHIg=1 (x —y). (A14)
The field is then canonically quantized as
00 = [lat)sy (1) + 4011300 L
= ¢T (x), (A]S)

where the creation and annihilation operators fulfill the
commutation relations

lap).a’(q)] = o(f,. o) = (20)"'6" ' (p —q). (Al6a)

la(p). alq)] = 0 = [a*(p).a"(q)], (Al6b)
and can be obtained from the field by computing the
sympletic product with the mode functions,

o(fp- ) =alp).  olfp.d)=d'(p).  (Al7)
The vacuum vector |Q) is annihilated by all annihilation
operators a(p), and for the above choice of mode functions
is known as the Bunch-Davies vacuum [37-39]. Using
the second orthogonality relation, it follows that ¢ and
n,mt = ¢ fulfill the covariant canonical commutation

relations on the Cauchy surface £ = {(z,x):¢ = const}:

X / =1 —(n=1)Ht sn—1( _ _ lm
0Ol =iV —y) =i P2,

(A18)
From the expansion of ¢ in modes (A15) and the

explicit form of the modes (A10), we can now compute
the Wightman two-point function

_1p
(27)"

The computation of the integral is quite involved, and is
done in detail in Appendix A in Ref. [83]. It results in

(A19)

dn
)l

Q) p()|Q) = / £, () f3()

n—2

Q@) =21 (x.x).

i (A20)

with the function
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L&+ (st - -1
T aTest o) [

F(%) e—0" 2

n—1 n 1+Z(xx)
—pig

1u(x.x) 2 2 2

+ U,

—iesgn(r—1) (A21)

depending on the de Sitter-invariant distance Z(x, x') (9). For spacelike separation with Z(x, x') < 1, we can take the limit
€ — 0 inside the hypergeometric function, while for timelike separation with Z(x,x’) > 1 we first have to use a

transformation of variables [see Eq. (15.8.3) in Ref. [34]] to obtain

n=3

_ 25T+ )T (—p)

I,(x,x') = v

1 n—1
XZFI <_+M9—+M71 +2ﬂs_

2 2

It is also useful to write the result (A21) in a slightly
different form, taking into account that the causal structure
of de Sitter space is inherited from the ambient space, such
that sgn(t— ') = sgn(X°(x) — X°(x’)) if the points are
timelike separated. Using the expression of Z in terms
of embedding coordinates (8) we obtain

1+ Z(x,x 1+ Z.(x,x'
tim [LE205) e son(r— )] = fim 120 X)
e—~0" =0 2

(A23)
with

Zo(x,x') = —H*[X(x) —i€e][X°(x') + i€]

+ H2X;(x)X'(xX) + H2X"(x)X"(x'),  (A24)

since in the limit ¢ — 0 only the sign is relevant.

APPENDIX B: COMMUTATOR AND
SYMPLECTIC PRODUCT

From the mode functions (A10), one also computes the
advanced and retarded propagators

Gra(x. ) = —i0(1 - 5) / (1.0 f3(5.3)

dn—lp

W, (Bla)

— fp(.X)fp(s5.3)]

Gadv(x’ y) = C;ret(y’x)7 (Blb)

which are easily checked to be fundamental solutions of the
Klein-Gordon equation, using again the second orthogon-
ality relation:

[_0[2 - (I’l - I)Hat + e A — mz]Gret/adv(x’ y)

oM(x —
= e DHIS(t — 5)5" (x —y) = 7()( y)

E (B2)

n=1

[Z(x, x/) _ 1]—T—ﬂe—in(”7‘l+/4)sgn(t—z’)

=) . (A2)
|
Finally, the commutator function
A(x,y) = Gogy (%, Y) = Gret(, y)
=i [ f3t59) = 00 5] L
(83)

which satisfies the Klein-Gordon equation (A3), deter-
mines the spacetime commutator of two fields,

[p(x), p(y)] = —iA(x, ).

For the commutator function we have the important identity
A(t,x, t,y) = 0, which is proven by changing p — —p in
the second term of Eq. (B3), and reflects the fact that the
fields commute at spatial separations. Analogously, we
obtain 0,0,A(x, y)|,_, = 0, which encodes the vanishing of
the canonical momenta at spatial separations. Furthermore,
using the second orthogonality relation (A14), it also holds
that

(B4)

6,A(x, y)|s:t = e_(n_l)Htén_l(x —y), (BS)
which reflects that the field and momentum have the
nonvanishing equal-time commutator (A18).

In general, we consider fields smeared with a test
function f

b(f) = / F)p(x)v=adx, (B6)

where f € S(R") is a Schwartz function, and for two test
functions define an inner product

(f,h) = / £+ (0)h(x) V=g dx.

It follows that the commutator (B4) can be written in
the form

(B7)

[#(f), p(h)] = —i(f*, Ah) = =i(Af", k), (B8)
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where

(AR)(x) = / A(x.y)h(y)v/=g0)d"y

is the smeared commutator function.

(B9)

Consider now two functions f and &, where at least one of them has compact support in spatial directions. Then Green’s

identity (i.e., integration by parts) results in

/ o [f*(x) (V2 = m2)h(x) — h(x) (V2 — m?)f*(x)]/—g(x)d"x

=- / [en=DHI (¢, x)h(t,x) — e("‘l)H’h(t,x)f*(t,x)]ifd"‘lx.

We take f to be a solution of the Klein-Gordon equation,
and instead of & the two combinations

hret/adv(x) - /Gret/adv(x’ y)h(y) \% _g<y)dny’ (Bll)

where £ has compact support in spatial directions. Since the
retarded and advanced Green’s functions (B1) have support
only inside the light cone, for all 7; <t < 7, also Ay /aqy has
compact support in spatial directions. It follows that

[ RACLONETOL

:—/[em_l)Htf*(tvx)hrel/adv(tvx)

— eV g (1,2) 5 (1,x) [ 2d" k. (B12)

Since in the limit - —oo, the retarded combination /. (x)
vanishes, while for t# — oo the advanced combination
hay(x) vanishes, we can take 7, = —o0, 1, =0 for Ay
and t; =0, t, = oo for h,y,, and obtain

fr(x)h(x)y/=g(x)d"x

<0

= = [ 17 0.0)hl0.5) = b 0.7 0.0,
(B13a)

fr(x)h(x)y/=g(x)d"x

0<t

_/[f*(o’x)hadv(o’x)—hadv(o,x)f*((),x)]dn—lx.
(B13b)

Combining both and using the definition of the commutator
function (B3), it follows that

(B10)
|
(f.h) = /f* (x)h(x)\/—g(x)d"x
= [ wxaanen)
(AR (18] o
= —io(f, Ah), (B14)

since both f (by assumption) and A/ are solutions of
the Klein-Gordon equation, such that their symplectic
product o(-, -) [given in Eq. (A8)] is well-defined and time
independent. Taking into account that ¢ is self-adjoint,
we thus obtain
P(f) = (9. f) = —io(p. Af). (B15)
which expresses the smeared field in terms of its initial data
on a Cauchy surface. Moreover, it also follows that the
commutator of two smeared fields (B8) can be expressed
using the symplectic product:
[4(f). #(h)] = —i(Af". h) = —o(Af*. AR).  (B16)

Furthermore, using the definition of the symplectic
product (A8) we obtain

ol f) =i / ($(0.0)7(0.%) — £(0,x)x(0.x)]d"x,
(B17)

and hence using the canonical commutation relation (A18)

[0(¢.f).0(d.9)] = —o(f". 9). (B18)

Lastly, we note that the de Sitter Killing vectors define
(after multiplication with i) operators that are symmetric
with respect to the inner product; for test functions f and &
we compute
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(7. i)
/f*tx
//Df*tx (t,x)e=DHIqy

(DYf.h) =

H='0, +x70,)h(t,x)el~DHidn x

~(Df . h), (B19)
and analogously
(f. Kjh) = =(K;f ), (f.Pih) = =(P;f.h),  (B20)

such that iD, iK;, and iP; are symmetric; (iD)" = iD etc.
Since the embedding space Killing vectors are constant
linear combinations of these, also they are symmetric with
respect to the inner product. Using the Noether method, one

can then construct symmetric operators D, K}, and P; on|

(P + PAG) =1 [ 036 00)155.0) = 05000, (5.9) + F(10)03F3(6.9) = F0.20,8, 5.0 5P

- i/[ipjfp(t’x)f;(s’y) +ipjf;(t’x)fp<s’y> _fp(t’x)ipjf;<s’y> fp(t x)]p]fp<s y)]

=0,

the Fock space of the free scalar field, representing them as
commutators:

i[D,¢(x)] = Dg(x),  i[K;, p(x)] =
i[Pj,fl"(x)] = ijﬁ(x)-

For the proof that these operators are in fact self-adjoint on
Fock space, we refer the reader to Ref. [32].

Kjd’(x),
(B21)

APPENDIX C: COVARIANCE OF THE
COMMUTATOR

Since the commutator function A(x,y) is de Sitter
invariant, subjecting both x and y to the same trans-
formation it stays invariant. Let us show this explicitly
for the generators of translations P; and boosts K; (12). For
translations, this is very simple: with the explicit expression
(B3) of A in terms of the modes (A10), we compute

dm- 1
(27)" =
(C1)

where we denote the point on which the generators act by a superscript. For the boosts, the computation is much more

involved, and we have to use the identities

Fp(16) = i y0.5) = i85 | 0,1, (06) +

——fp(tx) ],

(C2a)

o . jo -1
XX f,(1,.X) = —p'0,i0yi f,(t.%) +p/ H2e™2HI f (1,.x) — H™'0,0,f, (1, %) — H‘llléplapiatfp(t,x) - nTapjfp(t,X)
—1p/ J —1(n=3)p/ 2pi
oty )+ oy (nx) - T g ) 2 ), (c20)
2 ~2,~2Ht 21’ P
x°f,(t,x) = =0, f,(t,.x) + H e " f,(t,x) — sz 0lfp(t x)—(n 1)170pjfp(t,x)
- -1)(3n - 2
S Roy () - R ) 4 (0 (2)

and their complex conjugates, and integrate the derivatives
with respect to p by parts to obtain
y
(K% + K})A(x,

y) =0. (C3)

APPENDIX D: TILTED CAUCHY SURFACE

We consider the surface

¥ = {(t,x):2Ht +In(1 + H’x*) =0},  (D1)

whose normalized future-pointing normal vector reads

n, = =N(1 + H>x* Hx;),, (D2a)
n* = N(1 + H>x?, —e 2H! Hx')*, (D2b)
N = [(1 + H%?2)? — e 2HI g2x2] 2, (D2c)

that on the surface itself reduces to
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nls = —ﬁ(] + H’x* Hx;),. (D3a)
s = V1 + H2x2(1, —Hx' )", (D3b)
N|y = ﬁ (D3c¢)

The induced metric y;; can be obtained from
d52|2 = 7ijdxidxj (D4)

and reads
5 Hxx;

T T (1 + B (Dsa)
v =1+ H*%?)87 + H*(1 + H*x*)x'x/,  (D5b)
VY= (14 H%x?)™. (D5c¢)

All derivatives can be decomposed into a derivative
normal to the surface d, = n*9,, and tangential ones 5ﬂz
(6, + n,n")o,, such that 9, = fiﬂ - n,0,, and we compute

d,ls = V' 1+ H?x*(9, — Hx*9y), (D7a)
0,y = —H*x%9, + (1 + H*x*)Hx*9,,  (D7b)
0|y = 0; + H*x'x*o, — Hx'd,. (D7c)
We can then use the relation
~ Hx! ~
a2
6, =¢C Htmai (DS)

to replace 0, in all expressions and keep only d,, and 0 ;. The
Klein-Gordon equation (A3) then reduces to

(V2 = m?)pls = =02 — (n = 3)H™x*0pp — m*¢
+ [(1 4+ H2x?)8" — H?x*x]0,0,¢p. (DY)

and the symplectic product (A5) on X reads

obde) =1 [ 6,000

- ¢(2)(x)ar1¢?1)(x)]E\/?dn_lx' (DIO)

For the Killing vector My; (17), using Eq. (D6) we

0, = N(1 + H?x?)o, — e ! NHx'0;, (D6a) compute
0, =0, — N(1 + H*x?)o, N .
t t ( ) MOJ — __xj(3 + H2x2 _ e—ZHI)an
= —e2MIN?[H?x%9, — (1 + H*x?)Hx*9;], (D6b) 2
Hxix* . 1 4
. , 14 B2 —e2Hny (2P 5 © 5
9. — 0, — NHx'd, I+ —e )<1—|—H2x2 “ToH f)’
=0;+e?"N?H’x'x* 0, — N*H(1 + H*x*)x'0,,  (D6c) (D11)
and on the surface itself and from this the commutator
|
x/ A
[Mojhanh - hanMojh]z = —W [6,1h0nh + [(1 + H2x2)5kl - Hzxkxl]dkhalh + m2h2 —+ h(vz - mz)h]z
A x/ 2kl S i/ 2,275
— l:ak [JTWH XX hdlh —Xx/ 1 + H-x hdkh Z. (D12)

The last term is a boundary term inside the surface X and thus vanishes after integration over the Cauchy surface. This can

be seen also explicitly by computing

/ 0if (x) |5\ /rd"'x = / Ouf (x)e™2HS[2H + In(1 + H?*x?)]d"x

= -2H / "1 f(x)[0 + H*x*x/0; — Hx*0,|6[2H1 + In(1 + Hx?)]d"x = 0,

(D13)

where the last equality follows after performing the derivatives on the Dirac 6.
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