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We study d-dimensional scalar field theory in the local potential approximation of the functional
renormalization group. Sturm-Liouville methods allow the eigenoperator equation to be cast as a
Schrödinger-type equation. Combining solutions in the large field limit with the Wentzel-Kramers-
Brillouin approximation, we solve analytically for the scaling dimension dn of high dimension potential-
type operators OnðφÞ around a nontrivial fixed point. We find that dn ¼ nðd − dφÞ to leading order in n as

n → ∞, where dφ ¼ 1
2
ðd − 2þ ηÞ is the scaling dimension of the field φ and determine the power-law

growth of the subleading correction. For OðNÞ invariant scalar field theory, the scaling dimension is just
double this, for all fixed N ≥ 0 and additionally for N ¼ −2;−4;…. These results are universal,
independent of the choice of cutoff function which we keep general throughout, subject only to some
weak constraints.

DOI: 10.1103/PhysRevD.108.105003

I. INTRODUCTION

The functional renormalization group (FRG) is one of
the most widely used approaches to study quantum field
theories in nonperturbative regimes, as evidenced by an
extensive literature (see, for instance, the reviews [1–6]).
Various realizations of the FRG exist [7–18], but the most
prevalent version [12–18] focuses on the flow of an
appropriately defined Legendre effective action ΓΛ (also
referred to as the effective average action), with respect to
an infrared cutoff scale Λ. This flow equation is given by

∂

∂Λ
ΓΛ ¼ −

1

2
Tr

�
1

ΔΛ

∂ΔΛ

∂Λ

�
1þ ΔΛΓ

ð2Þ
Λ

�
−1
�
: ð1:1Þ

Here, Tr stands for a spacetime trace and Γð2Þ
Λ is the Hessian

matrix with respect to the fields. The propagator ΔΛðqÞ ¼
CΛðqÞ=q2 is modified by the inclusion of a multiplicative
infrared cutoff function CΛðqÞ ¼ Cðq2=Λ2Þ, which is non-
negative, monotonically increasing, and satisfies Cð0Þ ¼ 0
and Cð∞Þ ¼ 1.

In practical applications, some form of approximation
becomes necessary. One frequently employed approxima-
tion is the local potential approximation (LPA) [19–28],
which simplifies the flow equations by disregarding the
momentum dependence of the effective action, except for a
local potential term VΛ. For a scalar field φ in d Euclidean
dimensions, the effective action then takes the form

ΓΛ ¼
Z

ddx

�
1

2
ð∂μφÞ2 þ VΛðφÞ

�
: ð1:2Þ

While an exact analytical solution to this truncated
FRG formulation is still not possible in general, the LPA
enables numerical treatments that provide valuable insights
into the system’s behavior. It allows for numerical estimates
of various physical quantities, including critical expo-
nents and the scaling equation of state [1–6,23,29–31].
Moreover, the LPA serves as the initial step in a systematic
derivative expansion [1,23,29–31], which facilitates a
more comprehensive exploration of the system’s properties
[1–6,30].
Nevertheless, it is important to acknowledge the limita-

tions of theLPAandmoregenerally the derivative expansion.
Since such truncations do not correspond to a controlled
expansion in some small parameter, the errors incurred canbe
expected to be of the same order in general as the quantities
being computed.1 Furthermore, quantities that should be
universal, and thus independent of the specific form of the
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cutoff, are not (for example, for the critical exponent ν at the
Wilson-Fisher fixed point in d ¼ 3 dimensions, the LPA
yields ν ¼ 0.689 with a sharp cutoff [23] while for a power-
law cutoff one obtains ν ¼ 0.660 [29]).
It has long been understood that an exception to this is

the general form of a nontrivial fixed potential VðφÞ in the
large field regime [1,23,29,31], which follows from asymp-
totic analysis,

VðφÞ ¼ Ajφjd=dφ þ � � � as φ → �∞; ð1:3Þ

where the ellipses stand for subleading terms (see later).
The leading term coincides with the scaling equation of
state precisely at the fixed point. It is a simple consequence
of dimensional analysis on using the scaling dimension
dφ ¼ 1

2
ðd − 2þ ηÞ for the field φ at the fixed point, η being

its anomalous dimension. However, asymptotic analysis
does not fix the amplitude A or the anomalous dimension η,
which have to be found by other means, for example, by
numerical solution of truncated fixed point equations.
In this paper, we will show that within LPA, asymptotic

analysis combined with Sturm-Liouville (SL) and Wentzel-
Kramers-Brillouin (WKB) analysis2 also allows one to
determine asymptotically the scaling dimension dn of the
highly irrelevant (dn ≫ 1) eigenoperators On ¼ OnðφÞ of
potential type (those containing no spacetime derivatives).
Ordering them by increasing scaling dimension, we will
show that dn ¼ nðd − dφÞ to leading order in n. In the case
of OðNÞ invariant scalar field theory with fixed N ≥ 0 the
dimension dn is doubled to dn ¼ 2nðd − dφÞ. The scaling
dimension is thus independent of N. It agrees with the
result for the single scalar field since these eigenoperators
are functions of φ2 ¼ φaφa and thus pick out only the even
eigenoperators (those symmetric under φ ↔ −φ) in the
N ¼ 1 case. We also show that the scaling dimension is
dn ¼ 2nðd − dφÞ whenever N ¼ −2k, where k is a non-
negative integer.
Once again these results are independent of the choice of

cutoff and thus universal. Indeed, in this paper, wewill keep
the cutoff function completely general throughout, subject
only to someweak technical constraints that we derive later.
Note that, like the fixed point equation of state (1.3), the dn
take the same form, independent of the choice of fixed
point, provided only that dφ > 0 and that the fixed point
potential is nonvanishing. We also show that the next to
leading correction to dn behaves as a power of n. The power
is universal although the coefficient of the subleading
correction is not.
Actually this approach was first employed to determine

the scaling dimension of highly irrelevant eigenoperators
in an fðRÞ approximation [38,39] to the asymptotic
safety scenario [40–42] in quantum gravity. The fðRÞ

approximation serves as a close analog to the LPA in this
context [43–45]. However, while the resulting scaling
dimensions dn exhibit a simple nearly universal form for
large values of n, they nevertheless retained strong depend-
ence on the choice of cutoff. This issue can be traced back
[39] to the so-called single-metric (or background field)
approximation [40], where the identification of the quan-
tum metric with the background metric is made in order to
close the equations. The present paper thus completes the
circle by demonstrating that, indeed, without such an
approximation, the results become truly universal.
Additionally, it showcases the power of these methods in
a simpler context.
The paper is organized as follows. We first analyze the

functional renormalization group equations for a single
scalar field in the LPA. From the eigenoperator equation we
write the resulting SL equation in Schrödinger form and
thus, by taking the large field limit, deduce the asymptotic
form of the renormalization group eigenvalues in the WKB
limit. Section III extends the analysis to OðNÞ scalar field
theory using the same approach. Finally in Sec. IV we
conclude and discuss the results, placing them in a wider
context.

II. FLOW EQUATIONS IN LPA

The LPA amounts to setting the field φ in the Hessian to
a spacetime constant, thus dropping from a derivative
expansion all terms that do not take the form of a correction
to the potential. The flow equation for VΛðφÞ then takes the
form

�
∂t þ dφφ

∂

∂φ
− d

�
VΛðφÞ ¼ −

1

2

Z
ddq
ð2πÞd

Δ̇
Δ

1

1þ ΔV 00
ΛðφÞ

;

ð2:1Þ

where ∂t ¼ −Λ∂Λ, t being the renormalization group
“time” which, following [7], we have chosen to flow
toward the IR. Here the momentum, potential, and field
are already scaled by the appropriate power of Λ to
make them dimensionless. Then Δ ¼ Cðq2Þ=q2 no longer
depends on Λ. The same is true of ∂tΔΛ, which after scaling
we write as Δ̇, where

Δ̇ ¼ 2C0ðq2Þ: ð2:2Þ

Since Cðq2Þ is monotonically increasing, we have that
Δ̇ > 0.
The scaling dimension of the field is dφ ¼ 1

2
ðd − 2þ ηÞ,

where η is the anomalous dimension. Since η arises from
the renormalization group running of the field and is
typically inferred from corrections to the kinetic term,
one would naturally conclude that it vanishes in LPA
[2,7,19–26]. Nevertheless, as noticed in Refs. [27,28], this
assumption is not necessary. The flow equation (2.1) is still

2See, e.g., Ref. [36] for textbook discussion of SL methods and
Ref. [37] for WKB methods.
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a mathematically consistent equation with η ≠ 0. However,
since we cannot determine η directly from (2.1), its value
needs to be input from elsewhere (either from experiment
or other theoretical studies). We will follow this strategy, in
the expectation that it improves the accuracy of our final
estimates for dn.
Let us recall that the flow equation (2.1) is an imple-

mentation of the Wilsonian renormalization group (RG)
[1,7]. Lowering the cutoff Λ implements the Kadanoff
blocking [46], while rescaling the cutoff back to the
original size is equivalently implemented by “measuring”
all quantities in units of Λ, i.e., by making them dimen-
sionless using the appropriate power of Λ [1] as we have
done above. Then at a critical point corresponding to a
continuous phase transition, the solutions VΛðφÞ remain
finite but the distinguishing feature is that they become
independent of Λ (see, e.g., [1]).
Thus, at such a fixed point (FP) VΛðφÞ ¼ VðφÞ, and η,

have no renormalization group time dependence. The
eigenoperator equation follows from linearizing about a FP,

VΛðφÞ ¼ VðφÞ þ εvðφÞeλt; ð2:3Þ

ε being infinitesimal. Here λ is the RG eigenvalue. It is the
scaling dimension of the corresponding coupling and is
positive (negative) for relevant (irrelevant) operators. The
scaling dimension of the operator vðφÞ itself is then d − λ.
We write the eigenoperator equation in the same form as
Refs. [38,39,45],

−a2ðφÞv00ðφÞ þ a1ðφÞv0ðφÞ þ a0ðφÞvðφÞ ¼ ðd − λÞvðφÞ;
ð2:4Þ

where the φ-dependent coefficients multiplying the eige-
noperators are given by

a0ðφÞ ¼ 0; ð2:5Þ

a1ðφÞ ¼ dφφ; ð2:6Þ

a2ðφÞ ¼
1

2

Z
ddq
ð2πÞd

Δ̇
ð1þ ΔV 00Þ2 > 0; ð2:7Þ

and we have noted that a2 is positive. We can now repeat
the analysis carried out in [38,39,45] to solve for λ in the
case of high dimension eigenoperators.

A. Asymptotic solutions

For large φ, the rhs of (2.1) can be neglected. Thus, at a
fixed point, the equation reduces to a first order ordinary
differential equation (ODE) which is easily solved. It gives
the first term (1.3) in an asymptotic series solution [29],

VðφÞ ¼ Ajφjm þOðjφj2−mÞ as φ → �∞; ð2:8Þ

where for convenience we introduce

m ¼ d=dφ; ð2:9Þ

and A is a real constant (that is determined by solving for
the full FP solution). The subleading terms arise from
iterating the leading order contribution to next order.
Of course there is always the trivial VðφÞ≡ 0 fixed point

solution, corresponding to the Gaussian fixed point. We
will not be interested in that (the scaling dimensions in that
case are exactly known and reviewed in the discussion in
Sec. IV). Instead we focus on nontrivial FP solutions for
which A ≠ 0. In principle, A could be different in the two
limits φ → �∞, although in practice the fixed point
potentials (2.8) are symmetric. Anyway, we will see that
A drops out of the analysis in a few further steps.
It is helpful for the following to note that m > 3, since

this inequality ensures that the m-dependent asymptotic
solutions we are about to derive are valid. To see that
m > 3, first note that if η is neglected (typically η ≪ 1, see,
e.g., [47]), m is a decreasing function of d for all d > 2. In
practice, nontrivial FP solutions only exist for 2 ≤ d < 4
(see, e.g., [23]). In the limit d → 4−, η → 0 (by the ϵ
expansion [47]), and thus m → 4. Therefore, if we can
neglect η, we see that m is bounded below by m ≥ 4. In
practice, one finds that the values of η increase as d is
lowered, but even in d ¼ 2 dimensions they are not large
enough to destroy this bound. In d ¼ 2 dimensions, the
asymptotic solution (2.8) corresponds to that of a unitary
minimal model [48,49]. The one with the largest anomalous
dimension is that of the Ising model universality class
which has η ¼ 1=4, thus in d ¼ 2 dimensions we have in
fact m ≥ 8 for all the unitary minimal models. In this way,
we see that we are safe to bound m > 3 in practice.
Note that the solution (2.8) has a single free parameter

even though the FP equation is a (nonlinear) second order
ODE. The second parameter, if it exists, can be deduced by
linearizing around (2.8), writing VðφÞ ↦ VðφÞ þ δVðφÞ,
and solving the flow equation (2.1) at the FP this time for
δV. Since δV satisfies a linear second order ODE and one
solution is already known, namely δV ¼ ∂AVðφÞ, it is easy
to find the solution that corresponds at the linearized level
to the missing parameter [23,29]. However, one then
discovers that these “missing” linearized solutions are
rapidly growing exponentials. Such a linearized perturba-
tion is not valid asymptotically since for diverging φ it is
much larger than the solution (2.8) we perturbed around.
Hence, the FP asymptotic solutions only have the one free
parameter, A.
Substituting (2.8) into (2.7), we see that asymptotically

a2ðφÞ scales as follows:

a2ðφÞ¼Fjφj2ð2−mÞ þOðjφj3ð2−mÞÞ as φ→�∞; ð2:10Þ

where F is positive and cutoff dependent,
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F ¼ 1

2ðmðm − 1ÞAÞ2
Z

ddq
ð2πÞd

Δ̇
Δ2

¼ −
1

ðmðm − 1ÞAÞ2
Z

ddq
ð2πÞd q

4
∂

∂q2
C−1ðq2Þ: ð2:11Þ

We will assume that the integral converges. This imposes
some weak constraints on the cutoff profile. From (2.11),
we see that we require Cðq2Þ to vanish slower than qdþ2 as
q → 0, and C → 1 faster than 1=qdþ2 as q → ∞. This is
true, for example, for the popular form of additive (i.e.,
mass-type) cutoff [13] [which was the one used in the
analogous fðRÞ analyses in Refs. [38,39] ],

rðq2Þ ¼ q2

expðaq2bÞ − 1
; a > 0; b ≥ 1; ð2:12Þ

provided also we set b < 1
2
ðdþ 2Þ, the relation to Cðq2Þ

being q2C−1ðq2Þ ¼ q2 þ rðq2Þ.
Given that a2ðφÞ vanishes asymptotically, it is tempting

to neglect the a2 term in (2.4). We will shortly justify this.
By neglecting the a2 term, the ODE becomes linear first
order giving a unique solution up to normalization. Thus
we deduce that the eigenoperators asymptotically scale as a
power of the field,

vðφÞ ∝ jφjd−λdφ þ � � � ; ð2:13Þ

where the ellipses stand for subleading corrections.
The neglect of the a2 is justified as follows. The missing

solution is one that grows exponentially [again, so that
a2ðφÞv00ðφÞ cannot be neglected]. Since the ODE is linear,
these are allowed solutions to (2.4), but they are ruled out
because, on treating such perturbations at the nonperturba-
tive level, it can be shown that they do not evolve multi-
plicatively in the RGnomatter how close one starts to the FP
[1,30,38,39,50,51], i.e., the RG time dependence never
takes the form in Eq. (2.3). [Such perturbations do not then
have a well-defined scaling dimension, and in fact it can be
shown that as soon asΛ is lowered, they can be expanded as
a convergent sum over the power-law solutions (2.13). For
more details, see Refs. [1,30,38,39,50,51].]
Now, the asymptotic solution (2.13) imposes two boun-

dary conditions (one for each limit φ → �∞) on the second
order ODE (2.4), but since the ODE is linear this over-
constrains the equation,3 which thus leads to quantization
of the RG eigenvalue λ. We index the solutions as vnðφÞ,
ordering them so that λn decreases as n increases. We can
now perform a SL transformation and deduce the asymp-
totic dependence of the eigenvalues λn on n, as n → ∞.

B. SL analysis

We can rewrite the eigenvalue equation (2.4) in a SL
form by multiplying it with the SL weight function

wðφÞ ¼ 1

a2ðφÞ
exp

�
−
Z

φ

0

dφ0 a1ðφ0Þ
a2ðφ0Þ dφ

0
	
; ð2:14Þ

which is always positive due to the positivity of a2. Then
the eigenvalue equation becomes

−ða2ðφÞwðφÞv0ðφÞÞ0 ¼ ðd − λÞwðφÞvðφÞ: ð2:15Þ

The SL operator on the left, L ¼ − d
dφ

�
a2w d

dφ ·

�
, is self-

adjoint when acting on the space spanned by the eigen-
operators, i.e., it satisfiesZ

∞

−∞
dφ u1ðφÞLu2ðφÞ ¼

Z
∞

−∞
dφ u2ðφÞLu1ðφÞ; ð2:16Þ

when the ui are linear combinations of the eigenoperators.
This is so because the boundary terms at infinity, generated
by integration by parts, vanish in this case. This follows
because, from (2.13), the ui diverge at worst as a power of
φ, while wðφÞ → 0 exponentially fast as φ → �∞.
Thus, from SL analysis [36], we know that the eigen-

values λn are real, discrete, with a most positive (relevant)
eigenvalue, and an infinite tower of ever more negative
(more irrelevant) eigenvalues, λn → −∞ as n → ∞ [30].
Let us define a “coordinate” x,

x ¼
Z

φ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðφ0Þp dφ0 ð2:17Þ

(always taking the positive root in fractional powers).
Defining the wave function as

ψðxÞ ¼ a1=42 ðφÞw1=2ðφÞvðφÞ ð2:18Þ

enables us to recast (2.15) as

−
d2ψðxÞ
dx2

þ UðxÞψðxÞ ¼ ðd − λÞψðxÞ: ð2:19Þ

This is a one-dimensional time-independent Schrödinger
equation for a particle of mass m ¼ 1=2, with energy
E ¼ d − λ, i.e., just the eigenoperator scaling dimension,
and with potential [38,39,45]

UðxÞ ¼ a21
4a2

−
a01
2
þ a02

�
a1
2a2

þ 3a02
16a2

�
−
a002
4
; ð2:20Þ

where the terms on the right-hand side are functions of φ.
From the limiting behavior of a2ðφÞ, (2.10), we see that

asymptotically the coordinate x scales as
3We can see this, for example, by imposing a normalization

condition on v.
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x ¼
Z

φ

0

�jφ0jm−2ffiffiffiffi
F

p þOð1Þ
�
dφ0 ¼ � jφjm−1

ðm − 1Þ ffiffiffiffi
F

p þOðjφjÞ

as φ → �∞; ð2:21Þ

so in particular when φ → �∞ we have x → �∞. On the
right-hand side of (2.20), the first term dominates at leading
order (LO) and next-to-leading order (NLO). Since, asymp-
totically,

a21ðφÞ
4a2ðφÞ

¼ d2φ
4F

jφj2m−2 þOðjφjmÞ; ð2:22Þ

we thus find that

UðxÞ¼ 1

4
ðd−dφÞ2x2þOðjxj1þ 1

m−1Þ as x→�∞: ð2:23Þ

To LO, this is the potential of a simple harmonic oscillator
of the form 1

2
mω2x2, where

ω ¼ d − dφ ¼ 1

2
ðdþ 2 − ηÞ: ð2:24Þ

C. WKB analysis

We can now use WKB analysis to compute the asymp-
totic form of the energy levels, also known as operator
scaling dimensions, En, at large n. This follows from
solving the equality

Z
xn

−xn
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −UðxÞ

p
¼
�
nþ 1

2

�
π; ð2:25Þ

for the total phase of thewave oscillations described byψðxÞ,
in the limit of large En [37]. Here xn are the classical turning
points, i.e., such thatEn ¼ Uð�xnÞ. Now, the above integral
is dominated by the regions close to the turning points, where
we can substitute the asymptotic form (2.23). Including the
subleading correction proportional to some constant γ (that
depends on the cutoff profile) the integral is

ω

2

Z
xn

−xn
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2nþ γx

1þ 1
m−1

n −x2− γjxj1þ 1
m−1

q

¼ω

2
x2n

Z
1

−1
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−y2þ γx

1
m−1−1
n ð1− jyj1þ 1

m−1Þ
q

: ð2:26Þ

Since thexn are also largewe can nowevaluate the right-hand
side and thus from (2.25) we get the asymptotic relation
between xn and n,

ωπ

4
x2n þO

�
x
1þ 1

m−1
n

�
¼ nπ: ð2:27Þ

Hence, using (2.23), (2.24), and (2.27), the scaling dimen-
sion of the eigenoperators takes the form

dn ¼ En ¼ d − λn ¼ UðxnÞ ¼ nωþO
�
n

m
2ðm−1Þ

�
¼ nðd − dφÞ þO

�
n

m
2ðm−1Þ

�
as n → ∞: ð2:28Þ

The subleading correction to the critical exponents contains
information about the cutoff via the constant γ introduced in
(2.26). However, at leading order the result is independent of
the cutoff and is hence universal.

III. OðNÞ SCALAR FIELD THEORY

Now let us apply the same treatment to N scalar
fields φa (a ¼ 1;…; N) with an OðNÞ invariant potential
VΛðφ2Þ ¼ VΛðρÞ, in the LPA. We use the shorthand
ρ ¼ φaφa ¼ φ2. The flow equation (2.1) becomes [31,52]

�
∂t − dþ 2dφρ

∂

∂ρ

�
VΛðρÞ ¼ −

1

2

Z
ddq
ð2πÞd

Δ̇
Δ
ðM−1Þaa;

ð3:1Þ

where the matrix M is given by

Mab ¼ δab þ Δ
∂
2VΛðρÞ
∂φa

∂φb

¼ δab þ 2Δ½δabV 0
ΛðρÞ þ 2φaφbV 00

ΛðρÞ�: ð3:2Þ

Inverting and tracing yields

ðM−1Þaa ¼ N − 1

1þ 2ΔV 0
ΛðρÞ

þ 1

1þ 2ΔV 0
ΛðρÞ þ 4ΔρV 00

ΛðρÞ
: ð3:3Þ

In the limit of large ρ, the right-hand side of the flow
equation (3.1) can be neglected at leading order. This
implies that a FP solution VΛðρÞ ¼ VðρÞ takes the follow-
ing asymptotic form:

VðρÞ ¼ Aρ
m
2 þOðρ1−m

2 Þ as ρ → ∞; ð3:4Þ

where as before the subleading term has been calculated by
iterating the leading contribution to next order.
The RG eigenvalue equation follows by linearizing (3.1)

around the fixed point solution,

VΛðρÞ ¼ VðρÞ þ εvðρÞeλt; ð3:5Þ

giving an equation for vðρÞ with the same structure
as (2.4), i.e.,

−a2ðρÞv00 þ a1ðρÞv0 þ a0ðρÞv ¼ ðd − λÞv; ð3:6Þ

the same value for a0ðρÞ ¼ 0, but different expressions
for a1ðρÞ,
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a1ðρÞ ¼ 2dφρ −
Z

ddq
ð2πÞd Δ̇

�
1

ð1þ 2ΔV 0 þ 4ΔρV 00Þ2

þ N − 1

ð1þ 2ΔV 0Þ2
�
; ð3:7Þ

and a2ðρÞ, which however is again always positive,

a2ðρÞ ¼
Z

ddq
ð2πÞd

2Δ̇ρ
ð1þ 2ΔV 0 þ 4ΔρV 00Þ2 : ð3:8Þ

Using the asymptotic fixed point solution (3.4) (and
assuming A ≠ 0) we get that asymptotically a2 scales as
follows:

a2ðρÞ ¼ 4Fρ3−m þO
�
ρ4−

3m
2

�
as ρ → ∞; ð3:9Þ

where F was already defined in (2.11). By similar argu-
ments as before, we see that m > 3 in practice, so this
implies a2ðρÞ → 0. We also find that a1 scales as follows:

a1ðρÞ ¼ 2dφρþOðρ2−mÞ as ρ → ∞: ð3:10Þ

If we substitute ρ ¼ φ2 into the above asymptotic expan-
sions, they differ from the large φ behavior (2.6) of a1ðφÞ
and (2.10) of a2ðφÞ. However, they reproduce the previous
results once we transform the ODE (3.6) by changing
variables ρ ¼ φ2. Thus, by the same arguments as before,
cf. (2.13), we also know that for ρ → ∞, we must have

vðρÞ ∝ ρ
d−λ
2dφ þ � � � : ð3:11Þ

However, this now imposes only one boundary condition
on the linear ODE (3.6) since ρ is restricted to be non-
negative. On the other hand we see from (3.8) that
a2ð0Þ ¼ 0, so the ODE has a so-called fixed singularity
at ρ ¼ 0. In order to ensure that vðρÞ remains nonsingular at
this point, an additional boundary condition is then
required,

a1ð0Þv0ð0Þ ¼ ðd − λÞvð0Þ: ð3:12Þ

Now we again have two boundary conditions, overcon-
straining the equation and leading to quantization of the RG
eigenvalue λ.

A. SL analysis

The last step is to perform the SL analysis, which also
differs because of the ρ ¼ 0 boundary. For small ρ we have

a2ðρÞ¼ 2GρþOðρ2Þ and a1ðρÞ¼−GNþOðρÞ; ð3:13Þ

where we have set

G ¼
Z

ddq
ð2πÞd

Δ̇
½1þ 2ΔV 0ð0Þ�2 : ð3:14Þ

Note that G is of course positive. [By Taylor expanding
(3.1) one sees that its convergence is guaranteed for any
such solution to the flow equation.] The SL weight function
now takes the form

wðρÞ ¼ 1

a2ðρÞ
exp

�
−
Z

ρ

ρ0

dρ0
a1ðρ0Þ
a2ðρ0Þ

	
; ð3:15Þ

where by (3.13) a nonzero lower limit, ρ0 > 0, is required
to avoid the integral diverging (when N ≠ 0).
Using wðρÞ we can now cast (3.6) in SL form (2.15).

However, for the SL operator to be self-adjoint, we need the
boundary contributions that appear on integration by parts
to vanish. This is still true for large fields since as ρ → ∞,
the eigenoperators diverge at worst as a power, while from
(3.9) we have a2ðρÞ → 0, and thus wðρÞ → 0 exponentially
fast. At the ρ ¼ 0 boundary we require4

lim
ρ→0

a2ðρÞwðρÞðviðρÞv0jðρÞ − vjðρÞv0iðρÞÞ ¼ 0; ð3:16Þ

for any two eigenfunctions viðρÞ and vjðρÞ. This is true for
all N > 0 since by (3.13) and (3.15) we see that for small ρ,

a2ðρÞwðρÞ ∝ ρN=2½1þOðρÞ�: ð3:17Þ

We have thus determined that the SL operator is self-adjoint
for all N > 0.
Actually,N ¼ 0 is also interesting since it corresponds to

the universality class of fluctuating long polymers [47]. In
this case, the above analysis shows that a2ð0Þwð0Þ > 0,
which would appear to imply that (3.16) is no longer
satisfied. However, from (3.13) we see that a1ð0Þ ¼ 0 now
and thus, from (3.12), either λi ¼ d or við0Þ ¼ 0 [31]. The
first possibility corresponds to the uninteresting solution
vðρÞ≡ 1, i.e., the unit operator, which we discard. All the
other eigenoperators must thus satisfy við0Þ ¼ 0, and so
(3.16) is satisfied in this reduced space. Therefore, with this
one proviso, the SL operator is actually self-adjoint for
all N ≥ 0.
For general N < 0, the SL operator fails to be self-

adjoint, and thus SL analysis is no longer applicable.
However, for N ¼ −2k, where k is a non-negative integer,
something special happens. The first kþ 1 eigenoperators
with the lowest scaling dimension turn out to have exactly
soluble scaling dimensions, in fact coinciding with the
Gaussian ones [53–55]. (The case N ¼ 0 above is the first
example, the lowest dimension operator being the unit
operator with scaling dimension zero.) Again, the SL

4Using (3.12) and (3.13), this can be reduced to
limρ→0 a2ðρÞwðρÞðλi − λjÞviðρÞvjðρÞ ¼ 0 (when N ≠ 0).
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operator is self-adjoint in the remainder of the space. For
example, for N ¼ −2, one knows from Ref. [31] that the
remaining eigenoperators satisfy við0Þ ¼ v0ið0Þ ¼ 0, and
thus viðρÞ ∝ ρ2 for small ρ, while for N ¼ −4 boundary
conditions force the remaining eigenoperators to satisfy
viðρÞ ∝ ρ3 for small ρ. From that analysis it is clear that in
general, at N ¼ −2k, we have that the remaining operators
satisfy

viðρÞ ∝ ρkþ1 as ρ → 0: ð3:18Þ

Combining these observations with (3.16) and (3.17), we
see that the SL operator is indeed self-adjoint in the reduced
space defined by excluding the first kþ 1 operators.
The SL equation can now be recast in the same way as

before, using (2.17) for x and (2.18) for ψðxÞ (except for the
obvious replacement of φ by ρ). The resulting Schrödinger
equation is then precisely as before, viz. (2.19), and the
potential UðxÞ also takes precisely the same form in terms
of the ai, viz. (2.20). However, the ρ ¼ 0 boundary turns
into an x ¼ 0 boundary since, by (3.13) and (2.17), we have

x ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρ=G

p
þO

�
ρ
3
2

�
as ρ → 0: ð3:19Þ

Thus, using a2 from (3.13) and a2w from (3.17), we see that

ψðxÞ ∝ x
N−1
2 vðxÞ ð3:20Þ

for small x. Hence for all N > 1, ψðxÞ vanishes as x → 0.
On taking into account the behavior (3.18) we see that in
the reduced space, ψðxÞ also vanishes for the special cases
N ¼ −2k. In this limit, the leading contributions to the
potential come from the first, third, and fourth terms in
(2.20), and thus we find

UðxÞ ¼ ðN − 1ÞðN − 3Þ
4x2

þOð1Þ as x → 0: ð3:21Þ

The cases N ¼ 1, 3 are exceptional since this leading
behavior then vanishes, while the range 1 < N < 3 will
need a separate treatment because the potential is then
unbounded from below.
At the other end of x’s range, we find that

x ¼
Z

ρ

0

dρ0
�ðρ0Þ12ðm−3Þ

2
ffiffiffiffi
F

p þO
�
ρ0−1

2

��

¼ ρ
1
2
ðm−1Þ

ðm − 1Þ ffiffiffiffi
F

p þO
�
ρ

1
2

�
as ρ → ∞: ð3:22Þ

Identifying ρ ¼ φ2, this is the same formula (2.21) as
before. The potential UðxÞ is again dominated by the first
term in (2.20), both at LO and NLO. Substituting the
asymptotic expressions (3.10) and (3.9) for a1 and a2, we
find exactly the same formula (2.23) for the large x

behavior of UðxÞ. In particular, the leading term is again
that of a simple harmonic oscillator with angular fre-
quency ω ¼ d − dφ.

B. WKB analysis

For the cases N > 3, 0 < N < 1, and N ¼ −2m, we can
now proceed with the WKB analysis in the usual way.
In this case, we have for the total phase of the wave
function,

Z
xþn

x−n

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −UðxÞ

p
¼
�
nþ 1

2

�
π; ð3:23Þ

where x−n and xþn are the classical turning points, i.e.,
En ¼ d − λn ¼ Uðx−n Þ ¼ Uðxþn Þ. In contrast to the previous
case, the potential is not symmetric and there is no simple
relation between x−n and xþn .
In the large n limit, the contribution from the right-hand

boundary gives half of what we obtained before. To see this
in detail, let xþ0 be some fixed finite value but sufficiently
large to trust the asymptotic form (2.23) of the potential,
then the contribution from the right-hand boundary is

Z
xþn

xþ
0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −UðxÞ

p

¼ ω

2
ðxþn Þ2

Z
1

xþ
0
=xþn

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− y2 þ γðxþn Þ 1

m−1−1ð1− jyj1þ 1
m−1Þ

q
:

ð3:24Þ

Taking into account the multiplying factor of ðxþn Þ2 we see
that the lower limit xþ0 =x

þ
n of the integral can be set to zero,

since the correction is of orderOðxþn Þ which is smaller than
that given by the γ correction. Thus, we get half the integral
in (2.26) (with xn replaced by xþn ) giving half the left-hand
side of (2.27),

Z
xþn

xþ
0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En−UðxÞ

p
¼ωπ

8
ðxþn Þ2þO

�ðxþn Þ1þ 1
m−1
�
: ð3:25Þ

Using the asymptotic form of the potential, we see that the
leading term can be written as πEn=ð2ωÞ. In the large n
limit, the left-hand boundary makes a contribution that can
be neglected in comparison. To see this let x−0 be some fixed
finite value but sufficiently small to use (3.21). Then the
contribution from the left-hand boundary isZ

x−
0

x−n

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −UðxÞ

p

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − 1ÞðN − 3Þ

p Z
x−
0
=x−n

1

dy

 ffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
y

þOðx−n Þ
!
:

ð3:26Þ

UNIVERSAL SCALING DIMENSIONS FOR HIGHLY … PHYS. REV. D 108, 105003 (2023)

105003-7



Since x−n is vanishing for large En, we see that this integral
is Oð1=x−n Þ or, using again the relation (3.21), OðE1=2

n Þ.
That only leaves the portion of the integral that goes from
x−0 to xþ0 , but since these boundaries are fixed and finite, we
see that this part also grows as

ffiffiffiffiffiffi
En

p
and thus it too can be

neglected in comparison to (3.25).
Therefore, asymptotically, the integral in (3.23) is given

by (3.25). Inverting the relation to find ðxþn Þ2 asymptoti-
cally in terms of n, we thus find

dn ¼ En ¼ d − λn ¼ Uðxþn Þ ¼ 2nωþO
�
n

m
2ðm−1Þ

�
¼ 2nðd − dφÞ þO

�
n

m
2ðm−1Þ

�
as n → ∞; ð3:27Þ

i.e., precisely double the value we found for a single
component field in (2.28) and independent of N.
We see that technically this arises because the WKB

integral is precisely half as large in the OðNÞ case, the
leading contribution coming from the xþn boundary only.
Recall that, atN ¼ 1, 3, the leading behavior (3.21) ofUðxÞ
is no longer applicable. Since the potential is now finite as
x → 0, it is clear from the above analysis that the left-hand
boundary continues to contribute at most OðE1=2

n Þ ∼ ffiffiffi
n

p
and so can be neglected. Thus we see that (3.27) applies
also to these exceptional cases. Thus also forN ¼ 1we find
twice the previous scaling dimension as a function of large
index n. This is in agreement with that single field result,
however, because these eigenoperators are a function of φ2

only. Hence for a single component field, the current n
indexes only the even eigenoperators (those symmetric
under φ ↔ −φ).
Finally, let us show that our result (3.27) is also

applicable to the range 1 < N < 3. Although in this case,
from (3.21), the potential UðxÞ → −∞ as x → 0, we know
from (3.20) that the solutions we need have ψðxÞ vanishing
there. These solutions are consistent with the Schrödinger
equation (2.19) because for small x we have, by (3.20), a
diverging second derivative,

−
d2ψðxÞ
dx2

∝ −
ðN − 1ÞðN − 3Þ

4x2
ψðxÞ; ð3:28Þ

which is precisely the right behavior to cancel the
divergence in the Schrödinger equation coming from the
UðxÞψðxÞ term. Meanwhile the vðxÞ term in (3.20) is well
behaved in terms of oscillations at small x, behaving similar
to the above cases. Therefore, we are only neglecting a
subleading contribution to the total phase, if we work
instead with a modified WKB integral where we replace the
lower limit in (3.23) with some finite value x−0 . By the
above analysis we then recover (3.27) again. In this way we
have shown that the result (3.27) is actually applicable for
all N ≥ 0 and to the special cases N ¼ −2k (where k is a
non-negative integer).

IV. SUMMARY AND DISCUSSION

We have used SL theory and WKBmethods to derive the
scaling dimension dn of highly irrelevant operators On
around a nontrivial fixed point for scalar field theory, in the
local potential approximation. The scaling dimensions dn
are ordered so that they increase with increasing index n.
The dn are derived following the methods developed in
[38]. They are given to leading order in n, together with the
power-law dependence on n of the next-to-leading order.
The results apply to all the nontrivial (multi)critical fixed
points in 2 < d < 4, for single component scalar field
theory and for OðNÞ invariant scalar field theory, and also
to the unitary minimal models in d ¼ 2 dimensions. The dn
are universal, independent of the choice of fixed point
(except through the anomalous dimension η), and inde-
pendent of the cutoff choice which we have left general
throughout, apart from the weak technical constraints
discussed below Eq. (2.11). In particular, these constraints
allow for the popular smooth cutoff choice (2.12). The
crucial property leading to universality is that the results
depend only on asymptotic solutions at large field, which
can be derived analytically, and are also universal in
the same sense. Although nonuniversal cutoff-dependent
terms, in particular (2.11) and (3.14), enter into the
calculation at intermediate stages, they drop out in the
final stages. For a single component real scalar field, dn is
given in (2.28). ForOðNÞ scalar field theory, the dn are just
twice this, cf. (3.27), independent of N. This is in agree-
ment with the single field result because here n indexes the
eigenoperators that are a function of φ2 only.
The first steps in deriving these results is to recast the

eigenoperator equation in SL form and then establish that
the SL operator is self-adjoint in the space spanned by the
eigenoperators. For a single component scalar field this
follows after demonstrating that the SL weight decays
exponentially for large field, since the eigenoperators grow
at most as a power of the field. For the OðNÞ case the
analysis is more subtle because the relevant space is now
the positive real line (parametrized by ρ ¼ φ2 ≥ 0) and thus
the SL operator is self-adjoint only if the boundary terms at
ρ ¼ 0 also vanish. By analytically determining the small ρ
dependence of the relevant quantities we see that the SL
operator is self-adjoint when N > 0. For N ≤ 0, the SL
operator is not self-adjoint and the analysis does not apply.
Presumably in these cases one would find that the scaling
dimensions dn are no longer real. However, for a sequence
of special cases N ¼ −2k, where k is a non-negative
integer, the SL operator is self-adjoint on a reduced space
spanned by all eigenoperators apart from the first kþ 1.
The analysis can then proceed on this reduced space. As we
already noted, while most of these special cases are
presumably only of theoretical interest, the N ¼ 0 case
describes the statistical physics of long polymers.
The next step is to cast the SL equation in the form of a

one-dimensional time-independent Schrödinger equation

MANDRIC, MORRIS, and STULGA PHYS. REV. D 108, 105003 (2023)

105003-8



with energy levels En ¼ dn and potential UðxÞ. For the
single component field this potential is symmetric, and in
order to determine the energy levels En asymptotically at
large n, using the WKB approximation, we need only the
behavior of UðxÞ at large x. The latter follows from our
asymptotic analysis. ForOðNÞ scalar field theory, the space
is the positive real line x ≥ 0, and thus for WKB analysis
we need also the behavior of the potential UðxÞ at small x.
Here we find that the range 1 ≤ N ≤ 3 requires a separate
treatment because the leading term in UðxÞ turns negative
leading to a potential unbounded from below. Nevertheless,
we are able to treat this case and the end result for dn,
(3.27), is the same, thus applying universally to all N ≥ 0
and the N ¼ −2k special cases.
Although these results are universal, they are still derived

within the LPA, which is an uncontrolled model approxi-
mation. One might reasonably hope, however, that the fact
that these results are universal, in the sense of being
independent of the detailed choice of cutoff, is an indication
that they are nevertheless close to the truth. On the other
hand, the LPA [22] of the Polchinski flow equation [9] is in
fact completely cutoff independent, although this property
arises rather trivially. It is actually equivalent under a
Legendre transformation [56] to the flow equation (2.1)
for the Legendre effective action in LPA, as we study here,
but only for a special (but actually popular) choice of
additive cutoff known as the optimized cutoff [57].
However, the optimized cutoff does not satisfy our tech-
nical constraints given below (2.11) so our analysis is
invalid for this case; nor in fact does a sharp cutoff
[14,20,23,58] or power-law cutoff [29] satisfy the technical
constraints. What this means is that these particular cutoffs
fail to regularize completely the region of large fields, in the
sense that a2, defined by (2.7) or (3.8), no longer has an
asymptotic expansion given simply by integrating over the
asymptotic expansion of its integrand. For these three
particular cutoffs, regions of momenta far from Λ alter
the asymptotic expansion of a2 so that it is no longer of the
form (2.10), or (3.9), and for this reason these cutoffs are
less satisfactory.
Nevertheless, following our methods, it would be

straightforward to derive the asymptotic scaling dimensions
dn in LPA for any or all of these three special choices of
cutoff, by using the particular form of the LPA flow
equation in these cases (which are known in closed form,
since the momentum integrals can be calculated analyti-
cally in these cases). The results will differ from the dn
derived here and among themselves, but their investigation
would improve insight into the accuracy of the LPA in this
regime. Furthermore, it would seem possible to generalize
any of these special choices of cutoff to their own class of
cutoffs with similar properties and thus understand the
extent to which the results could still be cutoff independent,
up to some appropriate constraints, in these cases, and gain
a more detailed understanding of why the dn differ.

Unfortunately our dn do not seem to match in a useful
way to existing results in the literature. The LPA restricts us
to eigenoperators that contain no spacetime derivatives, and
thus our index n counts only over these. In reality all
eigenoperators (apart from the unit operator) contain
spacetime derivatives, so in particular it is not clear how
our index n would map into the exact sequence.
However, in some special limits the LPA is effectively

exact. This is true for the Gaussian fixed point, for example,
where dn ¼ ndφ (with η ¼ 0). Our scaling dimensions dn
differ from this, but the Gaussian fixed point is specifically
excluded from our analysis since our results apply only to
nontrivial fixed points such that the asymptotic expansion
of the fixed point potential takes the form (1.3) or (3.4)
with A ≠ 0.
The LPA also becomes effectively exact in the large N

limit [52], and there the scaling dimensions are dn ¼ 2n
(with η ¼ 0) which again differs from our result (as well as
differing from theGaussian fixed point result). Furthermore,
they continue to disagree even if we now take a second limit
such that both n and N are sent to infinity. However, in this
case we have an example where the order of the limits
matters. The N → ∞ result is derived for dn while first
holding n fixed, while our result applies first for fixed N
while n → ∞.
The difference can be seen at the technical level. The first

term on the right-hand side of the flow equation (3.1) is
proportional to N. In our analysis, however, it is the
denominators that dominate. On the other hand, in the
large N analysis, only the first term survives, resulting in a
first order ODE with no SL properties (or Schrödinger
equation representation). The universal results fall out, on
the one hand, in our analysis from the asymptotic behavior
at large field, but on the other hand, in large N they fall out
from a Taylor expansion around the minimum of the fixed
point potential [52]. There seems unfortunately to be no
way to bridge the gap between these two limiting regimes.
An even clearer example where the exchange of limits

does not commute is provided by the special casesN ¼ −2k.
As we recalled in Sec. III, in these cases the first kþ 1
eigenoperators degenerate, gainingGaussian scaling dimen-
sions. But our dn apply to the highly irrelevant eigenoper-
ators that are found in the reduced space, which excludes
these first kþ 1 operators, and hence have nontrivial scaling
dimensions. However, if instead we fix on the nth eigenop-
erator and let N → −∞ by sending k → ∞, we see that this
nth eigenoperator will fall into the excluded space and thus
end upwithGaussian scaling dimensions. The disagreement
between the two results will then remain even if we choose
next to send n → ∞.
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