PHYSICAL REVIEW D 108, 104071 (2023)

Gravitational scattering up to third post-Newtonian approximation
for conservative dynamics: Scalar-tensor theories
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We compute the scattering angle y for hyperboliclike encounters in massless scalar-tensor theories up to
third post-Newtonian order for the conservative part of the dynamics. To calculate the gauge-invariant
scattering angle as a function of energy and orbital angular momentum, we use the approach of effective-
one-body formalism as introduced in Bini and Damour [Phys. Rev. D 96, 064021 (2017)]. We then
compute the nonlocal-in-time contribution to the scattering angle by using the strategy of order reduction of
nonlocal dynamics introduced for small-eccentricity orbits.
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I. INTRODUCTION

The observation of gravitational wave signals, with the
first observation by the LIGO-Virgo Collaboration in 2015
[1], opened a new era to probe the dynamics of the strong-
field gravity regime. The third generation of detectors
[2-4], along with the next generation of telescopes, such as
the Einstein telescope [5] and the Cosmic Explorer [6], will
be crucial for probing the strong-field dynamics of gravity
by constraining the parameters of the alternative theories
of gravity.

Among the theories alternative to Einstein’s general
relativity (GR), the simplest theory is the addition of the
massless scalar field to GR known as the scalar-tensor (ST)
theory. The ST theories have been extensively studied and
tested [7—12]. Besides arising naturally in the UV complete
theories of gravity, the addition of the scalar field is also
equivalent to f(R) theories of gravity [13]. The two-body
problem for ST theories has been extensively studied
within the post-Newtonian (PN) approximation for both
the dynamics and waveform generation in Refs. [14-21].

The detection of the gravitational wave signals relies on a
large bank of (semi)analytical accurate waveform templates
to match filter against the data observed in the detectors.
Therefore, the two-body PN dynamics in ST theories have
been mapped within the effective-one-body (EOB) formal-
ism [22-26] to incorporate the corrections due to massless
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scalar-tensor theories in the EOB approach based wave-
form models [27-29]. These results were obtained for the
elliptic motions of the compact binaries.

The EOB description of the unbound, scattering states of
the binary systems was introduced in Ref. [30]. Recently,
the approach was used to compute the scattering angle
within the PN approximation in GR [31]. The main aim of
this paper is to compute the scattering angle in ST theories
up to 3PN order using the EOB Hamiltonian in ST theories.

The paper is organized as follows. In Sec. II, we give a
brief reminder of ST theories and the EOB formalism in ST
theories. Then, in Sec. III we derive the scattering angle for
the local part of the dynamics in ST theories at the 3PN
order, and in Sec. IV we derive the scattering angle for the
nonlocal part of the dynamics at 3PN order using the order-
reduction approach. Finally, in Sec. V we sum the local and
nonlocal contributions at 3PN in a large-j expansion.

II. BRIEF SCALAR-TENSOR THEORY
AND EOB REMINDER

We consider monoscalar massless ST theories described
by the minimal coupling of the scalar field to the metric in
the Einstein frame, and its action reads

C4

_ 4 — _ v
S = 1671G/d xy/=g(R = 2¢"0,¢0,p)
+ Su[¥. A(9)? 9],

(2.1)

where g, is the Einstein metric, R is the Ricci scalar, ¢ is
the scalar field, ¥ collectively denotes the matter fields,
g= det(gﬂy), and G is the bare Newton’s constant. Here,
we adopt the conventions and notations of Damour and
Esposito-Farese (DEF, hereafter) [7,9]. From now on,
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we use geometric units with ¢ = G = 1 unless specified
explicitly.

In the Einstein frame, the field equations for ST theories
are derived in [7]. The coupling of the scalar field with the
matter fields gives rise to the dynamics of the scalar field
where the coupling is measured by the parameter

~olnA
=50

a(p) : (2.2)
in the equations of motion. The scalar field is nonminimally
coupled to the metric in the Jordan frame (physical frame)
with the Jordan frame metric g,, defined as

gm/ = A((p)zgﬂw (23)
where A(¢p) is called the coupling function. The ST theory
is uniquely fixed when the function A(¢p) is defined and
when A(@) = cst general relativity is recovered.

As the effective gravitational constant in ST theories
depends on the scalar field, the size of the compact object
and its internal gravity varies with the scalar field.
Therefore, as suggested by [32], the compact, self-gravi-
tating objects in ST theories can be considered as point
particles and are described by the mass function m;(¢)
depending on the value of the scalar field in an undefined
manner at the location of particles. The matter action is then
given by

dx* dx*
Sy = — / g L ). (24
J;B Wdr da

where m;(¢) is the Einstein-frame mass of body J and 1 is
the affine parameter. Since §,, = A(¢)g,,. the Jordan-
frame mass is defined as

3 ~ my(p)

(2.5)

The dimensionless body-dependent parameters that
describe the scalar field effect in the Einstein frame up
to the third PN order are defined using the Einstein-frame
mass function m;(¢) following Refs. [7,9], i.e.,

a; = dln#p’((”), (2.6)
p=. 2.7)

p =42 2.8)

" — i—ﬁ;. (2.9)

These parameters are defined in the Jordan frame in
Refs. [16-18] and the conversion of the Jordan-frame
parameters to DEF conventions, i.e., the Einstein-frame
parameters is given in Table I (see Ref. [24]).

Finally, before proceeding to the computations of the
scattering angle for ST theories, we briefly review the EOB
formalism proposed in [33,34] as a way to extend the
validity of the PN results beyond the weak-field and slow-
motion regime by resumming the PN results. The three
main features of the EOB approach are the following:
the description of the conservative (Hamiltonian) part of the
dynamics of a two-body system, the expression for the
radiation-reaction effects, and the description of GWs
emitted by the coalescence of a compact binary.

The description of the conservative part of the dynamics
in EOB formalism is completely described by the following
effective metric up to 2PN order:

ds%y = —A(r)c2dt’ + B(r)dr?

+ r2(d®” + sin(0)%dg?), (2.10)
where A(r) and B(r) are the two EOB potentials, 7. is the
coordinate time of the effective EOB metric, and r is the
radial separation in EOB coordinates. In this work, we
specialize to equatorial motions, i.e., set = n/2. The
generalization of the EOB formalism to the 3PN order

TABLEI Relation between the ST parameters used in the two-
body Lagrangian of Ref. [17], the DEF ones and the slightly
simplified notation that we are using here. The index “0” signifies
a quantity evaluated at ¢ = ¢, where ¢, is the asymptotic
constant value of the scalar field.

LB [17] DEF [7,9] This paper
my mS /Ay mS /Ay =
my my/ A my/ Ay = iy
o l+aga% Aap
1+(zé
Ga (1+ aga%)A(z) = GABA(Z) GABA(Z) = Gyp
Y 9 %% _ o VaB
1+a5ay — 7AB

B 1 _(Badh)o _ 24 B
P Tty = Pss Pa

B 1_(Bsa3)o  _ 7B B
Pa S = P Ps
5 (a9)? o

! (1+(1§(13)2 4
5 (af)? o

2 (l+a§a2) B

¥ 1 Bhad)e 1 -1

v 1 (By)o _ 1.8 -1
w2 ~ Aty = "4 € 468
BBy B0 _1
Pip2/7 — (et = —{ Capas 19
—_ 4 pn 1~
o o &
K (05413”)0 K
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introduces nongeodesic contributions (Q,) to the effective
dynamics (see Ref. [35]). The structure of the nongeodesic
term Q, at 3PN is

1
Q. :p(Q1P4+42P2P%+q3pf), (2.11)

2
where p? = p? + %, p, is the radial momentum, and p,, is
the angular momentum in EOB coordinates. Here, we use
the gauge freedom introduced in Ref. [35], known as the
Damour-Jaranowski-Schifer (DJS) gauge, to set g; =¢, =0
so that Q, only depends on the radial momentum.

The relation between the real and EOB Hamiltonian is
then (see Ref. [33] for GR and Ref. [30] for ST theories)

N H 1 7 X
Hreal(r’p)zfm:; 1+2U(Heff_1)’

where M (=m§ + mY) is the total mass of the system,

(2.12)

0,0
,u(:%) is the reduced mass, and v =pu/M is the
symmetric mass ratio. The reduced-mass effective
Hamiltonian (H) is given by [35]

. H X pr P .
Hy = eff_%x(r)(u P +7§+Qe>, (2.13)

H B(F)

where p, and p, are the dimensionless radial and angular
momenta, 7 is the dimensionless radial separation, and

0.(=0,/u?) is the dimensionless nongeodesic contribu-
tion. The dimensionless variables are defined as

Py . r
GapMu’

~ _Pr

Pr=—3
U

J=pPyp= (2.14)
Hereafter, the superscript hat will be used to denote the
dimensionless variables.

The three EOB potentials (A, B, Q,) up to 3PN in the
DIJS gauge choice of Ref. [35] formally read

AF)=1-Z+ ?2”) + a’;@ + a“?(f) . (215)
B(7) =1+ b‘iy) + b;z”) + b;(f) . (2.16)

. 4
0.(3) = 0:) 2. .17

where the v-dependent coefficients a;, b;, and ¢g; take into
account both GR and ST corrections which are separated as

a; = a® +a;gr, (2.18)
bi == blGR + bi,ST’ (219)
a3 = 458 + @3 51, (2.20)

where aPR, BER, gOR a1 bST and ¢PT are v-dependent
coefficients. The GR coefficients are fully known analyti-
cally up to 4PN order and are analytically known at 6PN
except for some unknown coefficients proportional to
[33,35-38]. As for the ST theories, the nonlocal-in-time
contributions start at the 3PN order [17,18], and the 3PN
coefficients can be decomposed as

agst = aysr + djst, (2.21)
by st = by g + bYgr. (2.22)
43T = G551 + D510 (2.23)

where the superscripts I and II denote the local and nonlocal
contributions, respectively. These coefficients can be fur-
ther decomposed as

azl.ST = aiﬁgT + alE%T In(u), (2.24)
1

bg,ST = bl3(?§T + b3OSgT In(u), (2.25)
oc lo

ds st = 45§t + 9357 In(u). (2.26)

These corrections to the EOB potentials in the ST theories up
to 3PN order have been derived in [22-26] based on the real
two-body Lagrangian up to 3PN order given in Refs. [14—18].

III. SCALAR-TENSOR SCATTERING ANGLE:
LOCAL CONTRIBUTIONS

In this section, we derive the contribution to the scattering
angle for encounters of two nonspinning bodies for the local
part of the conservative dynamics up to third PN order in ST
theories. As the nonlocal-in-time (tail) effects start only at the
3PN level in ST theories, the scattering angle up to 3PN can
be separated as a sum of functions,

X = Xioc T Xnonloc> (31)
where y),. and y,on0c are, respectively, local and nonlocal
contributions to the scattering angle.

The convenient way to compute the scattering angle is to
use the Hamilton-Jacobi approach.l For ST theories as GR,

Tn the Hamiltonian-Jacobi formalism, the solution of the equa-
tion of motion proceeds as follows. First, using the Hamiltonian
we form the Hamiltonian-Jacobi equation,

as as
—+H(g;—;t) =0, 3.2
o (q aq > (32)

and find the complete integral of motion S(q, @, t), where a are
the arbitrary constants. Then by differentiating S(q, a, 7) with
respect to a and equating this equation with a constant, we find
the solutions of the equations of motion, i.e., the coordinates q.
(For details refer to Sec. [47] of Ref. [39].)
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the Hamiltonian H. (and H,.,) are invariant under time
translations and space rotations, and their associated con-
stants of motion are, respectively, the energy and the
angular momentum of the binary system. The EOB action
by separating the EOB coordinates takes the form

S(tetrs s b3 Eetr Py) = —Eetilet + Py

+/ drpr(r’geffv pd))’ (33)

where £ is the energy in EOB formalism and 7. is the
EOB metric coordinate time. Using the Hamiltonian-Jacobi
formalism, the solution of the equation of motion of the
orbit (¢) is obtained from (Sec. [47] of Ref. [39]),

oS

— = ¢y = const, (3.4)
and the scattering angle related to the orbital phase is
then [31]

U(max) 1 ~ = .
7*.Pr(E»J7M)’

SUE )+ == [ (3.5)

0
J
where u = 1/#, Uma) = 1/rmin is the distance of the
closest approach of two bodies, and E is the dimensionless
energy variable defined as [31]

A 1
EE—EZ—IE—z, 3.6

2( eff ) 2pcx> (3.6)
where é‘eff = Eq/u is the dimensional EOB energy
and p2 =2E is an energy variable. (The notation p., is
introduced instead of the notation v, of Ref. [31] to be

consistent with the current literature [see Eq. (10.10) [40] ].)

A. PN-expanded y,,. for scalar-tensor theories

Let us now first compute the radial momentum p, as a
function of u = 1/7, orbital angular momentum, and
energy, that would then be used to compute the explicit
integral of Eq. (3.5). This is obtained by iteratively solving

in p2 the EOB energy conservation law, é'gff = I:Igff [see
Eq. (2.13)],

a2
Eesz = A(u) (1 + BIZ;) + j2u® + q3(1/)j)‘,‘u2>, (3.7)

which yields

PHE. jou) = [p7]° + [p7)'n® + [p71n* + [P71n°

+O0@®) (3.8)

with 7 ~ 1/c as a PN-order marker. The Newtonian order
contribution to p? is

[p2]° = 2F — j*u* + 2u. (3.9)
The explicit expressions of p2 and hence p, up to 3PN
order in ST theory are given in Supplemental Material [41].

This kind of formal PN expansion of p,, and hence the
expansion of the integrand of Eq. (3.5) along with the PN
expansion of the upper limit function uy,y), generates a
sequence of divergent integral on the limit [0, #(yay)]-
However, it was shown in [42] that the correct value of
a PN expanded integral such as that of Eq. (3.5) is obtained
by first using the Newtonian limit of u ) as the upper
limit of the integral, PN-expanding only the integrand, and
taking the Hadamard partie finie (Pf) of the divergent
integrals generated. The upper limit of the integral, u(pax),
is the positive root closest to zero corresponding to the
circular motion of Eq. (3.7), i.e.,

Exr = A(w)(1+ j2u?), (3.10)

and at the Newtonian level it reads

s
U(max) = Lt ]2+ 2EJ + O(%) . (311)
J c

The integrals of Eq. (3.5) for ST theories can all be
explicitly computed using the standard techniques (see
Ref. [43]) except for one logarithmic integral arising at 3PN
order. To simplify the expressions of the scattering angle,
we introduce an auxiliary variable

1

a= = 3.12
2E? ( )
and a function
v d
B(a) = arctan(a) + 5 (3.13)

The scattering angle for local contribution % Yo Up to 3PN
order can be decomposed as a sum of contributions from
each PN order, i.e.,

1 N T
Elfoc) = (a) _E’ (314)
Lamy e g o 3.15
5Xloc —j_z[ arwyBl@) + Clipg . (3.15)
Lemy i g 0 3.16
7410 _j_4[ (2PN) (a) + (2PN)]’ (3.16)
I geny 1
5){10(: = ‘]_6 [Cl(;?)PN)B(a) + C(()3PN)} + I;{? (317)

*Note that the parameter a defined here is different from the ST
parameters a;, a(p), and .
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where

CB
CO

(1PN)

CI(SZPN)

C(()2PN)

Cl(33PN)

CO

(IPN) —

e

ot

_3aystbist_2Taser 3ai%y 3bistbast  3vbist 3bisr 3bist 45bier  basr b5 457

1
3 {=ayst+ by g1} + 3,

1 3a2 +2
P 2} b - =
2a(l +a2){ a“ayst+a by st + 1,ST}+a(1 T )

1 3 3
by [1050{2 —3a%ay srby st — 420%ay g1 + Eaz(az,ﬂ)z — 60%az gt — 2a; 57 + 907 by g7 + 30%by g1 — Zazb%,ST

2

b
+ by s+ byst — X + 15 + (=300% - 6)v/|,

4

3
81(1 + 1900{3 + 1056{5 - 36{5612‘5'1"171,5"[‘ - 5a3a2’STb1’ST - ZaGZ.STbI,ST - 42(1502’5'1“ + z(lsa%’ST

5 3
- 6@5(13’5'1* - 72(13(12,3'1‘ + §a3a%7ST - 10&3613’51‘ - 260((12’3'1‘ - 4@(13,5’1‘ + 9a5bl,ST -+ 3(15272’5'1‘ - —(Zsb%’ST

4

3 3
+16ab, g7 + 60> by g7 — §a3b%‘ST +Tab, st + 3ab, st — Zab%’ST + (=300’ — 560° — 26a)v|,

8 2 2 sl — g 8 4 2 8

1[91/2 3v 3‘]3,ST] 1[3 2laystby st 3axsrbast | vay st 3a%.ST 273ay st
8 2 16

(3PN)

8 4 4 8 2 32 16 8 4 4 4
1237[2U 961130§T 315 15612 STA3 ST 15 15 105@2 STbl.ST 1502 STbZ.ST
+ g 1090 — S I S — Ea%,STbl,ST + 3_2‘12.5Tb%,ST - s g
Tvaysr iSaS 4 195a%,ST _ 1485ay st 15a351bi s 135a357 ISaL‘ng _Sbystbyst T Sb?,ST
4 16~ 25T 8 8 8 4 4 8 32
N 175b s 15bTsr | 25byst N 5%t 10507 N 6157% 6250 15§y 1155
8 16 4 4 8 128 2 16 4’
1 15a;sras st | 15 15 105a; stb1 st 15a3s1b) 51
(1+ )} { : { 4 E“%,STbl,ST + ﬁaZ,STb%,ST - 3 - 3
. T5ayst | 6152° 625\ 1 o 19543 ¢r _ 1485aysr  15asgrbisr 135assr 15al%y
4 128 2 167 25T 8 8 8 4 4
_Sbysthayst n 5b7 st n 175by st 15bigr | 25bysr | 5%y n 10507 15q3%r 1155
8 32 8 16 4 4 8 16 4
209&12’5'1" 3b1,ST 176371'2 2827 5 43 301“2,STb1,ST
+a? [1002,5Ta3,ST + U( 7 T 28 3 T3 a3 srbist + 0 aysthi gt = s
_ 43ay stba st _ 15a3 4 133a%,ST _ 4233ay st _ 43a3 s1b1 51 _ 387a; st _ 43“11?§T _ 49b, s1ba st i 49b%,ST
8 6 25T 2 8 8 4 4 24 96
1535b 43b% o1 227b 49p%5r 18502 29¢%§r 3395
n 241,ST _ lé,ST I 122,ST i 1;.ST - ‘?.ST 4 - }
33a, g1a 189a 168122 2939 33 41 287a, gvb
0{ Z'ZT 3+ V( 42’ST +4by st + 18 2871 T3 > + Ea%,STbI.ST + 3_2a2,STb%,ST - ng —
_Maysrhyst 1 Nad ot 461a3 g _3995ay st 4lassrbist 369azsr 4laisy _19b; s1by 51
8 16 5T 8 8 8 4 4 8
191’? st , S05b; g7 4”’% st , 19bssr 19b13°§T > 219130§T 3381
B T S T R R R T}

104071-5



TAMANNA JAIN

PHYS. REV. D 108, 104071 (2023)

13 1 95a2,STbl,ST

1
212
T [ 251357 ”< 4 2 128

55a,sr  Thygr  5337% 1153
st b, U

) + 3 az,STb%,ST + 3 a%,STbl,ST - 3

_ Baystby st 2943 g1 _1279aysr  13a357by 51 12lazsr 13a%: _9bys1hy st i b} st _ 1361 g

8 2 8 8 4 4 8 32 16
L %bist 3lbasy  9BSSr 13507 2745y 1221] 1 [ _asstbisr o bisthast
8 4 4 4 8 4 o 2 25T — #3,5T 6
69\  bisr 4bisr 2bysr  bYsr 5507 13¢Y§r 64
b - — : > : : - : — 3.18
+”( LST 2) 24 3 3 3 8 16 +3]} (3.18)

Here for simplicity we do not substitute the values of the
ST corrections a; g7, b; s, and ¢g; 7. The explicit expres-
sions of the corrections have been derived in Refs. [22-26].

Finally, the last contribution, Iz’ to the 3PN scattering
angle given in Eq. (3.17) is defined as the following
integral:

log

ay ST U(max) u* In(u)
bh==>"" ; du,  (3.19
! 2 /o (E + 2u — ju?)? u,  (3.19)

where Pf denotes Hadamard’s partie finie regularization of
the divergent integral [44]. The above integral cannot be
solved explicitly using the standard techniques of integra-
tion; therefore, we simplify the integral by using suitable
integration by parts as

(15a* + 180 + 3)

_ ST
I)( - a4.10g 16j6a2(a2 4 1) B(a>
156 + 13
e, US@+13) +1, (3.20)

SST16(a? + 1)aj®

where the last term is now a convergent integral defined as
. lo

2j a4,§T

e 13 (uj? — 1) In(u)
7, = ST
(1+2/°E) Jo

V2E + 2u — j*u?

The integral of Eq. (3.21) cannot be expressed in terms
of the elementary functions. After a suitable change of
variables,

du. (3.21)

2E
u—gx’; e=20=—, (322)
J Peo)
Eq. (3.21) yields
7, Ok pp [l @Y -0x <2X/> dx’
i €2j6(4 + 62) 0 1 _ x/2 + 2x/€ N
(3.23)

where the upper limit x’(max) =€/2++/1+€*/4=1+0(e).
This integral can be computed in a small € expansion (i.e., a
large-j expansion) at fixed p, using the approach intro-
duced in Ref. [42] to compute the finite part of the real
integral. This is obtained by the following: (i) using
x’(max) =1 as the upper limit of the integral; (ii) PN
expanding only the integrand; and (iii) taking the
Hadamard partie finie of the divergent integrals. We then
follow the steps of Ref. [31] to compute the j expansion of
the integral. Here, we display the first three contributions to
the integral in j expansion,

log log £1/2 log m—1/2
aystE a,stE ay st E
1, = P Zs+ IS I6+O< )
(3.24)
where
T E
Is=—1|7+6In{— )],
' 16{ i “(m%
E
Ts =V2|-2+8In(2) +2In 27|
z E
Te=-—1|77 In({— | |. 2
6 32{ + 30 n<2j2>} (3.25)

The higher order contributions can be computed following
the same approach.

B. Final expression of the local part of the 3PN
scattering angle in a large-j expansion

The result presented in Eq. (3.17) of the scattering angle
at the 3PN order is unexpanded in j except the integral 7, of
Eq. (3.19). To compute this integral, we expressed it into a
simpler integral of Eq. (3.20). Then at the end of the last
subsection, we computed a large-j expansion of this
remaining part, Z,, of the integral /.
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Let us now present the large-j expansion )(IOC / 2 given
by Eq. (3.17). Note that the auxiliary variable a entering the

7, and hence I, given by Eq. (3.20) start at the 1/ j* order
in their large- j expansion we here present the large-j

exactly known part of the scattering angle at 3PN, )(1035 N) /2, expansion of Zloc /2 up to 1/,
is dependent on j [see Eq. (3.12)]. As the contributions to
|
4 3 3
X3PN _ Poo 3 9 3 P | a2stbist by stbyst by st
—2 = jZ 32 61130§T + 1671'1/ — 177,'1/:| + ]—3 |:— 72 - 6a2,ST — a3 ST — —6 + Ubl,ST + —24
4b 2b by 64 23 21
;‘ST ;’ST =+ 3;T + 812 —36v — qlng + ?] + 1;_4 {64 zay, STbl ST 167702,ST[91,ST
1
2 s <cby ar - Qﬂm 3na%,ST _273zmarsr i”a b en — 2lmazst 3nay§y | 3magsy
16792510281 T g VA2 ST 4 16 167 43sTP1ST 3 3 3
3 3 b:i} ST 37Tb% ST 457Tb] ST 97Tb2 ST 3ﬂbgO§T 457Z'U2 1237[31/
——7nbgtb b = — : : : :
167 1STO2ST F g MOLST + gy 2 16 8 8 8 ' 25

1097 97¢%%r 315z

log T
Tdy ST E 1
— d 7461 = |-
2 6 8 3 { i n<2jz>H+O<J’5>

IV. NONLOCAL CONTRIBUTIONS TO THE
SCATTERING ANGLE

In this section, we compute the leading order (LO)
nonlocal contributions to the scattering angle using the
order-reduction approach of Ref. [38] for bound orbits.
This approach has recently been used to derive the nonlocal
contributions to the EOB metric potentials for bound orbits in
ST theories [25,26]. Here, we will use this approach for
hyperboliclike orbits in ST theories following Refs. [31,45].

As the tail contribution to the Hamiltonian starts at 3PN
order in ST theory, one can compute the LO contribution to
the scattering angle y,onoc DY considering the Hamiltonian

H = Hy + H"!, (4.1)
where Hy is the Newtonian-order Hamiltonian and H%! is
the LO tail contribution [18], as only the Newtonian order
radial momentum is required for computing the 3PN LO
tail contribution to the scattering angle. The Newtonian
order contribution to the Hamiltonian in dimensionless
variables given in Eq. (2.14) reads

Hy 1(., j\ 1
ﬂZ(pr+?'2 P

For simplicity we work in M = 1 units such that 4 = v in
this section.

From Sec. 111, let us recall the formula of the scattering
angle derived using the general Hamilton-Jacobi approach,

(4.2)

= . 0 [, = . ..
man——@/mwwwm (43)

(3.26)

I
where the radial momentum function, p,(E, j,r), is first
computed by solving for p?(E, j, r) the energy conserva-

tion law,
_ H(#p.j) 1 A\ 1 g
E="2""0 — ([ p2 gl ) —— ) 4.4
v 2\ Pr * 72 7 + v (44)
At LO in tail, the solution of the equation in p, is
o L HW(F P ))
pr=0-= , (4.5)
p? v

where p? is the Newtonian contribution [see Eq. (3.9)].
Inserting the solution in Eq. (4.3), we obtain

_ 0 _ 0 [dr Htaﬂ(? DrrJ)
E7. - — . pY Ev .’Ad . _#7
2B.g) = =3 [ BG5S

(4.6)
where the first term is the Newtonian order contribution to

the scattering angle derived in Eq. (3.14). Then the nonlocal
contribution to the scattering angle reads

10

=——Wwuil(E ), 4.7
X nonloc IJ()] ( ]) ( )
where
wil _ [T i s tail
wel = [ = H¥\(#, p,, ) = dtH™"||. (4.8)
2

In the second expression we have used the property that the
time localized Hamiltonian is simply obtained by using the
solutions of the Newtonian-level Hamilton’s equation for
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the phase space variables (see Ref. [31] for the hyperbolic
case and Ref. [38] for the elliptic case), and that d7*/p? =
dt is along the Newtonian Hamiltonian flow.

The LO tail contribution to the Hamiltonian in ST
theories in the Jordan-frame conventions reads [18]

2 d‘L' 2
_5(3 +2w0)Pf281/C/ |Is1 ( )Ig,i)(t—i_r)’

w7

g = (49)

where Pf is the Hadamard partie finie function with the
Hadamard partie finie scale s; and IE,’ZI-) is the second time
derivative of the scalar dipole moment, / ;. In the center-of-
mass (COM) frame, the scalar dipole moment in DEF
conventions is

I;; = vag(ap — a,)¥', (4.10)
where « is the asymptotic value of Eq. (2.2) at ¢ = ¢, and
a, and ay are given in Table I. Here, X(=(Z, — Z3)')/
(G4gM) is the dimensionless relative separation vector and
Z, p indicate the positions of the two bodies.

Thus the LO potential W@ is

wal = / drH, (4.11)
where H' is given in Eq. (4.9).

In Refs. [25,26], using Kepler’s equations for elliptic
orbits it is shown that the scalar dipole moment is a periodic
function in the action-angle variables, and hence can be
decomposed into Fourier series. Here, we are considering
|

W ———
al (1 + ayap)*3ad

2 dt
- " Pf. _er
3a3(1 + agag)? ZS‘/C/ |t —7|

hyperbolic motions; therefore, the Cartesian coordinates
are parametrized as

x(t) = —a(cosh it — e), (4.12)
y(t) = —aV e* — 1 sinh i, (4.13)

and the hyperbolic Kepler equation is
nt = esinh it — i, (4.14)

where e is the eccentricity, a is the semimajor axis, i is the
eccentric anomaly, and

1 _ 1
/ d——a—ﬁ.

SI

(4.15)

Similar to Fourier series expansion of the scalar dipole
moment for elliptic orbits in Refs. [24,26], the scalar dipole
moment for hyperbolic motions can also be decomposed
into Fourier series, i.e.,

dw ~ .
I;(t) = /El‘v,i(a))e_lwta

I,,(0) = / il (t)e™", (4.16)

where I, ;() is the Fourier transform of the scalar dipole
moment.

Inserting the Fourier transformation of the scalar dipole
moment [and 7 = G,z M (¢ — z‘)]3 in Eq. (4.11) and con-
verting to DEF conventions yields

1 2 dr do do’ 02T 7 —iwt p—i't
22/dtPf2g,/c/|t_t,|/ 7 on oI (@)l (@ )e™ e !

dw do'
2r 2x

Ve 28 (w + )

a)zwlzis,i (a))is,i (a)l

2 dr’ do - ~ -
=——— _Pf, | = (). (—w)e@t
303(1 + asap)? 25‘/0/ |t — 7] / 27’ si(@)si(-@)e

2 do dr . .
= —/ o'l (o) s,i(_w)Pfﬁl/c/Ee"M'

3(10(1 + aAaB

The partie finie integral of the last term in the above
equation is (see Ref. [46])

o dT ot 2|w|3‘1eyEuler
szgl/c/_ He = —21n<c s (418)

where ygyr 18 Euler’s Gamma. Inserting Eq. (4.18) into
Eq. (4.17) gives the Fourier-domain formula for the
potential

(4.17)
[
. da) -

Wtall / 4] T (o

AT v (@)fde)

2 Y Euler
x In ("”'s—le) (4.19)
c
where I, ;(-0) =T (o).
3Here, the dimensionless variable # = o and 1= ﬁ

104071-8



GRAVITATIONAL SCATTERING UP TO THIRD ...

PHYS. REV. D 108, 104071 (2023)

To compute the explicit expression of Eq. (4.19) of
potential W in terms of E and j, we insert the Fourier
transform of the scalar dipole moment. For this, we
evaluate the Fourier transforms of (x,y) for hyperbolic
orbits, 1.e.,

Hw) = / dreiix(r),

J(w) = /dt e“ly(1). (4.20)

After inserting Eqgs. (4.12)—(4.14) into Eq. (4.20) and
using the definition of Hankel functions of first kind H p],
[see Eq. (9.1.25) of [47]],

/oo ed sinhé—p'é — ichEy (q'), (4.21)

o]

we find the Fourier transform of (x,y). The computation
gives

- na (p, 1 1
o) = (PR H ) - HY (@) @22)
O \4y ’ ’
~ na 1
) ==V~ 1H) (g).  (423)
where for our case
/
q=d,=iew; p=p,=1 (424)
n e

We then consider the Fourier transform of (x,y) in the
large-j limit which is equivalent to the large-e limit as
e = /1 + 2Ej*. The large-e limit of Egs. (4.22) and (4.23)
yields

rta

*w) = =~ H\"(ig,). (4.25)

BN pi 3015, 13 1. 1 3, 30
S :j—271' v —1—6—47/2AB——}/AB——(/}) (6)| +v? §7AB_1_6<ﬁ>+_

16 16" 16
p (64 4
P13 3

$(0) = =" ig,). (4.26)

where ¢, = ig, and g, =e? The Hankel functions
evaluated at purely imaginary arguments are related to
modified Bessel functions K, as [see Eq. (9.6.4) of [47] ]

Ki(x) ==SH{"(ix').

. (4.27)

Ko(x') = igHg”(ix');

Finally, inserting Eqgs. (4.25)—(4.27) into Eq. (4.19) and
then taking the j derivative of potential W, the explicit
expression of the scattering angle in the large-e limit yields

. 2 2 7 o7 2
)(gaﬁlN _ _%I;_Zo |:25+ + 7AB<7AzB + ):|

2 A
X {7+3ln<P°°,s >},
4j

where we recall that §; = s5,/(G4zM) is the dimensionless

regularization scale defining the near zone—far zone sep-

1% and 7,4 is defined in Table I.

(4.28)

aration, o, =

V. SUMMING THE LOCAL
AND NONLOCAL CONTRIBUTIONS
TO y3px IN A LARGE-j EXPANSION

In Sec. III, we first computed the local scattering angle
up to 3PN order, and then in Sec. IV we separately
computed the nonlocal contributions at the 3PN order.
The results at 1PN and 2PN levels were given in fully
explicit and exact forms. However, the results at the 3PN
order were obtained in the large-;j expansion for both the
local contribution (due to the logarithmic term Z,) and the
nonlocal contribution. On combining the two separate 3PN
order contributions to the scattering angle at 3PN, we find

16

_ _ _ _ v - _ _ _
[(8) (7ap +2) =27 ap (Vg +67ap +12)] +6[—216+4<ﬂ> (87aB—3)+87aBS: —673p

2

_ _ _ vT . _ _
— 93735 — 2627 Ap —4X AT ABS- +8(8) —5TX spf_+2X spe_+368, +46, —20—2¢.] +§ [7As +227 a8

_6</_5>—18ﬁ++46+—6§+2€++24]}

2
P [315 1
i ”{ § 32

A [4(8) (=207 a5 + 123 + 1282 B —35) + (B) (= 18774 5 — 5567 a5 + 12(5) —412) + 167 op (€)

+23673p + 122973 5 +21487 55 +48(f)% —8(k) +24(e) +48_ (2 + ) (18, =5, )X ap —48B_5_(~ + )]
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12322 109 (49(B) 3(6) 3f_Xap 39, &, 2%, 15¢ +225n2 3353
17256 T2 "B\ T4 T 4 4 277256 T4 512 T ag

(B) 157> 2425\ _, 71 21x%\ 7 3.\ ,- 98_Xap 8l
+(4+256 o6 )7as T ~ga 1022 ) Tan F \ S+ Hg =3 O )+ T )P

9 o o (17 21z 9 456_ 5. 3e_ k. 15¢, (k) 3
z = Z et Etiall | ¢ phi e O W A
+4(ﬁ‘+ﬁ+) (12+ 128>5++8<5>+< 4 83 AB+ﬂ‘5‘+3‘:+2 8 4 8<€>
n (25++7AB(77AB +2)) In (i) _3)7AB(11(77AB_+2)2—4<5>)+12(ﬂ3_;ﬂi)</_f>

2 Poo 32app(7ap +2) VAB

P (3(e) +46_Xpap—86,)  P_(Xap(45,+3e,.)—85_ —36-)}

+ - + _
27 AB 27 AB

8

where we use the notations of Refs. [24,25] with X, g =
m$ 5/M and

Xap =X, — Xp. (5.2)
(B) = =X apB- + B (5.3)
(&) = —Xpk_ + K., (5.4)

(8) = X156 + 6., (5.5)
(€) = —Xupe_ + €. (5.6)

Here, the subscript “+” denotes the symmetric and
antisymmetric parts of the ST parameters, e.g., 7z, =
(z4 = zg)/2. As the scattering angle is gauge invariant,
the arbitrary scale §; has been canceled between the two
contributions as expected.

VI. CONCLUSIONS

Building upon the results of [22-26] for the corrections
in the EOB metric coefficients (A, B, Q,) for massless
scalar-tensor theory for the conservative part of the dynam-
ics, we determined the scattering angle for hyperboliclike
orbits up to the 3PN order for both the local-in-time and the
nonlocal-in-time parts of the dynamics. First, we compute
the scattering angle for the local part of the dynamics by the
following: (i) deriving the radial momentum as a function
of u, orbital angular momentum, and energy by iteratively
solving the EOB energy conservation law; (ii) calculating
the scattering angle using the standard techniques of
Ref. [42] for solving divergent integrals arising in the
PN expansion of the radial momentum except the integral
I, at the 3PN order; and (iii) computing the integral 7, by

3
[P — 167ap +3—4B2 + 188, —45, +6{—2¢, — 15}},

(5.1)

using the appropriate integration by parts and expanding in
large-j the remaining integral after a change of variables
[31]. We then computed the total contribution to the 3PN
order scattering angle in the large-j expansion.

Then, we computed the nonlocal-in-time contribution by
using the approach introduced in Ref. [38] for GR of order
reducing (time localization) the Hamiltonian in small-
eccentricity case for hyperboliclike encounters [31,45].
Finally, we substituted the ST corrections of the metric
potentials (A, B, Q,) and sum both the local and the
nonlocal contributions in the large-j expansion at 3PN
order. As the first test of our results, we checked that
the scattering angle coincides with the scattering angle of
GR (see Ref. [31] for GR results) in the GR limit as
expected.

Another test we perform on our results is to study the
binary black hole in the limit in ST theories assuming that
the sensitivity for the stationary black hole holds for a
binary system. The sensitivity parameter (s,) for the
stationary black hole in the Jordan-frame conventions is
exactly su :% (see Refs. [48,49]), which in our conven-
tions® implies that the parameter a, = 0, and hence all
other ST parameters entering the scattering angle, vanishes
(see Table I). This shows that our results are indistinguish-
able with the results of GR under this assumption.

This paper must be seen as a first step to compute the
gauge-invariant scattering angle within the PN expansion
for massless scalar-tensor theories. In future work we will
address radiation reaction contributions to scattering.

“The Jordan-frame sensitivity (s,) is related to the parameter
ay as

1 ay

Sp = . 1
SA 2 2a, (6.1)
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