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We present the exact time-dependent solutions on inhomogeneous spherically symmetric space-time in
the conformal invariant Weyl gravity. For this purpose, the subclass of the Lemaître-Tolman metric which is
supported by an anisotropic fluid is used. For the first time, the exact solutions of the dynamical equations
are obtained for two special cases. One of the exact solutions is a de Sitter space-time and other solution is a
class of time-dependent wormhole geometries which can be supported by exotic matter similar to the
general relativistic solutions.
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I. INTRODUCTION

The first solution for wormholes was studied by Flamm
in the context of general relativity (GR) [1] in 1930. Later
in 1933 Weyl [2] introduced a wormhole as a tunnel-like
structure lying in the same universe or linking two remotely
separated regions. In mid-1935, Einstein and Rosen con-
structed an unstable wormhole known as the Einstein-
Rosen bridge [3]. Morris and Thorne proposed a solution to
Einstein’s field equation by imposing inhomogeneous and
static spherical symmetry on space-time. Their solutions
(called traversable wormholes) were topological objects
with a throat connecting two asymptotically flat regions [4].
Traversable wormholes have no horizons or curvature
singularities but they made gravitational forces that are
assumed to be bearable by travelers. The most important
characteristic of these wormholes is the throat, where the
exotic matter should exist to prevent them from collapsing.
Indeed such space-time requires a stress-energy tensor that
violates the null energy condition [5].
From the theoretical point of view in quantum field

theory, the possibility of exotic energy has been accepted in
the Casimir effect [6]. Interesting evidence of the exper-
imental effect is an attractive force between two parallel
metallic plates in a vacuum that is generated by exotic
matter [7]. Wormholes with negative energy densities in
quantum gravity have been studied using the path integral
in [8,9]. Moreover, Hochberg and Kephart have indicated
that the wormhole geometry with negative energy might be
produced by the gravitational squeezing of the vacuum
[10]. Another field in which we deal with exotic matter is
cosmology. Based on [11], the exotic matter with the
property of w < −1=3 and the equation of state p ¼ wρ

is responsible for accelerating the Universe. Phantom
energy with w < −1 has some other properties such as
negative temperature and energy and Big Rip whose energy
density evolves with expanding Universe [12]. Sato et al.
[13] have investigated the possibility of dynamical worm-
hole formation in the inflationary era. Other aspects of
evolving wormholes of the Planck length scale have been
considered by Friedman [14] and Roman [15].
Although wormholes are explained by Einstein’s gravity,

there are still traversable wormhole solutions in alternative
theories of gravity. Wormhole solutions have been studied
in Brans-Dicke theory [16–19], fðRÞ [20–27], fðR; TÞ
gravity [28], massive gravity [29], scalar-tensor theory
[30,31], third order Lovelock [32] and Kaluza–Klein
gravity [33]. Also static wormholes in the presence of a
cosmological constant and Born-Infeld theory have been
reported in [34] and [35,36], respectively. In Ref. [37]
authors have studied the wormholes in fðR; TÞ modified
gravity theory by using an exponential shape function. In
Einstein-Gauss-Bonnet (EGB) gravity, vacuum wormhole
solutions have been obtained [38–41]. Also the higher-
dimensional wormholes have been of interest in the last
years [42,43]. Investigation of classical wormholes based
on conformal Weyl gravity has been done by Varieschi and
Ault [44]. Some works on the subject already exists in the
literature (see for example [45,46]). Time-dependent worm-
hole solutions on inhomogeneous and spherically sym-
metric space-time in the presence of matter source with
radial and transverse stresses have been obtained in [47].
Also by considering an inhomogeneous brane embedded in
5-dimensional constant curvature bulk, time-dependent
wormhole solutions as exact solutions on the brane have
been found in [48]. For the study of the evolving Lorentzian
wormholes and the null energy condition (NEC) and weak
energy condition (WEC) see [49–56]. Also evolving
wormholes in fðRÞ gravity theory, Einstein-Cartan gravity,
EGB gravity, Lovelock gravity and Rastall theory were
investigated in Refs. [57–61], respectively.
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Despite the incredible successes of GR theory, there are
basic problems in astronomy and cosmology, such as dark
energy and dark matter. An alternative approach to describe
the cosmic structure of the Universe without considering
dark matter is modifying the theory of gravity. Amongst the
many modifications of GR, conformal invariant Weyl
gravity is proposed in 1918 by Weyl [62,63] and developed
by Bach [64]. Although finding exact solution of this
fourth-order conformal Weyl gravity is a formidable
endeavor, the exact vacuum solution to conformal Weyl
gravity and its implications have been studied by
Mannheim and Kazanas (MK metric) [65,66]. This exact
static spherically symmetric vacuum solution is given by
the following metric:

ds2 ¼ −BðrÞ2dt2 þ 1

BðrÞ dr
2 þ r2ðdθ2 þ sin2θdφ2Þ;

where

BðrÞ ¼ 1 −
βð2 − 3βγÞ

r
− 3βγ þ γr − kr2;

and β, γ and k are integration constants. This exterior
solution includes three new extra terms to the standard
Schwarzschild metric which can explain the observed
galactic rotation curves without introducing dark matter
[67,68]. Cylindrically symmetric solutions in conformal
gravity were presented in Refs. [69–71] which are a
generalization of the Melvin solution and cosmic strings
of the Abelian Higgs model. Dynamical cylindrical sym-
metric solutions in conformal Weyl gravity have been
investigated in [72]. The purpose of this paper is to find
the dynamical spherically symmetric solutions in the
framework of the conformal Weyl gravity.
The exact solutions to the Reissner-Nordstrom, Kerr and

Kerr-Newmann space-times have been studied in [73]. An
interesting application of fourth-order conformal Weyl
gravity is an analysis of the traversable wormhole solutions
in this theory. The wormhole solutions in the theory of GR
are supported by exotic matter which violates main energy
conditions [74]; so an interesting challenge in wormhole
physics is the demand to find a realistic matter that will
support these exotic space-times. The computation of light
bending angle by a spherically symmetric object using MK
metric has been studied in detail [75–77]. For an asymp-
totically nonflat geometry such as MK metric by using
Rindler-Ishak method, the total light deflection angle to
second order has been calculated in [78] and [79,80].
Correct light deflection in Weyl conformal gravity has been
obtained in [81]. In [82] authors have investigated the
perihelion shift of planetary motion in conformal Weyl
gravity. For astrophysical tests in conformal Weyl gravity
see [83,84].

The structure of paper is as follows. In Sec. II, after a
brief review of Weyl gravity, the Szekeres-Szafron metric is
introduced. Then we obtain the field equations for this
inhomogeneous space-time in the framework of conformal
Weyl gravity in Sec. II C. Finally we solve these equations
to find two physical and important solutions in Sec. III. The
paper ends with concluding remarks in Sec. IV.

II. FIELD EQUATIONS IN CONFORMAL
WEYL GRAVITY

A. Weyl action

Conformal Weyl gravity is based on the following
action [85]:

Iw ¼ −α
Z

d4x
ffiffiffiffiffiffi
−g

p
CλμνκCλμνκ

¼ −2α
Z

d4x
ffiffiffiffiffiffi
−g

p �
RμνRμν −

1

3
R2

�
; ð1Þ

where g≡ detðgμνÞ, α is the coupling constant and

Cλμνκ ¼ Rλμνκ − gλ½νRκ�μ þ gμ½νRκ�λ þ
1

2
Rgλ½νgκ�μ ð2Þ

is the Weyl tensor [2].
By varying the action (1) with respect to the gμν, we

obtain the following field equations:

2αWμν ¼
1

2
Tμν; ð3Þ

or

2α

�
−
1

3
Wð1Þ

μν þWð2Þ
μν

�
¼ 1

2
Tμν; ð4Þ

where

Wμν ≡Wð2Þ
μν −

1

3
Wð1Þ

μν ; ð5Þ

here Wð1Þ
μν and Wð2Þ

μν are defined as

Wð1Þ
μν ¼ 2gμνR;β

;β − 2R;μν − 2RRμν þ
1

2
gμνR2; ð6Þ

and

Wð2Þ
μν ¼ 1

2
gμνR;α

;α þ R ;β
μν ;β − Rβ

μ;νβ − Rβ
ν;μβ

− 2RμβRβ
ν þ

1

2
gμνRαβRαβ; ð7Þ

respectively.
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In Eq. (3) Wμν and Tμν are symmetric, traceless and
covariantly conserved. We will use these properties in
the next sections. Also the energy-momentum tensor is
defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δðgμνÞ ; ð8Þ

where Lm is the matter Lagrangian density.

B. Space-time geometry

The cosmological principle states at any cosmic time the
Universe appears homogeneous and isotropic at very large
scales i.e., invariant under translation and rotation around
each comoving observer. It gives precise meaning that there
are no special points and directions in the Universe. The
kind of geometry consistent with cosmological principle is
the Friedmann-Lemaître-Robertson-Walker (FLRW) line
element [86]. While isotropy has been confirmed by cosmic
microwave background radiation; realistic observations
from the structure formation such as filaments, sheets,
dark haloes and so on, indicate that homogeneity has been
challenged in the different epoch of the Universe.
Although, it is accepted that the Universe is currently
passing through an accelerated phase of expansion, on a
small scale, we are faced with self-gravitating solutions
(i.e., spherically symmetric solutions based on GR) regard-
less of the expansion. The gravitational bending of light in
the Schwarzschild space-time and the direct observation of
black hole inside of some galaxies such as black hole at the
center of M87 reported by the event horizon telescope
[87,88], and the observation of gravitational waves [89]
indicate the validity of GR on small scales.
By contrast, Swiss cheese models considered an exterior

expanding pressureless FLRW universe with nonzero
cosmological constant Λ, while there is a point mass of
the center [90–92]. A more realistic description is provided
by Lemaître and Tolman that is the first model which allows
the study of inhomogeneous cosmology. They proposed the
model whose space-time is filled by perfect fluid with dust
equation of state [93,94]. The crucial point in these two
models is that they constructed the geometries that is a
spatially homogeneous spherically symmetric background
and replaced it with an inhomogeneous distribution in small
scales. In otherwords, inhomogeneous cosmological models
are thosewhich do not satisfy the cosmological principle, but
they provide the limit FLRW space-time. Since then, there
have been many papers that investigate on inhomogeneous
models. Hellaby and Lake studied on geometrical aspects of
inhomogeneous cosmology [95,96]. Shear and rotation-free
inhomogeneous model have been studied by several authors
e.g., Stravrinos et al. [97] andClarkson [98]. Inhomogeneous
model build up by rotating fluid may be found in Patel and
Pandya [99]. The Szekeres-Szafron model [100–105] is
among such models that allow us to study the spherically

symmetric and inhomogeneous space-times which merge
smoothly to the cosmological background.
In comoving coordinate, the form of Szekeres-Szafron

metric is

ds2¼−dt2þRðtÞ2½ð1þaðrÞÞdr2þ r2dθ2þ r2 sin2 θdφ2�;
ð9Þ

here RðtÞ is the cosmic scale factor and aðrÞ is an unknown
function of the radial coordinates of r. Note that we use our
metric signature ð−;þ;þ;þÞ. We have the Robertson-
Walker metric as a special case

1þ aðrÞ ¼ 1

1 − kr2
; ð10Þ

where k is the spatial curvature index which take the values:
−1, 0, 1; corresponding to the open, flat and closed cases,
respectively.

C. Field equations

Now by inserting the metric (9) in the field equations (3),
we obtain

Wt
t ¼

fðrÞ
RðtÞ4 ; ð11Þ

Wr
r ¼

gðrÞ
RðtÞ4 ; ð12Þ

Wθ
θ ¼ Wφ

φ ¼ hðrÞr2
RðtÞ4 ; ð13Þ

where fðrÞ, gðrÞ and hðrÞ are defined as

fðrÞ ¼ 1

12ðaþ 1Þ5r4 ½ð4a
2a000 − 26aa0a00

þ 28a03 − 26a0a00 þ 4a000 þ 8aa000Þr3
þ ð4a2a00 − 7aa02 þ 8aa00 − 7a02

þ 4a00Þr2 − ð8a2a0 þ 16aa0 þ 8a0Þr
þ 20a4 þ 36a3 þ 28a2 þ 8a�; ð14Þ

gðrÞ ¼ 1

12ðaþ 1Þ4r4 ½ð−4aa
00 þ 7a02 − 4a00Þr2 þ 4a4

þ 16a3 þ 20a2 þ 8a�; ð15Þ

hðrÞ ¼ −
1

12ðaþ 1Þ5r6 ½ð2a
2a000 − 13aa0a00

þ 14a03 þ 4aa000 − 13a0a00 þ 2a000Þr3
þ ð−4a2a0 − 8aa0 − 4a0Þrþ 4a5

þ 20a4 þ 36a3 þ 28a2 þ 8a�; ð16Þ
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where the prime denotes the derivative with respect to the
radial coordinate r.
The energy-momentum tensor required to support such a

space-time is in the form,

Tμ
ν ¼ diagð−ρ; Pr; Pt; PtÞ; ð17Þ

where ρðr; tÞ is the energy density and Prðr; tÞ, Ptðr; tÞ are
the radial and transverse pressures, respectively. Use of
Eqs. (11)–(13) and (17) and substituting into Eq. (3) lead to
the following equations:

ρðr; tÞ ¼ −4α
fðrÞ
RðtÞ4 ; ð18Þ

Prðr; tÞ ¼ 4α
gðrÞ
RðtÞ4 ; ð19Þ

Ptðr; tÞ ¼ 4α
hðrÞr2
RðtÞ4 : ð20Þ

To calculate aðrÞ and RðtÞ in Weyl gravity, we use two
properties of Weyl’s tensor, Bianchi and trace identities as

∇μWμν ¼ 0; ð21Þ

Wμ
μ ¼ 0; ð22Þ

use of Eq. (21) for ν ¼ t leads to

1

RðtÞ
dRðtÞ
dt

�
fðrÞ þ gðrÞ þ 2hðrÞr2

RðtÞ4
�
¼ 0; ð23Þ

and for ν ¼ r from Eq. (21), we have

g0ðrÞ þ 2gðrÞ
r

− 2rhðrÞ ¼ 0: ð24Þ

Also, we use the trace identity (22) to obtain

fðrÞ þ gðrÞ þ 2hðrÞr2
RðtÞ4 ¼ 0; ð25Þ

or

−ρþ Pr þ 2Pt ¼ 0: ð26Þ

As we know there are two unknown functions RðtÞ and
aðrÞ to obtain the metric, as well as ρ, Pt and Pr, are
unknown and functions of r and t. In the standard GR [47]
and the brane-world model [48] in order to obtain the
inhomogeneous exact solutions, authors have chosen the
generalized equation of state as follows:

ρþ αPr þ 2βPt ¼ 0; ð27Þ

where α and β are constant parameters. But, we note that in
the conformal Weyl gravity the energy-momentum tensor
components are constrained through the trace identity (26),
which means α ¼ β ¼ −1. Thus in contrast to standard GR,
we cannot use Eq. (27) to obtain a new equation to find aðrÞ
and RðtÞ.
Weyl equations (18)–(20) together with Eqs. (23)–(25)

make a set of equations which can be solved. In the next
section by imposing constrain between the radial and
transverse pressures, we obtain exact solutions for RðtÞ
and aðrÞ.

III. EXACT SOLUTIONS IN WEYL GRAVITY

In this section we are going to obtain inhomogeneous
exact solutions in the framework of Weyl gravity. As we
know the equation of state has an important role in the
study of the geometry of space-time. For example ω ¼ −1
correspond with the vacuum energy or cosmological
constant and −1 < ω < −1=3 are mentioned for the
quintessence matter and used as a candidate for explaining
the accelerated expansion of the Universe. Phantom field as
an exotic matter with equation of state parameter ω < −1
also accelerate the expansion of the Universe.

A. Case I: Isotropic fluid

First we focus on the cosmic scale factor RðtÞ. By
comparing two equations (23) and (25), we conclude that

ṘðtÞ
RðtÞ ≠ 0: ð28Þ

The above equation shows that there are different choices to
get the scale factor. So the scale factor can be an arbitrary
function of time. Inflating Lorentzian wormholes in the
framework of GR was investigated by Roman [15] which
explores the possibility that inflation provides a natural
mechanism for the enlargement wormholes from micro-
scopic size to macroscopic. For having an exponential
inflation we consider the simplest choice. By choosing
ṘðtÞ
RðtÞ ¼ constant, we have the following solution for RðtÞ:

RðtÞ ¼ R0eH0t; ð29Þ

where H0 is the constant of integration.
Now, we consider an isotropic fluid

Prðr; tÞ ¼ Ptðr; tÞ; ð30Þ

which gives

gðrÞ ¼ hðrÞr2: ð31Þ

Substituting Eq. (31) into Eq. (24) we obtain
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rg0ðrÞ ¼ 0; ð32Þ

which have the following solution:

gðrÞ ¼ c1; ð33Þ

where c1 is an integration constant.
By substituting gðrÞ from Eq. (33) into Eq. (15), we

obtain

12c1ðaþ 1Þ4r4 ¼ 4a4 − 4aa00r2 þ 7a02r2 þ 16a3

− 4a00r2 þ 20a2 þ 8a: ð34Þ

The above equation has not an exact solation. For the case
c1 ¼ 0 we find the following exact solution as

aðrÞ ¼ c2r2

1 − c2r2
; ð35Þ

where c2 is a constant of integration. Now from Eqs. (29)
and (35), the line element (9) takes the form

ds2 ¼ −dt2 þ R2
0e

2H0t

�
dr2

1 − c2r2
þ r2dΩ2

�
; ð36Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2. For this case from
Eq. (18)–(20) we find ρ ¼ Pr ¼ Pt ¼ 0, which is the
simplest case which satisfying the trace equation (26).
The spatial part of metric (36) shows an exponentially

expanding 3-sphere, and therefore describes a closed empty
universe for c2 > 0 and a open empty universe for c2 < 0.
Also for the special case c2 ¼ 0 it corresponds to

ds2 ¼ −dt2 þ R2
0e

2H0t½dr2 þ r2ðdθ2 þ sin2 θdφ2Þ�; ð37Þ

which presents the de Sitter space-time.
Therefore as mentioned in Ref. [72] the conformal

invariance imposes a sharp constraint on isotropic distri-
butions of matter in the Universe; so that in an empty
Friedmann-Robertson-Walker (FRW) universe, the scale
factor can be an arbitrary function of time. The merit of this
is that we do not need any exotic matter to explain the
acceleration expansion of the Universe [72].

B. Case II: Anisotropic fluid

Now, we consider the case with the following relation
between the energy density ρðrÞ and the radial pressure
PrðrÞ:

Prðr; tÞ ¼ ωρðr; tÞ; ð38Þ

where ω is the equation of state parameter.

Substituting Eq. (18) and (19) into Eq. (38), we have

gðrÞ ¼ −ωfðrÞ; ð39Þ

by omitting hðrÞ between Eq. (24) and Eq. (25), we have

rg0ðrÞ þ 3gðrÞ ¼ −fðrÞ; ð40Þ

by combining Eqs. (39) and (40), we have

rg0ðrÞ ¼ ð1 − 3ωÞ
ω

gðrÞ; ð41Þ

with the following solution:

gðrÞ ¼ c1r
ð1−3ωÞ

ω ; ð42Þ

where c1 is an integration constant. By substituting gðrÞ
from Eq. (42) into Eq. (15), we obtain

12c1r
ð1−3ωÞ

ω ðaþ 1Þ4r4 ¼ 4a4 − 4aa00r2 þ 7a02r2 þ 16a3

− 4a00r2 þ 20a2 þ 8a: ð43Þ

In general the above equation could not be solved unless we
set ω ¼ −1. Unfortunately, even in this case, the equation
does not have an explicit form of the exact solution.
However, in the Appendix, we present a solution contain-
ing an integration term with three constants of integration
c1, c2 and c3. For different values of these constants there
are many different solutions, however, some of them do not
have the physical meaning. Now, in what follows we
consider the case of c1 ¼ 1

3
which leads to a solution

satisfying all of the wormhole conditions.

1. The case of c1 = 1
3

As is clear from Eq. (A1), by choosing c1 ¼ 1
3
the

integrand takes a simple form and thus one can easily find
the following exact solution for aðrÞ function. Also, by
choosing c1 ¼ 1

3
in Eq. (43) we have

4aa00r2 þ 4a00r2 − 7a02r2 þ 8aþ 4a2 þ 4 ¼ 0: ð44Þ

It can be shown that this equation has the following exact
solution:

aðrÞ ¼ −1þ 1

ð3
8
Þ43ðc2r32 − c3r−

1
2Þ43

; ð45Þ

where c2 and c3 are integration constants. The line element
(9) takes the form
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ds2¼−dt2þR2
0e

ffiffi
Λ
3

p
t

�
dr2

ð3
8
Þ43ðc2r32−c3r−

1
2Þ43

þ r2dΩ2

�
; ð46Þ

where H0 ≡
ffiffiffi
Λ
3

q
.

The time-dependent wormholes have been introduced by
Roman with the following line element [15]:

ds2¼−dt2þR2ðtÞ
�

dr2

1− bðrÞ
r

þ r2ðdθ2þ sin2θdφ2Þ
�
; ð47Þ

where RðtÞ and bðrÞ are the scale factor and the shape
function of wormhole, respectively [106]. The minimum
value of r is a throat radius of wormhole r ¼ r0, so the
radial coordinate change in the interval r0 ≤ r ≤ ∞. Since
the shape function bðrÞ is responsible to define the shape of
the wormhole, hence for a wormhole solution it should
satisfy the certain conditions: (i) The radius of the worm-
hole throat corresponds with the point where bðr0Þ ¼ r0,
(ii) the flaring-out condition implies that b0ðrÞ < 1 and

(iii) for r > r0 the throat condition implies that bðrÞr < 1 (for
more study the reader is referred to [107–110]).
Comparison of metric (46) with (47) leads to the

following shape function:

bðrÞ ¼ r −
�
3

8

�4
3ðc2r94 − c3r

1
4Þ43; ð48Þ

and from condition (i) the throat radius is

r0 ¼
�
c3
c2

�1
2

; ð49Þ

which is real only if (c2 > 0, c3 > 0). One can find c3 in
terms of r0, c2; so we rewrite the shape function as

bðrÞ ¼ r −
�
3

8

�4
3ðc2r94 − c2r20r

1
4Þ43; ð50Þ

in this case. In Fig. 1 we have plotted the shape function
with various conditions. The figure shows all necessary
conditions are satisfied by the given shape function.
Quasicosmological traversable wormhole solutions in

the context of fðRÞ gravity have been studied in Ref. [20].
In contrast to the GR one can find the asymptotically
spherical, flat and hyperbolic wormhole solutions in
modified gravity theories. We have plotted the behavior

of function ð1 − bðrÞ
r Þ in Fig. 2. It shows that the wormhole

solutions in Weyl gravity at large r match the hyperbolic
FRW universe and so the asymptotically flatness condition
is violated.
As we mentioned before the traversable wormholes

violate the main energy conditions such as NEC, WEC,
strong energy condition and dominated energy condition

(DEC) for the stress-energy tensor and so they invoke the
existence of exotic matter i.e., matter with negative energy
density places at or near the wormhole throat. However, in
higher-dimensional theories, fðRÞ gravity theories and
modified gravity theories with higher order curvature
terms, the wormhole solutions may satisfy some energy
conditions [20–27,111].
By substituting Eq. (45) into Eqs. (14)–(16), we have

fðrÞ ¼ þ 1

3r4
; ð51Þ

gðrÞ ¼ þ 1

3r4
; ð52Þ

hðrÞ ¼ −
1

3r4
: ð53Þ

Now we can obtain the energy density, the radial and
transverse pressure by substituting Eqs. (51)–(53) and (29)
into Eqs. (18)–(20) as follows:

FIG. 1. Shape function bðrÞ, throat condition bðrÞ
r < 1, flaring-

out condition b0ðrÞ < 1 for throat radius r0 ¼ 1, c2 ¼ 0.1 and
c3 ¼ 0.1.

FIG. 2. The behavior of 1 − bðrÞ
r as a function of r.
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ρðt; rÞ ¼ −
4α

3R4
0

1

r4
e−

ffiffiffiffiffi
16Λ
3

p
t; ð54Þ

Prðt; rÞ ¼ þ 4α

3R4
0

1

r4
e−

ffiffiffiffiffi
16Λ
3

p
t; ð55Þ

Ptðt; rÞ ¼ −
4α

3R4
0

1

r4
e−

ffiffiffiffiffi
16Λ
3

p
t; ð56Þ

where H0 ≡
ffiffiffi
Λ
3

q
.

Now, let us check whether the matter is exotic or not by
calculating some energy conditions namely

WEC∶ ρ ≥ 0ρþ Pr ≥ 0: ð57Þ

NEC∶ ρþ Pr ≥ 0ρþ Pt ≥ 0: ð58Þ

DEC∶ ρ − jPr ≥ 0ρ − jPt ≥ 0: ð59Þ

In Figs. 3–5 we have plotted variation of the energy
density ρðr; tÞ, ρðr; tÞ þ Prðr; tÞ and ρðr; tÞ − jPtðr; tÞj for

r0 ¼ 1. As can be seen from Eqs. (54)–(56) for c1 ¼ 1
3
the

WEC, NEC and DEC is violated throughout the space-time
and so the matter is exotic for this case.
As mentioned before a fundamental ingredient of static

traversable wormhole solutions in GR is the NEC violation.
However, for time-dependent wormhole solutions in GR
the NEC and theWEC can be avoided for a specific interval
of time and in certain regions at the throat [47–51].
Nevertheless, in some alternative gravity theories such as
fðRÞ gravity, EGB theory, Lovelock and Rastall gravity the
energy conditions can be satisfied depending on the
parameters of theory and so it is not necessarily an exotic
matter to build wormholes. For these alternative gravity
theories, similar to GR, the time-dependent spherically
symmetric wormhole solutions have been extensively
studied in the literature. For time-dependent wormhole
solutions in fðRÞ gravity theory the energy conditions are
satisfied for the specific values of the model constants [57].
However, this is not the case for time-dependent wormhole
solutions analyzed in this work.
In conformal Weyl gravity as a fourth-order gravita-

tional theory both the static and time-dependent wormhole
solutions differ from their similar cases in GR. For the
static worm hole solution in Weyl gravity for example in
the simple case bðrÞ ¼ r0 in contrast to GR the radial
pressure is positive at the throat and the energy density is
negative whereas similar to GR the NEC is violated
throughout the space-time [45]. However, for the case
of the time-dependent wormhole geometry in this work,
we have verified that the NEC and WEC are violated, as
shown in the analysis above for the specific case c1 ¼ 1

3
.

Finally, we mention that the restriction for choosing the
constants results from mathematical/technical reason not
the physical one.

IV. CONCLUSION

There are two methods for formulating wormhole
solutions. One method involves joining two asymptotically

FIG. 3. The variation of WECs [ρðr; tÞ] for R0 ¼ α ¼ Λ ¼ 1
and the throat radius r0 ¼ 1.

FIG. 4. The variation of NECs [ρðr; tÞ þ Ptðr; tÞ] for R0¼α¼1

and Λ ¼ 10−35 and the throat radius r0 ¼ 1.

FIG. 5. The variation of DECs [ρðr; tÞ − jPtðr; tÞj] for R0 ¼
α ¼ 1 and Λ ¼ 10−35 and the throat radius r0 ¼ 1.
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flat space-times via boundary conditions, while the other
method involves smoothly merging the wormhole metrics
with a cosmological background. In this paper, we employ
the latter method and present a spherically inhomogeneous
structure that smoothly joins with a cosmological back-
ground within the context of conformal Weyl gravity. Our
ansatz metric belongs to the category of the Szekeres-
Szafron metric, with two unknown functions, aðrÞ and
RðtÞ. Based on reasonable constraints on the energy-
momentum tensor of an anisotropic space-time, we obtain
the Weyl equations. These equations, together with result-
ing equations from the Bianchi and trace identities, i.e.,
−ρþ Pr þ 2Pt ¼ 0make a set of equations, which have no
exact solution in the general case. Considering two special
cases, isotropic and anisotropic fluid, leads us to categories
of equations based on the amount of c1 as an integration
constant. We obtain the de Sitter space-time as an exact
solution which corresponds to c1 ¼ 0, ρ ¼ Pr ¼ Pt ¼ 0.
Another exact solution has been obtained for special case
Pr ¼ −Pt, which corresponds to time-dependent wormhole
for c1 ¼ − 1

3
, which can be supported by exotic matter

which at large r match two hyperbolic FRW universes.
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APPENDIX

In this section we obtain the solution of Eq. (43) for
ω ¼ −1 by using MAPLE software as follows:

aðrÞ ¼ −1þ 1

r2
× Root Of

"
1þ 2c3r2

þ 2

Z
Z− dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2f
7
2 − 12c1f4 þ 4f4

q r2
#
; ðA1Þ

where c2 and c3 are integration constants and function
RootOf is a placeholder for representing all the roots of an
equation in one variable. As one can see from Eq. (A1) for
c1 ¼ 1

3
the integrate can be solved easily and we find the

following exact solution:

c2 −
c3
r2

−
8

3

1

r3=2ð1þ aðrÞÞ3=4 ¼ 0; ðA2Þ

or

aðrÞ ¼ −1þ 1�
3
8

�4
3ðc2r32 − c3r−

1
2Þ43

: ðA3Þ

Also, for the case of c2 ¼ 0, Eq. (A1) leads to the following
solution:

aðrÞ ¼ −1þ 1

1 − c3r2 þ c4
; ðA4Þ

where c4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c1 þ 1

p
− 1. The above solution cannot

describe the wormhole solution since it does not satisfy
the wormhole conditions and is not physically suitable. We
do not discuss this solution in this paper.
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