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We consider some classes of Horndeski theories in four dimensions for which a certain combination of
the Einstein equations within a spherical ansatz splits into two distinct branches. Recently, for these
theories, some integrability and compatibility conditions have been established which have made it
possible to obtain black hole solutions depending on a single integration constant identified as the mass.
Here, we will show that these compatibility conditions can be generalized to accommodate a time
dependence by promoting the constant mass to an arbitrary function of the retarded (advanced) time. As a
direct consequence, we prove that all the static black hole solutions can be naturally promoted to nonstatic
Vaidya-like solutions. We extend this study in arbitrary higher dimensions where the pure gravity part is
now described by the Lovelock theory and, where the scalar field action enjoyed the conformal invariance.
For these theories, the splitting in two branches is also effective, and we show that their known static black
hole solutions can as well be promoted to Vaidya-like solutions.

DOI: 10.1103/PhysRevD.108.104067

I. INTRODUCTION

One of the important generalizations of the Schwarzschild
solutionwith the aimof describing the exterior of a starwhich
is either emitting or absorbing null dusts is undoubtedly the
so-called Vaidya solution [1]. This “radiating” solution can
be conveniently written in the Eddington-Finkelstein coor-
dinates by promoting the Schwarzschild constant massM to
a function of the retarded (advanced) time

ds2 ¼ −
�
1 −

2MðuÞ
r

�
du2 þ 2ϵdudrþ r2dΩ2

2;

where ϵ ¼ �1 describes incoming (resp. outgoing) radia-
tion shells. This in turn implies that the exterior field of the
radiating star behaves as a pure radiation field with an
energy-momentum Tμν that has component only along the
retarded (advanced) time,

Tμν ¼ −
2ṀðuÞ
r2

kμkν; ð1Þ

withk ¼ ∂r, and where the dot stands for the derivative with
respect to u. In contrast with the Schwarzschild metric, the
Vaidya spacetime has no timelike Killing vector field, and
hence it is a nonstatic metric. One of the interesting aspect of
this solution is that it provided us with one of the oldest

counterexamples to the cosmic censorship conjecture.
Indeed, in the original paper of Papapetrou [2], it was shown
that this solution could give rise to the formation of naked
singularities. In addition, since its discovery, the Vaidya
solution has been intensively studied and also generalized in
presence of source. In particular its electrical extension [3]
has given rise to numerous researches whether from a
thermodynamic point of view [4] or about the possible
violation of the weak energy condition [5]. Extension of
Vaidya solutions in the case of Lovelock gravity and their
thermodynamics features were also discussed in [6].
In the present article, we are interested in searching for

Vaidya type solutions within the framework of scalar tensor
theories. An example of such solution was exhibited in the
case of a particular Horndeski theory in Ref. [7]. As is now
well known, the Horndeski theory refers to the most general
scalar tensor theory leading to second-order equations for
the metric and the scalar field [8]. In the last decade this
theory has been “rediscovered,” and a considerable progress
has been made in studying black holes in Horndeski theory.
Recently, in Ref. [9], the authors have selected some
subclasses of Horndeski theories by requiring that a certain
combination of the Einstein equations within a spherical
ansatz splits into two distinct branches. This splitting allows
in some cases to determine the form of the scalar field
without knowing the metric function explicitly. In this case,
some integrability and compatibility conditions have been
established which permit to derive interesting black hole
solutions whose asymptotic behaviors resemble to those of
Schwarzschild-(A)dS. It is important for our work to
mention that these solutions depend on a single integration
constant identified with the mass of the black hole.
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The resulting action permitting such solutions, is devoid of
any apparent symmetry (such as the shift symmetry), but
surprisingly the scalar field action1 can be seen as the sum of
an action yielding a conformally invariant scalar field
equation (with subscribes 4) with a another piece that is
conformally invariant in fivedimensions (with subscribes 5),

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R− 2Λ− 2λ4e4ϕ − 2λ5e5ϕ

− β4e2ϕðRþ 6ð∇ϕÞ2Þ− β5e3ϕðRþ 12ð∇ϕÞ2Þ
− α4ðϕG− 4Gμν∇μϕ∇νϕ− 4□ϕð∇ϕÞ2 − 2ð∇ϕÞ4Þ
− α5eϕðG− 8Gμν∇μϕ∇νϕ− 12□ϕð∇ϕÞ2 − 12ð∇ϕÞ4Þ�:

ð2Þ

Note that for thevanishing parameterswith subscribes 5, this
action reduces to the one first considerer in [10], and for
which two classes of black hole solutions have been found.
First, we will generalize the integrability conditions

given in [9] for a spherical metric (written in Eddington-
Finkelstein) whose base manifold has constant curvature
κ ¼ �1 or κ ¼ 0, namely

ds2 ¼ −fðrÞdu2 − 2du drþ r2dθ2

1 − κθ2
þ r2θ2dy2: ð3Þ

The topological black holes generalizing the solutions
found in [9] will be exhibited. A particular attention is
devoted to the planar case κ ¼ 0 where we show that
the integrability conditions impose that the couplings
λ4 ¼ λ5 ¼ β4 ¼ β5 ¼ 0. In this planar case, we will also
see that the scalar field has a free parameter unconstrained
by the field equations. The reason of this freedom will be
clarified. In a second time, we show that demanding the
metric function f to depend as well on the retarded
(advanced) time u, the generalization of the integrability
conditions naturally lead to Vaidya-like metric. More
precisely, we establish that each topological black holes
can be promoted to Vaidya-like metric by promoting the
constant mass to a function of u. In the third part, we extend
our analysis in higher dimensions where the action is now
given by the Lovelock Lagrangian with a scalar field action
that is conformally invariant. We first see that a certain
combinations of the equations of motion within our ansatz
of the form (3) splits in two branches as in the Einstein
gravity case. Similarly, we establish that the Lovelock static
black hole solutions of these theories found in [11,12], can
as well be promoted to Vaidya-like solutions by allowing
the mass to depend on the coordinate u.

II. INTEGRABILITY CONDITIONS
FOR TOPOLOGICAL BLACK HOLES

Let us denote by

Eμν ≔ Gμν þ Λgμν − Tμν; ð4Þ

the field equations arising from the variation of the
action (2) with respect to the metric, and whose explicit
expressions are reported in the Appendix. For an ansatz
metric of the form (3) with a scalar field depending only on
the radial coordinate r, the equation Err ¼ 0 splits in two
radically distinct branches given by

ðϕ02 − ϕ00Þ½r2ð2β4 þ 3β5eϕÞe2ϕ
þ 4α5ðκ − fð1þ rϕ0Þð1þ 3rϕ0ÞÞeϕ
þ 4α4ðκ − fð1þ rϕ0Þ2Þ� ¼ 0: ð5Þ

The first branch will refer to the equation ðϕ02 − ϕ00Þ ¼ 0 for
which the integration of the scalar field can be done without
knowing a priori the expression of the metric function. For
the second branch, as already mentioned in [9], the integra-
tion of the scalar field can only be achieved in the case
α5 ¼ β5 ¼ λ5 ¼ 0, and the factorization (5) reduces to

ðϕ02 − ϕ00Þ½2β4r2e2ϕ þ 4α4ðκ − fð1þ rϕ0Þ2Þ� ¼ 0: ð6Þ

In what follows, we first consider the first branch for
which we give the compatibility conditions and exhibit as
well its topological black holes. In the second sub-section,
we will establish that these static topological black hole
solutions can be extended to Vaidya-like solutions by
turning the constant mass to be an arbitrary function of
the retarded time u. Although the second branch is some-
what different in that the scalar field depends explicitly on
the constant M and the couplings with the subscribe 5 are
taken to zero, we will see that a similar analysis will
surprisingly lead to the same conclusions.

A. First branch of topological black hole solutions

Here, we focus on the solution given by the first branch
of (5), namely ϕ02 − ϕ00 ¼ 0. Although the general solution
should include two integration constants, the full integra-
tion of the system will impose one of them to be zero and,
hence we anticipate the following form for the scalar field
solution

ϕðrÞ ¼ ln
�
η

r

�
; ð7Þ

where η is a priori a free integration of constant. Plugging
this ansatz into the remaining Einstein equations, Euu and
Eθθ, one obtains that

1In what follows, by scalar field action, we mean the terms in
the action that depend on the scalar field in opposition with those
of pure gravity.
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Estatic
uu ¼

�
α4f2

r
−
�
rþβ5η

3

2r2
þ2κα5η

r2
þ2α4κ

r

�
f

þ 1

r2

�
λ5η

5

2
þβ5η

3κ

2

�
þ1

r
ðλ4η4þβ4κη

2Þ−r3Λ
3

þκr

�0
;

Estatic
θθ ¼

�
α4
r
f2−

�
r−

β5η
3

r2
−
β4η

2

r

�
f−

λ5η
5

3r2

þ1

r
ð−λ4η4Þ−

r3Λ
3

�00
: ð8Þ

Integrating both equations we obtain two quadratic equa-
tions for the metric f,

α4f2

r
−
�
rþ β5η

3

2r2
þ 2κα5η

r2
þ 2α4κ

r

�
f

þ 1

r2

�
λ5η

5

2
þ β5η

3κ

2

�
þ 1

r
ðλ4η4 þ β4κη

2Þ

−
r3Λ
3

þ κrþ C1 ¼ 0; ð9aÞ

α4
r
f2 −

�
r −

β5η
3

r2
−
β4η

2

r

�
f −

λ5η
5

3r2

−
λ4η

4

r
−
r3Λ
3

þ C3rþ C2 ¼ 0; ð9bÞ

where C1, C2 and C3 are a priori three different integration
constants. In order for these equations to be compatibles,
the coupling constants of the system are forced to be tied as
follows

β5 ¼ −
4

3η2
α5κ; β4 ¼ −

2α4
η2

κ;

λ5 ¼ −
3

5η2
β5κ; λ4 ¼ −

1

2η2
β4κ; ð10Þ

while the constants of integration must be fixed as

C3 ¼ κ; C1 ¼ C2 ¼ −2M; ð11Þ

and, whereM is a truly integration constant. Note that in the
planar case κ ¼ 0, the couplings β4, λ4, β5 and λ5 must
vanish (10), and this case will be treated separately below.
Otherwise for κ ¼ �1, the constant η of the scalar field
becomes fixed in term of the coupling constants of the
theory, and defining

Estatic ¼ α4f2

r
−
�
rþ 4α5ηκ

3r2
þ 2α4κ

r

�
f −

4η

15r2
α5κ

2

−
α4κ

2

r
−
r3Λ
3

þ κr; ð12Þ

the two quadratic equations for the metric function (9) at
the “point” defined by the compatibility conditions (10)
and (11) become a single relation

Estatic − 2M ¼ 0;

whose general metric solution can be parametrized in terms
of α4 ≠ 0, α5 and η as

fðrÞ ¼ κ þ 2α5ηκ

3rα4
þ r2

2α4

�
1�

��
1þ 4α5ηκ

3r3

�
2

þ 4α4

�
Λ
3
þ 2M

r3
þ 2α4κ

2

r4
þ 8α5ηκ

2

5r5

��1
2

�
; ð13Þ

On the other hand, for α4 ¼ 0, the equation defining f
becomes linear and in this case, the topological black hole
metric function is given by

fðrÞ ¼ 1

1þ 4α5ηκ
3r3

�
κ −

Λr2

3
−
2M
r

−
4α5ηκ

2

15r3

�
: ð14Þ

Note that both solutions (13) and (14) correspond to those
reported in [9] for κ ¼ 1.
Let us nowgoback inmore details to the planar case κ ¼ 0.

As said before, in this case the couplings β4 ¼ λ4 ¼ β5 ¼
λ5 ¼ 0, and consequently the field equations reduce to

Gμν þ Λgμν ¼ α4H
ð4Þ
μν þ α5eϕH

ð5Þ
μν ;

α4Hð4Þ þ α5eϕHð5Þ ¼ 0; ð15Þ

where the different expressions of the tensors can be found
in the Appendix. It is a matter of check to see that the
following metric function and scalar field

fðrÞ ¼ r2

2α4

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α4

�
Λ
3
þ 2M

r3

�s !
;

ϕðrÞ ¼ ln

�
η̃

r

�
; ð16Þ

satisfy the Eqs. (15) in the planar case κ ¼ 0. Various
comments can be made concerning this solution. First, one
can see that although the coupling α5 ≠ 0, it does not
appear in the expression of the metric neither in that of the
scalar field. Also, in contrast with the cases κ ¼ �1, the
constant η̃ is a truly integration constant unconstrained by
the field equations. These two features of the solution (16)
can be explained by the fact that the configuration (16), in
addition to satisfying the equations of motion (15), makes

also that the stress tensor Hð5Þ
μν and the scalar quantity Hð5Þ

to identically vanish on-shell. Consequently, this explains
the absence of the coupling α5 in the parametrization of the
solution. Concerning the constant η̃, it is clear that, since
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the α4-part of the action is invariant under the shift constant
of the scalar field ϕ → ϕþ cst, and since the α5-part of the
equations vanish on-shell, our scalar field solution will
always be defined up to a constant.

B. The Vaidya-like extension of the first branch
of solutions

We now show that all the previous solutions can be
extended to Vaidya type solutions thanks to a generaliza-
tion of the previous comparability relations. In order to
achieve this task, we allow the metric function f to depend
as well on the retarded time but we restrict the form of the
scalar field as in the static case2

ds2 ¼ −fðu; rÞdu2 − 2dudrþ r2dθ2

1 − κθ2
þ r2θ2dy2;

ϕðrÞ ¼ ln

�
η

r

�
; ð17Þ

where η will be fixed by the compatibility conditions as in
the static case. As a consequence of this choice, the Einstein
equation Err ¼ 0 is automatically satisfied since the first
part of the factorization (5) is unchanged. Now, evaluating
the expression of the scalar field into the remaining
independent Einstein equations at the special tuning point
where the topological black holes exist (10), one gets

Euu ¼
1

r2
ðfðu; rÞ∂r − ∂uÞEstaticðfðu; rÞÞ; ð18Þ

Eθθ ¼
r

2ðκθ2 − 1Þ ∂rrE
staticðfðu; rÞÞ; ð19Þ

where Estaticðfðu; rÞÞ refers to the expression defined in
(12) but now evaluated at f ¼ fðu; rÞ. It is clear that this
system is incompatible unless Estaticðfðu; rÞÞ is a constant,
and in this case one would end up with the static solution
previously derived. Nevertheless, let us explore other
possibilities, and for this we first focus on the equation
Eθθ ¼ 0. Its general solution is given by Estaticðfðu; rÞÞ ¼
C1ðuÞrþ 2MðuÞ where C1ðuÞ and MðuÞ are two arbitrary
functions of u. Injecting this expression into the equation
Euu, one gets

Euu ¼
fðu; rÞC1ðuÞ

r2
−
Ċ1ðuÞ
r

−
2ṀðuÞ
r2

: ð20Þ

A straightforward computation shows that the compatibility
of the equation Euu ¼ 0 together with the expression (12)
would yield the previous static solution, namely C1ðuÞ ¼ 0
and MðuÞ ¼ M ¼ cst. However, one can opt for the option

that this configuration behaves as a pureVaidya-like radiation
field. Indeed, this can occur by choosing C1ðuÞ ¼ 0 and
leaving free the dependence of the functionMðuÞ. Indeed, in
this case, the full Einstein equations become

Eμν ≔ Gμν þ Λgμν − Tμν ¼ −
2ṀðuÞ
r2

δuμδ
u
ν ; ð21Þ

for an ansatz of the form (17) with a metric function given by

fðu;rÞ¼ κþ2α5ηκ

3rα4
þ r2

2α4

�
1�
��

1þ4α5ηκ

3r3

�
2

þ4α4

�
Λ
3
þ2MðuÞ

r3
þ2α4κ

2

r4
þ8α5ηκ

2

5r5

��1
2

�
: ð22Þ

In sum, we have shown that the topological black hole
κ ¼ �1 defined at the special point (10) can naturally be
promoted to a Vaidya-like solution (20) by promoting the
constant mass of the metric function to an arbitrary function
of the retarded time (21).
Along the same lines, the κ ¼ 0 black hole solution (14)

with the couplings α4 ¼ β4 ¼ λ4 ¼ 0 can as well rendered
to satisfy the same Vaidya conditions (20) for a metric
function, and a scalar field given by

fðu; rÞ ¼ 1

1þ 4α5ηκ
3r3

�
κ −

Λr2

3
−
2MðuÞ

r
−
4α5ηκ

2

15r3

�
;

ϕðrÞ ¼ ln

�
η

r

�
:

We also mention that for M ¼ MðuÞ, the Vaidya extension
of the static solution with a planar base manifold (16)

also satisfy the stealth equations Hð5Þ
μν ¼ 0 ¼ Hð5Þ as in the

static case.

C. Second branch of solutions

We now consider the second branch of equation (5).
Unfortunately, as shown in Ref. [9], this branch can only be
solved analytically for α5 ¼ β5 ¼ λ5 ¼ 0, and in this case,
the solution for κ ¼ 1 was given in [10]. Its topological
generalization can be conveniently parametrized as follows

fðrÞ ¼ κ þ r2

2α4

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α4

�
2M
r3

þ Λ
3

�s #
;

ϕðrÞ ¼ ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffi
− 2κα4

β4

q
þ ð1 − κ2Þ

ffiffiffiffiffiffiffi
2κα4
β4

q
r sinh

h ffiffiffi
κ

p �
c1 �

R
r dr
r
ffiffiffiffiffiffi
fðrÞ

p
�i
1
CA; ð23Þ

and the solution holds at the special fine tuning
λ4 ¼ 3β24=4α4. Note that for this second branch, the
emergence of an unconstrained constant of integration
c1, a sort of hair. For this second branch, it is clear that

2One could also have considered a scalar field of the form
ϕ ¼ ϕðu; rÞ, and this will considerably complicate the problem,
but for our purpose it is enough to consider ϕ ¼ ϕðrÞ.
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the scalar field depends on the mass parameter M through
the expression of the metric function f. Moreover, in
contrast with the previous case, if one would naively turn
on the time dependence of the metric function and on the
scalar by promoting the mass M to a function MðuÞ, the
Einstein field equation Err ¼ 0 would not be satisfied. This
is mainly because for a time-dependent ansatz for the scalar
field, ϕðu; rÞ, the static equation (5) for α5 ¼ β5 ¼ λ5 ¼ 0
becomes factorized as

½ð∂rϕÞ2 − ∂rrϕ�
× ½r2βe2ϕ þ 2α4rð1þ rÞðf∂rϕ− ∂uϕÞ þ α4ðf − 1Þ� ¼ 0;

ð24Þ

and, because of the presence of the term ∂uϕ, the second
branch will not be satisfied by just turning the constant M
to a function MðuÞ. Despite this inconvenient, it can be
shown that the Einstein’s equations for a nonstatic ansatz of
the form (17) with a metric function

fðu; rÞ ¼ κ þ r2

2α4

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α4

�
2MðuÞ
r3

þ Λ
3

�s #

are such that

Eμν ≔ Gμν þ Λgμν − Tμν ¼ −
2ṀðuÞ
r2

δuμδ
u
ν ; ð25Þ

provided that the scalar field satisfied the equation of the
second branch (23), namely

r2βe2ϕþ2α4rð1þ rÞðf∂rϕ−∂uϕÞþα4ðf−1Þ¼ 0: ð26Þ

Note that the spherical case κ ¼ 1 was already reported
along the same lines in [7].

III. EXTENSION TO HIGHER DIMENSIONS

As already mentioned, the scalar field equation of the
action (2) for α5 ¼ β5 ¼ λ5 ¼ 0, enjoys the conformal
invariance although the scalar field action is not conformally
invariant [10]. Recently, this kind of symmetry present at the
level of the equation and not at the level of the action has
been dubbed non-Noetherian conformal symmetry [13]. In
Ref. [7], the authors presented a procedure to obtain this
non-Noetherian conformally invariant action from a
Noetherian conformally action in higher dimensions. This
latter action, whose pure gravity action included the
Lovelock theory, was first considered in [14,11], and is
nothing but the most general theory of gravity conformally
coupled to a scalar field that yields second-order field
equations for the scalar field and the metric. In order to
be self-contained, we will present the action with the useful
notations as introduced in Refs. [14,11].

Let us first define the following tensor

Sμνγδ ¼ Φ2Rμν
γδ − 4Φδ½γ½μ∇ν�∇δ�Φþ 8δ½γ½μ∇ν�ϕ∇δ�Φ

− 2δ½γ½μδ
δ�
ν�∇ρΦ∇ρΦ:

where now the scalar fieldΦ is related to the previous one ϕ
by Φ ¼ eϕ, and the action under consideration is given by

S¼
Z

dDx
ffiffiffiffiffiffi
−g

p 	X½D−1
2
�

k¼0

1

2k
δðkÞðakRðkÞþbkΦD−4kSðkÞÞ



; ð27Þ

where the ak and bk are coupling constants. The Kronecker
tensor δðkÞ is defined by

δðkÞ ¼ k!δμ1½α1δ
ν1
β1
…δμkαkδ

νk
βk�;

while the expressions of RðkÞ and SðkÞ read

RðkÞ ¼
Yk
r¼1

Rμrνr
αrβr ; SðkÞ ¼

Yk
r¼1

Sμrνr
αrβr :

As in four dimensions, the Einstein equation Err ¼ 0 for a
static ansatz of the form (3) with a radial scalar field can be
factorized in a similar form of (5). On the other hand, static
black hole solutions similar to those described previously
were constructed in Refs. [11,12]. In [12], it was shown that
solutions of the action (26) can be projected through a
limiting process to the four-dimensional solutions of the
action (2) with α5 ¼ β5 ¼ λ5 ¼ 0. It is therefore natural to
ask whether the static high-dimensional solutions can be
converted into Vaidya-type solutions which would project
into those previously derived. This is indeed the case, and
these Vaidya-like solutions for the first branch read

ds2 ¼ −fðu; rÞdu2 − 2dudrþ r2dΩ2
D−2;κ;

ΦðrÞ ¼ η

r
; ð28Þ

where the metric function fðu; rÞ satisfies a polynomial
equation of order ½D−1

2
� that reads

X½D−1
2
�

k¼0

akðD − 1Þ!
ðD − 2k − 1Þ!

�
κ − fðu; rÞ

r2

�
k

¼ MðuÞðD − 1ÞðD − 2Þ
rD−1 −

qðD − 1ÞðD − 2Þ
rD

: ð29Þ

Here, the constant η is defined in term of the coupling
constants of the Lagrangian through the relation

X½D−1
2
�

k¼1

k
bk

ðD − 2k − 1Þ! κ
k−1η2−2k ¼ 0; ð30Þ
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and the constant q is given by

q ¼ −
bðiÞ0

ðD − 2Þ η
D −

X½D−1
2
�

k¼1

bkðD − 3Þ!κk
ðD − 2k − 2Þ! η

D−2k: ð31Þ

It is a matter of check to see that injecting the solutions
given by (27)–(30) into the field equations of the action
(26) will give rise the Vaidya conditions

Gμν − Tμν ¼ −
ðD − 2ÞṀðuÞ

rD−2 δuμδ
u
ν ; ð32Þ

where Gμν is the Lovelock tensor. As anticipated, the metric
solution of the polynomial equation (29) by means of the
limiting process D → 4 described in [12] will yield to (21)
with the couplings α5 ¼ β5 ¼ λ5 ¼ 0.

IV. CONCLUSIONS

In general, it is rather difficult to find time-dependent
spherically symmetric solutions toEinstein’s equations in the
presence of a some matter source. There are, however, a few
examples, such as stealth configurations, see e.g. [15–17] and
[7], or even the example of time-dependent spherically
symmetric solution that describes the gravitational collapse
to a scalar black hole in three dimensions, see [18,19]. Here,
we have considered some classes of scalar tensor theories
such that a certain combination of the Einstein equations can
be factorized out as (5) within a spherical ansatz of the form
(3). For these theories, we have shown that from static black
hole configurations, and by extending their mass parameter
to a function of the retarded time, one can end up with
Vaidya-like configurations satisfying

Gμν − Tμν ¼ −
ðD − 2ÞṀðuÞ

rD−2 δuμδ
u
ν :

In general, it is a nontrivial task to findmatter thatmay source
the Vaidya geometries, that is some source that compensates
the right-hand side of the previous equation by means of its
energy-momentum tensor. For example, as shown in [20], it
would be impossible for a massless scalar field minimally
coupled to Einstein gravity, and this even if the scalar field
with lightlike gradient behaves like a pure radiation field.
On the other hand, we are convinced that promoting the

mass constant to an arbitrary function of the retarded time
will not always yield to Vaidya-like configurations. In fact,
the possibility of generating such Vaidya-type solutions
from static solutions in our case is essentially due to the
factorization of the equation as given in (6) together with
the fact that the scalar field solution of the first branch
does not depend on M. In order to reinforce our intuition,
we can consider the examples of the static black hole
solution of a conformally scalar field known as the BBMB

solution [21,22] or its self-interacting extension [23].
These both theories are particular cases of those considered
here since they correspond to the action (26) with λ5 ¼
β5 ¼ α4 ¼ α5 ¼ λ4 ¼ 0 (and in the self-interacting case
λ4 ≠ 0). Nevertheless, the main differences are due to the
fact since α4 ¼ 0, the factorization (6) yields only to the
first branch, and, in this case, the static scalar field solution
depends explicitly on the mass constant M. It is then a
matter of check to see that even by promoting the constant
M to an arbitrary function of time M ¼ MðuÞ the full
equations will yield inconsistencies unless M ¼ cst.
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APPENDIX: FIELD EQUATIONS

The field equations obtained by varying the action (2)
with respect to the metric read

Gμν þ Λgμν ¼ Tμν ðA1Þ

where

Tμν ¼ β4e2ϕA
ð4Þ
μν þ α4H

ð4Þ
μν − λ4e4ϕgμν þ β5e3ϕA

ð5Þ
μν

þ α5eϕH
ð5Þ
μν − λ5e5ϕgμν

where the terms Að4Þ
μν , Að5Þ

μν , Hð4Þ
μν and Hð5Þ

μν are those
associated with the energy-momentum tensor of the scalar
field, and are given by

Að4Þ
μν ¼Gμνþ2∇μϕ∇νϕ−2∇μ∇νϕþgμνð2□ϕþð∇ϕÞ2Þ;

Að5Þ
μν ¼Gμνþ3∇μϕ∇νϕ−3∇μ∇νϕþgμνð3□ϕþð∇ϕÞ2Þ;

Hð4Þ
μν ¼−2Gμνð∇ϕÞ2þ4Pμανβð∇α∇βϕ−∇αϕ∇βϕÞ

þ4ð∇αϕ∇μϕ−∇α∇μϕÞð∇αϕ∇νϕ−∇α∇νϕÞ
þ4ð∇μϕ∇νϕ−∇ν∇μϕÞ□ϕþgμνð−2ð□ϕÞ2þð∇ϕÞ4Þ
þ2gμν∇β∇αϕð∇β∇αϕ−2∇αϕ∇βϕÞ;

Hð5Þ
μν ¼−4Gμνð∇ϕÞ2þ4Pμανβð∇α∇βϕ−∇αϕ∇βϕÞ

þ8ð∇μϕ∇νϕ−∇ν∇μϕÞ□ϕ−4gμν□ϕð□ϕþð∇ϕÞ2Þ
þ4gμν∇α∇βϕð∇α∇βϕ−2∇αϕ∇βϕÞ
þ8ð∇μϕ∇ν∇αϕ∇αϕþ∇νϕ∇μ∇αϕ∇αϕÞ
−8∇μ∇αϕ∇ν∇αϕþ4ð∇ϕÞ2ð∇μ∇νϕ−3∇μϕ∇νϕÞ:

ðA2Þ
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Here, the tensor Pμανβ is defined as follows

Pμανβ ¼ Rμανβ þ gμβRαν þ gανRμβ − gμνRαβ − gαβRμν

þ 1

2
ðgμνgαβ − gμβgανÞR:

The variation of the action (2) with respect to the scalar
field yields

0 ¼ β4e2ϕAð4Þ þ α4eϕHð4Þ þ 8λ4e4ϕ þ β5e3ϕAð5Þ

þ α5eϕHð5Þ þ 10λ5e5ϕ; ðA3Þ

where Að4Þ, Að5Þ, Hð4Þ and Hð5Þ are is given by

Að4Þ ¼ 2ðR − 6□ϕ − 6ð∇ϕÞ2Þ;
Að5Þ ¼ 3ðR − 8□ϕ − 12ð∇ϕÞ2Þ;

and where

Hð4Þ ¼ Gþ 8ðGμν∇μ∇νϕ − Rμν∇μϕ∇νϕþ□ϕð∇ϕÞ2Þ
þ 8ð2∇μϕ∇μ∇νϕ∇ν −∇μ∇νϕ∇μ∇νϕþ ϕð□ϕÞ2Þ;

Hð5Þ ¼ Gþ 16ðGμν∇μ∇νϕ − Rμν∇μϕ∇νϕþ 3□ϕð∇ϕÞ2Þ
þ 24ððð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕþ ð∇ϕÞ4ÞÞ
− 4Rð∇ϕÞ2 þ 48∇μϕ∇μ∇νϕ∇νϕ:

[1] P. C. Vaidya, Proc. Indian Acad. Sci. A 33, 264 (1951).
[2] A. Papapetrou, in A Random Walk in Relativity and

Cosmology (Wiley Eastern, New Delhi, 1985).
[3] W. B. Bonnor and P. C. Vaidya, Gen. Relativ. Gravit. 1, 127

(1970).
[4] B. T. Sullivan and W. Israel, Phys. Lett. 79A, 371 (1980).
[5] A. Ori, Classical Quantum Gravity 8, 1559 (1991).
[6] R. G. Cai, L. M. Cao, Y. P. Hu, and S. P. Kim, Phys. Rev. D

78, 124012 (2008).
[7] E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur,

Phys. Rev. D 106, 064039 (2022).
[8] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[9] E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur,

Phys. Rev. D 108, 024019 (2023).
[10] P. G. S. Fernandes, Phys. Rev. D 103, 104065 (2021).
[11] G. Giribet, M. Leoni, J. Oliva, and S. Ray, Phys. Rev. D 89,

085040 (2014).
[12] E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur,

Phys. Rev. D 107, 084050 (2023).

[13] E. Ayón-Beato and M. Hassaine, arXiv:2305.09806.
[14] J. Oliva and S. Ray, Classical Quantum Gravity 29, 205008

(2012).
[15] E. Ayon-Beato, C. Martinez, and J. Zanelli, Gen. Relativ.

Gravit. 38, 145 (2006).
[16] E. Babichev and C. Charmousis, J. High Energy Phys. 08

(2014) 106.
[17] M. Hassaine, Phys. Rev. D 89, 044009 (2014).
[18] W. Xu, Phys. Lett. B 738, 472 (2014).
[19] E. Ayón-Beato, M. Hassaïne, and J. A. Méndez-Zavaleta,

Phys. Rev. D 92, 024048 (2015).
[20] V. Faraoni, A. Giusti, and B. H. Fahim, Eur. Phys. J. C 81,

232 (2021).
[21] N. M. Bocharova, K. A. Bronnikov, and V. N. Melnikov,

Vestnik Moskov. Univ. Fiz. 25, 706 (1970).
[22] J. D. Bekenstein, Ann. Phys. (N.Y.) 82, 535 (1974).
[23] C. Martinez, R. Troncoso, and J. Zanelli, Phys. Rev. D 67,

024008 (2003).

FROM STATIC TO VAIDYA SOLUTIONS IN SCALAR TENSOR … PHYS. REV. D 108, 104067 (2023)

104067-7

https://doi.org/10.1007/BF03173260
https://doi.org/10.1007/BF00756891
https://doi.org/10.1007/BF00756891
https://doi.org/10.1016/0375-9601(80)90266-2
https://doi.org/10.1088/0264-9381/8/8/019
https://doi.org/10.1103/PhysRevD.78.124012
https://doi.org/10.1103/PhysRevD.78.124012
https://doi.org/10.1103/PhysRevD.106.064039
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.108.024019
https://doi.org/10.1103/PhysRevD.103.104065
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.107.084050
https://arXiv.org/abs/2305.09806
https://doi.org/10.1088/0264-9381/29/20/205008
https://doi.org/10.1088/0264-9381/29/20/205008
https://doi.org/10.1007/s10714-005-0213-x
https://doi.org/10.1007/s10714-005-0213-x
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1007/JHEP08(2014)106
https://doi.org/10.1103/PhysRevD.89.044009
https://doi.org/10.1016/j.physletb.2014.10.026
https://doi.org/10.1103/PhysRevD.92.024048
https://doi.org/10.1140/epjc/s10052-021-09040-9
https://doi.org/10.1140/epjc/s10052-021-09040-9
https://doi.org/10.1016/0003-4916(74)90124-9
https://doi.org/10.1103/PhysRevD.67.024008
https://doi.org/10.1103/PhysRevD.67.024008

