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We study the tidal problem and the resulting I-Love-Q approximate universal relations for rotating
superfluid neutron stars in the Hartle-Thorne formalism. Superfluid stars are described in this work by
means of a two-fluid model consisting of superfluid neutrons and all other charged constituents. We
employ a stationary and axisymmetric perturbation scheme to second order around a static and spherically
symmetric background. Recently, we used this scheme to study isolated rotating superfluid stars. In this
paper it is applied to analyze the axially symmetric sector of the tidal problem in a binary system. We show
that a consistent use of perturbative matching theory amends the original two-fluid formalism for the tidal
problem to account for the possible nonzero value of the energy density at the boundary of the star. This is
exemplified by building numerically different stellar models spanning three equations of state. Significant
departures from universality are found when the correct matching relations are not taken into account.
We also present an augmented set of universal relations for superfluid neutron stars which includes the
contribution to the total mass of the star at second order, δM. Therefore, our results complete the set of
universal relations for rotating superfluid stars, generalizing our previous findings in the perfect fluid case.
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I. INTRODUCTION

The analysis of the inspiral gravitational-wave signal
emitted during a binary neutron star (BNS) coalescence
provides information on the internal structure of neutron
stars and on the supranuclear equation of state (EOS). In a
BNS system, the tidal field of the companion induces a
mass-quadrupole moment and accelerates the coalescence.
The ratio of the induced quadrupole moment to the
external tidal field is proportional to the tidal Love
number of the star, k2, or to the tidal deformability
λ2 ¼ ð2=3Þk2½ðc2=GÞðR=MÞ�5, where R and M refer to
the radius and mass of the star. The strength of tidal
interactions increases rapidly during the final tens of
gravitational-wave inspiral cycles before merger, making
their effects potentially measurable [1–5]. This has been put
into practice in the analysis of GW170817 and GW190425,
the first two (and, so far, only) BNS systems detected by
the LIGO-Virgo-KAGRA Collaboration [6–9]. The tidal
deformability of these systems was measured using EOS-
insensitive relations between the moment of inertia I,
the tidal deformability λ2 (or the Love number k2) and

the spin-induced quadrupole moment Q, known as I-Love-
Q relations [10,11]. In the case of GW170817, the
observational constraints on the tidal deformation of the
binary components allowed to rule out some of the stiffest
supranuclear EOS models.
The most basic theoretical treatment of the tidal problem

in a binary system [12,13] fits in the Hartle-Thorne scheme
(HT hereafter) [14,15], a pioneer proposal that provides a
perturbative framework in general relativity to describe the
equilibrium configuration of a compact and isolated perfect
fluid body around a static and spherically symmetric
configuration, up to second order. Within the HT scheme
the tidal problem can be solved in the regime of stationary
and axial perturbations (see [16] and references therein).
For this problem, the I-Love-Q relations found in [10] were
first seen to split into two categories, one valid for ordinary
neutron stars and another one for quark stars, the latter
characterized by the presence of a nonvanishing energy
density at the boundary of the star. Shortly after, [17]
amended the results of [10] by considering a term used
by [1] [see Eq. (15) in the latter reference] to account for a
possible nonzero value of the energy density at the stellar
boundary when computing the Love number. This, in turn,
justified the result obtained by [16] for the limiting case
of homogeneous stars. The correction reported by [17]
provided universal I-Love-Q relations regardless of the
EOS type.
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The proof that Eq. (15) in [1] is indeed the correct
expression for the Love number was reported in [18]
building on the amendment to the original HT scheme
provided in [19]. We recall that the original HT scheme
implicitly assumes that all functions describing the pertur-
bations are continuous everywhere, in particular at the
boundary of the star. Apart from providing the needed
results to put the HT scheme on firm grounds, the main
point of the amendment was to prove the inconsistency of
this assumption because, although most of the interior
and exterior parts of the functions must indeed share the
same value at the boundary, some of the functions do
present a jump that is proportional to the value of the energy
density there.
The rigorous support and partial correction to the

original HT scheme reported in [19] (see also [20,21]) is
obtained by producing an initial framework resorting to
perturbation theory in purely geometric terms. On top of
that, the equations for the matter content at the stellar
interior are to be imposed. Reference [19] focused on
perfect fluid stars (with barotropic EOS) finding that the
discontinuity of one perturbation function due to the
nonvanishing of the energy density at the boundary affects
the computation of the contribution to the mass of the star at
second order, δM (for a given fixed central pressure). This
was first used in [22] to revisit the seminal work of [23] on
homogeneous rotating stars, and the significant correction
to the total mass was underlined. Second, the correction in
the computation of the mass was used in [18] to show that
I-Love-Q EOS-insensitive relations also apply to δM, thus
extending the universality to a family of four parameters,
I-Love-Q − δM.
The original HT model was also adapted in [24] to

describe slowly rotating, superfluid neutron stars, building
on a two-fluid formalism introduced by [25,26]. This
adaptation, however, inherited the incorrect (implicit)
assumptions from the original HT scheme regarding the
continuity of the perturbation functions at the stellar
surface. This has been recently fixed in [27] where we
have used the geometrical perturbation scheme of [19] (see
also [21]) to amend the two-fluid formalism of isolated
rotating superfluid stars.
Despite the fact that the results in [18,19] provide the

perturbation formalism for the tidal problem with a
geometrical justification to correctly compute the tidal
number leading to the universality of the I-Love-Q rela-
tions, those works have been overlooked by several
subsequent studies. In particular, the two-fluid model has
been also used by [28] to study the I-Love-Q relations for
superfluid neutron stars imposing the continuity of all
functions (and some derivatives) without justification to
compute the tidal deformability. We note that, in principle,
one cannot resort to any known explicit result or correct
expression for the Love number, since those apply to the
perfect fluid case.

The aim of the present paper is to explore the tidal
problem and the approximate universal relations for super-
fluid neutron stars, revisiting the results of [28] using the
corrected HT scheme we started developing in our previous
work [27]. As in [24,27–29] we describe superfluid stars
by a simple two-fluid model which accounts for superfluid
neutrons and all other constituents. Using a toy-model EOS
for which the number densities of the two constituents do not
vanish at the boundary of the star, we showed in [27] that the
corrections to the HT formalism do impact the structure of
rotating superfluid neutron stars in a significant way. In this
paper we demonstrate that the study of the tidal problem for
superfluid stars is also affected by the same continuity issues.
Therefore, although we check that the EOSs used in [28,29]
do not present those issues due to the vanishing of the
relevant physical quantities at the boundary,1 the correction
of the HT formalism we report here needs to be considered
for general-purpose (i.e. EOS insensitive) computations of
the tidal problem in a binary system.
The structure of this paper is as follows: In Sec. II we

briefly recall the two-fluid formalism and the construction
of the global interior/exterior configuration. In Secs. III
and IV we briefly describe the perturbation scheme for a
two-fluid model and we develop the background configu-
ration of superfluid neutron stars. Thus, these sections lay the
groundwork for the notation that will be employed later on.
Next, Secs. VA and VB describe the first and second order
problems, respectively. Once the general setup has been
constructed, Sec. VI addresses the tidal problem and the
Love numbers obtained therein. Correspondingly, Sec. VII
presents our results to test the universality of our I-Love-
Q-δM relations, for a variety of physically motivated EOS,
as well as a toy model. Our conclusions are summarized
in Sec. VIII. Unless otherwise stated (see, for example,
Appendix A), we will be using units such that G ¼ c ¼ 1.

II. TWO-FLUID MODEL

In the two-fluid formalism, as originally developed
in [25,30] (see also [24,26]), the flow of neutrons and
protons are described, respectively, by two vectors

nα ¼ nuα; pα ¼ pvα;

where uα and vα are two unit timelike vectors and n and p
are the neutron and proton number densities. The coupling
of the neutrons and protons is described by the quantity
x2 ≔ −pαnα. The EOS of the whole system is provided by
specifying a master function

Λ ¼ Λðn2; p2; x2Þ;
that depends on three arguments.

1Unfortunately, we find no explicit mention on the behavior of
the fluid quantities at the boundary in those works.
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In terms of the auxiliary functions

A ≔ −
∂Λðn2; p2; x2Þ

∂x2
; B ≔ −2

∂Λðn2; p2; x2Þ
∂n2

;

C ≔ −2
∂Λðn2; p2; x2Þ

∂p2
;

the 1-forms,

μα ≔ Bnα þApα; χα ≔ Cpα þAnα;

are the dynamically and thermodynamically conjugates to
nα and pα, respectively. The energy-momentum tensor of
the fluid is then given by

Tα
β ¼ Ψδαβ þ pαχβ þ nαμβ; ð1Þ

where

Ψ ≔ Λ − nαμα − pαχα ð2Þ

acts as a generalized pressure.
The equations of motion are given by the conservation

equations

∇αnα ¼ 0; ∇αpα ¼ 0; ð3Þ

plus the Euler equations

nαð∇αμβ −∇βμαÞ ¼ 0; pαð∇αχβ −∇βχαÞ ¼ 0: ð4Þ

Equations (3) and (4) imply ∇αTαβ ¼ 0.
The two problems at hand will be framed in a stationary

and axially symmetric setting (describing the perturbations)
over a static and spherically symmetric background con-
figuration. As customary, we use spherical coordinates
ft; r; θ;ϕg arranged so that the timelike and axial (space-
like) Killing vector fields of the whole setting read ∂t
and ∂ϕ, respectively. Thus, the functions describing the
stationary and axisymmetric spacetime geometry gSTAX and
the fluids only depend on r and θ.
Moreover, if the fluids are assumed to rotate around

the axis so that there are no convective motions, and the
rotation is rigid, then

u ∝ ð∂t þ Ω̃n∂ϕÞ; v ∝ ð∂t þ Ω̃p∂ϕÞ; ð5Þ

for some constants Ω̃n and Ω̃p, which represent the angular
velocities of neutrons and protons, respectively. In this
case (3) are automatically satisfied and (4) are equivalent to

μc ¼ −gSTAXð∂t þ Ω̃n∂ϕ; μÞ;
χc ¼ −gSTAXð∂t þ Ω̃p∂ϕ; χÞ; ð6Þ

for some constants μc and χc. We use gSTAXð·; ·Þ for the
scalar product in the index-free notation.

A. Global configuration: Vacuum exterior

The global model of the star consists of two spacetimes
ðMþ; gþSTAXÞ and ðM−; g−STAXÞ with timelike boundaries
Σþ and Σ− which are pointwise identified Σ≡ Σþ ¼ Σ−,
to produce a joined spacetime ðM; gSTAXÞ with M ¼
Mþ ∪ M−, and gSTAX is g�STAX on each region M�

accordingly. The identification is required to be isometric,
so that Σ has an induced metric h. This requires the
well-known first matching (or junction) conditions,
h ≔ hþ ¼ h−, where h� are the induced metrics of Σ as
embedded on ðM�; g�STAXÞ, respectively. Then, gSTAX can
be extended continuously on M. To avoid a distributional
Riemann tensor on ðM; gSTAXÞ, which is equivalent to
avoid energy surface layers at the boundary of the star in
general relativity, we must demand that the second funda-
mental forms (extrinsic curvatures) κ� of Σ as embedded on
ðM�; g�STAXÞ agree. To sum up, the full matching con-
ditions require then that hþ ¼ h− and κþ ¼ κ− hold on Σ.
We take theþ part to describe the interior of the star, thus

solving the two-fluid model problem, and the − part to
describe the vacuum exterior. The (history of the) surface of
the star is provided by Σ. For the two problems we are
interested in, we assume that both spacetimes are stationary
and axisymmetric, so that the boundaries inherit the two
symmetries [31].
The interior and exterior problems are then solved

imposing “regularity” at the origin, and whatever condi-
tions we want to impose on the exterior, in addition to
the relations on Σ provided by the matching conditions.
In particular, the matching conditions also determine, in
principle, the surface of the star. As shown in [27] for our
stationary and axisymmetric setting, the matching condi-
tions imply the continuity of Ψ across Σ. Therefore

Ψðr; θÞ ¼ 0

determines the surface of the star r ¼ rðθÞ implicitly. This
condition is not sufficient, but it is the only one involving
only the interior side, as shown in [32] (see also [33]) for
the general stationary and axisymmetric setting. The rest of
the matching conditions provide the matching hypersurface
from the other side Σ− and relations between the boundary
data for the interior and exterior problems.
In the following we will denote by [f], for any function

f, the difference of f evaluated at both sides of the
hypersurface Σ, i.e., ½f�ðpÞ≔fþjpþ∈Σþ −f−jp−∈Σ− , where
pð∈ΣÞ ¼ pþ ¼ p− after the identification. Moreover, if
½f� ¼ 0 we will simply use f when evaluated on either Σþ
or Σ−. All expressions in square brackets will denote their
difference.
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III. PERTURBATION SCHEME

In this paper we focus on two problems, namely, the
deformation due to the rotation of an isolated star, and the
axially symmetric sector of the (even-parity) tidal problem
caused by a companion star. The two issues are dealt with
as two perturbative stationary and axisymmetric problems
over a static and spherically symmetric configuration.
For the perturbative problems we use perturbation theory

in metric theories of gravity, which is, in effect, a gauge-
field theory of symmetric tensors on a given background
configuration at each order. In particular, our work is based
on the concept of perturbation scheme, which includes the
notion of classes of gauges, that inherits some of the
symmetries of the background. We refer the reader to [20]
for the detailed definitions and the gauge fixing procedures
involved in axially symmetric and axistationary second
order perturbations around spherical backgrounds. To deal
with the matching of the exterior and interior regions we
use the theory of perturbed matchings, based on perturba-
tions of hypersurfaces to second order [34], particularized
to the case of stationary and axially symmetric perturba-
tions in [21] (see also [19]).

A. Perturbation theory in rigidly rotating
two-fluid stars

The perturbative problem of the isolated rotating star
modeled by a two-fluid has been already dealt with in our
previous Ref. [27], revisiting and amending the approach
and results in [24]. However, for completeness we include
here an outline of the whole procedure because the tidal
problem shares most part of the setting. Thus, we follow the
stationary and axisymmetric perturbative scheme to second
order around a static and spherically symmetric back-
ground ðM; gÞ as described in [20] (see also [19,21])
based on an abstract perturbation parameter ε. In short, we
have a family of stationary and axisymmetric spacetimes
ðMε; g̃εÞ, where ðM0; g̃0Þ ¼ ðM; gÞ is our static and
spherically symmetric background, together with a class
of point identifications Γε∶ M → Mε (spacetime
gauges), where Γ0 is the identity. This class of gauges
is, so far, only restricted to inherit the stationarity and
axial symmetry generated by ∂t and ∂ϕ in the background
as defined in [20].
On each ðMε; g̃εÞ we have defined the two-fluid model

quantities, and the equations they satisfy, that depend on ε.
The metrics g̃ε as well as all the fluid quantities, and the
corresponding equations, are pulled back using Γ�

ε

onto ðM; gÞ.
In particular, the procedure defines a family of metrics

gε ¼ Γ�
εðg̃εÞ onM. The first order K1 and second order K2

perturbation tensors are defined as the first and second
order derivatives of gε with respect to ε, evaluated at ε ¼ 0.
As a result, the ε family of metrics can be written as
the usual

gε ¼ gþ εK1 þ
1

2
ε2K2 þOðε3Þ:

If we take, as explained above, spherical coordinates
ft; r; θ;ϕg on ðM; gÞ, then the inheriting of the symmetries
by the class of gauges Γε means that ∂t and ∂ϕ are Killings
of the whole family gε. Therefore, just like g, the perturba-
tion tensors K1 and K2 do not depend on t nor ϕ. Now,
suitable gauge-fixing procedures can be used to simplify
further the forms of K1 and K2.
Similarly, for every two-fluid model quantity we have a

corresponding ε family of quantities defined on M, and
thence background, first and second order corresponding
quantities. Explicitly, the number density of neutrons and
protons are decomposed to second order as (we follow the
notation from [24])

nεðr; θÞ ¼ n0ðrÞð1þ ε2ηðr; θÞÞ þOðε3Þ; ð7Þ

pεðr; θÞ ¼ p0ðrÞð1þ ε2Φðr; θÞÞ þOðε3Þ: ð8Þ

The fact that there is no contribution at first order is a
consequence of the forms K1 and K2 take in the stationary
and axisymmetric perturbative setting over a static and
spherical background configuration. A rigorous account
on this matters is made in [20,21] for the perfect fluid
case. For the purposes of this work we will assume the
usual forms of the perturbation tensors and this decom-
position for the two-fluid quantities, which is consistent,
from the beginning.
As in the perfect fluid case, where the same equation of

state is assumed for the whole (background and perturba-
tions) configuration, here one demands Λεðn2ε ; p2

ε ; x2εÞ ¼
Λðn2ε ; p2

ε ; x2εÞ. In the following we use the notation Λε ≔
Λðn2ε ; p2

ε ; x2εÞ, so that Λ0 ¼ Λðn20; p2
0; x

2
0Þ. We will also use

Λ0ðrÞ ≔ Λðn20ðrÞ; p2
0ðrÞ; x20ðrÞÞ and equivalently forΨ0ðrÞ.

The flows uε and vε have the form of (5) with some Ω̃nε

and Ω̃pε (only dependency on ε). Since the background is
static we have Ω̃n0 ¼ Ω̃p0 ¼ 0. On the other hand, it is
(implicitly) assumed that after a redefinition of the pertur-
bation parameter to absorb the second order contributions
in Ω̃s, we have2

Ω̃nε ¼ εΩn þOðε3Þ;
Ω̃pε ¼ εΩp þOðε3Þ

for some pair of constants Ωn and Ωp. The full form of
the flows uε and vε as well as the set of ε families,

2The fact that the redefinition of the perturbation parameter ε to
absorb the second order contribution to Ω is consistent with the
problem to second order should be proven after all the problem
has been set. To our knowledge this has been only (rigorously)
proven in the rigidly rotating perfect fluid case, in [20,21].
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fxε; μαε ; χαε ;Ψε; μcε; χcεg, are then found using the expres-
sions from Sec. II, taking into account that

Aε ¼ −
∂Λðn2ε ; p2

ε ; x2εÞ
∂x2ε

; Bε ¼ −2
∂Λðn2ε ; p2

ε ; x2εÞ
∂n2ε

;

Cε ¼ −2
∂Λðn2ε ; p2

ε ; x2εÞ
∂p2

ε
; ð9Þ

plus the tensors K1 and K2. From those quantities we
construct Tε

α
β using (1) accordingly. The expressions for

the rotating perturbation case (to second order) are given in
full in [27].
Since the Einstein field equations hold on each ðMε; g̃εÞ,

the corresponding pullbacks onto ðM; gÞ must also hold,
and therefore

EinðgεÞαβ ¼ ϰTε
α
β; ð10Þ

must be satisfied for all ε, where ϰ ¼ 8πG=c4 and EinðgεÞ
is the Einstein tensor computed from gε. The background
equations are (10) evaluated at ε ¼ 0, while the first and
second order Einstein equations correspond to the first
and second order derivatives with respect to ε evaluated at
ε ¼ 0 respectively.
Similarly, the Euler equations (6) apply for gSTAX ¼ gε

and all the quantities substituted by their ε counterparts on
the right-hand side. To use the notation of [24,27], the ε
families of constants μcε and χcε are explicitly written as

μcε ¼ μ∞ð1þ ε2γnÞ þOðε3Þ;
χcε ¼ χ∞ð1þ ε2γpÞ þOðε3Þ; ð11Þ

which define the four constants μ∞ð¼ μc0Þ, χ∞ð¼ χc0Þ,
γn and γp.
We finish this section with a brief comment on the

perturbation parameters. Let us first stress that, apart from
the boundary data needed to solve the background con-
figuration, the exact model only contains two free param-
eters. These correspond to the rotating parameters Ω̃n

and Ω̃p. In the perturbative approach we have instead
three, namely Ωn, Ωp and ε. The introduction of a spurious
parameter is a consequence of the scalability property of
perturbation theory. Computationally one chooses freely
one of the three parameters, sayΩp ¼ 1. Then, for a desired
value of the relative rotation rate Δ ≔ Ωn=Ωp fixes Ωn

accordingly. After solving the problems, one finds the
convenient measurable physical quantities and uses the
scalability property to fix the model to the data needed.

B. Perturbed matching

Let us be given a static and spherically symmetric
background global configuration ðM; gÞ, composed by
ðMþ; gþ;ΣþÞ and ðM−; g−;Σ−Þ with identified

boundaries Σ ≔ Σþ ¼ Σ−, and such that the matching
conditions hþ ¼ h− and κþ ¼ κ− hold on Σ. Assume
now that the global configuration setting described in
Sec. II A applies to a ε family of spacetimes ðMε; g̃εÞ
such that ðM; gÞ ¼ ðM0; g̃0Þ. That is, we take ðMε; g̃εÞ,
for each ε around 0, to be composed by two spacetimes
with boundary ðMþ

ε ; g̃þε ; Σ̃þ
ε Þ and ðM−

ε ; g̃−ε ; Σ̃−
ε Þ so that

Σ̃ε ≔ Σ̃þ
ε ¼ Σ̃−

ε after some identification of points, and
Mþ

ε ∩ M−
ε ¼ Σ̃ε. The matching conditions h̃þε ¼ h̃−ε ,

κ̃þε ¼ κ̃−ε are satisfied on each Σ̃ε by construction, and
h�0 ¼ h� and κ�0 ¼ κ�.
Prior to prescribing that identification of points between

the boundaries at each ε, we must also prescribe the
identification of points amongst each of the two ε families
of boundaries Σ̃þ

ε and Σ̃−
ε . After the identification of points,

and thus the construction of Σ̃ε, we are only left with a
prescription of the identification of points along the ε family
of hypersurfaces Σ̃ε, namely ϒε∶ Σ → Σ̃ε. This gives rise to
the so-called hypersurface gauge [34] (see also [35] for a
different approach to first order). As the families of metrics
g̃�ε are pulled back onto M using the spacetime gauges at
each side to obtain the families of metrics g�ε ¼ Γ��

ε ðg̃�ε Þ at
each side of M, the matching conditions are pulled back
using ϒ onto Σ to obtain the relations

hþε ¼ h−ε ; κþε ¼ κ−ε ; ð12Þ

where h�ε ≔ ϒ�
εðh̃�ε Þ and κ�ε ≔ ϒ�

εðκ̃�ε Þ.
To understand how the perturbation of the hypersurface

is described in this setting at each side, we simply have
to define the family of hypersurfaces Σþ

ε on Mþ by
Σþ
ε ¼ Γ−1

ε ðΣ̃þ
ε Þ, with Σþ

0 ¼ Σþ by construction, and the
same for the − side. Let us focus on the þ side, the − side
will be analogous. The family of hypersurfaces Σþ

ε

describes how Σð¼ ΣþÞ changes as a set of points in
Mþ. On the other hand, if we take p∈Σ, the family of
maps γþε ðpÞ ≔ Γþ−1

ε ðϒþ
ε ðpÞÞ generates a curve on Mþ

starting at p and moving across each Σþ
ε . The vector field

Z1 defined at every point p in Σþ as the velocity of the
curve γε, and the acceleration Z2 at p can be decomposed as
Zþ
1 ¼ Qþ

1 n
þ þ Tþ

1 and Zþ
2 ¼ Qþ

2 n
þ þ Tþ

2 , for some func-
tions Qþ

1=2 and tangential vectors Tþ
1=2 to Σþ, where nþ is

the unit normal to Σþ. The information of the deformation
of Σ, as a set of points, is thus encoded in the functions Q1

and Q2 at first and second order, respectively. The vectors
Tþ
1=2 determine how the points are identified within the

family Σε and therefore depend on both spacetime and
hypersurface gauges. On the other hand, since the hyper-
surface gauge does not modify the matching hypersurfaces
as sets of points and only affects how they are identified
pointwise, Qþ

1 does not depend on the hypersurface gauge.
However, at second order both gauges get involved in
the quantity Qþ

2 . This whole construction (dropping the
� indicators) is depicted in Fig. 1.
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The first and second order matching conditions are the
first and second order derivatives of the Eq. (12) with respect
to ε on ε ¼ 0. The explicit expressions at each side � in
terms of the perturbation tensors K1 and K2, plus Q1=2 and
T1=2 were found in [34]. The particularization to stationary
and axisymmetric perturbations around a spherical static
background assuming axisymmetric surface deformations
was presented in [19], while for arbitrarily deformed surfaces
the job was done in [21]. Let us stress that this set of
perturbed matching conditions arises by demanding that the
Riemann tensor does not present a delta distribution, so it is
thus purely geometric and therefore independent of the field
equations. In [27] we used those results to write down the
perturbed matching conditions for the two-fluid model at
the boundary of the star, and used them to solve the isolated
rotating star global problem. We will recall the relevant
results below, and use them to obtain the perturbed matching
for the tidal problem for two-fluid stars.

IV. BACKGROUND

As explained above, the background configuration is a
globally static and spherically symmetric spacetime com-
posed of the interior and exterior regions of the star. The
geometric configuration is shared by both the isolated
rotating star and the tidal problems. It therefore corresponds
to the background configuration constructed in [24,26,27].
We briefly review the construction of the configuration in
this section to fix some notation.
We consider two static spherically symmetric spacetimes

with boundary ðMþ; gþ;ΣþÞ and ðM−; g−;Σ−Þ describing

the interior and exterior of the star. In spherical coordinates
ftþ; rþ; θþ;ϕþg and ft−; r−; θ−;ϕ−g for the corresponding
region, we take

g� ¼ −eν�ðr�Þdt2� þ eλ
�ðr�Þdr2� þ r2�ðdθ2� þ sin2θ�dϕ2

�Þ;

for some pair of functions on each region, λ� and ν�. The
boundaries, assumed to be timelike and taken to preserve
the spherical and static symmetry [31], are given by Σ� ≔
fr� ¼ R�g, for some positive numbersR� > 0. The gluing
of Σþ and Σ− is specified, without loss of generality, by
θþ ¼ θ−, ϕþ ¼ ϕ− and tþ ¼ t− on the boundaries, that we
will denote as ϑ, φ and τ, respectively, as coordinates on Σ.
The interior of the neutron star is described in the

background configuration by the two-fluid model intro-
duced in Sec. II as described in Sec. III. We are thus given a
master function Λ ≔ Λðn20; p2

0; x
2
0Þ as a function of three

arguments. From that we can compute (9) with ε ¼ 0 and
construct the quantities

A0
0 ≔A0 þ 2

∂B0

∂p2
0

n0p0 þ 2
∂A0

∂n20
n20 þ 2

∂A0

∂p2
0

p2
0 þ

∂A0

∂x20
n0p0;

B0
0 ≔ B0 þ 2

∂B0

∂n20
n20 þ 4

∂A0

∂n20
n0p0 þ

∂A0

∂x20
p2
0;

C00 ≔ C0 þ 2
∂C0
∂p2

0

p2
0 þ 4

∂A0

∂p2
0

n0p0 þ
∂A0

∂x20
n20

that encode second derivatives.

FIG. 1. Diagram to describe the setup of the perturbation theory for spacetimes and hypersurfaces as described in the main text. This
picture applies to both theþ and − families. The region that is to be matched, sayMþ with boundary Σþ, lies either on the left- or on the
right-hand side of Σþ. Observe that we have depicted only the members of the family Mε for ε ≥ 0, with M ¼ M0, but we could
continue for negative values of ε. This is irrelevant because the perturbation procedure only involves the derivatives of the various
ε-family objects evaluated at ε ¼ 0, and the limit taken from positive ε equals the limit taken from negative values by construction. As
shown, Z1 is the tangent vector of the curve defined by γεðpÞ at p, while Z2 corresponds to the acceleration of that curve at p, and it is
not depicted here.

ARANGUREN, FONT, SANCHIS-GUAL, and VERA PHYS. REV. D 108, 104065 (2023)

104065-6



By definition we first have that x20 ¼ n0p0. The interior
problem is then composed of a system of four differential
equations for the set fλþ; νþ; n0; p0g. We refer to Sec. IVA
in [27] for a full account and explicit expressions of the
background interior problem. It is convenient to define the
mass function in the interior of the star as MþðrþÞ ¼
rþð1 − e−λ

þðrþÞÞ=2. The exterior solution is given by
eν

−ðr−Þ ¼ e−λ
−ðr−Þ ¼ 1–2M=r−; i.e. it is the Schwarzschild

geometry of mass M.
The matching conditions are R ≔ Rþ ¼ R−, together

with ½λ� ¼ ½ν� ¼ ½ν0� ¼ 0, where the prime denotes the
derivative with respect to the argument. Given the field
equations, after imposing Rþ ¼ R−, the set of two match-
ing conditions f½λ� ¼ 0; ½ν0� ¼ 0g are equivalent to
Ψ0ðRÞ ¼ 0 and M ¼ MþðRÞ. In particular we then have
eνðRÞ ¼ e−λðRÞ ¼ 1–2M=R and

ν0ðRÞ ¼ 2eλðRÞ
M
R2

¼ 1

R
2M

R − 2M
: ð13Þ

In addition, the background field equations can be used
to obtain [27]

½λ0� ¼ −ϰReλðRÞΛ0ðRÞ; ð14Þ

½ν00� ¼ −ϰ
�
1þ Rν0ðRÞ

2

�
eλðRÞΛ0ðRÞ: ð15Þ

For some specific forms of Λ, the global background
problem can be solved, i.e. the solution exists and is unique,
given central values n0ð0Þ and p0ð0Þwithin some ranges, at
least numerically.
Once the interior problem is solved for some given

values of n0 and p0 at the origin, Ψ0ðRÞ ¼ 0 fixes the
value of R and M ¼ MþðRÞ determines M. We will
assume from now on that R > 2M. The condition
½ν� ¼ 0 is just used to set the value at the origin νþð0Þ.
Observe that n0ðRÞ, p0ðRÞ and thus Λ0ðRÞ take
their values from the interior problem, are not constrained
by the matching whatsoever and do not necessarily
vanish.
Later we will make use of the background functions

μ0 ≔ n0B0 þ p0A0 and χ0 ≔ p0C0 þ n0A0.

V. ISOLATED ROTATING STAR

The complete analysis for rotating stars is reported in
our previous article [27]. The reader is addressed to this
reference for details on the full sets of equations and a
complete description of the computational procedure to
solve the global problem at each order. Here, for the sake
of completeness, we provide a succinct summary of the
approach, using the same notation as in [27].

A. First order problem

We assume there exists a class of gauges for which the
first order perturbation tensor at both sides has the form
(we drop the � indexes)

K1 ¼ −2r2ωðrÞsin2θdtdϕ; ð16Þ

for some function ωðrÞ of the radial coordinate only
and bounded at the origin.3 The field equation in the interior
for ωþ is given by Eq. (49) in [27], while the equation in
the exterior, for ω−, is the same with a vanishing right-
hand side.
Within the class of gauges that keeps K1 with the form

of (16), we have two gauge freedoms to set, one at each
region �, that amount to the addition of a constant to ω�
correspondingly [19,21]. The gauge at the exterior can be
fixed so that ω− vanishes at infinity. With that choice the
solution is given by ω−ðrÞ ¼ 2J=r3, for some constant J,
which accounts eventually for the total angular momentum.
Finally, the gauge in the interior can be fixed so that the

first order matching conditions read [19,21,27]

½ω� ¼ ½ω0� ¼ 0;

while the deformation quantities Q�
1 ðτ; ϑ;φÞ satisfy

½Q1� ¼ 0, Q1½λ0� ¼ 0, Q1½ν00� ¼ 0.
The angular momentum of the individual fluids,

defined in [25], are given explicitly by [24] (we drop
the þ subindex)

Jn ¼ −
8π

3

Z
R

0

dr r4eðλ−νÞ=2

× ðμ0n0ðωþ −ΩnÞ þA0n0p0ðΩn −ΩpÞÞ;

Jp ¼ −
8π

3

Z
R

0

dr r4eðλ−νÞ=2

× ðχ0p0ðωþ − ΩpÞ þA0n0p0ðΩn −ΩpÞÞ:

The total angular momentum is recovered with J¼JnþJp.
Similarly, the moments of inertia of the individual fluids
are given by In ¼ Jn=Ωn and Ip ¼ Jp=Ωp, and the total
moment of inertia is given by I ¼ In þ Ip.

B. Second order problem

At second order we assume that there exists a class
of gauges in which the second order perturbation tensor
at both sides (dropping the � indexes) is given by the
usual form

3We take this as an assumption. Although it has been
extensively argued in the literature that this is an eventual
consequence of the global problem, to our knowledge, a full
proof of the analogous problem in the perfect fluid case has only
been produced recently in [20,21].
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K2 ¼ ð−4eνðrÞhðr; θÞ þ 2r2ω2ðrÞsin2θÞdt2
þ 4eλðrÞvðr; θÞdr2 þ 4r2kðr; θÞðdθ2 þ sin2θdϕ2Þ;

ð17Þ

with

hðr; θÞ ¼ h0ðrÞ þ h2ðrÞP2ðcos θÞ;
vðr; θÞ ¼ v0ðrÞ þ v2ðrÞP2ðcos θÞ;
kðr; θÞ ¼ k2ðrÞP2ðcos θÞ; ð18Þ

where P2ðcos θÞ is the Legendre polynomial Plðcos θÞwith
l ¼ 2, and such that all functions are bounded at the origin.
The fact that there is no k0ðrÞ term fixes partially the class
of gauges in the perturbation scheme. The gauge freedom
that keeps the form (17) (see Proposition 6.11 in [20])
together with (18) is given by the second order gauge
vector V2 ∝ t∂t (plus any Killing vector of the background
metric g).
As for the matter content, the contribution at second

order of the number density of neutrons and protons is
assumed to be of the form ηðr;θÞ¼η0ðrÞþη2ðrÞP2ðcosθÞ
and Φðr; θÞ ¼ Φ0ðrÞ þΦ2ðrÞP2ðcos θÞ, respectively.
As explained in [27] in more length, the fact that there
appear no l > 2 terms in the expansions of these quantities
is justified in [24] using the arguments in the literature
for the perfect fluid problem and assuming equatorial
symmetry.
For convenience, we substitute the set fηlðrÞ;ΦlðrÞg

by some auxiliary functions fPlnðrÞ;PlpðrÞg [defined
by Eq. (62) in [27]] that are more easily recognizable as
“pressure”-like functions when compared to the perfect
fluid case.

1. Second order matching

Let us consider Kþ
2 and K−

2 of the form (17) with no
conditions on hðr; θÞ, vðr; θÞ and kðr; θÞ, and assume
that the background and first order matching conditions
are satisfied (no field equations used). The second order
matching conditions are satisfied if and only if there exists a
pair of functions Ξ�ðτ; ϑ;φÞ on Σ and free constants c0, c1,
H0 and H1 such that [Eqs. (5.69)–(5.75) in [21], see also
Proposition 2 [19]]

Q1½ω00� ¼ 0; ð19aÞ

½Ξ� ¼ ReλðRÞ=2ð2c0 þ ð2c1 þH1Þ cosϑÞ; ð19bÞ

½k� ¼ c0 þ c1 cos ϑ; ð19cÞ

½h� ¼ 1

2
ðH0 þ Rν0ðRÞc0Þ þ

1

4
Rν0ðRÞðH1 þ 2c1Þ cosϑ;

ð19dÞ

½v − 2k − rk;r� ¼
�
H1 −

1

2
eλðRÞð2c1 þH1Þ

�
cosϑ

þ 1

2

�
Ξe−λ=2

�
λ0

2
−
1

r

��
−
1

4
e−λðRÞQ2

1½λ00�;

ð19eÞ

½h;r�−
Rν0ðRÞ

2
½k;r�− ν0ðRÞ

�
1−

Rν0ðRÞ
2

�
½k�

¼ ν0ðRÞ
2

��
1−

Rν0ðRÞ
2

�
H1 −

1

2
eλðRÞð2c1 þH1

��
cosϑ

þ 1

4

�
Ξe−λ=2

�
ν00 þ ν02 −

ν0

r

��
−
1

4
e−λðRÞQ2

1½ν000�

ð19fÞ
are satisfied. The function Ξ− provides the second
order deformation, as seen from the exterior, since the
hypersurface gauge can be partially chosen so that
Q−

2 ¼ Ξ− [19,21] (see also [27]). We have included the
full set of second order matching conditions because we
will use them for the tidal problem below.
Now, returning to the rotating isolated star model, let us

assume the functions h, v, and k satisfy (18). Then, we
necessarily have c0 ¼ c1 ¼ H1 ¼ 0, cf. (19c) and (19d),
and therefore (19b) yields ½Ξ� ¼ 0, so only one function Ξ
(out of Ξ�) appears in the matching. Now, using the
decompositions

ðQ1Þ2ðτ;ϑ;φÞ¼
X2
l¼0

Qlðτ;φÞPlðcosϑÞþQ⊥ðτ;ϑ;φÞ;

Ξðτ;ϑ;φÞ¼
X2
l¼0

Ξlðτ;φÞPlðcosθÞþΞ⊥ðτ;ϑ;φÞ; ð20Þ

where we denote by f⊥ the part of f orthogonal to
l ¼ 0, 1, 2, and given that the background and first order
matching conditions hold, the set of equations in (19) is
equivalent to the set Q1½ω00� ¼ 0 plus

½h0� ¼
1

2
H0; ð21aÞ

½v0� ¼
1

4
e−λðRÞ=2Ξ0½λ0� −

1

4
e−λðRÞQ0½λ00�; ð21bÞ

½h00� ¼
1

4
e−λðRÞ=2Ξ0½ν00� −

1

4
e−λðRÞQ0½ν000�; ð21cÞ

½k2� ¼ 0; ½h2� ¼ 0; ð22aÞ

½v2� − R½k02� ¼
1

4
e−λðRÞ=2Ξ2½λ0� −

1

4
e−λðRÞQ2½λ00�; ð22bÞ

½h02� −
R
2
ν0ðRÞ½k02� ¼

1

4
e−λðRÞ=2Ξ2½ν00� −

1

4
e−λðRÞQ2½ν000�;

ð22cÞ
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and

½λ0�Ξ1 ¼ ½λ0�Ξ⊥ ¼ 0; ½ν00�Ξ1 ¼ ½ν00�Ξ⊥ ¼ 0; ð23aÞ

½λ00�Q1 ¼ ½λ00�Q⊥ ¼ 0; ½ν000�Q1 ¼ ½ν000�Q⊥ ¼ 0: ð23bÞ

These last equations for Ξ1, Q1, Ξ⊥ and Q⊥ are not
matching conditions as such, since their purpose is to
determine those quantities involved in the deformation
(in the class of gauges we are working on). Observe that
Ξ1 ¼ Q1 ¼ Ξ⊥ ¼ Q⊥ ¼ 0 satisfy the relations.
The above analysis of the matching has not taken into

account the field equations at any order (not even the
background). If the background field equations are used,
Eqs. (21) and (22) take the form of Eqs. (79)–(82) in [27].4

Moreover, (23) reduce to Λ0ðRÞΞ1 ¼ Λ0ðRÞΞ⊥ ¼ 0 and
Λ0
0ðRÞQ1 ¼ Λ0

0ðRÞQ⊥ ¼ 0. In any case, if the first order
equation for ω [Eq. (49) in [27]] is also used, then
Q1½ω00� ¼ 0 holds automatically.
The global problem, that is, the interior and exterior

problems with common boundary data provided by the
matching conditions, can be split onto the l ¼ 0 and l ¼ 2
sectors. We review the problems as presented in [27] next.

2. l= 0

The l ¼ 0 interior problem for the set of functions
fhþ0 ; vþ0 ;P0n;P0pg comprises Eqs. (65), (67)–(68) in [27].
The exterior solution is given by Eq. (72) in [27] after
fixing the gauge at the exterior so that h−0 vanishes at
infinity (using the freedom driven by V−

2 ∝ t∂t appropri-
ately). This fixes the spacetime gauge at the exterior
completely.
Regarding the matching, let us first note that using

Vþ
2 ¼ H0t∂t at the interior we can setH0 ¼ 0 in (21a). This

fixes the spacetime gauge at the interior completely.
As detailed in [27], next we must consider the difference

of the field equations at both sides on Σ. The difference of
Eq. (67) in [27] does not provide useful information (just
gives ½v00�Þ, but the difference of Eq. (68) in [27] provides,
after using the matching up to first order, a relation between
½h00�, ½v0� and P0ðRÞ ≔ n0P0nðRÞ þ p0P0pðRÞ. Now, the
system composed by that relation and the two Eqs. (21b)
and (21c) is shown to be equivalent to one equation for
a combination of Ξ0 and Q0, plus an equation for ½v0�
[see (25) below], in terms of P0ðRÞ, and the original
relation from the field equations.
To sum up, the l ¼ 0 sector of the second order

perturbative problems match if and only if the two
equations

½h0� ¼ 0; ð24Þ

½v0�¼ϰ
R

ν0ðRÞe
λðRÞ
�
1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn−ΩpÞ2

−P0ðRÞ
�
; ð25Þ

hold. Moreover, the matching produces an equation for a
combination of Ξ0 and Q0 [Eq. (91) in [27]] which we do
not include here for brevity. The field equations produce
then a value for ½h00� that is consistent with the geometrical
matching condition (21c).
The exterior solution is h−0 ðrÞ ¼ −v−0 ðrÞ with

v−0 ðrÞ ¼
δM

r − 2M
−

J2

r3ðr − 2MÞ ; ð26Þ

for some constant δM. Thus, the l ¼ 0 exterior solution
only involves δM, which turns out to be the contribution to
the mass at second order. Indeed, the ADM mass of the
family of geometries given by gε at r → ∞, given some
central values n0ð0Þ and p0ð0Þ, is

MT ¼ M þ ε2δM:

Now, using the identity v−0 ðRÞ≡ vþ0 ðRÞ − ½v0� with (25)
and (26) we obtain

δM¼ J2

R3
þðR−2MÞvþ0 ðRÞ−ϰ

RðR−2MÞ
ν0ðRÞ eλðRÞ

×

�
1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn−ΩpÞ2−P0ðRÞ

�
:

ð27Þ

This expression of δM corrects the expression (60)
in [24], that does not contain the last term.

C. l= 2

The l ¼ 2 problem in the interior region involves the
set fh2; v2; k2;P2n;P2pg that satisfy the five relations in
Eqs. (66), (69)–(71) in [27].
The general exterior solution is given explicitly by

Eqs. (73) and (74) in [27] for h−2 ðrÞ, k−2 ðrÞ, and

v−2 ðrÞ ¼ −h−2 ðrÞ þ
6J2

r3
; ð28Þ

in terms of a free parameter C that is to be fixed.5 On the
other hand, the pole structure at the origin implies that the
general interior solution for fhþ2 ðrÞ; kþ2 ðrÞ; vþ2 ðrÞg depends

4Equation (82) in [27] contains a typo: the second Ξ2 should
read Q2.

5Expression (28) corrects a typo in the last term in Eq. (75)
of [27], and also (76) of [19], where last term should have a global
minus. This has no other consequences whatsoever.
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on a free parameter, denoted by A in [27], that multiplies
the homogeneous part of the solution.
As for the difference on Σ of the field equations, the

set of three equations given by (22a) plus the difference
of [Eqs. (69)–(71) in [27]] is equivalent to the set
f(22a)–(22c)g plus another equation that determines a
combination of Ξ2 and Q2, explicitly given by Eq. (93)
in [27].
In short, the l ¼ 2 sector of the second order perturba-

tion problems match if and only if

½h2� ¼ 0; ½k2� ¼ 0; ð29Þ

and then the matching produces an equation for a combi-
nation of Ξ2 and Q2 [Eq. (93) in [27]]. The field equations
produce then values for ½v2�, ½h02� and ½k02� consistent with
the geometrical equations (22b) and (22c).
Once the interior problem is integrated in terms of the

inhomogenous and homogenous part of the general sol-
ution, the parameters A (from the interior) and C (form the
exterior) are fixed using the two relations (29).
The value of C of the exterior solution is related with the

quadrupole moment Q by

Q ¼ 8

5
CM3 þ J2

M
: ð30Þ

VI. THE TIDAL PROBLEM

We summarize the problem for the linearized analysis of
perturbations for a compact body immersed in a quad-
rupolar tidal field [12,16]. Given a static and spherically
symmetric background, the even-parity first order pertur-
bation tensor in the Regge-Wheeler gauge is given by [36]
(we drop the � indexes)

KT
1 ¼

X
l;m

feνðrÞH0lmðrÞdt2 þ eλðrÞH2lmðrÞdr2

þ r2KlmðrÞðdθ2 þ sin2θdϕ2ÞgYlmðθ;ϕÞ; ð31Þ

where Ylmðθ;ϕÞ are the spherical harmonics. The equa-
tions for each mode fl; mg decouple, and for fl ≥ 2;
m ¼ 0g we have that (we drop the m ¼ 0 label)

H2l ¼ H0l; ð32Þ

K0
l ¼ H0

0l þ ν0H0l; ð33Þ

r2ν0H0
0
l ¼ eλðlðlþ 1Þ − 2ÞKl

þ ðrðλ0 þ ν0Þ − ðrν0Þ2 − eλlðlþ 1Þ þ 2ÞH0l:

ð34Þ

This system is usually written as a single second order ODE
for H0l, and then Kl is obtained algebraically from (34).

For the interior problem the system (33) and (34) is
integrated for each pair fHþ

0l; K
þ
0lg from a regular origin

(see e.g. [37]). In the exterior vacuum problem, for which
eν

− ¼ e−λ
− ¼ 1–2M=r−, the second order equation for H0l

is the general Legendre equation (withm ¼ 2). The general
solution is thus given by

H−
0lðr−Þ ¼ alPP̂

2
l

�
r−
M

− 1

�
þ alQQ̂

2
l

�
r−
M

− 1

�
; ð35Þ

for some constants alP, alQ (to keep the notation
of [16]), with

P̂2
lðxÞ ≔

�
2lffiffiffi
π

p Γðlþ 1=2Þ
Γðl − 1Þ

�−1
P2
lðxÞ;

Q̂2
lðxÞ ≔

� ffiffiffi
π

p
2lþ1

Γðlþ 3Þ
Γðlþ 3=2Þ

�−1
Q2

lðxÞ;

where P2
lðxÞ and Q2

lðxÞ denote the associated Legendre
functions of the first and second kind Pn

lðxÞ andQn
lðxÞwith

n ¼ 2, respectively. The task now is to obtain the necessary
and sufficient set of matching conditions for the interior
and exterior problem for the sector fl ≥ 2; m ¼ 0g. That
constitutes a stationary and axially symmetric perturbation
problem over a static and spherically symmetric back-
ground. Specifically, the problem for a first order pertur-
bation tensor of the form KT

1 for fl ≥ 2; m ¼ 0g at each
side is equivalent to a second order perturbation problem
provided by (16) and (17) with the trivial choice
ω ¼ Ωn ¼ Ωp ¼ 0, and the substitutions

hðr; θÞ → h̄ðr; θÞ ≔ −
1

4

X
l≥2

H0lðr; θÞ; ð36aÞ

vðr; θÞ → v̄ðr; θÞ ≔ 1

4

X
l≥2

H2lðr; θÞ; ð36bÞ

kðr; θÞ → k̄ðr; θÞ ≔ 1

4

X
l≥2

Klðr; θÞ: ð36cÞ

Since the first order perturbation is vanishing, the second
order problem effectively becomes first order. Observe that
using (36), Eqs. (69)–(71) in [27] with ω ¼ fω ¼ 0 trans-
late to Eqs. (32)–(34) for H2l, Kl and H0l with l ¼ 2,
respectively.
The matching conditions for KTþ

1 and KT−
1 thus corre-

spond to (19) with ω ¼ fω ¼ Q ¼ 0 and the substitutions
in (36). Direct inspection shows that the equations decouple
in terms of l. Once each Ξ� is expanded in Legendre
polynomials, see (20), Eq. (19b) implies that ½Ξl� ¼ 0 for
l ≥ 2, so we only have one Ξl for each l ≥ 2. Then, the
rest of the matching conditions for l ≥ 2 read
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½Kl� ¼ 0; ½H0l� ¼ 0; ð37Þ

½H2l� − R½K0
l� ¼ e−λðRÞ=2Ξl½λ0�; ð38Þ

½H0
0l� þ

R
2
ν0ðRÞ½K0

l� ¼ −e−λðRÞ=2Ξl½ν00�: ð39Þ

Now, taking into account the background field equations,
so that (13)–(15) hold, the set of two Eqs. (38) and (39), for
each l ≥ 2, is equivalent to the set

½H2l� − R½K0
l� ¼ −ϰReλðRÞ=2ΞlΛ0ðRÞ; ð40Þ

½H0
0l� − ½K0

l� ¼ −
1

R

�
1þM

R
eλðRÞ

�
½H2l�: ð41Þ

On the other hand, we must use the information provided
by the first order field equations. Taking the differences
of (32)–(34) on Σ, and using the background matching
conditions and (37), together with (14), we obtain

½H2l� ¼ ½H0l�; ½K0
l� ¼ ½H0

0l�;

½H0
0l� ¼ −ϰ

R
2M

H0lðRÞΛ0ðRÞ;

respectively. The combination of these three equations
with (37) and (40) is equivalent to the set of (six) equations
on Σ given by

½Kl� ¼ 0; ½H0l� ¼ 0; ½H2l� ¼ 0; ð42Þ

½H0
0l� ¼ ½K0

l� ¼ −ϰ
R2

2M
H0lðRÞΛ0ðRÞ; ð43Þ

and

�
R2

2M
H0l þ eλðRÞ=2Ξl

�
Λ0ðRÞ ¼ 0; ð44Þ

while (41) then holds identically.
It is important to note that if the three equations in (42)

hold and the field equations are imposed, then the two
relations in (43) are automatically satisfied. As a result, and
to sum up, the interior and exterior problems for each l
match if and only if (42) hold, and then the deformation
satisfies (44). The field equations imply the fulfillment of
the rest of the matching conditions.

A. Computation of the Love numbers

Given the exterior solution is provided by (35), the tidal
Love numbers are defined by

kl ≔
1

2

�
M
R

�
2lþ1

al;

where al ≔ alQ=alP, for each mode l. Therefore

al ¼ −
∂r−P̂

2
l − ðy−l=RÞP̂2

l

∂r−Q̂
2
l − ðy−l=RÞQ̂2

l

				
r−¼R

;

with yl ≔ rH0
0l=H0l defined at both � sides.

Integrating the interior problem provides yþl ðRÞ, and
then y−l ðRÞ is obtained using the identity y−l ðRÞ ¼ −½yl� þ
yþl ðRÞ. Equations (42) and (43) establish

½yl� ¼ −
ϰR3

2M
Λ0ðRÞ: ð45Þ

As a result,

al ¼ −
∂rþP̂

2
l − ðyþl =RÞP̂2

l − ðϰR2Λ0ðRÞ=2MÞP̂2
l

∂rþQ̂
2
l − ðyþl =RÞQ̂2

l − ðϰR2Λ0ðRÞ=2MÞQ̂2
l

				
rþ¼R

:

ð46Þ

The error encountered in previous literature (e.g. [28,29])
concerns the implicit assumption that yl are continuous
across the surface of the star, which is inconsistent with the
perturbative procedure if Λ0ðRÞ does not vanish. Reverting
the argument, in those works it was not proven (not even
stated) that Λ0ðRÞ ¼ 0 if and only if the functions yl are
continuous.
In the numerical analysis we discuss next we will only

care about the l ¼ 2 term, and the tidal problem will be
accounted for with the alternative quantity λ2 ¼ a2=3,
known as the tidal deformability. The Love number k2
obtained from (46) reads

k2¼
8

5
C5
oð1−2CoÞ2ð2CoðY−1Þ−Yþ2Þ

×f2Coð4ðYþ1ÞC4
oþð6Y−4ÞC3

oþð26−22YÞC2
o

þ3ð5Y−8ÞCo−3Yþ6Þ
þ3ð1−2CoÞ2ð2CoðY−1Þ−Yþ2Þ logðð1−2CoÞÞg−1;

ð47Þ

where Co ≔ M=R, with

Y ≔ y−l¼2ðRÞ ¼ yþl¼2ðRÞ þ
ϰR3

2M
Λ0ðRÞ: ð48Þ

The form of expression (47) coincides (replacing Y by “y”)
with that in the literature, e.g. [13], Eq. (25) in [29] and
Eq. (24) in [28]. This is so because “y” there corresponds to
the exterior y−l¼2ðRÞ, and the exterior problem is the same.
However, in [28,29] “y” is given a single value on the
boundary, implicitly assuming a priori that, in the usual
wording, yl¼2 is continuous. Because of (45), the correct
result requires (48). The final values for k2 found in [28,29]

REVISITING THE I-LOVE-Q RELATIONS FOR … PHYS. REV. D 108, 104065 (2023)

104065-11



turn out to be valid because, as we have checked, the EOS
forces Λ0 to approach zero at the boundary in the models
presented in those works.
Expression (48) can be compared with Eq. (15) in [1],

which was put forward following the previous discussion
in [16] for homogeneous stars, and finally proved for
perfect fluids in general in [18]. Let us stress, however, that
the relation between the discontinuities of the physical
quantities and the jumps of the relevant metric functions is
far from obvious, a priori. Note that whereas the disconti-
nuities affecting yl and δM in the perfect fluid case are both
proportional to the value of the energy density at the
boundary [see Eqs. (13) and (24) in [18]], in the two-fluid
model that is not the case. The last term in (27) is not
proportional to Λ0ðRÞ.

VII. I-LOVE-Q-δM RELATIONS

We turn next to apply the theoretical developments of the
previous sections to different two-fluid models, spanning
three different EOS. Our aim is to investigate if, and by how
much, the corrections reported here impact the universality
of the I-Love-Q-δM relations, extending our previous work
in the perfect fluid with barotropic EOS case [18]. For all of
our models we impose chemical equilibrium (μ0 ¼ χ0).

A. Models

1. Two-fluid polytropic model

This model is the one presented in [24], and describes a
star where the individual constituents (the superfluid
neutrons and all other components) do not interact, i.e.
there is no entrainment. The corresponding master function
is given by

Λðn20; p2
0Þ ¼ −mnn0 − σnn

βn
0 −mnp0 − σpp

βp
0 ; ð49Þ

where mn is the mass of the neutron and

σn ¼ 0.2mn; βn ¼ 2.3; σp ¼ 2mn; βp ¼ 1.95:

We choose units such that mn ¼ c ¼ G ¼ 1 and the
number densities of both fluids (n0 and p0) are given in
fm−3 [see Eqs. (A1)–(A3) in Appendix A].

2. Toy model

This EOS is the toy model we suggested in [27], for
which the master function reads

Λðn20; p2
0; x

2
0Þ ¼ −ð2n0 þ p0 þ x20Þmn; ð50Þ

where the same units as before are chosen. Hence, the same
conversion factors to SI units apply [Eqs. (A1)–(A3) in
Appendix A]. This equation does account for entrainment
between the two fluids, and the energy density at the
boundary of the star Λ0ðRÞ turns out to be nonvanishing.

3. Relativistic mean field model

We also consider the model employed in [28] in their
study of the I-Love-Q relations for superfluid neutron stars.
Due to the complexity of the master function and the
derived relations, we refer to Appendix B for the explicit
expressions and the techniques to deal with them within a
numerical approach. As shown by Eq. (B1), the master
function for this EOS depends on a number of parameters.
In our computations we consider the two sets of parameters
listed in Table I for the NL3 [38] and GM1 [39] relativistic
mean field models. The conversion factors to SI units are
shown in Eqs. (A4)–(A6) in Appendix A.

B. Results

In what follows we show the different I-Love-Q-δM
relations we obtain for each of our four models. The results
are displayed in Figs. 2 and 3 in terms of the usual
dimensionless quantities

Ī ≔
I
M3

;

Q̄ ≔
QM
J2

;

δM ≔ δM
M3

J2
:

Note that M refers to the mass of the spherical background
configuration. Although the approximate universal rela-
tions involve only the above dimensionless quantities, we
follow the customary practice in the literature and refer to
those relations as the I-Love-Q-δM universal relations (i.e.
not explicitly including the overline in the quantities).
Each of the symbols in Figs. 2 and 3 corresponds to a

particular stellar model, which has been computed numeri-
cally using a modification of the code employed in [18].
The tidal deformability λ2 (which is directly related to the
Love number k2) and the contribution to the mass at second
order, δM, are the only quantities that depend on the value
of the energy density at the boundary of the star.
Out of the four models we consider here, the toy model is

the only one which does present a nonvanishing value of
Λ0ðRÞ. For that reason, in the plots in Figs. 2 and 3 where

TABLE I. Set of parameters for the NL3 [38] and GM1 [39]
relativistic mean field models obtained from [28].

Model c2σ c2ω c2ρ b c

NL3 15.739 10.530 5.324 0.002055 −0.002650
GM1 11.785 7.148 4.410 0.002948 −0.001071
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either λ2 or δM appear, we include an additional set of
points labeled “Toywrong.” Those show the results obtained
for the same toy model but without considering the
correction to the original perturbative frameworks in which
it was (implicitly) assumed all metric functions to be
continuous.
In Fig. 2 we show the different I-Love-Q-δM relations

for the four EOS with Δ ¼ 1. The top part of each panel
shows the actual correlations between pairs of parameters
while the bottom part displays the corresponding relative
errors. In all cases the relations found between pairs of
parameters follow approximate universal relations (when
using the correct matching conditions). These relations can

be accurately fitted with polynomial curves, using the
logarithm of the parameters as variables. The individual
fitting formulae can be summarized with the expression

lnðyiÞ ¼ ai þ bi lnðxiÞ þ ci lnðxiÞ2
þ di lnðxiÞ3 þ ei lnðxiÞ4; ð51Þ

where the values of the coefficients are given in Table II.
Those fits are displayed with solid lines in the top panels of
each plot in Fig. 2. Our results show that an augmented set
of universal relations for the tidal problem in binary
systems of superfluid neutron stars, involving the four

FIG. 2. Relations between Ī − Q̄ (top left), δM − λ2 (top right), Ī − λ2 (bottom left) and Q̄ − λ2 (bottom right) for the three models with
Δ ¼ 1. The purple dots represent the values obtained by taking ½v0� ¼ 0 in the toy model, i.e. the incorrect values that would have been
predicted with the original HT model. This will only have an effect on the relations involving δM and λ2. The lower panels in each plot
represent the relative errors between the individual plots and the fitting curves, EX ¼ jðlnX − lnXfitÞ= lnXfitj. The errors of Toywrong are
not displayed.
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perturbation parameters Ī, λ2, Q̄ and also δM, exists. This
result reproduces the previous findings for the tidal
problem in the perfect fluid with barotropic EOS case [18].
The deviation from universality stands out when not

taking into account the correction to the formalism (see the

purple symbols in the δM − λ2, Ī − λ2 and Q̄ − λ2 plots).
The correct formalism yields fully universal relations for all
the EOS considered, irrespective of the existence of jumps
of the energy density, as shown by the red symbols.
In Fig. 3 we illustrate the relations for the specific case

of the NL3 model, for different values of Δ. In this case,
universality is lost when the two fluids do not corotate
(i.e. Δ ≠ 1). The smallest departures from universality are
found for the Ī − λ2 pair (bottom-left panel in Fig. 3), with
the maximum relative error at the 2% level. These results
were already found in [28], except for the analysis of the
second order contribution to the mass δM. In our study,
the inclusion of δM into the set of quantities to analyze
shows that the δM − λ2 curve (top-right panel in Fig. 3) is
significantly more sensitive to the variation of the relative
rotation rate between the two fluids Δ than the rest of the

FIG. 3. Relations between Ī − Q̄ (top left), δM − λ2 (top right), Ī − λ2 (bottom left) and Q̄ − λ2 (bottom right) for the NL3 model with
different values of Δ.

TABLE II. Parameters for the fitting curves of Eq. (51). The
first three rows have been obtained from [11], whereas the last
row is from [18] after applying a suitable logarithm base
conversion.

yi xi ai bi ci di ei

Ī λ2 1.47 0.0817 0.0149 2.87 × 10−4 −3.64 × 10−5

Ī Q̄ 1.35 0.697 −0.143 9.94 × 10−2 −1.24 × 10−2

Q̄ λ2 0.194 0.0936 0.0474 −4.21 × 10−3 1.23 × 10−4

δM λ2 −1.619 0.255 −0.0195 −1.08 × 10−4 1.81 × 10−5
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relations. Relative errors as large as 50% are found
for Δ ¼ 0.4.

VIII. CONCLUSIONS

In this work we have studied the tidal problem and the
resulting I-Love-Q approximate universal relations for
rotating superfluid neutron stars in the Hartle-Thorne
formalism. To do so we have adapted the stationary and
axisymmetric perturbation scheme for global stellar models
developed in [27] to the first order tidal problem in binary
systems. Our approach is based on the geometrical for-
malism developed in [19] and fully generalized in [20,21].
The outcome provides the expected correction to the
computation of the Love numbers caused by a nonvanish-
ing energy density at the interior side of the stellar
boundary. Such correction is analogous to that of the
perfect fluid case found for homogeneous stars in [16]
and proven in full generality in [18].
The analytic formalism has been applied to different

two-fluid stellar models built numerically, spanning three
different EOS. On the one hand, in particular, we have
checked that the relevant physical quantities produced by
the EOSs used in [28,29] tend to zero at the boundary, thus
providing firm grounds to those results. Further, we have
shown how the contribution to the mass at second order δM
also satisfies universal relations with I, Love and Q for all
EOS when the two fluids corotate (Δ ¼ 1). This result is in
agreement with the perfect fluid case [18]. The universal
I-Love-Q relations are known to fail whenΔ ≠ 1, as shown
by [28]. We have also found that in the numerical stellar
models analyzed in this work, the departure from univer-
sality in the relations involving δM are significantly more
sensitive than the rest.
The results presented in this paper, thus, complete the set

of universal relations for rotating superfluid stars, general-
izing our previous findings in the perfect fluid case.
Using the extended set of universal relations reported in
this work in order to improve observational constraints on
the supranuclear EOS of neutron stars is an effort worth
pursuing next. Our findings in this direction will be
reported elsewhere [40].
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APPENDIX A: UNITS

For the two-fluid polytropic and toy model EOSs, the
conversion factors from the given code units (CU) to the SI
units were derived in [27]. They read

rSI ¼ rCU × c

ffiffiffiffiffiffiffiffiffiffi
fm3

Gmn

s
; ðA1Þ

tSI ¼ tCU ×

ffiffiffiffiffiffiffiffiffiffi
fm3

Gmn

s
; ðA2Þ

mSI ¼ mCU × c3

ffiffiffiffiffiffiffiffiffiffiffiffi
fm3

G3mn

s
; ðA3Þ

where G, c and mn recover their SI values.
Similarly, for the mean field model EOS the conversion

factors are given by

rSI ¼ rCU × c

ffiffiffiffiffiffiffi
c
Gℏ

r
fm2; ðA4Þ

tSI ¼ tCU ×

ffiffiffiffiffiffiffi
c
Gℏ

r
fm2; ðA5Þ

mSI ¼ mCU × c3
ffiffiffiffiffiffiffiffiffi
c

G3ℏ

r
fm2: ðA6Þ

Note that m is a general unit of mass, given in kg, not the
nucleon mass mentioned in Appendix B.
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APPENDIX B: MEAN FIELD MODEL EOS

The master function for this EOS is given by [44]

Λ0 ¼ −
c2ω
18π4

ðk3n þ k3pÞ2 −
c2ρ

72π4
ðk3p − k3nÞ2 −

1

4π2

�
k3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
q

þ k3p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q �

−
1

4c2σ
fð2m −m⋆j0Þðm −m⋆j0Þ þm⋆j0ðbmc2σðm −m⋆j0Þ2 þ cc2σðm −m⋆j0Þ3Þg

−
1

3
bmðm −m⋆j0Þ3 −

1

4
cðm −m⋆j0Þ4 −

1

8π2

8>><
>>:kpð2k2p þm2

eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
−m4

e ln

0
B@kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
me

1
CA
9>>=
>>;; ðB1Þ

where kn ¼ ð3π2n0Þ1=3, kp ¼ ð3π2p0Þ1=3, m is the nucleon mass (the average of the neutron and proton masses), and the
parameter m⋆j0 is the Dirac effective mass, coming from the transcendental equation

m⋆j0 ¼ m −m⋆j0
c2σ
2π2

8>><
>>:kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
q

þ kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

þ 1

2
m2

⋆j0 ln
 
−kn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p

kn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p

!

þ 1

2
m2

⋆j0 ln

0
B@−kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

kp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CA
9>>=
>>;þ bmc2σðm −m⋆j0Þ2 þ cc2σðm −m⋆j0Þ3: ðB2Þ

For convenience, we may work instead with a differential equation form⋆j0 (this strategy was discussed in [45], although
for a different expression of the EOS)

m0
⋆j0 ¼

∂m⋆

∂kn

				
0

k0n þ
∂m⋆

∂kp

				
0

k0p;

where (again [44])

∂m⋆

∂kn

				
0

¼ −
c2σ
π2

m⋆j0k2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p

8>><
>>:
3m − 2m⋆j0 þ 3bmc2σðm −m⋆j0Þ2 þ 3cc2σðm −m⋆j0Þ3

m⋆j0

−
c2σ
π2

0
B@ k3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p þ k3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CAþ 2bmc2σðm −m⋆j0Þ þ 3cc2σðm −m⋆j0Þ2

9>>=
>>;

−1

;

∂m⋆

∂kp

				
0

¼ −
c2σ
π2

m⋆j0k2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

8>><
>>:
3m − 2m⋆j0 þ 3bmc2σðm −m⋆j0Þ2 þ 3cc2σðm −m⋆j0Þ3

m⋆j0

−
c2σ
π2

0
B@ k3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p þ k3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CAþ 2bmc2σðm −m⋆j0Þ þ 3cc2σðm −m⋆j0Þ2

9>>=
>>;

−1

:
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The generalized pressure is given by

Ψ0 ¼ Λ0 þ
1

3π2
ðμ0k3n þ χ0k3pÞ;

where the two auxiliary functions μ0 and χ0 explicitly read

μ0 ¼
c2ω
3π2

ðk3n þ k3pÞ −
c2ρ

12π2
ðk3p − k3nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
q

;

χ0 ¼
c2ω
3π2

ðk3n þ k3pÞ þ
c2ρ

12π2
ðk3p − k3nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
:

The functions accounting for the first and second order derivatives of Λ0 are given by

A0 ¼ c2ω −
1

4
c2ρ þ

c2ω
5μ20

8>><
>>:2k2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q þ c2ω

3π2

0
B@ k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p þ k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CA
9>>=
>>;

þ c2ρ
20μ20

8>><
>>:2k2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q þ c2ρ

12π2

0
B@ k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p þ k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CA
9>>=
>>;

−
c2ρc2ω
30μ20π

2

0
B@ k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p −
k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2p þm2
⋆j0

q
1
CAþ 3π2k2p

5μ20k
3
n

k2n þm2
⋆j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2p þm2
⋆j0

q ;

B0 ¼
3π2μ0
k3n

− c2ω
k3p
k3n

þ 1

4
c2ρ

k3p
k3n

−
c2ωk3p
5μ20k

3
n

8>><
>>:2k2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q þ c2ω

3π2

0
B@ k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p þ k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CA
9>>=
>>;

−
c2ρk3p
20μ20k

3
n
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>>:2k2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

⋆j0
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q þ c2ρ

12π2

0
B@ k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2
⋆j0

p þ k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

⋆j0
q

1
CA
9>>=
>>;

þ c2ρc2ωk3p
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