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We study the tidal problem and the resulting /-Love-Q approximate universal relations for rotating
superfluid neutron stars in the Hartle-Thorne formalism. Superfluid stars are described in this work by
means of a two-fluid model consisting of superfluid neutrons and all other charged constituents. We
employ a stationary and axisymmetric perturbation scheme to second order around a static and spherically
symmetric background. Recently, we used this scheme to study isolated rotating superfluid stars. In this
paper it is applied to analyze the axially symmetric sector of the tidal problem in a binary system. We show
that a consistent use of perturbative matching theory amends the original two-fluid formalism for the tidal
problem to account for the possible nonzero value of the energy density at the boundary of the star. This is
exemplified by building numerically different stellar models spanning three equations of state. Significant
departures from universality are found when the correct matching relations are not taken into account.
We also present an augmented set of universal relations for superfluid neutron stars which includes the
contribution to the total mass of the star at second order, SM. Therefore, our results complete the set of
universal relations for rotating superfluid stars, generalizing our previous findings in the perfect fluid case.
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I. INTRODUCTION

The analysis of the inspiral gravitational-wave signal
emitted during a binary neutron star (BNS) coalescence
provides information on the internal structure of neutron
stars and on the supranuclear equation of state (EOS). In a
BNS system, the tidal field of the companion induces a
mass-quadrupole moment and accelerates the coalescence.
The ratio of the induced quadrupole moment to the
external tidal field is proportional to the tidal Love
number of the star, k,, or to the tidal deformability
A = (2/3)ky[(c*/G)(R/M))°, where R and M refer to
the radius and mass of the star. The strength of tidal
interactions increases rapidly during the final tens of
gravitational-wave inspiral cycles before merger, making
their effects potentially measurable [1-5]. This has been put
into practice in the analysis of GW170817 and GW 190425,
the first two (and, so far, only) BNS systems detected by
the LIGO-Virgo-KAGRA Collaboration [6-9]. The tidal
deformability of these systems was measured using EOS-
insensitive relations between the moment of inertia /,
the tidal deformability 4, (or the Love number k,) and
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the spin-induced quadrupole moment Q, known as /-Love-
O relations [10,11]. In the case of GWI170817, the
observational constraints on the tidal deformation of the
binary components allowed to rule out some of the stiffest
supranuclear EOS models.

The most basic theoretical treatment of the tidal problem
in a binary system [12,13] fits in the Hartle-Thorne scheme
(HT hereafter) [14,15], a pioneer proposal that provides a
perturbative framework in general relativity to describe the
equilibrium configuration of a compact and isolated perfect
fluid body around a static and spherically symmetric
configuration, up to second order. Within the HT scheme
the tidal problem can be solved in the regime of stationary
and axial perturbations (see [16] and references therein).
For this problem, the /-Love-Q relations found in [10] were
first seen to split into two categories, one valid for ordinary
neutron stars and another one for quark stars, the latter
characterized by the presence of a nonvanishing energy
density at the boundary of the star. Shortly after, [17]
amended the results of [10] by considering a term used
by [1] [see Eq. (15) in the latter reference] to account for a
possible nonzero value of the energy density at the stellar
boundary when computing the Love number. This, in turn,
justified the result obtained by [16] for the limiting case
of homogeneous stars. The correction reported by [17]
provided universal /-Love-Q relations regardless of the
EOS type.

© 2023 American Physical Society
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The proof that Eq. (15) in [1] is indeed the correct
expression for the Love number was reported in [18§]
building on the amendment to the original HT scheme
provided in [19]. We recall that the original HT scheme
implicitly assumes that all functions describing the pertur-
bations are continuous everywhere, in particular at the
boundary of the star. Apart from providing the needed
results to put the HT scheme on firm grounds, the main
point of the amendment was to prove the inconsistency of
this assumption because, although most of the interior
and exterior parts of the functions must indeed share the
same value at the boundary, some of the functions do
present a jump that is proportional to the value of the energy
density there.

The rigorous support and partial correction to the
original HT scheme reported in [19] (see also [20,21]) is
obtained by producing an initial framework resorting to
perturbation theory in purely geometric terms. On top of
that, the equations for the matter content at the stellar
interior are to be imposed. Reference [19] focused on
perfect fluid stars (with barotropic EOS) finding that the
discontinuity of one perturbation function due to the
nonvanishing of the energy density at the boundary affects
the computation of the contribution to the mass of the star at
second order, M (for a given fixed central pressure). This
was first used in [22] to revisit the seminal work of [23] on
homogeneous rotating stars, and the significant correction
to the total mass was underlined. Second, the correction in
the computation of the mass was used in [18] to show that
I-Love-Q EOS-insensitive relations also apply to M, thus
extending the universality to a family of four parameters,
I-Love-Q — 6M.

The original HT model was also adapted in [24] to
describe slowly rotating, superfluid neutron stars, building
on a two-fluid formalism introduced by [25,26]. This
adaptation, however, inherited the incorrect (implicit)
assumptions from the original HT scheme regarding the
continuity of the perturbation functions at the stellar
surface. This has been recently fixed in [27] where we
have used the geometrical perturbation scheme of [19] (see
also [21]) to amend the two-fluid formalism of isolated
rotating superfluid stars.

Despite the fact that the results in [18,19] provide the
perturbation formalism for the tidal problem with a
geometrical justification to correctly compute the tidal
number leading to the universality of the /-Love-Q rela-
tions, those works have been overlooked by several
subsequent studies. In particular, the two-fluid model has
been also used by [28] to study the /-Love-Q relations for
superfluid neutron stars imposing the continuity of all
functions (and some derivatives) without justification to
compute the tidal deformability. We note that, in principle,
one cannot resort to any known explicit result or correct
expression for the Love number, since those apply to the
perfect fluid case.

The aim of the present paper is to explore the tidal
problem and the approximate universal relations for super-
fluid neutron stars, revisiting the results of [28] using the
corrected HT scheme we started developing in our previous
work [27]. As in [24,27-29] we describe superfluid stars
by a simple two-fluid model which accounts for superfluid
neutrons and all other constituents. Using a toy-model EOS
for which the number densities of the two constituents do not
vanish at the boundary of the star, we showed in [27] that the
corrections to the HT formalism do impact the structure of
rotating superfluid neutron stars in a significant way. In this
paper we demonstrate that the study of the tidal problem for
superfluid stars is also affected by the same continuity issues.
Therefore, although we check that the EOSs used in [28,29]
do not present those issues due to the vanishing of the
relevant physical quantities at the boundary,1 the correction
of the HT formalism we report here needs to be considered
for general-purpose (i.e. EOS insensitive) computations of
the tidal problem in a binary system.

The structure of this paper is as follows: In Sec. II we
briefly recall the two-fluid formalism and the construction
of the global interior/exterior configuration. In Secs. III
and IV we briefly describe the perturbation scheme for a
two-fluid model and we develop the background configu-
ration of superfluid neutron stars. Thus, these sections lay the
groundwork for the notation that will be employed later on.
Next, Secs. VA and V B describe the first and second order
problems, respectively. Once the general setup has been
constructed, Sec. VI addresses the tidal problem and the
Love numbers obtained therein. Correspondingly, Sec. VII
presents our results to test the universality of our /-Love-
Q-06M relations, for a variety of physically motivated EOS,
as well as a toy model. Our conclusions are summarized
in Sec. VIII. Unless otherwise stated (see, for example,
Appendix A), we will be using units such that G = ¢ = 1.

II. TWO-FLUID MODEL

In the two-fluid formalism, as originally developed
in [25,30] (see also [24,26]), the flow of neutrons and
protons are described, respectively, by two vectors

p* = pv,

where u* and v* are two unit timelike vectors and » and p
are the neutron and proton number densities. The coupling
of the neutrons and protons is described by the quantity
x* := —p,n® The EOS of the whole system is provided by
specifying a master function

A = A(n?, p?,x?),

that depends on three arguments.

1Unfortunately, we find no explicit mention on the behavior of
the fluid quantities at the boundary in those works.
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In terms of the auxiliary functions

the 1-forms,

Ho = Bng+ Ape. Yo =Cpa+ Ang,

are the dynamically and thermodynamically conjugates to
n® and p“, respectively. The energy-momentum tensor of
the fluid is then given by

T = Yo5 + p®xp + nug, (1)
where
T::A_na,ua_pa)(a (2)

acts as a generalized pressure.
The equations of motion are given by the conservation
equations

Vep®* =0, (3)
plus the Euler equations

na(vaﬂﬁ - Vﬁﬂa) =0, pa(va)(ﬁ - Vﬁ)(a) =0. (4)

Equations (3) and (4) imply VT 5 = 0.

The two problems at hand will be framed in a stationary
and axially symmetric setting (describing the perturbations)
over a static and spherically symmetric background con-
figuration. As customary, we use spherical coordinates
{t,r,0,¢} arranged so that the timelike and axial (space-
like) Killing vector fields of the whole setting read o,
and 9, respectively. Thus, the functions describing the
stationary and axisymmetric spacetime geometry gsrax and
the fluids only depend on r and 6.

Moreover, if the fluids are assumed to rotate around
the axis so that there are no convective motions, and the
rotation is rigid, then

uex (0, +Q,05), v (0 +K,0,), (5)
for some constants Q,, and Q »» Which represent the angular
velocities of neutrons and protons, respectively. In this
case (3) are automatically satisfied and (4) are equivalent to

He = _gSTAX(at + Qna(/vﬂ)’
Xe = —gstax (0, + Qp%,)()’ (6)

for some constants u. and y.. We use gspax(-,-) for the
scalar product in the index-free notation.

A. Global configuration: Vacuum exterior

The global model of the star consists of two spacetimes
(MT, gérax) and (M™, ggpax) With timelike boundaries
>* and £~ which are pointwise identified £ = X" = X,
to produce a joined spacetime (M, gsrax) With M =
MFT UM, and ggrax i gapax On each region M*
accordingly. The identification is required to be isometric,
so that ¥ has an induced metric 4. This requires the
well-known first matching (or junction) conditions,
h:=ht = h~, where h* are the induced metrics of ¥ as
embedded on (M*, g&;ax ), respectively. Then, gstax can
be extended continuously on M. To avoid a distributional
Riemann tensor on (M, gstax), Which is equivalent to
avoid energy surface layers at the boundary of the star in
general relativity, we must demand that the second funda-
mental forms (extrinsic curvatures) k= of £ as embedded on
(M*, gérax) agree. To sum up, the full matching con-
ditions require then that A" = A~ and x* = k™ hold on X.

We take the + part to describe the interior of the star, thus
solving the two-fluid model problem, and the — part to
describe the vacuum exterior. The (history of the) surface of
the star is provided by X. For the two problems we are
interested in, we assume that both spacetimes are stationary
and axisymmetric, so that the boundaries inherit the two
symmetries [31].

The interior and exterior problems are then solved
imposing “regularity” at the origin, and whatever condi-
tions we want to impose on the exterior, in addition to
the relations on X provided by the matching conditions.
In particular, the matching conditions also determine, in
principle, the surface of the star. As shown in [27] for our
stationary and axisymmetric setting, the matching condi-
tions imply the continuity of ¥ across X. Therefore

¥(r,0) =0

determines the surface of the star r = r(6) implicitly. This
condition is not sufficient, but it is the only one involving
only the interior side, as shown in [32] (see also [33]) for
the general stationary and axisymmetric setting. The rest of
the matching conditions provide the matching hypersurface
from the other side £~ and relations between the boundary
data for the interior and exterior problems.

In the following we will denote by [f], for any function
f, the difference of f evaluated at both sides of the
hypersurface %, i.e., [f](p)=f"|,+es+ —f|-ex-» Where
p(€X) = p*™ = p~ after the identification. Moreover, if
[f] = 0 we will simply use f when evaluated on either £+
or X~. All expressions in square brackets will denote their
difference.
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III. PERTURBATION SCHEME

In this paper we focus on two problems, namely, the
deformation due to the rotation of an isolated star, and the
axially symmetric sector of the (even-parity) tidal problem
caused by a companion star. The two issues are dealt with
as two perturbative stationary and axisymmetric problems
over a static and spherically symmetric configuration.

For the perturbative problems we use perturbation theory
in metric theories of gravity, which is, in effect, a gauge-
field theory of symmetric tensors on a given background
configuration at each order. In particular, our work is based
on the concept of perturbation scheme, which includes the
notion of classes of gauges, that inherits some of the
symmetries of the background. We refer the reader to [20]
for the detailed definitions and the gauge fixing procedures
involved in axially symmetric and axistationary second
order perturbations around spherical backgrounds. To deal
with the matching of the exterior and interior regions we
use the theory of perturbed matchings, based on perturba-
tions of hypersurfaces to second order [34], particularized
to the case of stationary and axially symmetric perturba-
tions in [21] (see also [19]).

A. Perturbation theory in rigidly rotating
two-fluid stars

The perturbative problem of the isolated rotating star
modeled by a two-fluid has been already dealt with in our
previous Ref. [27], revisiting and amending the approach
and results in [24]. However, for completeness we include
here an outline of the whole procedure because the tidal
problem shares most part of the setting. Thus, we follow the
stationary and axisymmetric perturbative scheme to second
order around a static and spherically symmetric back-
ground (M, g) as described in [20] (see also [19,21])
based on an abstract perturbation parameter . In short, we
have a family of stationary and axisymmetric spacetimes
(M,.G.), where (M, go) = (M.,g) is our static and
spherically symmetric background, together with a class
of point identifications I'.: M — M, (spacetime
gauges), where I’y is the identity. This class of gauges
is, so far, only restricted to inherit the stationarity and
axial symmetry generated by 9, and d,, in the background
as defined in [20].

On each (M., g,) we have defined the two-fluid model
quantities, and the equations they satisfy, that depend on e.
The metrics g, as well as all the fluid quantities, and the
corresponding equations, are pulled back using I
onto (M, g).

In particular, the procedure defines a family of metrics
9. = I's(g,) on M. The first order K; and second order K,
perturbation tensors are defined as the first and second
order derivatives of g, with respect to ¢, evaluated at e = 0.
As a result, the ¢ family of metrics can be written as
the usual

1
9e = g+ €K, +§82K2 +0(&).

If we take, as explained above, spherical coordinates
{t,r,0,¢} on (M, g), then the inheriting of the symmetries
by the class of gauges I', means that d, and d,, are Killings
of the whole family g,. Therefore, just like g, the perturba-
tion tensors K; and K, do not depend on ¢ nor ¢. Now,
suitable gauge-fixing procedures can be used to simplify
further the forms of K; and K.

Similarly, for every two-fluid model quantity we have a
corresponding & family of quantities defined on M, and
thence background, first and second order corresponding
quantities. Explicitly, the number density of neutrons and
protons are decomposed to second order as (we follow the
notation from [24])

n(r.0) = no(r)(1 + (r.0)) + 0(£),  (7)
Pe(r.0) = po(r)(1 4+ £®(r.0)) + O(£°).  (8)

The fact that there is no contribution at first order is a
consequence of the forms K and K, take in the stationary
and axisymmetric perturbative setting over a static and
spherical background configuration. A rigorous account
on this matters is made in [20,21] for the perfect fluid
case. For the purposes of this work we will assume the
usual forms of the perturbation tensors and this decom-
position for the two-fluid quantities, which is consistent,
from the beginning.

As in the perfect fluid case, where the same equation of
state is assumed for the whole (background and perturba-
tions) configuration, here one demands A,(n2, p2,x2) =
A(n2, p2,x2). In the following we use the notation A, :=
A(n2, p?,x2), so that Ay = A(n3, p3, x3). We will also use
Ao(r) = A(n3(r), p3(r),x3(r)) and equivalently for Wy (r).
The flows u, and v, have the form of (5) with some Q,,
and ng (only dependency on ¢). Since the background is
static we have Q) = on = 0. On the other hand, it is
(implicitly) assumed that after a redefinition of the pertur-
bation parameter to absorb the second order contributions
in Qs, we have’

Qne =eQ, + 0(63)’
Q,. =eQ, + 0(e)

for some pair of constants Q, and €2,,. The full form of
the flows u, and v, as well as the set of & families,

“The fact that the redefinition of the perturbation parameter € to
absorb the second order contribution to € is consistent with the
problem to second order should be proven after all the problem
has been set. To our knowledge this has been only (rigorously)
proven in the rigidly rotating perfect fluid case, in [20,21].
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{xe, &,y %, W, fees Yoo }» are then found using the expres-
sions from Sec. II, taking into account that

0A(n2, p2,x2)
ox?2 ’

OA(n?, p?.x?)
op?

0A(n2, p2,x2)
on? ’

) 9)

A, = - B, =-2

C.=-2

plus the tensors K; and K,. From those quantities we
construct 7,%; using (1) accordingly. The expressions for
the rotating perturbation case (to second order) are given in
full in [27].

Since the Einstein field equations hold on each (M, g,),
the corresponding pullbacks onto (M, g) must also hold,
and therefore

Eing,)"y = #T.%, (10)

must be satisfied for all &, where x = 82G/c* and Ein(g,)
is the Einstein tensor computed from g,. The background
equations are (10) evaluated at ¢ = 0, while the first and
second order Einstein equations correspond to the first
and second order derivatives with respect to ¢ evaluated at
e = 0 respectively.

Similarly, the Euler equations (6) apply for gstax = 9
and all the quantities substituted by their £ counterparts on
the right-hand side. To use the notation of [24,27], the ¢
families of constants u.. and y.. are explicitly written as

Hee = ﬂw(l + 827/71) + 0(83)’
)(ce:)(oo(1+82yp)+0(83)’ (11)

which define the four constants po(= peq)s Yoo (= Xc0)s
Yn and y,.

We finish this section with a brief comment on the
perturbation parameters. Let us first stress that, apart from
the boundary data needed to solve the background con-
figuration, the exact model only contains two free param-
eters. These correspond to the rotating parameters Q,
and Qp. In the perturbative approach we have instead
three, namely €,, Q, and e. The introduction of a spurious
parameter is a consequence of the scalability property of
perturbation theory. Computationally one chooses freely
one of the three parameters, say » = 1. Then, for a desired
value of the relative rotation rate A :=€Q,/Q, fixes Q,
accordingly. After solving the problems, one finds the
convenient measurable physical quantities and uses the
scalability property to fix the model to the data needed.

B. Perturbed matching

Let us be given a static and spherically symmetric
background global configuration (M, g), composed by
(M*,g",Z*) and (M~,¢7,Z7) with identified

boundaries ¥ := X%t = X", and such that the matching
conditions 7" = A~ and x" =k~ hold on X. Assume
now that the global configuration setting described in
Sec. I A applies to a & family of spacetimes (M., 7,)
such that (M, g) = (M, go). That is, we take (M., 7,),
for each ¢ around 0, to be composed by two spacetimes
with boundary (M, .£}) and (M;,3;,%7) so that
3, =3 =3 after some identification of points, and
MinM; =%, The matching conditions A = h;,
&t =& are satisfied on each ¥, by construction, and
hi = h* and k§ = k*.

Prior to prescribing that identification of points between
the boundaries at each &, we must also prescribe the
identification of points amongst each of the two & families
of boundaries & and 2. After the identification of points,
and thus the construction of ie, we are only left with a
prescription of the identification of points along the & family
of hypersurfaces %, namely Y, : X — £,. This gives rise to
the so-called hypersurface gauge [34] (see also [35] for a
different approach to first order). As the families of metrics
g are pulled back onto M using the spacetime gauges at
each side to obtain the families of metrics g = I'Z*(7F) at
each side of M, the matching conditions are pulled back
using Y onto X to obtain the relations

hf = h;, K =k;, (12)

where A = Ti(hE) and kfF := Yi(&Y).

To understand how the perturbation of the hypersurface
is described in this setting at each side, we simply have
to define the family of hypersurfaces £ on M™ by
TS =T7'(2}), with I = =* by construction, and the
same for the — side. Let us focus on the + side, the — side
will be analogous. The family of hypersurfaces X
describes how X(= X*) changes as a set of points in
M. On the other hand, if we take p €%, the family of
maps 7/ (p) =T (T} (p)) generates a curve on M+
starting at p and moving across each . The vector field
Z, defined at every point p in T as the velocity of the
curve y,., and the acceleration Z, at p can be decomposed as
Z{ =Qfn"+ T and Z; = Q3n" + T, for some func-
tions Q}/, and tangential vectors T}, to X*, where n™" is
the unit normal to £*. The information of the deformation
of Z, as a set of points, is thus encoded in the functions Q,
and Q, at first and second order, respectively. The vectors
T1+/2 determine how the points are identified within the
family X, and therefore depend on both spacetime and
hypersurface gauges. On the other hand, since the hyper-
surface gauge does not modify the matching hypersurfaces
as sets of points and only affects how they are identified
pointwise, Q] does not depend on the hypersurface gauge.
However, at second order both gauges get involved in
the quantity Q5. This whole construction (dropping the
=+ indicators) is depicted in Fig. 1.
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FIG. 1.

Diagram to describe the setup of the perturbation theory for spacetimes and hypersurfaces as described in the main text. This

picture applies to both the + and — families. The region that is to be matched, say M* with boundary ¥, lies either on the left- or on the
right-hand side of £*. Observe that we have depicted only the members of the family M, for & > 0, with M = M,, but we could
continue for negative values of e. This is irrelevant because the perturbation procedure only involves the derivatives of the various
e-family objects evaluated at e = 0, and the limit taken from positive & equals the limit taken from negative values by construction. As
shown, Z, is the tangent vector of the curve defined by y,.(p) at p, while Z, corresponds to the acceleration of that curve at p, and it is

not depicted here.

The first and second order matching conditions are the
first and second order derivatives of the Eq. (12) with respect
to € on € = 0. The explicit expressions at each side + in
terms of the perturbation tensors K; and K, plus Q/, and
Ty, were found in [34]. The particularization to stationary
and axisymmetric perturbations around a spherical static
background assuming axisymmetric surface deformations
was presented in [19], while for arbitrarily deformed surfaces
the job was done in [21]. Let us stress that this set of
perturbed matching conditions arises by demanding that the
Riemann tensor does not present a delta distribution, so it is
thus purely geometric and therefore independent of the field
equations. In [27] we used those results to write down the
perturbed matching conditions for the two-fluid model at
the boundary of the star, and used them to solve the isolated
rotating star global problem. We will recall the relevant
results below, and use them to obtain the perturbed matching
for the tidal problem for two-fluid stars.

IV. BACKGROUND

As explained above, the background configuration is a
globally static and spherically symmetric spacetime com-
posed of the interior and exterior regions of the star. The
geometric configuration is shared by both the isolated
rotating star and the tidal problems. It therefore corresponds
to the background configuration constructed in [24,26,27].
We briefly review the construction of the configuration in
this section to fix some notation.

We consider two static spherically symmetric spacetimes
with boundary (M, g", %) and (M~, g~, £7) describing

the interior and exterior of the star. In spherical coordinates
{ty,r,0,,¢, }and {r_,r_,6_, ¢_} for the corresponding
region, we take

gt == 9 + e Hdrd + 2 (62 + sin?0.dg? ),

for some pair of functions on each region, A* and v*. The
boundaries, assumed to be timelike and taken to preserve
the spherical and static symmetry [31], are given by XF :=
{r. = R.}, for some positive numbers R, > 0. The gluing
of X and X~ is specified, without loss of generality, by
0. =06_,¢, =¢_andt, = t_on the boundaries, that we
will denote as 9, ¢ and 7, respectively, as coordinates on X.

The interior of the neutron star is described in the
background configuration by the two-fluid model intro-
duced in Sec. II as described in Sec. III. We are thus given a
master function A := A(n3, p3,x3) as a function of three
arguments. From that we can compute (9) with € = 0 and
construct the quantities

oB 0A 0A 0A
A —A0+2—0n0p0+2620 2+2a S 3+62° 1o Pos
Po
oB 0A 0A
88 —BOJrZa 0n%+4a 3n0p0+a 20p0,
ng X0
aC 0A 0A
Cg —Co+2a gp(z)+4a gn0p0+620 0

that encode second derivatives.
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By definition we first have that x3 = ngpy. The interior
problem is then composed of a system of four differential
equations for the set {A", ", ng, po}. We refer to Sec. IVA
in [27] for a full account and explicit expressions of the
background interior problem. It is convenient to define the
mass function in the interior of the star as M*(r ) =
r.(1—e*())/2, The exterior solution is given by
eV ) = ¢=# () = 1-2M/r_; i.e. it is the Schwarzschild
geometry of mass M.

The matching conditions are R:= R, = R_, together
with [A] = [v] = [/] =0, where the prime denotes the
derivative with respect to the argument. Given the field
equations, after imposing R, = R_, the set of two match-
ing conditions {[4] =0,[/] =0} are equivalent to
¥y(R) =0 and M = M*(R). In particular we then have
eVR) = ¢=4R) = 1_2M /R and

M 1 2M

l//(R) = 2€l(R) F = ER — 2M

(13)

In addition, the background field equations can be used
to obtain [27]

(W] = —xRe*®I Ay (R), (14)
W] = —}f(l + %(M) JRANR).  (15)

For some specific forms of A, the global background
problem can be solved, i.e. the solution exists and is unique,
given central values ny(0) and p(0) within some ranges, at
least numerically.

Once the interior problem is solved for some given
values of ny and p, at the origin, ¥y(R) = 0 fixes the
value of R and M = M*(R) determines M. We will
assume from now on that R >2M. The condition
[v] =0 is just used to set the value at the origin v (0).
Observe that ny(R), po(R) and thus Ay(R) take
their values from the interior problem, are not constrained
by the matching whatsoever and do not necessarily
vanish.

Later we will make use of the background functions
Ho = 1By + poAg and yg = poCo + noAp.

V. ISOLATED ROTATING STAR

The complete analysis for rotating stars is reported in
our previous article [27]. The reader is addressed to this
reference for details on the full sets of equations and a
complete description of the computational procedure to
solve the global problem at each order. Here, for the sake
of completeness, we provide a succinct summary of the
approach, using the same notation as in [27].

A. First order problem

We assume there exists a class of gauges for which the
first order perturbation tensor at both sides has the form
(we drop the 4 indexes)

K| = =2r’w(r)sin*0dtd¢, (16)

for some function w(r) of the radial coordinate only
and bounded at the origin.3 The field equation in the interior
for w_ is given by Eq. (49) in [27], while the equation in
the exterior, for w_, is the same with a vanishing right-
hand side.

Within the class of gauges that keeps K; with the form
of (16), we have two gauge freedoms to set, one at each
region =+, that amount to the addition of a constant to @
correspondingly [19,21]. The gauge at the exterior can be
fixed so that @w_ vanishes at infinity. With that choice the
solution is given by w_(r) = 2J/r3, for some constant J,
which accounts eventually for the total angular momentum.

Finally, the gauge in the interior can be fixed so that the
first order matching conditions read [19,21,27]

while the deformation quantities Qf(z,9,¢) satisfy
[01] =0, 0[] =0, 0, [/"] =0.

The angular momentum of the individual fluids,
defined in [25], are given explicitly by [24] (we drop
the + subindex)

8z [E

J, = dr rtett-v)/2
n 3 0
x (pono(wy — Q) + Agnopo(Q, — Qp)),
8z [R
Jy= = | et

X ()(OPO((U+ - Qp) + AO”OPO(Qn - Qp))

The total angular momentum is recovered with J =J,, +J .
Similarly, the moments of inertia of the individual fluids
are given by I, =J,/Q, and I, = J,/Q,, and the total
moment of inertia is given by I =1, + I,

B. Second order problem

At second order we assume that there exists a class
of gauges in which the second order perturbation tensor
at both sides (dropping the 4 indexes) is given by the
usual form

'We take this as an assumption. Although it has been
extensively argued in the literature that this is an eventual
consequence of the global problem, to our knowledge, a full
proof of the analogous problem in the perfect fluid case has only
been produced recently in [20,21].
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K, = (—4e"")h(r,0) + 2r2w?(r)sin?0)dr?
+ 4 p(r, 0)dr? + 4r2k(r, 0)(d6? + sin0dg?),

(17)
with
h(r,0) = hy(r) + hy(r)P,(cos @),
v(r,0) = vo(r) + v2(r)Py(cos 0),
k(r,0) = ky(r)P,(cos6), (18)

where P, (cos 6) is the Legendre polynomial P,(cos 6) with
¢ = 2, and such that all functions are bounded at the origin.
The fact that there is no ky(r) term fixes partially the class
of gauges in the perturbation scheme. The gauge freedom
that keeps the form (17) (see Proposition 6.11 in [20])
together with (18) is given by the second order gauge
vector V, « 10, (plus any Killing vector of the background
metric g).

As for the matter content, the contribution at second
order of the number density of neutrons and protons is
assumed to be of the form #(r,0) =#ny(r) +1,(r)P,(cos)
and  D(r,0) = Oy(r) + ©,(r)P,(cos ), respectively.
As explained in [27] in more length, the fact that there
appear no £ > 2 terms in the expansions of these quantities
is justified in [24] using the arguments in the literature
for the perfect fluid problem and assuming equatorial
symmetry.

For convenience, we substitute the set {n,(r), ®,(r)}
by some auxiliary functions {P,,(r),P.,(r)} [defined
by Eq. (62) in [27]] that are more easily recognizable as
“pressure”’-like functions when compared to the perfect
fluid case.

1. Second order matching

Let us consider K; and K5 of the form (17) with no
conditions on Ah(r,60), v(r,6) and k(r,0), and assume
that the background and first order matching conditions
are satisfied (no field equations used). The second order
matching conditions are satisfied if and only if there exists a
pair of functions Z*(z, 8, @) on X and free constants ¢, ¢,
H, and H, such that [Egs. (5.69)—(5.75) in [21], see also
Proposition 2 [19]]

0,]0"] =0, (19a)
[E] = Re*®)/2(2¢cy + (2¢, + H}) cos 9), (19b)
(k] = co + ¢y cosd, (19¢c)

[h] = = (Hy + RV/(R)co) + %RI/(R)(HI +2¢,) cos 8,

N[ =

(19d)

1
[1}—2/(— rk’r] = (Hl —ieﬂ(R>(2C1 +Hl)> cosd

1 Aol 1
—_ = A2 _ _ AR 21y

(19e)

) =5 =@ (1255 )

_V(R) { <1 —%)Hl —%e’l(m@cl +H1)}cos19

1

2
% |:Ee—ﬂ/2 (l/” + U2 - Z’)} _ _e—ﬂ(R) Q% [l//”}
r

+ 4

(19f)

—_——

are satisfied. The function ZE~ provides the second
order deformation, as seen from the exterior, since the
hypersurface gauge can be partially chosen so that

5> = E7 [19,21] (see also [27]). We have included the
full set of second order matching conditions because we
will use them for the tidal problem below.

Now, returning to the rotating isolated star model, let us
assume the functions A, v, and k satisfy (18). Then, we
necessarily have ¢y =c¢; = H; =0, cf. (19¢) and (19d),
and therefore (19b) yields [E] = 0, so only one function =
(out of E*) appears in the matching. Now, using the
decompositions

2
(01)2(7.9.0) =Y Qu(7.90)Ps(c0s9) + Q. (+.9,9),

=0

2
E(r,9,0) =Y _Er(7.90)Ps(cos0) +E (1,9,9), (20)
=0

where we denote by f, the part of f orthogonal to
¢ =0, 1, 2, and given that the background and first order
matching conditions hold, the set of equations in (19) is
equivalent to the set Q;[w”] = 0 plus

[ho] = %Ho’ (21a)
vl = e RIEA] = 7R, (210)
(] = e PR~ 3 B Q. (21c)
k2] =0, 2] = 0. (22a)
[va] = RIKg] = 3P, [~ AR Q) (22b)
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and
2] = VgL =0, V& = [V']EL =0, (23a)
[ilI]Ql — [/1//} QJ_ — O, [Z/H]Ql — [U///] QJ_ — 0 (23b)

These last equations for E;, Q;, £, and Q, are not
matching conditions as such, since their purpose is to
determine those quantities involved in the deformation
(in the class of gauges we are working on). Observe that
=09, =E| = Q, =0 satisfy the relations.

The above analysis of the matching has not taken into
account the field equations at any order (not even the
background). If the background field equations are used,
Egs. (21) and (22) take the form of Eqgs. (79)—(82) in [27].4
Moreover, (23) reduce to Ag(R)E; = Ag(R)E; =0 and
Ay(R)Q; = Ay(R)Q, = 0. In any case, if the first order
equation for w [Eq. (49) in [27]] is also used, then
0,[@"] = 0 holds automatically.

The global problem, that is, the interior and exterior
problems with common boundary data provided by the
matching conditions, can be split onto the # = 0 and £ = 2
sectors. We review the problems as presented in [27] next.

2.¢=0

The ¢ =0 interior problem for the set of functions
{hg ,vg . Pon. Pop} comprises Egs. (65), (67)~(68) in [27].
The exterior solution is given by Eq. (72) in [27] after
fixing the gauge at the exterior so that h; vanishes at
infinity (using the freedom driven by V3 « td, appropri-
ately). This fixes the spacetime gauge at the exterior
completely.

Regarding the matching, let us first note that using
V3 = Hytd, at the interior we can set Hy, = 0 in (21a). This
fixes the spacetime gauge at the interior completely.

As detailed in [27], next we must consider the difference
of the field equations at both sides on . The difference of
Eq. (67) in [27] does not provide useful information (just
gives [v]), but the difference of Eq. (68) in [27] provides,
after using the matching up to first order, a relation between
(o). [vo] and Po(R) = ngPo,(R) + poPo,(R). Now, the
system composed by that relation and the two Eqgs. (21b)
and (21c) is shown to be equivalent to one equation for
a combination of E, and Q, plus an equation for [v)]
[see (25) below], in terms of Py(R), and the original
relation from the field equations.

To sum up, the £ =0 sector of the second order
perturbative problems match if and only if the two
equations

[ho] =0, (24)

4Equation (82) in [27] contains a typo: the second =, should
read Q,.

e O SR Ry (R) A R) (@, -2,

—%(R)}, (25)

hold. Moreover, the matching produces an equation for a
combination of Ey and Q [Eq. (91) in [27]] which we do
not include here for brevity. The field equations produce
then a value for [/ that is consistent with the geometrical
matching condition (21c¢).

The exterior solution is kg (r) = —vy (r) with

M J?
r=2M P(r-2M)’

vy (r) (26)

for some constant 6M. Thus, the £ = 0 exterior solution
only involves 0M, which turns out to be the contribution to
the mass at second order. Indeed, the ADM mass of the
family of geometries given by g, at r — oo, given some
central values ny(0) and py(0), is

My =M + €25M.

Now, using the identity vy (R) = v (R) — [vo] with (25)
and (26) we obtain

J? R(R-2M)

{5 R R AR 2,0y P~ Pu(R) .
@)

This expression of M corrects the expression (60)
in [24], that does not contain the last term.

C.7=2

The ¢ = 2 problem in the interior region involves the
set {hy, vy, ky, Py, Py} that satisfy the five relations in
Eqgs. (66), (69)—(71) in [27].

The general exterior solution is given explicitly by
Egs. (73) and (74) in [27] for h; (r), k5 (r), and

6 2
i3 (r) = ~h3(r) + 5 (28)

in terms of a free parameter C that is to be fixed.” On the
other hand, the pole structure at the origin implies that the
general interior solution for {h3 (r), k5 (r), v3 (r)} depends

5Expression (28) corrects a typo in the last term in Eq. (75)
of [27], and also (76) of [19], where last term should have a global
minus. This has no other consequences whatsoever.
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on a free parameter, denoted by A in [27], that multiplies
the homogeneous part of the solution.

As for the difference on X of the field equations, the
set of three equations given by (22a) plus the difference
of [Egs. (69)—(71) in [27]] is equivalent to the set
{(22a)—(22¢)} plus another equation that determines a
combination of E, and Q,, explicitly given by Eq. (93)
in [27].

In short, the £ = 2 sector of the second order perturba-
tion problems match if and only if

[hy] =0, [ky] =0, (29)

and then the matching produces an equation for a combi-
nation of &, and 9, [Eq. (93) in [27]]. The field equations
produce then values for [v,], [1}] and [k}] consistent with
the geometrical equations (22b) and (22c).

Once the interior problem is integrated in terms of the
inhomogenous and homogenous part of the general sol-
ution, the parameters A (from the interior) and C (form the
exterior) are fixed using the two relations (29).

The value of C of the exterior solution is related with the
quadrupole moment Q by

8 J?

VI. THE TIDAL PROBLEM

We summarize the problem for the linearized analysis of
perturbations for a compact body immersed in a quad-
rupolar tidal field [12,16]. Given a static and spherically
symmetric background, the even-parity first order pertur-
bation tensor in the Regge-Wheeler gauge is given by [36]
(we drop the £ indexes)

= Z{ey(r)Hom(”)dtz + e Hop, (r)dr?
‘.m
+ 12K 4, (r)(d6? + sin®0d¢p*) } Y 4, (0, ),  (31)
where Y,,, (0, ¢) are the spherical harmonics. The equa-

tions for each mode {¢#,m} decouple, and for {¢ > 2,
m = 0} we have that (we drop the m = 0 label)

Hy, = Hyy, (32)
K}, = Hy, + V' Hy,, (33)
2WH, = e (£(¢€ +1) = 2)K,
+(7"(ﬂ/+1/) (rl/) f(f+1)+2)H0f

(34)

This system is usually written as a single second order ODE
for Hy,, and then K, is obtained algebraically from (34).

For the interior problem the system (33) and (34) is
integrated for each pair {HJ,, K,} from a regular origin
(see e.g. [37]). In the exterior vacuum problem, for which
eV = e = 1-2M/r_, the second order equation for H,,
is the general Legendre equation (with m = 2). The general
solution is thus given by

(7 s (1
Hy,(r_) = apP} <M_ 1) + anQ? <M - 1)» (35)

for some constants aysp, aso (to keep the notation
of [16]), with

“y _ 2¢ F(f—f—l/Z) -1 5
P = (S ) P

R 7 T(Z+3) \!
= (Frrgar) 20

where P2Z(x) and Q2(x) denote the associated Legendre
functions of the first and second kind P’ (x) and Q% (x) with
n = 2, respectively. The task now is to obtain the necessary
and sufficient set of matching conditions for the interior
and exterior problem for the sector {# > 2,m = 0}. That
constitutes a stationary and axially symmetric perturbation
problem over a static and spherically symmetric back-
ground. Specifically, the problem for a first order pertur-
bation tensor of the form K for {# > 2,m = 0} at each
side is equivalent to a second order perturbation problem
provided by (16) and (17) with the trivial choice
w=Q, =Q,=0, and the substitutions

h(r,0) - h(r,0) := ——ZHM r6).,  (36a)
>2
v(r.0) > B(r,0) ZHM r0), (36b)
f>2
k(r,0) — k(r,0) ZKK r.0). (36¢)
f>2

Since the first order perturbation is vanishing, the second
order problem effectively becomes first order. Observe that
using (36), Egs. (69)—(71) in [27] with @ = f,, = O trans-
late to Eqgs. (32)-(34) for H,,, K, and H(, with £ = 2,
respectively.

The matching conditions for K] * and K1~ thus corre-
spond to (19) with w = f,, = Q = 0 and the substitutions
in (36). Direct inspection shows that the equations decouple
in terms of #. Once each E* is expanded in Legendre
polynomials, see (20), Eq. (19b) implies that [E,] = O for
¢ > 2, so we only have one E, for each # > 2. Then, the
rest of the matching conditions for # > 2 read
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[K¢] =0, [Hos] =0, (37)
[Ha/] — R[KY] = e R2E, ()], (38)
[Hyy | + NV (R)KL) = ~eORZ, 1. (39)

Now, taking into account the background field equations,
so that (13)—(15) hold, the set of two Egs. (38) and (39), for
each 7 > 2, is equivalent to the set

[Hy/] = RK},] = —xRe*/PE, Ao (R), (40)
)= == (14 g e i, )

On the other hand, we must use the information provided
by the first order field equations. Taking the differences
of (32)-(34) on X, and using the background matching
conditions and (37), together with (14), we obtain

[Hy/| = [Hoe), (K] = [Hp,|.
[Hag] = x5 Ho (R)A(R)

respectively. The combination of these three equations
with (37) and (40) is equivalent to the set of (six) equations
on X given by

(K] =0, [Hoe] =0, [Hy] =0, (42)
2
[H] = [K)] = =x 50 Hoo(R)Ao(R). (43)
and
(;; Hy, + 4P/ f) Ao(R) =0, (44)

while (41) then holds identically.

It is important to note that if the three equations in (42)
hold and the field equations are imposed, then the two
relations in (43) are automatically satisfied. As a result, and
to sum up, the interior and exterior problems for each ¢
match if and only if (42) hold, and then the deformation
satisfies (44). The field equations imply the fulfillment of
the rest of the matching conditions.

A. Computation of the Love numbers

Given the exterior solution is provided by (35), the tidal
Love numbers are defined by

1/ M\ 2¢+1
ky = 5 (E) dag,

where a, = ayp/azp, for each mode . Therefore

9, P2 —
ar, Q?ﬂ -

(y7/R)P;
(y;/R) Qz% r_=R

with y, := rH\,,/H, defined at both & sides.

Integrating the interior problem provides y/(R), and
then y; (R) is obtained using the identity y; (R) = —[y,] +
v/ (R). Equations (42) and (43) establish

Ay = —

’

R3
bl = =537 Ao(R). (43)
As a result,
0, P2 — (v} /R)P} — (xR*o(R) /2M) P}
dpy — — = = = .
C 0, 02— () /R)0% — (xR2Ao(R)/2M) Q2| &
(46)

The error encountered in previous literature (e.g. [28,29])
concerns the implicit assumption that y, are continuous
across the surface of the star, which is inconsistent with the
perturbative procedure if Ag(R) does not vanish. Reverting
the argument, in those works it was not proven (not even
stated) that Ayg(R) = 0 if and only if the functions y, are
continuous.

In the numerical analysis we discuss next we will only
care about the # = 2 term, and the tidal problem will be
accounted for with the alternative quantity 4, = a,/3,
known as the tidal deformability. The Love number k,
obtained from (46) reads

o= C3(1-2C,2(2C, (V= 1)V +2)
X {2q,(4(y+ I)Cﬁ + (6;)7—4)Cf, + (26—22)7) C(z,
+3(5Y-8)C,—3)Y+6)
+3(1 _2C0) (2C0(y_ )—y+2)10g((1—2C0))}_1,
(47)
where C, := M /R, with
Vimyia(R) = yia(R) + R Ag(R). (a8)
= Yo =Yr=2 om0

The form of expression (47) coincides (replacing ) by “y”)
with that in the literature, e.g. [13], Eq. (25) in [29] and
Eq. (24) in [28]. This is so because “y” there corresponds to
the exterior y,_,(R), and the exterlor problem is the same.
However, in [28,29] “y” is given a single value on the
boundary, implicitly assuming a priori that, in the usual
wording, y,_, is continuous. Because of (45), the correct
result requires (48). The final values for k, found in [28,29]
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TABLE I. Set of parameters for the NL3 [38] and GM1 [39]
relativistic mean field models obtained from [28].

Model c2 c2 clz) b c
NL3 15739 10.530 5.324  0.002055 —0.002650
GM1 11.785 7.148 4410 0.002948 —0.001071

turn out to be valid because, as we have checked, the EOS
forces A, to approach zero at the boundary in the models
presented in those works.

Expression (48) can be compared with Eq. (15) in [1],
which was put forward following the previous discussion
in [16] for homogeneous stars, and finally proved for
perfect fluids in general in [18]. Let us stress, however, that
the relation between the discontinuities of the physical
quantities and the jumps of the relevant metric functions is
far from obvious, a priori. Note that whereas the disconti-
nuities affecting y, and 6M in the perfect fluid case are both
proportional to the value of the energy density at the
boundary [see Eqs. (13) and (24) in [18]], in the two-fluid
model that is not the case. The last term in (27) is not
proportional to Ay(R).

VII. I-LOVE-Q-6M RELATIONS

We turn next to apply the theoretical developments of the
previous sections to different two-fluid models, spanning
three different EOS. Our aim is to investigate if, and by how
much, the corrections reported here impact the universality
of the /-Love-Q-6M relations, extending our previous work
in the perfect fluid with barotropic EOS case [18]. For all of
our models we impose chemical equilibrium (¢ = y).

A. Models

1. Two-fluid polytropic model
This model is the one presented in [24], and describes a
star where the individual constituents (the superfluid
neutrons and all other components) do not interact, i.e.
there is no entrainment. The corresponding master function
is given by

2 2y . 4
A(nO’ pO) = —myng — Gnng —m,po— Gppopf (49)
where m,, is the mass of the neutron and

0,=02m,, p,=23, c,=2m

P ns

B, =1095.

We choose units such that m, =c=G =1 and the
number densities of both fluids (ny and p,) are given in
fm~ [see Egs. (A1)-(A3) in Appendix Al.

2. Toy model

This EOS is the toy model we suggested in [27], for
which the master function reads

A(Vl%, p(2)7x%) = —(21’10 + Po + x%)mn’ (50)

where the same units as before are chosen. Hence, the same
conversion factors to SI units apply [Eqs. (A1)—(A3) in
Appendix A]. This equation does account for entrainment
between the two fluids, and the energy density at the
boundary of the star Ay(R) turns out to be nonvanishing.

3. Relativistic mean field model

We also consider the model employed in [28] in their
study of the /-Love-Q relations for superfluid neutron stars.
Due to the complexity of the master function and the
derived relations, we refer to Appendix B for the explicit
expressions and the techniques to deal with them within a
numerical approach. As shown by Eq. (Bl), the master
function for this EOS depends on a number of parameters.
In our computations we consider the two sets of parameters
listed in Table I for the NL3 [38] and GM1 [39] relativistic
mean field models. The conversion factors to SI units are
shown in Egs. (A4)—(A6) in Appendix A.

B. Results

In what follows we show the different /-Love-Q-6M
relations we obtain for each of our four models. The results
are displayed in Figs. 2 and 3 in terms of the usual
dimensionless quantities

- 1
I=
_ oM
Q::77
_ M3
(SM:= (SM*2
J

Note that M refers to the mass of the spherical background
configuration. Although the approximate universal rela-
tions involve only the above dimensionless quantities, we
follow the customary practice in the literature and refer to
those relations as the /-Love-Q-6M universal relations (i.e.
not explicitly including the overline in the quantities).

Each of the symbols in Figs. 2 and 3 corresponds to a
particular stellar model, which has been computed numeri-
cally using a modification of the code employed in [18].
The tidal deformability 4, (which is directly related to the
Love number k,) and the contribution to the mass at second
order, 0M, are the only quantities that depend on the value
of the energy density at the boundary of the star.

Out of the four models we consider here, the toy model is
the only one which does present a nonvanishing value of
Ag(R). For that reason, in the plots in Figs. 2 and 3 where
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FIG.2. Relations between I — Q (top left), SM — 1, (top right), I — 1, (bottom left) and O — 4, (bottom right) for the three models with
A = 1. The purple dots represent the values obtained by taking [v,] = 0 in the toy model, i.e. the incorrect values that would have been
predicted with the original HT model. This will only have an effect on the relations involving 6M and 4,. The lower panels in each plot

represent the relative errors between the individual plots and the fitting curves, Ey = |(In X

not displayed.

either A, or &M appear, we include an additional set of
points labeled “Toy"""¢.” Those show the results obtained
for the same toy model but without considering the
correction to the original perturbative frameworks in which
it was (implicitly) assumed all metric functions to be
continuous.

In Fig. 2 we show the different /-Love-Q-6M relations
for the four EOS with A = 1. The top part of each panel
shows the actual correlations between pairs of parameters
while the bottom part displays the corresponding relative
errors. In all cases the relations found between pairs of
parameters follow approximate universal relations (when
using the correct matching conditions). These relations can

— In X)/ In X%|. The errors of Toy*™"¢ are

be accurately fitted with polynomial curves, using the
logarithm of the parameters as variables. The individual
fitting formulae can be summarized with the expression

In(y;) = a; + b;In(x;) + ¢; In(x;)?

+d;In(x;)* + e;In(x;)*, (51)
where the values of the coefficients are given in Table IL
Those fits are displayed with solid lines in the top panels of
each plot in Fig. 2. Our results show that an augmented set
of universal relations for the tidal problem in binary
systems of superfluid neutron stars, involving the four
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FIG. 3.
different values of A.

perturbation parameters I, A,, Q and also 6M, exists. This
result reproduces the previous findings for the tidal
problem in the perfect fluid with barotropic EOS case [18].

The deviation from universality stands out when not
taking into account the correction to the formalism (see the

TABLE II. Parameters for the fitting curves of Eq. (51). The
first three rows have been obtained from [11], whereas the last
row is from [18] after applying a suitable logarithm base
conversion.

Yi X ai; b; Ci d €;

I 1, 147 0.0817 0.0149 287x10™* —3.64x 1075
1 Q 1.35 0.697 -0.143 9.94x 1072 —1.24x 1072
0O A 0.194 0.0936 0.0474 —421x103 1.23x 10~*
SM A, —1.619 0.255 -0.0195 —1.08 x 10™* 1.81 x 1079

Eszr
=1 §

111()\2)

Relations between I — Q (top left), 5M — A, (top right), I — 1, (bottom left) and O — A, (bottom right) for the NL3 model with

purple symbols in the 6M — 1,, I — 1, and Q — 4, plots).
The correct formalism yields fully universal relations for all
the EOS considered, irrespective of the existence of jumps
of the energy density, as shown by the red symbols.

In Fig. 3 we illustrate the relations for the specific case
of the NL3 model, for different values of A. In this case,
universality is lost when the two fluids do not corotate
(i.e. A # 1). The smallest departures from universality are
found for the I — 1, pair (bottom-left panel in Fig. 3), with
the maximum relative error at the 2% level. These results
were already found in [28], except for the analysis of the
second order contribution to the mass 6M. In our study,
the inclusion of 6M into the set of quantities to analyze
shows that the M — 1, curve (top-right panel in Fig. 3) is
significantly more sensitive to the variation of the relative
rotation rate between the two fluids A than the rest of the
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relations. Relative errors as large as 50% are found
for A =0.4.

VIII. CONCLUSIONS

In this work we have studied the tidal problem and the
resulting 7/-Love-Q approximate universal relations for
rotating superfluid neutron stars in the Hartle-Thorne
formalism. To do so we have adapted the stationary and
axisymmetric perturbation scheme for global stellar models
developed in [27] to the first order tidal problem in binary
systems. Our approach is based on the geometrical for-
malism developed in [19] and fully generalized in [20,21].
The outcome provides the expected correction to the
computation of the Love numbers caused by a nonvanish-
ing energy density at the interior side of the stellar
boundary. Such correction is analogous to that of the
perfect fluid case found for homogeneous stars in [16]
and proven in full generality in [18].

The analytic formalism has been applied to different
two-fluid stellar models built numerically, spanning three
different EOS. On the one hand, in particular, we have
checked that the relevant physical quantities produced by
the EOSs used in [28,29] tend to zero at the boundary, thus
providing firm grounds to those results. Further, we have
shown how the contribution to the mass at second order 6M
also satisfies universal relations with 7, Love and Q for all
EOS when the two fluids corotate (A = 1). This result is in
agreement with the perfect fluid case [18]. The universal
I-Love-Q relations are known to fail when A # 1, as shown
by [28]. We have also found that in the numerical stellar
models analyzed in this work, the departure from univer-
sality in the relations involving M are significantly more
sensitive than the rest.

The results presented in this paper, thus, complete the set
of universal relations for rotating superfluid stars, general-
izing our previous findings in the perfect fluid case.
Using the extended set of universal relations reported in
this work in order to improve observational constraints on
the supranuclear EOS of neutron stars is an effort worth
pursuing next. Our findings in this direction will be
reported elsewhere [40].
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APPENDIX A: UNITS

For the two-fluid polytropic and toy model EOSs, the
conversion factors from the given code units (CU) to the SI
units were derived in [27]. They read

f; 3
Pt =71y Gr:; , (A1)
3
U= 1CU x| /(f;m , (A2)
m’l
fi 3
mS' = mCV x &3 ngm , (A3)

where G, ¢ and m,, recover their SI values.
Similarly, for the mean field model EOS the conversion
factors are given by

S  fm? Ad
r X oy e fm, (A4)
P S Y (. A
X Ghm’ (AS)
c
mSt = mY x 3 mfm@ (A6)

Note that m is a general unit of mass, given in kg, not the
nucleon mass mentioned in Appendix B.
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APPENDIX B: MEAN FIELD MODEL EOS
The master function for this EOS is given by [44]

c2

@ C2 ]
Mo = =t 4 P = 200 = B = oz (/g il 4 365 il

1

- @{(2’" —my o) (m —my|o) + my|o(bmci(m —my|y)* + cci(m —my|y)?)}

1 1 1 kP—F\/k%,-i-m%
—gbm(m—m*h))3 —Zc(m —mylo)? —52 k,(2k5 + m2)\ /K3 + m —mgIn | ——————

n? m,

. (B1)

where k, = (37°ny)'/3, k, = (372 py)'/3, m is the nucleon mass (the average of the neutron and proton masses), and the
parameter m,|, is the Dirac effective mass, coming from the transcendental equation

c2 1 —k, + /K2 + m3
m*ozm—m*|02—”2 kor/ ki +m%lo + k, k§+mi|0+§miloln . - t

k, + k2 + mi|,
1 —k, + /K3 4+ m%]y
+=m3|yIn

2
k, + /K5 +mily

For convenience, we may work instead with a differential equation for m. |, (this strategy was discussed in [45], although
for a different expression of the EOS)

+bmc2(m —my|y)? + cci(m —my|y)>. (B2)

om om
/ * / * /
= k kK,
m*|0 akn 0 ﬂ+ akp 0 P
where (again [44])
om, _ _cé my |ok? 3m —2m, |y + 3bmcz(m —my|y)* + 3cc2(m — my|y)?
ok, o K2 +ml, Mo
-1
C2 k3 k3
= | Tt T +2bme2(m = m,Jo) +3ec2(m —m o) b,
A\ Wkt g 4 m,
o, B _C_(ZT m*|0kf, 3m—2m, |, + 3bmc¢2,(m - m*|0)2 + 3“}2:(”1 - m*|0)3
)
ok,l, = \/m myclo
-1
c2 K k3, 5 ) )
- + +2bmeg(m —my o) + 3ccz(m — mylo)

mA\Vk g 4,
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The generalized pressure is given by

1
¥y = A0+3 (kok;, +Zok3>

where the two auxiliary functions p, and y explicitly read

2
C{U C
/40:32(k;2+kf,) 1p (ky = k2>+\/k;21+m107

2 C2
Ko =325 (3 +13) + 75 (= ) 4+ /16 + mi o+ 1[I + .

The functions accounting for the first and second order derivatives of A, are given by

24 o Jop Vi +milo o kiky kK
7 b

+—£=
Sy 37\ VR il \/kf,+mi|0

2 213 273

N cp2 2w Vi +m2|, N Cp2 ankp _ 4 k3,
20u5 /kz +m|, 122\ /2 + m3|, \/kf, + m2|,

ciel, Kk, Kk, 37%k3 k2 + m|,

22 - 213 ’
VT Ve +mily | Sk e tmd,

By — 37%uy B k3 1, Kk, ik

Co V kz + m*|0 a) k%lk% k%kz
B R a0 s\ o T | e
n n o DMKy kf,+m*|0 7 \/kn+m*|0 \/kf,—l—mﬂo
g | vETen @ (ke B4
2012k 2k /12 2 + 1272 2 TR 2 2
ﬂO n kp+m*|0 \/ ’Z+m*|0 \/kp+m*|0
22k K2k, Kk 3%k, k2 + mkl,
3071'2/4%k2

- T 5,216 ’
vhitmile \Jigemdly | Wk g+ md,

¢, = k0 1 K

ek @k ], VBl

L bk, Kk
3 P73 3 213 P 2.2
ki ky “ky o Sugks \/ k5 4+ m%|y 3 \ Vi +m%, \/kfJ +m3]y
_ Gk {2k Vit < ik, Kk
213 2
20uky U7 g 4wy 127 \ VR milo 2 4 ml,
cieaks, ki, k3 ks, 32 k2 +mi,

2213 -
307 pgkyy \ V/kz +m3lo \/kfj—f—mﬂo

- .
ok Y Ky + mZlo
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together with

2
(o

om,,

2 Mylo 9, 10

Agzcz _+_—?
R RV/ R

6'2

/)
BY=c2+-L+

2k, +m*|0?T:|0

4 K VK2 4+ mi|, ’

and

om
A kp + myly ak; lo 72 1

Q=c2+2L+—=

3
4k \/ Kk +milo

+ = .
ko J12 4+ m?
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