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We study phenomenological features and stability of boson stars in massless and massive scalar-tensor
theory of gravity with Damour-Esposito-Farèse coupling. This coupling between the tensor and scalar
sectors of the theory leads to a phenomenon called spontaneous scalarization, the onset of which we
investigate by numerically computing families of boson-star models using shooting and relaxation
algorithms. We systematically explore the effects of the theory’s coupling, the mass of the gravitational
scalar and the choice of the bosonic potential on the structure of weakly and strongly scalarized solutions.
Scalarized boson-star models share many common features with neutron stars in the same scalar-tensor
theory of gravity. In particular, scalarization can result in boson stars with significantly larger radii and
masses, which tend to be energetically favored over their weakly or nonscalarized counterparts. Overall, we
find that boson stars are not quite as susceptible to scalarization as neutron stars.
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I. INTRODUCTION

Boson stars (BSs) are equilibrium configurations of
hypothetical bosonic particles, first proposed by Kaup [1].
The stars are balanced by the Heisenberg uncertainty prin-
ciple inhibiting gravitational collapse and by the gravi-
tational attraction counteracting the dispersion. These
theoretical objects have recently gained significant interest
as dark matter candidates [2–5] and as astrophysical
models mimicking in certain regimes the observational
properties of black holes (BHs) and neutrons stars
(NSs) [6–12]. BSs1 have been widely studied in the context
of general relativity (GR), both as single BS space-
times [13–25], in terms of their formation [26–28] and
as binary systems [29–39]; see also Refs. [40–43] for

reviews. Their understanding in modified theories of
gravity, however, remains scarce. BSs in Brans-Dicke-type
theories with various couplings inspired from cosmology
have been considered in Refs. [44–46], in Palatini fðRÞ
gravity in Refs. [47,48] and in fðTÞ extended theory of
gravity in Ref. [49].
Scalar-tensor (ST) theories of gravity are one of the most

natural and simplest extensions of GR that preserve the
universality of a free fall [50]. The key ingredient of ST
gravity is the presence of a scalar field nonminimally
coupled to the metric such that gravity is not only mediated
by a spin-2 graviton but also by the spin-0 scalar field. The
inclusion of the scalar field is a common by-product of the
compactification of higher dimensional Kaluza-Klein type
theories, like string theory, [51–53], making ST theories
well-motivated gravity theories to study.
The theoretical implications of ST theories of gravity in

various areas of fundamental physics are vast. For instance,
on cosmological scales, ST theories have been proposed as
models for dark energy, replacing the role of the cosmo-
logical constant [54,55]. Furthermore, the additional scalar
degree of freedom introduces a new channel of radiation
emission in the form of scalar gravitational waves (GWs)
also known as a “breathing mode.” The perfect laboratories
for tests and searches of these scalar waves are compact
objects and binary systems composed thereof. In particular,
it has been conjectured that in the process of spontaneous
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1Throughout this work, with the term “boson star” we refer to
self-gravitating equilibrium configurations composed of a com-
plex scalar field.
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scalarization, the scalar radiation can be detected with
future gravitational wave detectors [56]. The phenomenon
of spontaneous scalarization is caused by a linear tachyonic
instability inside the star that triggers the growth of
the scalar field around it. Once the instability is quenched,
the star becomes endowed with “scalar hair”; see Ref. [57]
for a comprehensive review. This remarkable feature was
first identified in the pioneering work of Damour and
Esposito-Farèse [58–60], who studied spontaneous scala-
rization of neutron stars in massless ST theory with a pair
of parameters ðα0; β0Þ, inspired by post-Newtonian (PN)
theory and controlling the onset of scalarization.
However, stringent constraints have been placed on

massless ST theories by numerous observations, including
the Cassini bound α0 < 3.4 × 10−3 [61] and pulsar-white
dwarf binaries which rule out models with β0 ≲ −5 [62,63];
for a summary of constraints on a broad range of modified
theories of gravity obtained from gravitational wave (GW)
observations see also [64]. As a consequence, massive ST
theories have acquired a great deal of attention, mainly for
two reasons. First, the screening of the massive field
maintains their compatibility with current observations
and leaves a significant portion of the parameter space
unconstrained. Second, because the mass term endows the
scalar GW signal with a highly conspicuous long-lived,
inverse chirp character [65–75]; see also Refs. [76–78] for
studies of massive ST theory with self-interacting fields.
So far NSs have been extensively explored as ideal

compact matter objects, in whose environment scalariza-
tion can occur in this class of ST theories [79–81] (see also
Ref. [82] on NSs in ST theory with quadratic conformal
coupling). An intriguing extension is to investigate how
the presence of a nonminimally coupled scalar field affects
the phenomenology of other compact matter objects,
such as BSs. The phenomena of spontaneous and induced
scalarization of BSs have been previously considered in
Refs. [83–87]. In this work we extend the study of BSs
in scalar-tensor (ST) theories of gravity with Damour-
Esposito-Farèse coupling [88] by focusing on the scalari-
zation of ground-state equilibrium BSs for both massless
and massive gravitational scalar fields as well as the stars’
stability for various BS potentials.
This paper is structured as follows. In Sec. II, we present

an overview of ST gravity with the specific Damour-
Esposito-Farèse coupling function employed in our work,
and formulate the system of first-order differential equa-
tions with the bosonic field in the matter sector. In Sec. III,
we present the results of our exploration of the parameter
space and describe the main features of BS models in ST
theory of gravity. We span the solution space for different
parameters of the coupling function, mass values of the
gravitational scalar field and BS potentials. In Sec. IV, we
assess the stability of these models. Finally, we summarize
our results together with an outlook on future research
directions in Sec. V. In Appendix A, we study in detail

the asymptotic behavior of BS solutions in ST theory of
gravity and GR, highlighting the main inconsistencies
that can arise in a flat-field treatment. Our numerical
methods are described in Appendixes B and C, we illustrate
the structure of BS families of solutions for a broad
range of BS potentials. Unless specified otherwise, we
employ units where the speed of light and Planck’s con-
stant satisfy c ¼ 1 ¼ ℏ, so that the Planck mass is given by
MPl ¼ 1=

ffiffiffiffi
G

p
.

II. THEORY AND FORMULATION

A. Scalar-tensor action

We start by considering a general class of ST theories of
gravity with a single, real-valued gravitational scalar field φ
with potential WðφÞ, whose action in the Einstein frame is
given by [89]

S ¼
Z

dx4
ffiffiffiffiffiffi
−ḡ

p
16π

�
R̄
G
− 2ḡμν∂μφ∂νφ − 4WðφÞ

�
þ SM;

SM ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
−
1

2
½gμν∇μψ

�∇νψ þ VðψÞ�
�
: ð1Þ

Here, ḡμν is a conformal metric, with corresponding
Ricci scalar R̄, related to the physical or Jordan-frame
metric gμν by2

ḡμν ¼ FðφÞgμν; ð2Þ

where FðφÞ is the coupling function, which needs to
be positive to ensure that the graviton carries positive
energy [58]. For the matter sources, represented in Eq. (1)
by the term SM, we consider a relativistic boson con-
densate, modelled as a massive complex scalar field
ψ ¼ ψR þ iψ I with complex conjugate ψ� and potential
VðψÞ. Note that by Eq. (1) the matter moves according to
the geometry of the physical metric gμν; this is the price tag
for achieving the minimal coupling between the gravita-
tional scalar and the conformal metric ḡμν of the Einstein
frame. Although the scalar field does not directly interact
with the ordinary matter (which guarantees the weak
equivalence principle), it affects the motion of test particles
through its presence in Eq. (2). The appearance of two
distinct scalar fields in our physical setup inevitably holds
potential for confusion; whenever the meaning is not self-
evident, we will therefore explicitly refer to the two fields
as the gravitational scalar φ and the BS scalar ψ with
amplitude A ≔ jψ j.
The covariant field equations are obtained from varying

the action (1) with respect to ḡμν, φ and ψ . This leads to

2In our notation for the conformal factor we follow
Salgado [89]; a common and equivalent alternative is to write
Eq. (2) as gμν ¼ a2ðφÞḡμν where a2 ¼ 1=F.
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Ḡαβ

G
¼ 2∂αφ∂βφ − ḡαβḡμν∂μφ∂νφ − 2Wḡαβ þ 8πT̄αβ;

∇μ∇μφ ¼ 2π
F;φ

F
T̄ þW;φ;

∇μ∇μψ ¼ 1

2F

�
∂V
∂ψR

þ i
∂V
∂ψ I

�
þ ḡμν

∂μF

F
∂νψ ; ð3Þ

where an overbar denotes tensors and operators in the
Einstein frame; in particular, the energy-momentum tensor
is given by

T̄αβ¼
2ffiffiffiffiffiffi
−ḡ

p δSm
δḡαβ

¼ 1

F
Tαβ

¼ 1

F

�
∂ðαψ�

∂βÞψ −
1

2F
ḡαβ½Fḡμν∂μψ�

∂νψþVðψÞ�
�
: ð4Þ

B. Spherically symmetric solutions

In this work, we consider stationary, spherically sym-
metric BS models and employ a metric ansatz using radial
gauge and polar slicing. Specifically, we write

ds̄2 ¼ ḡμνdxμdxν

¼ −FðφÞα2dt2 þ FðφÞX2dr2 þ r2dΩ2; ð5Þ
where r is the areal radius in the Einstein frame and dΩ2 ≔
dϑ2 þ sin2ϑdϕ2 the standard angular line element. In
spherical symmetry, it is convenient to express the complex
BS scalar field in terms of amplitude A and frequency ω,

ψ ¼ Aeiωt: ð6Þ

At this point, we have three mass scales in our problem;
the two scalar masses, μφ and μ for φ and ψ , respectively,
and the Planck mass Mpl ¼

ffiffiffiffiffiffiffiffiffi
1=G

p
that appears in the

Einstein equation (3). All dimensional quantities have
units of some power of μ or MPl or a combination thereof.
To see this explicitly, we still need to specify the potential
functions VðψÞ and WðφÞ. The particular choices for these
functions will be detailed in Sec. II D below, but we note
already at this stage that they will take the form VðAÞ ∼
μ2A2 and WðφÞ ∼ μ2φφ

2, hence acquiring units of μ2M2
Pl.

One can now eliminate all dimensional factors in the
covariant equations (3) by introducing dimensionless
variables according to

t̂ ¼ μt; r̂ ¼ μr; m̂ ¼ μm; ω̂ ¼ ω

μ
; ð7Þ

μ̂φ ¼ μφ
μ
; φ̂ ¼ φ

MPl
; Â ¼ A

MPl
: ð8Þ

These dimensionless variables can be converted back
into SI units by using

ℏc ¼ 1.97327 × 10−10 eV km; ð9Þ

so that

μ

ℏc
¼ μ

1.97327 × 10−10 eV km
: ð10Þ

Hence, if we set ℏ ¼ 1 ¼ c, a rescaled radius r̂ ¼ μr and
frequency ω̂ ¼ ω=μ translate into SI units according to

r ¼ r̂
μ
¼

�
μ

ℏc

�
−1
r̂ ¼ r̂

�
μ

1.97327 × 10−10 eV

�
−1

km;

ω ¼ μ

ℏ
ω̂ ¼ ω̂

μ

6.58212 × 10−16 eV
s−1; ð11Þ

and likewise for the mass m and other dimensional quan-
tities. The scalar field amplitudes, in turn, are measured
in units of the Planck mass, A ¼ ÂMPl and φ ¼ φ̂MPl. In
words, for a BS scalar mass μ ¼ 1.97327 × 10−10 eV,
the numerical value of our radial coordinate gives the BS
radius in km. For other scalar masses, the radius scales
accordingly, becoming larger for smaller scalar masses and
vice versa. From now on, we will work with dimensionless
variables only and wewill drop the caret in their notation for
simplicity.

C. The field equations in spherical symmetry

Our physical system is completely described by φ, A, α,
and X, which are all functions of radius r. It is sometimes
convenient to express the metric functions α and X in terms
of the alternative variables

Φ ≔ lnðF ffiffiffi
α

p Þ; m ≔
r
2

�
1 −

1

FX2

�
; ð12Þ

which, when combined with Eqs. (3)–(5), results in a set
of ordinary differential equations (ODEs) that can be
written as

∂rΦ ¼ FX2 − 1

2r
− rFX2W þ r

2

X2

α2
κ2 þ 2πrX2

Fα2
ðω2A2 − α2V þ F2θ2Þ;
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∂rX
X

¼ −
FX2 − 1

2r
þ rFX2W −

X
2α

F0

F
κ þ r

2

X2

α2
κ2 þ 2πrX2

Fα2
ðω2A2 þ α2V þ F2θ2Þ;

∂rφ ¼ X
α
κ;

∂rκ ¼ −2
κ

r
þ 2αXFW;φ2φþ 2π

XF0

αF2
ðω2A2 − 2α2V − F2θ2Þ;

∂rA ¼ XF
α

θ;

∂rθ ¼ −2
θ

r
þ X
αF

Aðα2V;A2 − ω2Þ: ð13Þ

Here, we have introduced the auxiliary variables κ and θ in
order to write the two scalar-field equations in first-order
form and used the notation

W;φ2 ≔
dW
dðφ2Þ ; V;A2 ≔

dV
dðA2Þ :

The system (13) is complemented by the boundary
conditions

Xð0Þ¼ 1ffiffiffiffi
F

p ; Að0Þ¼Actr; φð0Þ¼φctr; κð0Þ¼0;

θð0Þ¼ 0; Φð∞Þ¼Φ0; Að∞Þ¼0; φð∞Þ¼ 0: ð14Þ
The vanishing of the scalar fields at infinity can only be
achieved for specific values of ω and φctr which character-
izes Eq. (13) as an eigenvalue problem. More specifically,
the scalar fields have an asymptotic behavior containing
exponential modes

φ ∼ e�hr; A ∼ e�kr; ð15Þ
where h and k depend on the scalar masses and frequency
ω, and the unphysical, growing modes eþhr, eþkr only
vanish for discrete values of φctr and ω. In the literature, the
asymptotic behavior of the BS scalar is sometimes given as

φ ∼
e�hr

r
; A ∼

e�kr

r
; ð16Þ

but this only holds in the complete absence of gravity and
is incorrect even for r → ∞ if the scalar field couples to
gravity, either in GR or ST theory. As we show in
Appendix A, instead of Eq. (16), the asymptotic behavior
with gravity is

φ ∼
e�hr

r1þδ ; A ∼
e�kr

r1þϵ ; ð17Þ

where h, k, δ, and ϵ are given in Eqs. (A4) and (A5) for a
massive and massless φ, respectively.
The ground-state BS models, that we focus on in this

study, are furthermore characterized by monotonic profiles

AðrÞ with no zero crossings except for their vanishing at
infinity.

D. Choice of model

The field equations derived in the previous section hold
for arbitrary potentialsWðφÞ, VðψÞ and conformal function
FðφÞ. We now discuss the specific choices made in our
work, starting with the conformal factor FðφÞ. We consider
the class of ST theories given by the Damour-Esposito-
Farèse function [59],

FðφÞ ¼ e−2α0φ−β0φ
2

; ð18Þ

with constants α0 ≥ 0 and β0. The choice of Damour and
Esposito-Farèse is in part motivated by the fact that the
modifications of gravity at first post-Newtonian order are
completely determined by the asymptotic values of the
first and second derivatives of lnF in the far-field limit
[58,60,90]. In our notation, these derivatives are

α0 ¼ −
1

2

d lnF
dφ

				
φ¼0

; β0 ¼ −
1

2

d2 lnF
dφ2

				
φ¼0

: ð19Þ

In particular, this implies an effective Newtonian gravita-
tional constant G̃ ¼ Gð1þ α20Þ. The parameters α0, β0
furthermore completely determine the Eddington para-
metrized post-Newtonian parameters βPPN and γPPN [50,91];
see also Eq. (3.7) and the surrounding discussion in
Ref. [92]. For β0 ¼ 0, we recover Brans-Dicke theory [93],
whereas Damour and Esposito-Farèse’s inclusion of the
quadratic term leads to the spontaneous-scalarization pheno-
menon for sufficiently negative β0.
The pioneering work on spontaneous scalarization

focused on massless ST gravity, which, however, has been
constrained significantly by the Cassini mission and binary
pulsar observations, not least because of the dramatic
effect of the spontaneous scalarization mechanism. This
has resulted in an increasing amount of attention devoted
to massive ST theories which, due to the screening effected
by the mass term μφ, largely remain compatible with the
observations. Roughly speaking, the Yukawa falloff of a
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massive scalar suppresses the impact of the scalar sector
on the binary pulsar dynamics for sufficiently large sepa-
rations of the binary constituents; this leaves ST theories
with μφ ≳ 10−15 eV in agreement with present observa-
tions [65]. We note, however, that μφ may also be con-
strained through other types of observations. Specifically,
a recent study on equilibrium neutron stars conjectures
that the GW event 170817 is suggestive of a larger mass
μφ ≳ 10−11 eV [94] while the observation of highly spin-
ning black holes, combined with their superradiant inter-
action with surrounding massive fields, may exclude the
mass range 10−13 eV≲ μφ ≲ 10−11 eV [95,96]. Our analy-
sis is largely motivated by theoretical considerations and
the goal to obtain a comprehensive understanding of BS
scalarization. While bearing in mind the possible con-
straints above, we therefore consider a wide range of
mass values μφ ≥ 0 as well as coupling parameters α0, β0
with no further prejudice. In our theoretical formalism we
include the gravitational scalar mass through a quadratic
potential

WðφÞ ¼ 1

2
μ2φφ

2; ð20Þ

where μφ ≥ 0measures the gravitational scalar mass in units
of the BS scalar mass parameter μ. As we will see later both
the massless and the massive cases will share common
phenomenological features.
Finally, to describe the bosonic sector, we focus on

repulsive and solitonic potentials,

Vrep ¼ A2 þ λ4A4;

Vsol ¼ A2

�
1 − 2

A2

σ20

�
2

; ð21Þ

where λ4 and σ0 are self-interaction terms of the two
individual potentials. Note that both potential functions
include the case of mini-BSs in the respective limits λ4 → 0
and σ0 → ∞. We graphically illustrate the features of
these potentials in Fig. 1 for two solitonic potentials with
σ0 ¼ 0.2 and σ0 ¼ 0.4, the case of mini-BSs and a
repulsive potential with λ4 ¼ 50 over the range A∈ ½0; 0.2�.
We clearly see the false vacuum states for σ0 ¼ 0.2 and also
note that in this range of A, the potential values system-
atically increase in the order σ0 ¼ 0.2, σ0 ¼ 0.4, the mini-
BS limit and λ4 ¼ 50.

E. Numerics and diagnostics

Accurately capturing the exponential behavior of
the scalars and determining the eigenvalues φctr and ω
is a nontrivial numerical challenge and we detail in
Appendixes A and B how we compute the solutions using
shooting and relaxation techniques. The conceptual sum-
mary of our calculations is as follows:

(1) Specify the ST theory through the parameters α0, β0,
and μφ.

(2) Specify the BS scalar potential by fixing σ0 or λ4.
(3) Parametrize the sequence of BS solutions inside this

framework by varying a control parameter, typically
Actr, but sometimes also ω or Φctr ≔ Φð0Þ.

(4) For each value of this control parameter, we iter-
atively determine the eigenvalues φctr and ω leading
to a physical (i.e., asymptotically flat) BS solution.
For some values of the control parameter, there
exist multiple solutions with different degrees of
gravitational scalarization. In order to find all pos-
sible solutions, we perform the iterative procedure
using different initial guesses for ω and φctr, usually
obtained from neighboring models with similar
degrees of scalarization.

The typical result of such a calculation for a given ST
theory and potential function is a set of one-parameter
branches of strongly and weakly scalarized BS solutions
which can be displayed, for example, as curves in the mass-
radius plane. Whereas the mass of a BS is well defined as
the Arnowitt-Deser-Misner (ADM) [97] mass, given in our
formalism by mðr → ∞Þ, the radius is not; BSs formally
extend to infinity, albeit with exponentially decaying scalar
amplitude A. In this work, we define the radius RJ of a BS
as the Jordan frame radial coordinate r=

ffiffiffiffi
F

p
where the mass

function m reaches 99% of the ADM mass, i.e., where
mðrÞ ¼ 0.99mð∞Þ. Alternative measures for the radius,
using a different percentage or other physical diagnostics,
do not change our main results beyond minor differences in
the radius values.

III. SCALARIZED BOSON STARS

A. A prototypical example

We begin our discussion of the results with a represen-
tative family of BS models that illustrates the main features

FIG. 1. Four example cases of the BS scalar potential function
VðAÞ defined in Eq. (21). The noninteracting potential for mini-
BSs is recovered for σ0 → ∞ or λ4 ¼ 0. Note the false vacuum
state for solitonic potentials and the systematic increase of VðAÞ
from small σ0 to the mini-BS limit and larger λ4.
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of their spontaneous scalarization. This set of models
is obtained for ST parameters μφ ¼ 0.05, α0 ¼ 0, and
β0 ¼ −11 as well as a solitonic potential Vsol (21) with
σ0 ¼ 0.2 for the BS matter. The main diagnostic quantities
we display for this family of models are the ADM mass
MADM, the radius RJ, the central and maximal values φctr,
φmax of the gravitational scalar, the central magnitude of the
complex BS scalar Actr and the frequency ω.
The resulting BS models are graphically illustrated in the

form of mass-radius diagrams in Fig. 2 with the other
diagnostic quantities encoded in color. We note in this
context that for α0 ¼ 0 the BSmodels are invariant under the
change φðrÞ → −φðrÞ and the profile φðrÞ has no zero
crossings. Unless stated otherwise, we display in this section
the solutions with positive φ ¼ jφj. The breaking of this
degeneracy for nonzero α0 will be explored in Sec. III D
below. Themain features visible in this figure are as follows:
(1) The BS models of GR are recovered as a one-

parameter family with vanishing gravitational scalar
φ; this set of models is conspicuous as the dark blue
branch in the top-right panel of Fig. 2. For the
vanishing α0 of our example, this branch exactly
equals the BS models computed in GR as shown, for
example, in Fig. 1 of Ref. [32] for the same σ0.

(2) Scalarized models appear most prominently in the
form of a second branch forming a loop starting from
about a radius RJ ≈ 5 towards larger radii and masses
and eventually reconnecting with the GR branch at
RJ ≈ 3. As can be seen in the inset of the top right
panel of Fig. 2, there exists a second segment of the
scalarized branch extending to the right, a bit further
down. As we will see in Sec. III B, the fine structure
of the high-compactness (upper) end of the scalar-
ized branch can change with β0.

(3) Bearing in mind our sign convention for φ, the upper
two panels in Fig. 2 demonstrate that for many of the
scalarized models, the gravitational scalar φ reaches
its maximum away from the origin; jφjctr is typically
smaller than jφjmax.

(4) As also observed for neutron stars [59,98], the
scalarized models can reach significantly larger
masses and radii.3

(5) As the central BS scalar amplitude increases, the BS
models become increasingly compact, as illustrated
in the bottom-left panel of Fig. 2.

FIG. 2. BS models in ST gravity with μφ ¼ 0.05, α0 ¼ 0, and β0 ¼ −11 for a solitonic potential with σ0 ¼ 0.2. Each point in these
mass-radius diagrams represents a BS model. The location of the point represents the star’s mass MADM and radius RJ, and the color
coding in the respective panels displays the central gravitational scalar jφjctr, the maximum (over radius) gravitational scalar magnitude
jφjmax, the central BS scalar amplitude Actr and the frequency ω. The four circles labeled 1 to 4 mark the models displayed in more detail
in Fig. 3.

3Alternative definitions of BS radii exhibit the same qualitative
behavior in spite of quantitative differences.

TAMARA EVSTAFYEVA et al. PHYS. REV. D 108, 104064 (2023)

104064-6



(6) As the BS compactness increases, the frequency ω
generally decreases from limActr→0 ω ¼ 1. This trend
is only mildly reversed at the extreme end for highly
compact models; cf. the inset in the bottom-right
panel. The smallest frequencies are obtained in the
high-mass regime of the scalarized branch.

In Fig. 3, we plot the BS scalar amplitude A, the
gravitational scalar φ, the mass aspect m as well as the
trace T of the physical energy-momentum tensor as
functions of radius r for four selected models marked by
circles in Fig. 2. Here, models 1 and 3 are located on the

scalarized branch with compactness C ≔ maxr∈R
mðrÞ
r ¼

0.117 and C ¼ 0.240, respectively. The BSs marked 2
and 4 represent GR stars with respectively equal compact-
ness for comparison. The models exhibit quite similar
main features despite their different locations in the mass-
radius plane: (i) Whereas the BS scalar amplitude A is a
monotonically decreasing function of r for all cases, the
gravitational scalar of models 1 and 3 reaches its extremal
value away from the origin; (ii) The mass function
increases monotonically with radius, but levels off at

relatively small radius due to the exponential decrease
of A; (iii) The scalarization tends to push the BS scalar
profile AðrÞ towards larger radii and results in larger total
mass MADM; and (iv) The region of strongest scalarization
coincides with the region of a negative trace of the energy-
momentum tensor as expected for the onset of a tachyonic
instability [65].
In the following sections, we will explore in more

detail the phenomenology of scalarized BS models in
ST theory and will highlight how and when the main
features illustrated by this prototype can alter for different
potentials VðAÞ and ST parameters.

B. Scalar mass and the onset of scalarization

Having seen the main features of scalarized BSs in the
previous section, we next study how the mass μφ of the
gravitational scalar affects the scalarization phenomenon
and, in particular, at which values of β0 scalarization sets in.
For this purpose, we keep the BS potential function VðAÞ
fixed at its solitonic shape with σ0 ¼ 0.2; the effect of
alternative potentials will be explored in Sec. III C below.
The majority of spontaneously scalarized neutron-star

models have been found below a threshold for β0 ≲ β0;thr ¼
−4.35 where β0;thr turns out to be remarkably robust
against variations of other parameters such as the equation
of state [65,98–101]. One striking exception to this rule are
the strongly scalarized solutions found by Mendes and
collaborators [102–104] for positive β0 provided the trace
of the energy momentum tensor is positive in the GR limit;
see also Ref. [65] where this effect is explained in terms of a
tachyonic instability. For the BS models considered in this
study, we focus on negative β0, but we will see that the
threshold value β0;thr can differ from that for NSs and also
depends more sensitively on the BS parameters.
As a general observation we find that increasing the mass

μφ weakens the effect of scalarization. This is illustrated in
Fig. 4 where we display solitonic BS families for α0 ¼ 0,
β0 ¼ −12, and σ0 ¼ 0.2, but varying μφ from 0 to 0.15. The
upper panel in this figure demonstrates that the scalarized
branches significantly reduce in terms of the BS radius and
mass, getting closer to the GR branch for larger μφ. We
note in this context that the rather large BS radii found for
μφ ¼ 0 are a consequence of a slightly slower falloff of
AðrÞ, likely caused by its coupling to the now long-ranging
φ. We investigate this effect in more detail in Sec. III E
below, but note that the outer regions even of BSs of radius
RJ ≈ 100 are tenuous with the small energy density merely
amplified by the r2 effect of the volume element.
The decrease in scalarization becomes even more evident

in the lower panel of Fig. 4 where the same BS families are
represented in the plane spanned by the central BS scalar
amplitude Actr and the maximal value of jφðrÞj. Recalling
that the BS models are identical under φ → −φ, we display
each BS in this figure in terms of its two extrema�jφjmax in

FIG. 3. Radial profiles of the BS scalar amplitude A, the
gravitational scalar φ, the mass function m and the trace T of
the energy momentum tensor for four selected models marked 1
to 4 in Fig. 2. The pair of models 1 and 2 represents one scalarized
and one GR star with equal compactness C ¼ 0.117 and
amplitudes Actr as indicated in the legend. Likewise, models 3
and 4 represent a scalarized and GR model with C ¼ 0.240 each.
As indicated by the dashed curves for GR and the solid lines for
scalarized models, the scalarization tends to push the BS scalar
AðrÞ towards larger radii and results in larger masses. In the
region of strongest scalarization in φ, the energy momentum
tensor has negative trace T.
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order to illustrate more clearly the loop like structure of
the branches. Clearly, the maximal scalarization decreases
for larger μφ, but we also notice two qualitative changes
occurring between 0.05 < μφ < 0.1 and 0.1 < μφ < 0.15,
respectively. First, the single loop (long-dashed blue and
dotted green) splits into two separate loops (dashed orange)
leaving a finite range 0.25≲ Actr ≲ 0.31 where only GR
models exist. For μφ ¼ 0.15, the second loop of highly
compact (large Actr) models has disappeared; we cannot
entirely rule out that it is shifted to very large Actr, but all
our searches for scalarized models in this regime for
μφ ≥ 0.15 have yielded no solutions. This behavior is also
reflected in the mass-radius diagram of the upper panel,
where for μφ ¼ 0 or 0.05 the scalarized branch connects to
the GR branch only at the low-mass end, but remains
separate at the high-mass end as shown in the inset. For
μφ ¼ 0.1, instead, we have two separate scalarized branch
segments, both connected to GR models; note the small
dashed orange branch in the inset near the end of the black

GR branch. For μφ ¼ 0.15 (solid magenta), this small extra
branch is no longer present.
The lower panel of Fig. 4 resembles Fig. 3 of Ramanazoğlu

and Pretorius [105] which shows jφjmax obtained for
scalarized neutron stars. Their analysis of spontaneous
scalarization in terms of a tachyonic instability leads
to an approximate criterion λφ > λeff;star ∼ RJ=

ffiffiffiffiffiffiffiffiffiffiffi
Cjβ0j

p
—

their Eq. (6)—where C is an estimate of the star’s compact-
ness and λφ is the Compton wavelength associated with μφ.
Translated into our variables, this relation becomes

jβ0j≳ R2
J

4π2C
μ2φ; ð22Þ

and suggests an approximately quadratic relation between the
threshold for scalarization β0;thr and the scalar mass μφ.
We have numerically computed the onset of scalarization

for the families of BS models with α0 ¼ 0, σ0 ¼ 0.2 by
starting for each fixed μφ with a sufficiently negative β0 that
admits scalarized models and then iteratively increasing β0
towards 0 until scalarization disappears. In practice, we
have stopped this search at four significant digits in β0
and verified that the result remains unchanged under a
doubling or halving of the number of grid points. The
resulting threshold β0;thr is plotted as a function of μφ in
Fig. 5 together with a quadratic fit. Typical values for radius
and compactness of the BS models on the verge of
scalarization are RJ ∼ 5 and C ∼ 0.2, resulting in a coef-
ficient R2

J=ð4π2CÞ ∼ 3 in Eq. (22). Bearing in mind its
approximate character, the tachyonic analysis captures the
quadratic contribution of our fit rather well. The con-
stant and linear contributions to our fit, in turn, are likely a
direct consequence of a finite threshold for scalarization in
massless ST theory; using a series of self-gravity contri-
butions, Damour and Esposito-Farèse conclude that the
nonperturbative amplification effect of spontaneous scala-
rization can set in when β0 ≲ −4. For the massless case
considered in their analysis, this remains a remarkably
good estimate for BSs.

FIG. 5. The threshold value of β0 for the onset of scalarization;
for β0 ≤ β0;thr, scalarized BS models exist.

FIG. 4. Upper panel: mass radius diagram for four values of the
scalar mass. The scalarized branches decrease in size for larger
μφ. Lower panel: the maximal value of the gravitational scalar,
jφjmax, is shown as a function of the central BS scalar amplitude
Actr for the same BS families. Note that for α0 ¼ 0, the models for
positive and negative φ are degenerate and we plot both extrema,
�jφjmax, to illustrate the loop structure. Again the loops shrink for
larger μφ, but we also notice a split into two separate loops at
μφ ¼ 0.1. For μφ ¼ 0.15, the second loop containing highly
compact models with large Actr is no longer present.
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C. Dependence on the bosonic potential

In this section, we consider the structure of BS solutions
in ST theory of gravity for other potentials of the BS scalar
field. We focus on models governed by the potentials given
in Eq. (21), namely a solitonic one with σ0 ≥ 0.2 and a
repulsive potential with λ4 ≥ 0. We find that the specific
choices we consider here affect the structure of scalarized
BS models, resulting in several differences to the proto-
typical example studied in Sec. III A. In particular, we find
that the gravitational scalar changes its shape with stellar
compactness and that strongly scalarized solutions may no
longer have larger masses and radii than their GR counter-
parts. Similar to Alcubierre et al. [86] we do not find self-
interaction terms in the bosonic potential to be necessary
for obtaining strong scalarization. We analyze these fea-
tures in more detail in the following subsections.

1. Massless gravitational scalar field

Gravitational scalar profiles: Previously we noted that a
solitonic potential with σ0 ¼ 0.2 leads to the distinct fea-
ture of a gravitational scalar field φðrÞ peaking off-center;

cf. Fig. 3. For repulsive (λ4 > 0) and mini-BS (λ4 ¼ 0)
models, in contrast, the gravitational scalar more com-
monly reaches its global extremum exactly at the center.
We illustrate this in Fig. 6, where φðrÞ gradually changes
its behavior from peaking at r ¼ 0 to peaking off-center,
as one moves to models with higher central amplitudes Actr
of the BS scalar. The same behavior has been observed
for neutron stars of increasing compactness; cf. Fig. 7 in
Ref. [98]. In Fig. 6 we mark by a star the threshold, where
this transition occurs. We additionally plot in each of the
upper panels the profiles AðrÞ and φðrÞ for two models
marked 1 and 2 in the mass-radius diagram. These models
are located on either side of the threshold; for model 1 (less
compact, i.e., smaller Actr than the threshold model) φ
peaks at the center r ¼ 0 and for model 2 (more compact
with larger Actr) it peaks off-center.
We can qualitatively understand this behavior as follows.

The shape of the gravitational scalar field near the origin is
controlled byEq. (13) for κ, which denotes a rescaled version
of the radial derivative for the gravitational scalar field ∂rφ.
The overall sign of ∂rκ at small radii determines the
concavity of φ near the origin, and, thus, whether it peaks

FIG. 6. Upper panels: radial profiles of the BS scalar amplitude A, the gravitational scalar φ and the trace of the energy-momentum
tensor T for the BS models 1 and 2 indicated by a circle and a triangle, respectively, in the panels below. The models with λ4 ¼ 0 (left)
have frequenciesω1 ¼ 0.8518 and ω2 ¼ 0.7729, whilst for models 1 and 2 with λ4 ¼ 50 (right) we have ω1 ¼ 0.8303 and ω2 ¼ 0.7572.
Note that the trace of the energy-momentum tensor has been scaled for presentation purposes. As supported by analysis in the main text,
T becomes negative at small radii for models with a gravitational scalar peaking at the origin. Lower panels: mass-radius plots with the
colour bar indicating the central amplitude of the BS scalar field. The star marks the threshold at which the gravitational scalar starts
to peak off-center; we ubiquitously observe that φ peaks at r ¼ 0 for less compact stars (Actr is lower than for the threshold case,
i.e., dark-blue color) and φ peaks off-center for more compact stars (large Actr, i.e., cyan color). We exemplify this with models 1
(less compact with φ peaking at r ¼ 0) and 2 (more compact with φ peaking off-center) for each of the potentials (left with
λ4 ¼ 0 and right with λ4 ¼ 50).
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off or at the center. Without loss of generality, we assume
that φctr > 0, then the sign of ∂rκ will be determined by
the two terms 2αXFW;φ2φ and ðω2A2 − 2α2V − F2θ2Þ.
The former is always positive or zero, whilst the latter
can be negative, provided the magnitudes of the potential
and the lapse (i.e., 2α2V) are large enough to counteract
the positive contribution of ω2A2. The last term F2θ2 is
negligible near the origin since θð0Þ ¼ 0 by Eq. (14). The
ingredients required tomake ∂rκ negative, and thus cause the
gravitational scalar φ to peak at the origin, are as follows:
(1) Large potential values V: for typical values of

Actr ∈ ½0.1; 0.2� in the regime of scalarization, the
noninteracting and the repulsive potentials take on
larger values compared to a solitonic potential with
small σ0; cf. Fig. 1.

(2) Small central amplitudes of the BS scalar: models
with small Actr result in less compact (or fluffy) stars.
These fluffy configurations have shallower gravita-
tional wells which manifest themselves in larger
values of the lapse α near the origin.4 Small Actr and
the ensuing large α therefore are more likely to make
the overall contribution to ∂rκ negative. Empirically,
we find that mini and repulsive potentials, but rarely
solitonic with σ0 ≈ 0.2, allow for scalarized BSs
with small Actr, i.e., low compactness; cf. Fig. 7.

This behavior of the gravitational scalar can also be
explained using the trace of the energy-momentum tensor
which is obtained from Eq. (4),

T ¼ gαβTαβ ¼
1

Fα2
ðω2A2 − 2α2V − F2θ2Þ: ð23Þ

Up to an overall factor, this expression equals the second
source term of our above analysis that drives ∂rκ via
Eq. (13). The sign of T can therefore be directly translated
to the concavity of φ. Recalling that the tachyonic
instability requires negative T, we expect strong scalariza-
tion to occur in the region where T < 0. Figure 6 illustrates
exactly this effect; for less compact models with T ≲ 0 at
small r, φ peaks at the origin, and for compact models with
a central T ≳ 0, φ peaks away from the origin; cf. also
Fig. 3. The φðrÞ profile of particularly compact scalarized
models is therefore more shell-like.
The onset and degree of scalarization: The nature of

the potential further determines the degree of scalarization
of BS solutions and the global properties of such models.
Figure 6 illustrates one example of this for mini and
repulsive potentials in the mass-radius plane, where all
of the scalarized branch falls underneath the GR one for
λ4 ¼ 0, but only part of it for λ4 ¼ 50. Similarly, we see in
Fig. 16 in Appendix C that many scalarized BSs for

solitonic potentials with σ ≳ 0.3 have smaller masses than
their GR counter parts with equal radius, very much in
contrast to the solitonic σ0 ¼ 0.2 case of the prototypical
example studied in Sec. III A.
Furthermore, the threshold for β0 at which scalarization

starts to occur varies with the potential; we summarize this
dependence in Table I. Overall, we find that the repulsive
potential requires less negative β0 values for solutions to
scalarize, which is then followed by the mini and solitonic
potentials. For massless ST theory, the thresholds fall into a
range −7.5≲ β0;thr ≲ −4.96, a bit below the threshold of
−4.35 typically found for neutron stars.
Even though solutions are less strongly scalarized for the

solitonic potential with σ0 ≳ 0.3, there are some subtle
features in the dependence of scalarization on the self-
interaction term as illustrated in Fig. 7. First, the degree of
scalarization varies nonmonotonically with σ0. Typically
smaller values of σ0 ≈ 0.2 result in more strongly scalarized
solutions than models with σ0 ≈ 1. On the other hand,
larger σ0 lead to a wider range of Actr for which scalarized
solutions exist; in Fig. 7 the support of jφjmaxðActrÞ
significantly increases for models with σ0 ≳ 0.35. As σ0

FIG. 7. Maximum of the gravitational scalar field as a function
of the central bosonic amplitude for various potentials considered in
thiswork.We remark that repulsive potentials result inmore strongly
scalarized solutions than any other potential considered here.

TABLE I. Summary of threshold values of β0 for the onset of
scalarization for different potentials in the massless case.

Potential Coupling β0;thr

Solitonic σ0 ¼ 0.2 −6.079
Solitonic σ0 ¼ 0.3 −7.282
Solitonic σ0 ¼ 0.5 −6.641
Solitonic σ0 ¼ 1 −6.219
Solitonic σ0 ¼ 2 −6.128
Mini λ4 ¼ 0 −6.098
Repulsive λ4 ¼ 50 −5.272
Repulsive λ4 ¼ 100 −4.961

4In our gauge, the lapse function α asymptotes to 1 at infinity
and smaller values of the lapse function correspond to deeper
gravitational wells and vice versa.
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increases, the scalarized branches slowly converge to the
scalarized solutions of mini-BSs, which can be seen by a
close overlap of the σ0 ¼ 2 and λ4 ¼ 0 curves. We present a
more detailed illustration of this transition in Appendix C,
where we compute families of solutions for a wider range
of potentials. Finally, we find that for a fixed value of β0,
the strongest scalarization occurs in the case of the
repulsive potential with our largest λ4 ¼ 100.

2. Massive gravitational scalar field

Gravitational scalar profiles: We next turn to analyzing
the features of scalarized BS solutions with other bosonic
potentials in the massive case. A systematic investigation
of the global maximum of jφj across the parameter space
confirms that for μφ > 0, certain choices of the potential
VðAÞ still result in the gravitational scalar profiles peaking at
the origin. However, we find that an increasing mass μφ
tends to push the extremum of φ away from the origin. This
effect can be explained using the same reasoning as in the
massless case of Sec. III C 1 by assessing the sign of the
right-hand-side of Eq. (13) for ∂rκ. Assuming that φctr > 0,
we conclude that μφ > 0 increases the overall positive
contribution from the 2αXFW;φ2φ term and empirically
we find it also increases ω. Therefore, larger values of the
gravitational mass push ∂rκ towards positive values and the
gravitational scalar φ tends to peak away from the origin.
It is possible however to push the gravitational scalar field

maximum towards r ¼ 0 by making β0 negative enough.
The impact of a more negative β0 parameter is twofold:
(1) BS frequencies ω decrease.
(2) The overall magnitude of 2πXF0

αF2 ðω2A2 − 2α2VÞ in-
creases due to the larger F0=F2 factor.

The combined effect of a more negative β0 is therefore to
make the final term of the ∂rκ equation negative and large
enough to counteract the nonzero positive contribution from
2αXFW;φ2φ term. The sign of ∂rκ becomes negative and φ
peaks at r ¼ 0.
We quantitatively illustrate the effect of μφ and β0 on the

φ profile in Table II where we list for several combinations
of (μφ, β0) the minimal σ0 values at which we find models
with φ peaking at r ¼ 0. Below the respective σ0;min, φ
peaks off-center for all scalarized BS models. As the table
suggests, it is easier to find φ profiles peaking at the origin
for smaller gravitational masses μφ and more negative β0.
In Fig. 8 we summarize the dependence of the gravitational
scalar profile on the BS and ST parameters.
The onset and degree of scalarization: Finally, we make a

few remarks on the effect of μφ > 0 on the scalarization ofBS
solutions. As already seen in Fig. 5, the threshold β0;thr for the
onset of strong scalarization for solitonicBSswithσ0 ¼ 0.2 is
well described by a quadratic function of the mass parameter
μφ for ST gravity with α0 ¼ 0. In Fig. 9 we plot the onset of
scalarization for several other potential functions with para-
meters as listed in the legend. For all cases, the numerical data

are in excellent agreement with a monotonically decreasing
quadratic fit which confirms our general observation that an
increasing μφ weakens scalarization. In order to assess in
more detail how different potential functions affect the onset
of scalarization, we display in Fig. 10 the threshold values
β0;thr as a function of the parameters σ0 and λ4 for three fixed
values of the mass μφ ¼ 0, 0.1, and 0.3. We recall that mini-
BSs are obtained in both limits, σ0 → ∞ and λ4 ¼ 0, and can
be regarded as the link between the solitonic and repulsive
potential. The variation of β0;thr in Figs. 9 and 10 shows that
forμφ ≲ 0.3, similar to themassless case,BSswith a repulsive
potential are more susceptible to scalarization than solitonic
and mini-BSs, although not by a huge amount. For μφ ≳ 0.3,
however this trend is reversed and solitonic-BSs scalarize
most easily.

D. Dependence on α0

Previously we have considered ST theories with α0 ¼ 0,
where the solutions are degenerate under the transformation
φ → −φ. In the case, of α0 ≠ 0 we acquire additional
structure through the splitting of the scalarized branches.
More specifically, we find5:
(1) A larger branch (as viewed in the mass-radius plane),

mostly with negative gravitational amplitudes φctr.
At very high compactness (i.e., large Actr) these
models start to have φctr > 0 and the φðrÞ profiles
have a zero crossing.

(2) A smaller closed loop, where we exclusively observe
positive φctr.

These two branches contain strongly scalarized solutions,
as well as weakly scalarized ones, in which case the BS
models have similar mass and radius to their GR counter-
parts. This is illustrated in Fig. 11, where certain BS models
of the α0 > 0 sequences closely resemble the GR solutions
obtained for α0 ¼ 0. For mild values of α0, the closed
loop intersects itself and acquires a shape similar to the
∞ symbol as in the case of α0 ¼ 0.01. As we increase α0,
first the∞-shape and then the entire loop slowly shrink and

TABLE II. The minimum value of σ0 where we find BS models
with a gravitational scalar peaking at r ¼ 0 is listed for solitonic
BS families with α0 ¼ 0 as well as the specified values of μφ and
β0. A gravitational scalar φ reaching its global extremum at the
origin is easier to obtain for smaller μφ and for larger β0.

μφ β0 σ0;min

0 −10 0.25
0.1 −10 0.34
0.1 −14 0.24
0.3 −14 0.55

5Recall that in our convention α0 ≥ 0; for the opposite
convention α0 ≤ 0 the signs of φ would be reversed.
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disappear (see e.g., α0 ¼ 0.1). We note that certain values of
α0 we consider here are above the Cassini measurement
constraint. This choice is made for visualization purposes:
for smaller values of α0 the two branches lie more closely to
each other making their splitting less evident. Although here

we discuss solitonic BSs, for other potentials we observe a
qualitatively similar splitting of the solution branches.
The disappearance of one of the solution branches

can be traced back to the conformal coupling function
FðφÞ ¼ expð−2α0φ − β0φ

2Þ. When α0 ¼ 0, the value F
is solely determined by the magnitude of β0: a more nega-
tive β0 leads to stronger scalarization. A nonzero α0, on
the other hand, leads to a nonzero −2α0φ contribution in

FIG. 8. Flow-chart showing the dependence of the gravitational scalar profile φ on the BS parameters, Actr and VðAÞ, and the ST
parameters, μφ and β0. As discussed in the main text, the sign of ∂rκ determines the behavior of φ at the origin. If ∂rκ > 0, φ peaks away
from r ¼ 0, whilst for ∂rκ < 0, φ peaks at r ¼ 0. The two source terms, denoted by I and II in the diagram, play the leading role in
determining the sign of ∂rκ at r ¼ 0. By the boxes’ colours we mark how the ST and BS parameters tend to impact the φ profiles—blue
for peaking at the origin and pink for peaking off-center.

FIG. 9. The threshold β0;thr for the onset of scalarization as a
function of μφ for different BS potentials VðAÞ as given in
Eq. (21) with the indicated parameter values σ0 and λ4. The lines
represent quadratic fits with the given coefficients. The case
λ4 ¼ 100, μφ ¼ 1.5 exhibits one minor anomaly; here, the ×
symbol marks the disappearance of stable scalarized models, but
extremely compact unstable BSs are still found up to the β0 value
marked by the filled circle. Only the former (×) data point is used
in the fit.

FIG. 10. The threshold β0;thr for the onset of strong scalarization
is shown for the different types of potentials and three values of
the gravitational scalar mass μφ ¼ 0, 0.1, and 0.3. The horizontal
axis represents σ0 for the solitonic potential on the left and λ4 for
the repulsive potential on the right.
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the exponent of F. For φ > 0, this curbs the effect of β0
and subsequent scalarization whilst for φ < 0 the α0 term
strengthens it; for α0 > 0 we have Fðφ > 0Þ < Fðφ < 0Þ.
This effect is further illustrated by the relative size of
the scalarized branches in Fig. 11: the solution branches
for φctr > 0 are systematically smaller in size than their
φctr < 0 counterparts. For sufficiently large values of α0
with fixed β0, the solutions with φctr > 0 cease to exist and
the branch disappears. Considering the case α0 ¼ 0.1 and
β0 ¼ −7, for example, we can easily support this by a back-
of-the-envelope calculation: assuming φ ∼ 0.1, the con-
formal coupling function is FðφÞ ∼ expð0.05Þ, which is
equivalent to setting α0 ¼ 0 and β0 ¼ −5. As discussed in
Sec. III B (see also Fig. 5 and Table I), however, the onset
of scalarization for μφ ¼ 0 and a solitonic potential with
σ0 ¼ 0.2 occurs for β0 ≳ −6.1. An effective β0;eff ≈ −5 falls
out of this range and is therefore compatible with the
disappearance of positive solutions for α0 ¼ 0.1.
Besides the branch splitting, BS solutions with α0 > 0

depend on β0 and μφ in a way very similar to the α0 ¼ 0

case discussed previously. In particular, a more negative β0
results in stronger scalarization of solutions, with larger
mass MADM and radius RJ (cf. the right panel of Fig. 11).
Increasing the mass parameter μφ, on the other hand,
systematically reduces the scalarization effect in the same
way we have observed in Sec. III B for α0 ¼ 0.

E. Thin-shell models

In Ref. [106], Collodel and Doneva computed an
intriguing type of BS solutions in GR dubbed thin-shell
models (also see Ref. [107]). The main characteristics of

these BSs are (i) an approximately constant scalar profile
AðrÞ extending out to rather large radius and (ii) a low
frequency ω; see in particular their Fig. 6. As a conse-
quence of these two features, the derivatives ∂tA and ∂rA
become very small at small as well as very large radii,
resulting in a nearly vanishing energy density except for a
shell region where the scalar field eventually drops to zero.
In Fig. 2 for our prototypical BS family, we can see that the
scalarized stars tend to have lower frequencies than their
GR counterparts. We have found this behavior systemati-
cally in our investigations of the BS and ST parameter
space (see Fig. 19), suggesting that scalarization can
strengthen the thin-shell character of BSs.
We study this feature in more detail for the specific

case of massless ST theory with α0 ¼ 0 and β0 ¼ −12 for
the solitonic potential with σ0 ¼ 0.2. Due to different
conventions, our σ0 is related to the parameter σ used by
Collodel and Doneva by σ ¼ ffiffiffiffiffiffi

2π
p

σ0, so that our scenario
corresponds to σ ≈ 0.5 in Ref. [106], well above the regime
where they encounter thin-shell stars. We likewise find no
indication of shell-like structure on the GR branch of
our scenario which yields a minimal frequency of about
ω ¼ 0.428 in good agreement with Ref. [106]; this can be
seen by comparing the bottom panel of our Fig. 12 with the
left panel of their Fig. 2. Along the scalarized branch,
however, we obtain BS models with much lower frequen-
cies ω < 0.2. As indicated in the upper panel of Fig. 12,
we also obtain significantly larger radii for these models,
although we emphasize that this is largely due to the
reduced falloff of AðrÞ rather than its behavior in inner
regions of the star. The radial profiles displayed in Fig. 13
for the strongly scalarized BS with minimal ω (marked by

FIG. 11. Left: BS models in ST gravity with μφ ¼ 0, β0 ¼ −7 and varying α0 for a solitonic potential with σ0 ¼ 0.2. The branches
obtained for each value of α0 are presented in different shades of one color to differentiate between positive and negative central
gravitational field amplitudes. For α0 ¼ 0.01, for instance, dark green denotes models where φctr < 0 and light green those with
φctr > 0. For reference, we also plot the solutions for α0 ¼ 0 which are shown in gray. Right: dependence of the BS solutions on β0 for
α0 ¼ 0.01; μφ ¼ 0 and a solitonic potential with σ0 ¼ 0.2. The inset highlights the self-intersecting φctr > 0 branch with∞ shape for the
sequence of models with β0 ¼ −10.
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circles in Fig. 12), however, exhibit an approximately
constant AðrÞ out to r ≈ 7. In contrast, the GR model
with minimal ω displays a distinctly “ordinary” profile
where AðrÞ rapidly drops away from the origin. A similar
investigation of neighboring models along the GR and
scalarized branches yields very similar profiles and, as
evident in Fig. 12, frequency values, and we observe
qualitatively the same behavior for other values of σ0.
Mathematically, we can explain this behavior by consid-
ering Eq. (13) for ∂rA and ∂rθ. Thin-shell models can be
regarded as a sequence of BSs that approach a uniformly
constant scalar-field solution A ¼ const. extending to larger
and larger radii. In Eq. (13), this limiting (Minkowski)
solution is obtained for a zero right-hand side of ∂rθ.
Ignoring the geometric term −2θ=r, which merely incor-
porates the r2 behavior of a 3D volume, the key math-
ematical origin of thin-shell stars is a nearly vanishing

X
αF

ðα2V;A2 − ω2Þ: ð24Þ

For strongly scalarizedBSs, on the other hand,FðφÞ is domi-
nated by the quadratic contribution in the exponential (2)

and therefore F > 1 which reduces the term (24) relative
to its GR value and hence drives BSs in the direction of
thin-shell models.

IV. STABILITY

Depending on the ST parameters ðμφ; α0; β0Þ and the
potential VðAÞ, there may exist up to seven (or even more
for nonzero α0) BS models with the same mass. This raises
the question which of these models is energetically favored.
We assess this by using binding energy arguments for a
wide range of BS solutions. More specifically, we define
the binding energy

Eb ≔ MADM −QBS; ð25Þ

where QBS denotes the conserved Noether charge, i.e.,
the number of bosonic particles making up the BS. It is
defined as the spatial integral of the time component of the
Noether current,

Jα ¼ i
2
gαβðψ�∇βψ − ψ∇βψ

�Þ; ð26Þ

so that

QBS ¼
Z

J0
ffiffiffiffiffiffi
−g

p
dx3 ¼

Z
4πA2ωX

Fα
r2dr: ð27Þ

For each set of BSs with equal Noether charge,6 the model
with the strongest binding energy Eb, i.e., the smallest mass
MADM, is taken as the stable, energetically favored con-
figuration. This does not necessarily imply that the other

FIG. 12. Top: mass-radius diagram for solitonic BS models
with μφ ¼ 0, α0 ¼ 0, β0 ¼ −12, and σ0 ¼ 0.2. Bottom: fre-
quency ω as a function of the central BS scalar amplitude Actr
for the same family of models. The color represents the maximal
gravitational scalar in both panels.

FIG. 13. Radial profiles of the scalar functions AðrÞ;φðrÞ and
the mass mðrÞ for a scalarized BS with Actr ¼ 0.148 and a GR
model with Actr ¼ 0.177, corresponding to the minimal frequen-
cies ω ¼ 0.1476 and ω ¼ 0.4283 and marked by circles in
Fig. 12. For presentation purposes, the scalar fields A and φ
have been amplified by a factor 10.

6We remark that QBS in Eq. (27) is equal in both, Jordan and
Einstein frames, making it a universal diagnostic.
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models are perturbatively unstable, but under sufficiently
strong excitations, we expect them to either form a black
hole, evaporate or migrate to a stable BS; we therefore
refer to these other models as unstable in the following
discussion.
We first apply this method to the prototypical example

discussed in Sec. III A. This set of BS models is obtained
for ST parameters μφ ¼ 0.05; α0 ¼ 0; β0 ¼ −11 and a
solitonic potential with σ0 ¼ 0.2. Figure 14 shows the
same mass-radius diagram as Fig. 2 but now color codes
solutions in light (copper) for stable or dark (black)
for unstable stars. We clearly see that the scalarized
branch from the low-mass bifurcation point all the way

up to its maximal mass at about ðRJ ≈ 15;MADM ≈ 1.1Þ
contains energetically favored models. This set of stable
BSs is completed by a small piece of the GR branch
around RJ ¼ 5 which contains low-mass but compara-
tively compact BSs for whom no scalarized counter-
parts exist.
Repeating the same analysis in Fig. 15 for other

bosonic potentials and ST parameters, unravels a very
similar pattern. For α0 ¼ 0 scalarized BSs are commonly
energetically favored relative to their GR cousins with
equal Noether charge. For nonzero α0, where we commonly
encounter multiple scalarized branches, we observe that
strongly scalarized BSs with larger radius tend to be stable.
We identify some exceptions to these rules, however;
scalarized BSs with relatively small mass or radius may
be energetically disfavored relative to other scalarized
solutions (see the left panel of Fig. 15) and, in some cases,
even relative to GR models (see Fig. 20 in Appendix C,
where we explore a wider range of potentials V). In general,
we observe that, similarly to BS models in GR, stable and
unstable models in ST gravity are separated by the
maximum-mass model.

V. CONCLUSIONS

In this work we have performed a systematic study of
the structure of strongly and weakly scalarized boson-star
solutions in scalar-tensor theory of gravity with Damour-
Esposito-Farèse coupling. For this purpose we compute
spherically symmetric ground-state BS models using
shooting and relaxation algorithms. In order to control
the challenging exponential behavior of the scalar field
solutions, we perform a comprehensive analysis of their
asymptotic behavior, identifying incompatibilities that arise
from using the flat-field limit.

FIG. 14. Mass-radius diagram for BS solutions for μφ ¼
0.05; α0 ¼ 0; β0 ¼ −11 and a solitonic potential with σ0 ¼ 0.2.
Stable models are determined by identifying among the set of all
stars with equal Noether charge QBS the BS with the strongest
binding energy Eb ¼ MADM −QBS. These stable models are
displayed in light (copper) color and the remaining unstable
stars in dark (black).

FIG. 15. Stability of other BS models considered in this work. From left to right: (i) repulsive potential with λ4 ¼ 50, massless φ,
α0 ¼ 0, β0 ¼ −7; (ii) solitonic potential with σ0 ¼ 0.2, massive φ with μφ ¼ 0.05, α0 ¼ 0.01, β0 ¼ −10; and (iii) minipotential with
λ4 ¼ 0, massless φ, α0 ¼ 0, β0 ¼ −7. As in Fig. 14, light (copper) color denotes stable BS models and dark (black) unstable ones. Note
that for α0 ≠ 0 (center and right panels) we always have two separate scalarized branches, either of which may self-intersect: one closed
loop and one open branch with two loose ends. For the mini-BS in the right panel, these two branches almost touch, yet remain separate
as shown in the inset.
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Our study suggests that there are many common features
in the dependence of scalarized solutions on the ST para-
meters ðμφ;α0; β0Þ as compared to the neutron star case. In
particular, we observe the following main features:
(1) The scalarized solutions form additional branches in

the mass-radius plane. These models can have larger
mass and radius compared to their GR counterparts,
although exceptions to this rule exist, depending on
the potential and ST parameters.

(2) A smaller gravitational scalar mass μφ and a more
negative β0 strengthen scalarization, pushing the
scalarized branch to larger radii; cf. Fig. 4 and the
right panel of Fig. 11.

(3) A nonzero α0 splits the scalarized branches by
breaking the φ → −φ degeneracy; cf. the left panel
of Fig. 11. For sufficiently large values of α0 one of
the branches disappears.

(4) Scalarized solutions are often energetically preferred
(i.e., stable) when compared to their GR counter-
parts with the same Noether charge. We similarly
find that a larger BS radius tends to favor stability.

Further to these main features, we summarize the
specific traits inherent to scalarized BSs and their variation
over the parameter space as follows:

(i) Onset of scalarization: Compared with neutron
stars, we require more negative values of β0 to
obtain scalarized BSs. Our analysis suggests that
BSs with repulsive potentials with large λ4 are most
susceptible to scalarization in the massless case: the
onset of scalarization happens for β0 ≲ −4.96, com-
pared to β0 ≲ −4.35 for NSs. Mini- and solitonic
BSs are less liable to scalarize and typically require
more negative β0. This trend also holds in the
massive case up to μφ ≈ 0.3, beyond which solitonic
BSs become more receptive to scalarization. For all
potentials, the threshold for scalarization β0;thr takes
on a quadratic dependence on the mass term μφ;
cf. Fig. 9.

(ii) Degree of scalarization: The repulsive potential for
large λ4 results in the strongest scalarization, both
in magnitude and range of BS models. For solitonic
potentials, in contrast, we observe a nonmonotonic
dependence of the degree of scalarization on the
self-interaction parameter σ0. In general small σ0 ≈
0.2 leads to stronger scalarization albeit over a
narrower range of BS models than larger values
σ0 ≳ 1 and the mini-BS limit σ0 → ∞; cf. Fig. 7.

(iii) Gravitational scalar behavior: The potential not
only determines the onset and degree of scalariza-
tion, but also the resulting compactness of the star
and the gravitational scalar behavior near the origin;
cf. Fig. 8. Generally, we find that less compact stars
support a gravitational scalar whose radial profile
peaks at the origin; this is most common for mini

and repulsive potentials that result in less compact
stars. As attractive self-interaction terms are in-
cluded in the solitonic potential, the scalarized
solutions become more compact and the gravita-
tional scalar’s extremum moves away from the
origin. We also relate this behavior to the trace of
the energy-momentum tensor T, which needs to
be negative in the regions of strong scalarization.
We systematically observe that less compact
models achieve negative values of T near the origin;
cf. Fig. 6. For more compact models, in contrast,
T only becomes negative further away from r ¼ 0
resulting in shell-like gravitational scalar profiles.

(iv) Thin-shell-like models: Strong self-interactions in
the solitonic potential (small σ0) paired with strong
scalarization (small gravitational scalar mass μφ and/
or very negative β0) result in BS models akin to
the thin-shell BS models found in GR [106]. These
models correspond to highly massive BS solutions
in their family and have a bosonic field amplitude
AðrÞ approximating the shape of a Heaviside func-
tion. In GR, typically small values of σ0 ≲ 0.15
are required to obtain such thin-shell-like solutions.
In ST theory, however, we easily find such models
already for σ0 ¼ 0.2.

Our results demonstrate the rich structure of BSs in ST
theory of gravity and open many opportunities for future
work. A natural extension consists in further exploration
of more extreme regions of the parameter space, as for
example a thorough study of the onset of scalarization for
thin-shell models with σ0 < 0.2. Furthermore, dynamical
evolutions of our models would provide a robust picture
of their stability complementary to our binding energy
estimates. Finally, it will be intriguing to see how the
peculiarities identified in the structure of single BSs for
different ST parameters and/or BS potentials affect the
gravitational-wave emission of binary systems including
the scalar or breathing polarization mode.
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APPENDIX A: ASYMPTOTIC BEHAVIOR

In this appendix, we analyze the asymptotic behavior
of the BS and gravitational scalar fields in ST theory
of gravity at infinity. It is convenient to work in the
compactified coordinate y ≔ 1=r and define rescaled
variables, separating the exponential behavior in the
following way:

ζ ≔
ek=y

yϵ
A; Π ≔ −

ek=y

yϵ
θ;

ϱ ≔
eh=y

yδ
φ; Λ ≔ −

eh=y

yδ
κ: ðA1Þ

Note that the exponents ϵ, k, h, and δ are as yet unspeci-
fied parameters and the goal of this section will be
to determine them. As we will see below, their values
will depend on the specifics of the BS model and ST
parameters in question. The key difference of the asymp-
totic behavior we assume here as compared to the flat-
field limit (15) is the inclusion of the noninteger ϵ and δ
parameters, which are set to zero in the flat-field limit. We
use the term flat-field limit for this latter case since it
becomes correct when M ¼ 0, i.e., when we regard the
matter as a perturbation on a flat Minkowski metric
without backreaction on spacetime curvature.
The field equations for the rescaled variables (A1) are

obtained by substituting them into Eq. (13), which leads to

∂yΦ ¼ −
FX2 − 1

2y
þ y2δ−3

e2h=y
X2

�
FŴϱ2 −

Λ2

2α2

�
þ 2πy2ϵ−3

X2

Fα2
e−2k=yðα2V̂ζ2 − ω2ζ2 − F2Π2Þ;

∂ym ¼ −
y2δ−4

e2h=y

�
Ŵϱ2 þ Λ2

2Fα2

�
−
2πy2ϵ−4

F2α2
e−2k=yðω2ζ2 þ α2V̂ζ2 þ F2Π2Þ;

∂yϱ ¼ XΛ=α − ðyδþ hÞϱ
y2

;

∂yΛ ¼ ð2 − δÞy − h
y2

Λþ 2
αXF
y2

W;φ2ϱþ 2π

y2þδ−2ϵ e
ðh−2kÞ=y X

α

F0

F2
ðω2ζ2 − 2α2V̂ζ2 − F2Π2Þ;

∂yζ ¼ FXΠ=α − ðϵyþ kÞζ
y2

;

∂yΠ ¼ ð2 − ϵÞy − k
y2

Πþ Xζ
αFy2

ðα2V;A2 − ω2Þ; ðA2Þ

where we denoted Ŵ ≔ W=φ2 and V̂ ≔ V=A2. Note that the equation for ∂yΛ contains an exponential factor
exp½ðh − 2kÞ=y� which diverges when h > 2k, resulting in unphysical spacetimes. We are thus left with two remaining
possible scenarios, h < 2k and h ¼ 2k. All BS families studied in this work comfortably fall into the range h < 2kwhich is
the case we henceforth focus on.
Assuming that we recover a Schwarzschild metric at infinity, we propose the following ansatz around y ¼ 0

ΦðyÞ ¼ Φ0 þΦ1yþΦ2y2 þΦ3y3 þΦ4y4 þ…;

mðyÞ ¼ M þm1yþm2y2 þm3y3 þm4y4 þ…;

ϱðyÞ ¼ ϱ1yþ ϱ2y2 þ ϱ3y3 þ ϱ4y4 þ…;

ΛðyÞ ¼ Λ1yþ Λ2y2 þ Λ3y3 þ Λ4y4 þ…;

ζðyÞ ¼ ζ1yþ ζ2y2 þ ζ3y3 þ ζ4y4 þ…;

ΠðyÞ ¼ Π1yþ Π2y2 þ Π3y3 þ Π4y4 þ…: ðA3Þ
Plugging these expansions into Eq. (A2) and considering terms order by order, we obtain a set of equations for the
coefficients that leave7 Φ0;M; ζ1; ϱ1 unspecified but uniquely determine all other coefficients in terms of the free

7The coefficient M turns out to equal the ADM mass, MADM; for simplicity we use M in this discussion.
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parameters. The latter are eventually obtained by matching
the exterior solution of Eq. (A2) to the interior solution of
Eq. (13) as described in more detail in Appendix B.
Applying the series expansion for a massive gravitational

scalar field, we arrive at the following relations for the free
parameters in Eq. (A1),

k2¼1−
ω2

e2Φ0
; ϵ¼M

2k2−1

k
; δ¼Mh; h2¼μ2φ: ðA4Þ

Let us now consider two limiting cases of these conditions.
First, we obtain the asymptotic behavior of BSs in GR by
simply omitting the ϱ and Λ coefficients intrinsic to ST
gravity. Second, by settingM ¼ 0, we recover the flat-field
limit (16).
In the massless case μφ ¼ 0, we follow a similar

procedure, except now there is no exponential falloff for
the gravitational scalar field, i.e., h ¼ 0 and δ ¼ 0. Again,
applying the asymptotic ansatz (A3) and considering terms
order by order in Eq. (A2), we arrive at

k2 ¼ 1 −
ω2

e2Φ0
; ϵ ¼ M

2k2 − 1

k
þ α0ϱ1

k
: ðA5Þ

In summary, the rescaled variables in Eq. (A1) together
with the series expansions in Eq. (A3) imply that the
bosonic and gravitational scalar fields have asymptotic
behaviors given by

φ ∼ e�h=yy1þδ and A ∼ e�k=yy1þϵ; ðA6Þ

where h, k, δ, and ϵ are determined by Eqs. (A4) and (A5)
for massless and massive φ, respectively.
All frequencies we report in this work correspond to a

unit lapse function at infinity, i.e., Φ0 ¼ 0; even if a non-
zeroΦ0 is used in the numerical calculation, this is straight-
forwardly achieved by an a posteriori rescaling of ω. The
frequencies thus obtained ubiquitously fall into the range
0 < ω < 1. The functional behavior kðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ω2Þ

p
furthermore pushes k towards values rather close to unity
in exactly the same way the Lorentz factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
reduces relativistic effects for all velocities but those close to
the speed of light. This effect avoids extreme values of ϵ
which we typically find to be in the range −2≲ ϵ≲ 3. An
unscalarized low-density mini-BS with M ¼ 0.345 and
ω ¼ 0.9785, for instance, has ϵ ¼ −1.53 whereas the
strongly scalarized thin-shell BS with M ¼ 2.39 and ω ¼
0.148 of the ðμφ ¼ 0; α0 ¼ 0; β0 ¼ −12; σ0 ¼ 0.2Þ family
discussed in Sec. III E has ϵ ¼ 2.31. The exponential factor
h for the asymptotic behavior of the gravitational scalar, on
the other hand, is directly given by the scalarmass μφ and the
exponent δmerely acquires an extra factor of theBSmassM;
δ vanishes in massless ST theory, but can reach values up to
order unity for the BS sequences studied in this work.

We similarly obtain values ϱ1 ¼ Oð1Þ for strongly scalar-
ized stars.
Finally, let us illustrate where and how the flat-field

asymptotics go wrong, when used in the presence of
gravity. Using the flat-field asymptotic behavior leads to
rescaled scalar variables

ζ ≔ ek=yA; Π ≔ −ek=yθ: ðA7Þ

At Oðy−1Þ, the equation for ∂yΠ then gives the first
ingredient of our result in Eq. (A4), i.e., k2 ¼ 1 − ω2=e2Φ0 .
However, as we proceed to consider the next leading
contributions at Oðy0Þ in the equations for ∂yΠ and ∂yζ,
we arrive at

2MΠ1ð1 − 2ω2Þ ¼ 0; ðA8Þ

which can only be satisfied whenM ¼ 0 or whenω2 ¼ 1=2
with M ≠ 0. This analysis evidently results in a contra-
diction, as it postulates that BSs do not exist for frequencies
ω2 ≠ 1=2. The inclusion of the nontrivial parameter ϵ in
Eq. (A1) avoids this contradiction.

APPENDIX B: NUMERICS

We have written three different codes for the numerical
solution of the ODE system (13) with the boundary
conditions (14). This slightly unusual approach was moti-
vated by two main considerations. First, it was not entirely
clear how the challenging asymptotic behavior of the two
scalar fields might be best controlled numerically. Second,
in the absence of literature results for comparison, we
wished to verify our results with independent means. Here,
we briefly describe our schemes and assess the uncertainty
of our results.

1. Numerical shooting

Our first code operates in a way similar to the BS
shooting code developed for GR in Ref. [32]. Starting with
Φ ¼ 0, X ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
FðφÞp

, A ¼ Actr, φ ¼ φctr, κ ¼ 0, θ ¼ 0

at r ¼ 0 as well as an initial guess for the frequency
eigenvalue ω, the system (13) is integrated outwards
using a fourth-order Runge-Kutta scheme. At some radius,
similar to the GR case, the scalar fields start to diverge
and we deal with this divergence for each of the fields
individually in the following way:
(1) We find the radius where the scalar field modulus

starts to exceed its central value by an order of
magnitude (this usually happens sooner for A).

(2) We terminate the integration at that point and search
for the last local extremum of the scalar field.

(3) As a buffer, we take 90% of the radius where that
extremum occurs, which consequently determines
our matching radius, rm.
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(4) At rm, we match the integrated solution to the
asymptotics presented in Appendix A.

In the massless case, we find that the gravitational scalar
field can be integrated out, without any matching, as long as
the BS scalar field is matched to its corresponding asymp-
totic expansion. In the massive case, in contrast, both fields
have to be matched and this is done at radii rm;A and rm;φ

which are not necessarily equal. Once the full solution is
constructed, we assess the quality of the matching for both
scalar fields. In the massive case, we do so by computing
smoothness conditions at the matching radii,

CðφÞ ¼
				φþ φ0ðrm;φÞ

1þ δþ rm;φmφ
rm;φ

				; ðB1Þ

CðAÞ ¼
				Aþ A0ðrm;AÞ

1þ ϵþ rm;A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p rm;A

				; ðB2Þ

where δ and ϵ are defined in Eq. (A4). These conditions
are obtained by translating the asymptotic expressions in
Eq. (A1) into relations between the scalar variables and their
derivatives. In the massless case, we replace the CðφÞ
criterion by an analytic condition that relates the vacuum
solution at the stellar surface (shortly to be defined),φs, to its
asymptotic value, φ0, at r ¼ ∞ [59],

φs¼φ0−
Xsηsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð∂rΦsÞ2þXsηs
p artanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rΦsÞ2þXsηs

p
∂rΦsþ1=rs

: ðB3Þ

Here ηs ¼ κs=αs and, in our convention, φ0 ¼ 0. Since
BSs do not have a surface, we compute the gravitational
scalar field at the outer edge of the grid, φðrendÞ (typically
rend ¼ 1200), and evaluate the quality of the solution using
a new criterion, CðφmasslessÞ ¼ jφðrendÞ − φsj. Improved
guesses for φctr and ω are then constructed through a
standard Newton-Raphson method [110], until the condi-
tions CðφÞ and CðAÞ are satisfied at the required threshold
level, chosen to be 10−7 or smaller.

2. Two-way shooting

The second code operates with an inner region r∈ ½0; 2�
where Eq. (13) are integrated outward and an exterior
region y∈ ½0; 1

2
� where y ¼ 1=r and the BS equations (A2)

for the rescaled variables are integrated inwards from
infinity to y ¼ 1=2. Whereas integrating out of r ¼ 0 is
straightforwardly achieved by using the regularity of
the variables, the integration out of y ¼ 0 can result in
numerical instabilities at very small y, likely due to the
divisions by positive powers of y in several terms on the
right-hand side of Eq. (A2). We overcome these instabili-
ties by using the asymptotic expansion (A3) to a small but
finite y, typically y ¼ 0.01. We can reduce this value to
arbitrarily small level by increasing the number of grid
points in the exterior and employ this reduction in the

uncertainty estimate through convergence analysis. A
solution is obtained when the interior and exterior solu-
tions thus obtained satisfy the six matching conditions (A1)
and (12) at r ¼ 2 with a relative precision of 10−6 or better.
In order to start the integrations at r ¼ 0 and y ¼ 0, we
need to specify seven parameters, φctr, Actr, and Φctr at the
origin, M, ζ1, and ϱ1 at infinity as well as the frequency ω.
With seven free parameters for six matching conditions,
we obtain one-parameter families of solutions, as expected.
In practice, we choose one of the seven free parameters
to control the specific BS model, initialize the other six
parameters with initial guesses typically obtained from
neighboring BSs, and solve the matching conditons with a
Newton-Raphson iteration.

3. Relaxation

The third code uses a Newton-Raphson based relaxa-
tion scheme, implemented according to Chapter 17.3 of
Ref. [110]. Here, we again operate with an inner and an
outer region using the ODE system in the forms (13)
and (A2), respectively. The compactified grid and algo-
rithm allows us to impose exact boundary conditions
at spatial infinity. We also have the seven free parameters
as in the two-way shooting code which now impose six
boundary conditions needed in the relaxation scheme
and leave one parameter free to control the specific model.
The initial guess for the iterative procedure is either
obtained from other BS solutions close by in parameter
space, from the shooting code discussed at the start of this
subsection or from outward integrated profiles starting with
guesses for Actr and φctr to which we append the exponen-
tially decaying behavior on the outer grid.
We have assessed the numerical uncertainties of our

codes by verifying the respective convergence properties
and by comparing the codes’ results directly. For all our
diagnostics this results in a relative error and agreement
of 10−4 or better.

APPENDIX C: BOSON-STAR FAMILIES

In this appendix we illustrate the bulk properties of a
wide range of BS solutions in the form of mass-radius
diagrams for various potentials of the BS scalar. For this
purpose, we have chosen a massless gravitational scalar,
μφ ¼ 0, with vanishing α0 (for nonzero α0 the branches
would exhibit the splitting discussed in Sec. III D), and
β0 ¼ −10 which results in strongly scalarized models for
all potentials considered. In each panel, the potential VðAÞ
is characterized by the corresponding values of σ0 for
solitonic BSs and λ4 for massive BSs. The results shown
in Fig. 16 demonstrate a rather complex variation of the
branches with σ0 for solitonic BSs, including even one
case, σ0 ¼ 0.35, where all scalarized stars have a lower
mass than their GR counterparts with equal radius. The
parameter λ4 for massive BSs, in constrast, has a relatively
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straightforward impact on the scalarized BSs’ bulk proper-
ties, leading to systematically larger radii and masses as λ4
is increased.
In Figs. 17–19, we display the same solutions but

with jφjctr, Actr, and ω encoded in color. For solitonic

potentials, the maximal value jφjmax generally exceeds
the central jφjctr, demonstrating that the gravitational
scalar tends to peak away from the origin. For the
mini-BS case and repulsive potentials, on the other hand,
jφjmax and jφjctr are much closer which illustrates the

FIG. 16. Boson-star families in the mass-radius plane for fixed ST parameters α0 ¼ 0, β0 ¼ −10, μφ ¼ 0 and BS potential functions
VðAÞ as given in Eq. (21). The parameters σ0 or λ4 are specified in each panel for the corresponding BS family. The mini-BS case is
recovered in either of the limits σ0 → ∞ or λ4 ¼ 0. The color bar marks the degree of scalarization in terms of the maximum of jφðrÞj.
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trend towards φ peaking near the origin. For all potentials,
Fig. 19 exhibits lower frequency values along the scalar-
ized branch as compared to the GR models, confirming
the observation made in the bottom panel of Fig. 12
for thin-shell models. As exemplified by the solitonic
potentials for σ0 ≈ 0.35, this is not simply a consequence

of scalarized BSs being larger, but a more complex
phenomenon.
Finally, we mark in Fig. 20 the stable and unstable

models by light (copper) and dark (black) color.
The general trend is that scalarized models are energeti-
cally favored as has also been observed for neutron stars.

FIG. 17. Same as Fig. 16 but with jφjctr color coded.
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There are some exceptions to this rule, however:
(i) Scalarized stars need to be sufficiently massive to
become the stable member; cf. the cases σ0 ¼ 0.35 and
0.4 where scalarized BSs are mostly lighter than their
GR counterparts and are not stable; and (ii) At the very
low-mass end, the GR models with very low compactness

are favored over their low-mass, high-compactness sca-
larized cousins. These features can result in rather cheq-
uered stability curves as for example in the case σ0 ¼ 0.5.
Along both, GR and scalarized branches, the transition
from stable to unstable BS models often occurs at local
maxima in the mass viewed as a function of radius.

FIG. 18. Same as Fig. 16 but with Actr color coded.
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FIG. 19. Same as Fig. 16 but with ω color coded.
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FIG. 20. Same as Fig. 16 but with the stability coded in color, light (copper) for stable BSs and black for unstable models.
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