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We study linear perturbations around a static and spherically symmetric black hole solution in spatially
covariant gravity with just two tensorial degrees of freedom. In this theory, gravity modification is
characterized by a single time-dependent function that appears in the coefficient of K2 in the action, where
K is the trace of the extrinsic curvature. The background black hole solution is given by the Schwarzschild
solution foliated by the maximal slices and has a universal horizon at which the lapse function vanishes. We
show that the quadratic action for the odd-parity perturbations is identical to that in general relativity upon
performing an appropriate coordinate transformation. This in particular implies that the odd-parity
perturbations propagate at the speed of light, with the inner boundary being the usual event horizon. We
also derive the quadratic action for even-parity perturbations. In the even-parity sector, one of the two
tensorial degrees of freedom is mixed with an instantaneous scalar mode, rendering the system distinct from
that in general relativity. We find that monopole and dipole perturbations, which are composed solely of the
instantaneous scalar mode, have no solutions regular both at the universal horizon and infinity (except for
the trivial one corresponding to the constant shift of the mass parameter). We also consider stationary
perturbations with higher multipoles. By carefully treating the locations of the inner boundary, we show
that also in this case there are no solutions regular both at the inner boundary and infinity. Thus, the black
hole solution we consider is shown to be perturbatively unique.
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I. INTRODUCTION

Lovelock’s theorem [1,2] states that a diffeomorphism-
invariant theory constructed only from the metric tensor in
four dimensions leads uniquely to the Einstein equations
in general relativity (GR). To modify gravity, one must
therefore break at least one of the postulates of the theorem,
A typical way of modifying gravity is to add a new
dynamical degree of freedom (d.o.f.). The simplest exam-
ple is scalar-tensor gravity having one scalar and two
tensorial d.o.f.s, which has been studied extensively, with a
particular focus over the past decade on the Horndeski
theory [3–5] and its extensions called degenerate higher-
order scalar-tensor (DHOST) theories [6–11] (see Ref. [12]
for a review). An apparently different approach is aban-
doning full diffeomorphism invariance. For example, one can
consider spatially covariant theories respecting only spatial
diffeomorphism invariance under the transformations of
spatial coordinates, xi → x̃iðt; xjÞ [13,14]. However, this
approach is basically equivalent to adding new dynamical
degrees of freedomand spatially covariant gravity is regarded
as a gauge-fixed version of a fully covariant scalar-tensor
theory. Indeed, starting from a spatially covariant theory, one

can introduce a Stückelberg scalar field to restore full
diffeomorphism invariance and write an action for a corre-
sponding fully covariant scalar-tensor theory [15].
In scalar-tensor theories, the dynamical scalar d.o.f. (say

ϕ) obeys a wavelike equation with some propagation speed
cs, the concrete form of which depends on the Lagrangian.
An interesting twist is a case where ϕ is an instantane-
ous mode, cs ¼ ∞, which occurs when the form of the
Lagrangian is chosen appropriately. In such theories, only
tensorial d.o.f.s propagate, while the configuration of
the instantaneous scalar d.o.f. is determined completely
from boundary conditions. Within the so-called Pðϕ; XÞ
theory [where X ¼ −ð∂ϕÞ2=2], the cuscuton theory, P ¼
μðϕÞ ffiffiffiffi

X
p

− VðϕÞ, gives rise to such a nonpropagating scalar
field [16], leading to interesting cosmology [17]. The
cuscuton theory was extended in Ref. [18] by demanding
that cs ¼ ∞ in the Horndeski and slightly more general
theories. Performing a more rigorous Hamiltonian analysis,
one can determine the subset of spatially covariant theories
of gravity having two tensorial d.o.f.s (TTDOFs) only.
This was done in the case where the action is linear in the
lapse function in Ref. [19] and then the general conditions
to render the scalar mode nondynamical were derived
in Ref. [20]. Spatially covariant gravity satisfying these
conditions is dubbed as a TTDOF theory. Since the dyna-
mical d.o.f.s in TTDOF theories are the same as those
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in GR, TTDOF gravity may be thought of as minimal
modification of GR. Determining the most general form of
the action for TTDOF theories has turned out to be very
difficult, and the authors of Ref. [20] managed to obtain a
particular example of a family of TTDOF theories assum-
ing that the action is quadratic in the extrinsic curvature and
linear in the intrinsic curvature as in the Arnowitt-Deser-
Misner (ADM) expression for the Einstein-Hilbert term.
The resultant action contains that for the extended cuscuton
theory as a special case.
A family of TTDOF theories obtained in Ref. [20] has

several time-dependent parameters, which can in principle
be freely chosen from a purely theoretical point of view.
Some of them can however be fixed by requiring that the
speed of gravitational waves is equal to that of light and the
usual GR behavior is restored in the weak-gravity regime in
the Solar System [21]. The TTDOF theory with the thus
reduced parameter space can still mimic the background
evolution of the standard ΛCDM model [22]. Interestingly,
Ref. [22] studied the cosmic microwave background
(CMB) constraints on the TTDOF cosmological model
and reported a ∼4σ deviation from the ΛCDMmodel based
on GR.
Ignoring the terms that are relevant only on cosmological

scales, we have a TTDOF theory characterized by a single
time-dependent parameter, the impacts of which are not
seen in the propagation of gravitational waves and in the
weak-gravity regime in the Solar System. The theory
admits the Schwarzschild solution foliated by the maximal
slices [21]. This can easily be seen by noting that the
modified gravity parameter enters only in the coefficient of
the K2 term in the TTDOF action we are considering,
whereK is the trace of the extrinsic curvature. The situation
here is quite similar to that of Einstein-Aether theory and
the low-energy limit of Horava gravity [23,24]. Such a
black hole solution in modified gravity is sometimes called
stealth, as the geometry is described by the Schwarzschild
solution in GR even though the Stückelberg scalar exhibits
a nontrivial configuration. In this paper, we study linear
perturbations around this stealth black hole solution in the
TTDOF theory, paying particular attention to the behavior
of the instantaneous scalar mode whose inner boundary
conditions are imposed at the universal horizon (the
location at which the lapse function vanishes) rather than
the usual event horizon. One of our goals is to see whether
the stealth Schwarzschild solution is unique or not. The
question was partially addressed in Ref. [21], but there only
static monopole perturbations were considered. In the
present paper, we start with deriving quadratic actions
for all (time-dependent) perturbations with higher multi-
poles, following closely the formulation of black hole
perturbation theory in Horndeski [25,26] and degenerate
higher-order scalar-tensor (DHOST) gravity [27–29] (see
also Refs. [30–34]). This result itself has wider applications
than merely investigating perturbative uniqueness of the
background black hole solution. See also Ref. [35] for a

related analysis of the behavior of the instantaneous scalar
field around a black hole with a universal horizon.
This paper is organized as follows. In the next section, we

briefly review the TTDOF theory and its static and spheri-
cally symmetric black hole solution. In Sec. III, we study the
odd-parity perturbations. Then, we consider the even-parity
perturbations, presenting the main results separately for
monopole, dipole, and higher-multipole modes in Sec. IV.
Finally, we draw our conclusions in Sec. V.

II. A BLACK HOLE SOLUTION
IN TTDOF THEORY

In this section, we introduce the TTDOF theory [20]
and its static and spherically symmetric black hole sol-
ution [21].

A. TTDOF theory

We consider modified gravity with just TTDOF devel-
oped in Ref. [20]. The symmetry of the theory is the
spatial diffeomorphism invariance under xi → x̃iðt; xjÞ, and
therefore we use the ADM variables to write the action.
Specifically, the action that we consider in this paper is
given by

S ¼ 1

2

Z
dtd3x

ffiffiffi
γ

p
N

�
KijKij −

1

3

�
2N

β þ N
þ 1

�
K2 þ R

�
;

ð1Þ

where N is the lapse function, R is the three-dimensional
Ricci scalar calculated from the spatial metric γij, andKij is
the extrinsic curvature of constant time hypersurfaces,

Kij ≔
1

2N
ð∂tγij −DiNj −DjNiÞ; ð2Þ

with Ni being the shift vector and Di the covariant
derivative operator associated with γij. Here, β ¼ βðtÞ is
an arbitrary function of time characterizing a modification
of GR, and by setting β ¼ 0 the action (1) reduces to the
ADM expression of the Einstein-Hilbert action.
A family of TTDOF theories originally introduced in

Ref. [20] has seven arbitrary functions of time, but we focus
on its particular subset described by the action (1) with six
of the functions being set to their “canonical” values. This
is basically because we are interested in the phenomeno-
logically interesting class of modified gravity that repro-
duces the standard behavior of gravity in the solar system
(in the sense that the parametrized post-Newtonian param-
eter γPPN is given by γPPN ¼ 1) and in which gravitational
waves propagate at the speed of light [21], while rendering
the cosmology nontrivial [22]. We provide a more detailed
discussion on this point in the Appendix.
One can recover the full four-dimensional diffeomor-

phism invariance by introducing the Stückelberg scalar

JIN SAITO and TSUTOMU KOBAYASHI PHYS. REV. D 108, 104063 (2023)

104063-2



field. The resultant covariant expression of the action (1)
belongs to the so-called U-degenerate theory [21], which
is a higher-order scalar-tensor theory satisfying the
degeneracy conditions only when one takes the unitary
gauge [36]. However, the apparent scalar degree of freedom
is in fact an instantaneous mode having infinite propagation
speed and obeying an elliptic equation. Therefore, the
scalar field does not propagate and its behavior is deter-
mined completely by boundary conditions.

B. A black hole solution

The ADM variables for a static and spherically sym-
metric solution are of the form

N ¼ NðrÞ; Nidxi ¼ BðrÞFðrÞdr;
γijdxidxj ¼ F2dr2 þ r2σabdxadxb; ð3Þ

with σabdxadxb ¼ dθ2 þ sin2 θdφ2 (a; b ¼ θ;φ). Note at
this point that we cannot set B ¼ 0 in general when
working in the ADM action (i.e., in the unitary gauge),
because we no longer have the freedom to perform a
coordinate transformation t → t̃ðt; rÞ.
Substituting Eq. (3) to the action (1) and varying it with

respect toN, B, and F, we obtain a set of the field equations
for these variables. A general solution has not been derived,
but one can at least find the following particular solution:

N ¼ N0

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
; FðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi

fðrÞp ; BðrÞ ¼ N0b0
r2

; ð4Þ

with

fðrÞ ≔ 1 −
μ0
r
þ b20

r4
; ð5Þ

whereN0, μ0, and b0 are integration constants. The solution
represents a foliation of the Schwarzschild geometry by
maximal slices (K ¼ 0). Indeed, by performing the coor-
dinate transformation

τ ¼ N0t −
Z

r b0=r2ffiffiffi
f

p ð1 − μ0=rÞ
dr; ð6Þ

and introducing the Stückelberg field ϕ ¼ tðτ; rÞ accord-
ingly, one obtains ds2¼−ð1−μ0=rÞdτ2þð1−μ0=rÞ−1dr2þ
r2σabdxadxb, which is nothing but the standard
Schwarzschild metric. From this observation, we see that
μ0 is the mass parameter, b0 characterizes the foliation, and
N0 just corresponds to the rescaling of the time coordinate.
It should be emphasized that the TTDOF theory with the
action (1) admits the above solution even if β is an arbitrary
time-dependent function.
For b0 ≤ b0;c ≔ 3

ffiffiffi
3

p
μ20=16, NðrÞ vanishes at some

rð>0Þ. The location at which NðrÞ ¼ 0 is called the

universal horizon, which is the causal boundary for the
scalar mode with infinite propagation speed. Only for
b0 ¼ b0;c the universal horizon is regular, while fðrÞ
changes its sign at the universal horizon for b0 < b0;c. In
the rest of the paper, we basically consider the black hole
solution with a regular universal horizon (though the
perturbation equations can be derived without regard to
the value of b0). For b0 ¼ b0;c, one has

fðrÞ ¼
�
1 −

3μ0
4r

�
2
�
1þ μ0

2r
þ 3μ20
16r2

�
≥ 0; ð7Þ

and the universal horizon is located at r ¼ 3μ0=4. Constant
t hypersurfaces and the regular universal horizon are
depicted in the Penrose diagram of the Schwarzschild
geometry in Fig. 1. For b0 > b0;c, fðrÞ is positive every-
where, and therefore the instantaneous mode is accessible
to the singularity at r ¼ 0. We do not consider this case in
this paper.
Here it should be noted again that gravitational waves

propagate at the speed of light in our TTDOF theory. While
the causal boundary for the instantaneous scalar mode is
given by the universal horizon at r ¼ 3μ0=4, that for gra-
vitational waves is still the usual event horizon at r ¼ μ0.
In the rest of the paper, we set μ0 ¼ 1 to simplify the

expressions.

C. A test scalar field on the black hole background

We are going to discuss the metric perturbations on the
black hole background introduced above, which are com-
posed of the usual tensorial degrees of freedom and the
instantaneous scalar mode. Since the system of the pertur-
bation equations for the metric is highly involved, it is
instructive to consider here a test scalar field πðt; xiÞ
obeying an elliptic equation on constant t hypersurfaces
as the simplest model of an instantaneous mode:

Sπ ≔ −
1

2

Z
dtd3x

ffiffiffi
γ

p
N∇iπ∇iπ: ð8Þ

FIG. 1. Colored lines represent t ¼ const hypersurfaces, and
the black dashed line shows the location of the universal
horizon, r ¼ 3μ0=4.
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This example helps us to see what will be done in the next
two sections.
For the above black hole background, the equation of

motion for π reads

fπ00 þ f0π0 −
�
lðlþ 1Þ

r2
þ f0

r

�
π ¼ 0; ð9Þ

where a prime stands for differentiation with respect to r
and the angular part of the Laplacian was replaced by the
eigenvalue −lðlþ 1Þ=r2. The natural inner boundary is
seen to be the universal horizon at which f ¼ 0. In the case
of l ¼ 0, it is easy to find the analytic solution

πðt; rÞ ¼ r

�
c1ðtÞ þ c2ðtÞ

Z
∞

r

dr
r2f

�
; ð10Þ

where c1 and c2 are integration functions. For large r we
have

π ≃ c1rþ c2

�
1þ 1

2r

�
; ð11Þ

while in the vicinity of the universal horizon, we have

π ≃
3c2

8ðr − 3=4Þ −
c2
3
lnðr − 3=4Þ: ð12Þ

In order for π not to diverge at infinity, we require that
c1 ¼ 0. However, if c2 ≠ 0 then π diverges at the universal
horizon. Therefore, the only possible regular solution is
given by π ¼ 0.
We will perform a similar analysis for metric perturba-

tions. In the case of metric perturbations, multiple com-
ponents of the metric are coupled, leading to a more
complicated system. Moreover, the system contains higher
spatial derivatives (for even-parity perturbationswithl ≥ 1),
allowing for more linearly independent solutions.

III. ODD-PARITY PERTURBATIONS

In this section and the next, we study linear perturbations
around the black hole solution introduced in the previous
section. We first consider odd-parity perturbations in this
section. Only the gravitational-wave degrees of freedom
participate in the odd-parity sector. Noting that the TTDOF
theory (1) is built so that gravitational waves propagate
in the same way as in GR, we expect that the odd-parity
sector is identical to that in GR, except that the background
metric is written in the nonstandard coordinate system.
Indeed, a modification from GR appears only in the K2

term in action, and it is easy to see that this term does not
include any contribution from odd-parity perturbations.
Below we will see this more explicitly.
Using the spherical harmonics Ylmðθ;φÞ, we expand the

odd-parity perturbations as

δNa ¼
X
l;m

hðlmÞ
0 ðt; rÞϵba∂bYlm; ð13Þ

δγra ¼
X
l;m

hðlmÞ
1 ðt; rÞϵba∂bYlm; ð14Þ

δγab ¼
1

2

X
l;m

hðlmÞ
2 ðt; rÞ½ϵac∇c∇b þ ϵb

c∇c∇a�Ylm; ð15Þ

where ∇a is the covariant derivative defined with respect to
σab and ϵab is the Levi-Civita tensor with ϵθφ ¼ sin θ and

ϵθ
φ ¼ ϵθaσ

aφ ¼ 1= sin θ. Note that hðlmÞ
2 ¼ 0 for l ¼ 1.

Under a gauge transformation

xa → xa þ ξa; ξa ≔
X
l;m

ξðlmÞðt; rÞϵba∂bYlm; ð16Þ

hðlmÞ
2 transforms as

hðlmÞ
2 → hðlmÞ

2 þ 2r2ξðlmÞ: ð17Þ

We thus choose to remove hðlmÞ
2 for l ≥ 2.

The quadratic action for the odd-parity perturbations can
be written in the form

SðoddÞ ¼
X
l;m

Z
dtdrLðoddÞ

lm : ð18Þ

Let us consider the quadratic Lagrangian with l ≥ 2
(the l ¼ 1 sector must be treated separately). Thanks
to the symmetry, it is sufficient to study the Lagrangian
with m ¼ 0:

LðoddÞ
l≥2;m¼0 ¼

1

4N0r2

�
2j2 þ cl

f

�
h20 −

clN0

4r2

�
1 −

1

r

�
h21

þ j2

4N0

�
ðḣ1 − h00Þ2 þ

4

r
h0ḣ1

�
−
cl
2

b0
r4

ffiffiffi
f

p h0h1;

ð19Þ

where j2 ≔ lðlþ 1Þ and cl ≔ ðl − 1Þlðlþ 1Þðlþ 2Þ.
Here, a dot and a prime denote derivatives with respect to t
and r, respectively. To simplify the expression, we omit the
labels (lm) from h0 and h1. We find no terms that depend
on β. Therefore, the Lagrangian (19) must coincide with
that of the odd-parity perturbations of a Schwarzschild
black hole in GR expressed in the nonstandard coordinate
system. It is obvious that one can arrive at Eq. (19) even if β
is a function of time.
To go back to the standard Schwarzschild coordinates,

we use the time coordinate τ defined in Eq. (6) and define
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h̃0 ≔
h0
N0

; h̃1 ≔ h1 þ
b0=r2ffiffiffi

f
p ð1 − 1=rÞ

h0
N0

: ð20Þ

Then, the quadratic action for l ≥ 2 and m ¼ 0 can be
written as

SðoddÞl≥2;m¼0 ¼
1

4

Z
dτdr

�
1

r2

�
2j2 þ cl

1 − 1=r

�
h̃20

−
cl
r2

�
1 −

1

r

�
h̃21

þ j2
�
ð∂τh̃1 − h̃00Þ2 þ

4

r
h̃0∂τh̃1

��
: ð21Þ

This coincides with the quadratic action for the odd-parity
perturbations of the Schwarzschild solution in GR under an
appropriate identification of variables. Obviously, the same
conclusion should hold for the dipole perturbation, which
corresponds to a slow rotation of the black hole.
A comment is now in order. In Ref. [37], quasinormal

frequencies of gravitational perturbations of a similar black
hole in Einstein-Aether theory were calculated imposing
the inner boundary conditions at the universal horizon. We
argue, however, that the odd-parity metric perturbations in
the present case obey the same equation as in GR, i.e., the
Regge-Wheeler equation, and propagate at the speed of light,
which indicates that the inner boundary must be set at the
horizon for photons, i.e., the usual event horizon at r ¼ 1.

IV. EVEN-PARITY PERTURBATIONS

Let us move to discuss the even-parity perturbations. In
usual scalar-tensor theories in which the scalar field is
dynamical, both the gravitational-wave and scalar degrees
of freedom take part in the odd-parity sector. Therefore, even-
parity perturbations with l ≥ 2 are composed of amixture of
gravitational waves and the scalar, while monopole and
dipole perturbations are composed solely of the scalar degree
of freedom. A similar mixing occurs for l ≥ 2 in a tricky
way in the present case where the scalar is an instantaneous
mode obeying an elliptic equation. Monopole and dipole
perturbations in the present case are nondynamical and their
configurations are determined entirely from boundary con-
ditions. Below we will see these points in more detail.
We write the even-parity perturbations of the ADM

variables as

δN ¼ NðrÞ
X
l;m

HðlmÞ
0 ðt; rÞYlm; ð22Þ

δNr ¼
X
l;m

HðlmÞ
1 ðt; rÞYlm; ð23Þ

δγrr ¼ F2ðrÞ
X
l;m

HðlmÞ
2 ðt; rÞYlm; ð24Þ

δNa ¼
X
l;m

bðlmÞðt; rÞ∂aYlm; ð25Þ

δγra ¼
X
l;m

aðlmÞðt; rÞ∂aYlm; ð26Þ

δγab ¼ r2
X
l;m

KðlmÞðt; rÞσabYlm

þ r2
X
l;m

GðlmÞðt; rÞ∇a∇bYlm: ð27Þ

Note that að00Þ ¼ bð00Þ ¼ Gð00Þ ¼ 0. Under infinitesimal
coordinate transformations

r → rþ
X
l;m

ξðlmÞ
r ðt; rÞYlm;

xa → xa þ
X
l;m

ξðlmÞ
Ω ðt; rÞ∇aYlm; ð28Þ

the perturbation variables transform as

H0 → H0 −
N0

N
ξr; H1 → H1 − ðBFξrÞ0 − F2ξ̇r;

H2 → H2 − 2ξ0r −
2F0

F
ξr;

b → b − r2ξ̇Ω − BFξr; a → a − r2ξ0Ω − F2ξr;

K → K −
2

r
ξr; G → G − 2ξΩ; ð29Þ

where the labels (lm) were omitted. In the following
analysis, we will use these gauge degrees of freedom to
remove some of the variables. Note that we are working in
the unitary gauge and hence we do not have the freedom to
change the time coordinate.
As in the analysis of the odd-parity perturbations, we

calculate the quadratic action,

SðevenÞ ¼
X
l;m

Z
dtdrLðevenÞ

lm ; ð30Þ

and study the perturbations with l ¼ 0, l ¼ 1, and l ≥ 2
separately.

A. l= 0

For the monopole perturbations, we are left with
H0;H1;H2, and K, where we omit the labels (00). From
the transformation rules (29) it can be seen that we
can impose the gauge condition K ¼ 0. The quadratic
Lagrangian for l ¼ 0 is then given by

LðevenÞ
l¼0 ¼ βr2

12N0ðβþN0

ffiffiffi
f

p Þ
�
Ḣ2ffiffiffi
f

p −
2N0b0
r2

H̃0
0−

2

r2
ðr2H̃1Þ0

�
2

−
2b0
r

H̃0
0H̃1−N0rfH̃

0
0H2−

r
N0

ffiffiffi
f

p H2
˙̃H1; ð31Þ
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where we defined the convenient combinations of the
variables as

H̃0 ≔ H0 þ
1

2
H2; ð32Þ

H̃1 ≔
ffiffiffi
f

p
H1 −

N0b0
r2

ðH0 þ H2Þ: ð33Þ

The Euler-Lagrange equations for H̃0; H̃1, and H2 read

�
2b0
r

H̃1 þ N0rfH2 þ
2N0b0
r2

A
�0

¼ 0; ð34Þ

−
2b0
r

H̃0
0 þ

r
N0

ffiffiffi
f

p Ḣ2 þ 2r2
�
A
r2

�0
¼ 0; ð35Þ

N0rfH̃
0
0 þ

r
N0

ffiffiffi
f

p ˙̃H1 þ
Ȧffiffiffi
f

p ¼ 0; ð36Þ

where A is defined as

A ≔
βr2

6N0ðβ þ N0

ffiffiffi
f

p Þ
�
Ḣ2ffiffiffi
f

p −
2N0b0
r2

H̃0
0 −

2

r2
ðr2H̃1Þ0

�
:

ð37Þ

Equations (34)–(36) can be solved exactly [for any
β ¼ βðtÞ] as follows. First, Eq. (34) can be integrated
to give

2b0
r

H̃1 þ N0rfH2 þ
2N0b0
r2

A ¼ C1ðtÞ; ð38Þ

where C1ðtÞ is a time-dependent integration function.
Using Eqs. (35), (36), and (38), we obtain

2N2
0r

2f3=2
�
A
r2

�0
¼ −Ċ1; ð39Þ

which can be integrated to give

A ¼ Ċ1r2

2N2
0

Z
∞

r

dr

r2f3=2
þ C2ðtÞr2; ð40Þ

where C2ðtÞ is another integration function. We then use
Eqs. (35) and (37) to get

ðr2H̃1Þ0 ¼ −N0r3
�
A
r2

�0
−
3N0

β
ðβ þ N0

ffiffiffi
f

p
ÞA: ð41Þ

We impose the boundary conditions H0;H1;H2 → 0 at
infinity. Then, noting that A ≈ ðĊ1=2N2

0Þrþ C2r2 for large
r, we see from Eq. (41) that Ċ1 ¼ C2 ¼ 0, i.e., A ¼ 0,
though C1 can still be a nonvanishing, time-independent
constant. Thus, we obtain

H̃1ffiffiffiffiffiffi
4π

p ¼ N0C0ðtÞ
r2

; ð42Þ

where C0ðtÞ is an integration function. (The factor 1=
ffiffiffiffiffiffi
4π

p
comes from Y00.) It follows from Eq. (38) that

H2ffiffiffiffiffiffi
4π

p ¼ 1

f

�
δμ

r
−
2b0C0ðtÞ

r4

�
; ð43Þ

where now we write C1 ¼
ffiffiffiffiffiffi
4π

p
N0δμ with δμ being a time-

independent constant. Finally, we have

H̃0ffiffiffiffiffiffi
4π

p ¼ Ċ0

N0

Z
∞

r

dr

r2f3=2
: ð44Þ

All the perturbation variables are regular at the usual
event horizon, r ¼ 1. Notice, however, that H̃0 diverges as
H̃0 ∼ ðr − 3=4Þ−2 at the universal horizon. To avoid this,
we are forced to set Ċ0 ¼ 0. Now it is easy to see that
the above solution for the monopole perturbations can be
reproduced by perturbing the parameters of the background
solution as μ0 → μ0 þ δμ and b0 → b0 þ C0, which shows
that δμ simply corresponds to a shift of the mass parameter
and nonvanishing C0 renders the universal horizon singular
by enforcing b0 ≠ b0;c. Therefore, we conclude that no
nontrivial regular solution for the monopole perturbations
exists.
Let us look at the above solution from the viewpoint of

the Stückelberg field. All the metric perturbations with the
coefficients C0 and Ċ0 can be eliminated by performing the
coordinate transformation

t → T ¼ t −
C0ðtÞ
N0

Z
∞

r

dr

r2f3=2
: ð45Þ

We thus see that the geometry remains Schwarzschild
(with the mass parameter 1þ δμ), while one has the
fluctuation of the Stückelberg field, ϕ ¼ T þ δϕ, where
δϕ is the minus of the second term in Eq. (45). However, ϕ
is singular at r ¼ 3=4 unless C0ðtÞ ¼ 0, and the same
conclusion follows.
Let us give a comment on the difference between the

present analysis and that in Ref. [21]. In Ref. [21], the
authors investigated static monopole deformations of
the same black hole solution in the same theory without
paying particular attention to the regularity of the inner
boundary, while in the present paper we have started
from generic time-dependent monopole perturbations and
showed explicitly how any time-dependent deformation
is prohibited by the boundary condtions. The result
obtained here is not trivial as the fluctuation of the
instantaneous scalar could in principle be time dependent.
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B. l= 1

In the quadratic Lagrangian for the dipole perturbations,
Kð1mÞ and Gð1mÞ appears only through the combina-
tion Kð1mÞ −Gð1mÞ. We may therefore impose the gauge

condition Kð1mÞ −Gð1mÞ ¼ 0 along with Hð1mÞ
0 ¼ 0 by

choosing ξð1mÞ
r and ξð1mÞ

Ω appropriately. Focusing on the
m ¼ 0 part without loss of generality, the quadratic
Lagrangian for l ¼ 1 is found to be

LðevenÞ
l¼1;m¼0 ¼

βr2

12N0ðβ þ N0

ffiffiffi
f

p Þ
�
Ḣ2ffiffiffi
f

p −
N0b0
r2

H0
2 −

2

r2
ðr2H̃1Þ0 þ

4b̃
r
þ 6ðβ þ N0

ffiffiffi
f

p Þ
βr

ðH̃1 − b̃Þ
�2

þ r2

2N0

�
˙̃a − rN0b0

� ffiffiffi
f

p
r3

ã
�0

− r

� ffiffiffi
f

p
r

b̃
�0

−
H̃1

r
ffiffiffi
f

p
�2

−
3

ffiffiffi
f

p
β

ðH̃1 − b̃Þ2 þ 6b0
r2

H̃1ã −
3b0
r2

H2b̃

þ N0fã2 −
N0

2
½f þ ðrfÞ0�ãH2 þ

N0

4
ðrfÞ0H2

2; ð46Þ

where to simplify the expression we defined

ã ≔
a
r
; b̃ ≔

b
r

ffiffiffi
f

p −
N0b0
r3

a; H̃1 ≔
ffiffiffi
f

p
H1 −

N0b0
r2

H2; ð47Þ

and omitted the labels (10).
We then introduce new variables P and Q and define the Lagrangian L̃ð2Þ

l¼1;m¼0 as

L̃ð2Þ
l¼1;m¼0 ¼ Lð2Þ

l¼1;m¼0 −
βr2

12N0ðβþN0

ffiffiffi
f

p Þ
�
Ḣ2ffiffiffi
f

p −
N0b0
r2

H0
2 −

2

r2
ðr2H̃1Þ0 þ

4b̃
r
þ 6ðβþN0

ffiffiffi
f

p Þ
βr

ðH̃1 − b̃Þ− βþN0

ffiffiffi
f

p
β

Q
�2

þ r2

2N0

�
˙̃a− rN0b0

� ffiffiffi
f

p
r3

ã
�0

− r
� ffiffiffi

f
p
r

b̃
�0

−
H̃1

r
ffiffiffi
f

p −P
�2
: ð48Þ

This Lagrangian is equivalent to the original one Lð2Þ
l¼1;m¼0

because the additional parts vanish upon substituting the
solutions to the equations of motion for P and Q. However,

the new Lagrangian L̃ð2Þ
l¼1;m¼0 is more useful for our anaysis.

Varying L̃ð2Þ
l¼1;m¼0 with respect to H̃1,H2, ã, and b̃, we obtain

the equations of motion for these variables, which turn out to
be the constraint equations. One can easily solve them to
express H̃1, H2, ã, and b̃ in terms of P, Q, and their
first derivatives: H̃1 ¼ ð…ÞPþ ð…ÞQþ ð…ÞṖþ ð…ÞQ̇þ
ð…ÞP0 þ ð…ÞQ0, H2; ã; b̃ ¼ …, where the explicit expres-

sions are messy. Substituting these back to L̃ð2Þ
l¼1;m¼0, we can

express it in terms of P, Q, and their derivatives. We then
introduce the new variable χ ≔ Qþ 3

ffiffiffi
f

p
P and replaceQ in

the Lagrangian by χ. By doing so we can remove all the
derivatives acting on P. The equation of motion for P can
therefore be solved to express it in terms of χ and its
derivatives. Substituting the solution back to the Lagrangian
to remove P and performing integration by parts, we finally
arrive at the reduced Lagrangian for a single master variable
χ. Despite lengthy expressions at each intermediate step, the
final form of the reduced Lagrangian is rather simple,

L̃ð2Þ
l¼1;m¼0 ¼

βðtÞ
81N2

0

½d1ðrÞðχ00Þ2 þ d2ðrÞðχ0Þ2 þ d3ðrÞχ2�;

ð49Þ

where the coefficients d1, d2, and d3 are independent of βðtÞ
and are given explicitly by

d1ðrÞ ¼
r8f3=2

3
; ð50Þ

d2ðrÞ ¼ −2r6f1=2
�
2 −

1

r
−
5b20
r4

�
; ð51Þ

d3ðrÞ ¼
r4

f1=2

�
2

r
−
20b20
r4

þ 21b20
r5

�
: ð52Þ

(We are primarily interested in the case where b0 ¼ b0;c, but
the above expressions arevalid for anyb0.)Note that there are
no time derivatives of χ in the Lagrangian, which means that
there is no propagating dipole mode.
The equation of motion for χ is given by the fourth-order

differential equation with respect to r,

ðd1χ00Þ00 − ðd2χ0Þ0 þ d3χ ¼ 0; ð53Þ

and the configuration of χ is determined once one specifies
the boundary conditions. As implied by Eqs. (50)–(52), the
inner boundary conditions must be imposed at the location
at which f vanishes, i.e., the universal horizon. All the other
variables can then be obtained straightforwardly from χ.
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We have not found an analytic solution to Eq. (53).
However, we can obtain solutions valid near the bounda-
ries. Let us first look for a solution valid for large r in
the form

χ ¼ C0ðtÞ þ
C1ðtÞ
r

þ C2ðtÞ
r2

þ � � �

þ log r
�
D0ðtÞ þ

D1ðtÞ
r

þD2ðtÞ
r2

þ � � �
�
: ð54Þ

Substituting this into Eq. (53), one can derive the
algebraic relations among the coefficients. One may take
C0, C2, C3, and C5 as independent coefficients and express
all the other coefficients in terms of them. One can then
obtain the metric perturbations H1, H2, a, and b in a series
expansion similar to Eq. (54). In order for the metric
perturbations to be vanishing at infinity, it turns out that
C0 ¼ C2 ¼ C3 ¼ 0 ¼ C̈5 must be imposed. Then, C5 may
have the form C5 ¼ v1tþ v0, where v1 and v0 are
constants, showing that χ diverges as t → ∞ unless
Ċ5 ¼ v1 ¼ 0. We thus see that only a constant C5 is
allowed to be nonvanishing from the boundary conditions
at infinity and χ is given by

χ ¼ C5
r5

�
1þ 3

4r
þ 9

16r2
þ 7

16r3
þ � � �

�
: ð55Þ

In this way, χ is uniquely determined up to an overall
constant. The dipole metric perturbations for large r are
given accordingly by

H̃1 ¼
C5
r3

�
2

9
þ 1

12

1

r
þ 1

24

1

r2
þ � � �

�
; ð56Þ

H2 ¼
b0

N0μ0

C5
r4

�
8

3
þ 4

3

1

r
þ 5

6

1

r2
þ � � �

�
; ð57Þ

ã ¼ b0
N0

C5
r4

�
4

3
þ 1

3

1

r
þ � � �

�
; ð58Þ

b̃ ¼ −
C5
r3

�
1

9
þ 1

12

1

r
þ 1

16

1

r2
þ � � �

�
; ð59Þ

where β does not appear in the series expansion.
Next, let us examine the behavior of the dipole pertur-

bations near the (regular) universal horizon at r ¼ 3=4,
setting now b0 ¼ b0;c. Near the universal horizon, we have
d1≃ð81=256 ffiffiffi

2
p Þ ·ðr−3=4Þ3, d2≃ð81=256 ffiffiffi

2
p Þ ·3ðr−3=4Þ,

and d3 ≃ ð81=256 ffiffiffi
2

p Þ · 4ðr − 3=4Þ−1. It then follows that,

near the universal horizon, χ is given by a linear combi-
nation of the four independent solutions

ðr − 3=4Þ
ffiffi
2

p
; ðr − 3=4Þ

ffiffi
2

p
lnðr − 3=4Þ;

ðr − 3=4Þ−
ffiffi
2

p
; ðr − 3=4Þ−

ffiffi
2

p
lnðr − 3=4Þ: ð60Þ

By numerically solving Eq. (53) from some large r toward
the universal horizon, we find that the coefficients of the
latter two are nonvanishing and χ diverges, as can be seen
from Fig. 2. This forces the metric perturbations recon-
structed from χ to diverge as

ðBFÞ−1H1 ∼ H2 ∼ a ∼ b ∼ ðr − 3=4Þ−1χ: ð61Þ

One can also see that the linear perturbations of the
three-dimensional Ricci scalar and the trace of the
extrinsic curvature diverge as δR ∼ ðr − 3=4Þ−1χ and
K ∼ ðr − 3=4Þ−6χ. We, therefore, conclude that no regular
dipole perturbations are allowed in the present setup.

C. l ≥ 2

Finally, let us consider the even-parity perturbations with
l ≥ 2, which contains both gravitational waves and instan-

taneous mode. By choosing appropriately ξðlmÞ
r and ξðlmÞ

Ω ,
one can set KðlmÞ ¼ GðlmÞ ¼ 0. The remaining variables

areHðlmÞ
0 ,HðlmÞ

1 ,HðlmÞ
2 , aðlmÞ, and bðlmÞ. Focusing again on

the perturbations with m ¼ 0 and omitting the labels (lm),
the quadratic Lagrangian is given by

FIG. 2. The behavior of χ near the universal horizon, obtained
by solving Eq. (53) numerically with the boundary condition (55)
(with C5 ¼ 1).
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LðevenÞ
l≥2;m¼0 ¼

βr2

12N0ðβ þ N0

ffiffiffi
f

p Þ
�
Ḣ2ffiffiffi
f

p −
N0b0
r2

H0
2 −

2

r2
ðr2H̃1Þ0 þ

6ðβ þ N0

ffiffiffi
f

p Þ
βr

H̃1

−
6N0b0
βr3

ðβ þ N0

ffiffiffi
f

p
ÞH0 −

j2ðβ þ 3N0

ffiffiffi
f

p Þ
βr

b̃
�
2

þ j2r2

4N0

�
˙̃a − rN0b0

� ffiffiffi
f

p
r3

ã
�0

− r

� ffiffiffi
f

p
r

b̃
�0

−
H̃1

r
ffiffiffi
f

p
�2

−
3

ffiffiffi
f

p
β

�
H̃1 −

N0b0
r2

H0 −
j2

2
b̃
�

2

þ 3j2b0
r2

H̃1ã −
3j2b0
2r2

H2b̃þ j2

2
N0fã2 −

j2N0

4
½f þ ðrfÞ0�ãH2

þ N0

4
ðrfÞ0H2

2 þ
ðl − 1Þlðlþ 1Þðlþ 2Þ

4N0

b̃2 þ N0f½rH0
2 − j2ðrãÞ0�H0

þ N0

�
j2

2
þ ðrfÞ0

�
H0H2 −

j2

2
N0½f þ ðrfÞ0�ãH0; ð62Þ

where H̃1, ã, and b̃ are defined in the same way as in the case of l ¼ 1 [see Eq. (47)] and j2 ≔ lðlþ 1Þ as before.
Since we only have one of the two tensorial modes as a dynamical degree of freedom in the even-parity sector with l ≥ 2

and there is no dynamical scalar degree of freedom, we expect that by integrating out nondynamical variables in the
Lagrangian (62) we would end up with a reduced Lagrangian written in terms of a single master variable. Unfortunately,
however, we have not been able to do so. Therefore, in what follows we focus on stationary perturbations by dropping
all time derivatives and solve directly the equations of motion derived from the Lagrangian (62) without trying to rewrite
the system in terms of a single variable. (In doing so we also assume that β ¼ const) This amounts to considering
stationary deformations of the black hole while discarding propagating gravitational waves. Varying the action, one can
straightforwardly obtain the equations of motion for H0, H̃1, H2, ã, and b̃:

δSðevenÞ

δHðl0Þ
0

¼ δSðevenÞ

δH̃ðl0Þ
1

¼ δSðevenÞ

δHðl0Þ
2

¼ δSðevenÞ

δãðl0Þ
¼ δSðevenÞ

δb̃ðl0Þ
¼ 0: ð63Þ

First, we determine the behavior of the metric perturbations at large r, assuming the series expansion form

H0 ¼ r−l
�
Cð0Þ0 þ Cð0Þ1

r
þ Cð0Þ2

r2
þ � � �

�
; H̃1 ¼ r−l

�
Cð1Þ0 þ Cð1Þ1

r
þ Cð1Þ2

r2
þ � � �

�
;

H2 ¼ r−l
�
Cð2Þ0 þ Cð2Þ1

r
þ Cð2Þ2

r2
þ � � �

�
; ã ¼ r−l

�
CðaÞ0 þ CðaÞ1

r
þ Cð2Þ2

r2
þ � � �

�
;

b̃ ¼ r−l
�
CðbÞ0 þ CðbÞ1

r
þ CðbÞ2

r2
þ � � �

�
: ð64Þ

Substituting these to the equations of motion (63), we can derive the algebraic relations among the coefficients Cð0Þ0 ; Cð1Þ0 ;….
By inspecting the relations, we find that only two of the coefficients are free and independent, and all the other coefficients
are expressed using the two. Explicitly, we have

H0 ¼
B0

rlþ4

b0
N0

�
1þ 2l2 þ 5lþ 4

4ðlþ 1Þ
1

r
þ 2l3 þ 11l2 þ 21lþ 16

16ðlþ 1Þ
1

r2
þ � � �

�
−

1

2ðlþ 1Þ
B2

rlþ1

�
1þ lþ 2

2

1

r
þ � � �

�
; ð65Þ

H̃1 ¼
B0

rlþ2

�
1þ lð2lþ 1Þ

4ðlþ 1Þ
1

r
þ lð2lþ 1Þ

16

1

r2
þ � � �

�
−

B2

rlþ3
N0b0

�
lþ 2

4ðlþ 1Þ þ
4l4 þ 35l3 þ 85l2 þ 98lþ 48

16ðlþ 1Þðlþ 2Þð2lþ 3Þ
1

r
þ � � �

�
;

ð66Þ

H2 ¼−
2B0

rlþ3

b0
N0

�
1þ 2l2þ 5lþ 4

4ðlþ 1Þ
1

r
þ 2l3þ 11l2þ 21lþ 16

16ðlþ 1Þ
1

r2
þ� � �

�
þ B2

rlþ1

�
1þl3þ 5l2þ 7lþ 4

2ðlþ 1Þðlþ 2Þ
1

r
þ �� �

�
; ð67Þ
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ã ¼ 1

lþ 1

B0

rlþ4

b0
N0

�
1þ 2lþ 5

4

1

r
þ 2l2 þ 13lþ 22

16

1

r2
þ � � �

�
−

B2

2rlþ1

�
1

lþ 1
þ lþ 4

2ðlþ 2Þ þ � � �
�
; ð68Þ

b̃ ¼ 1

lþ 1

B0

rlþ2

�
1þ 2lþ 1

4

1

r
þ ð2lþ 1Þðlþ 2Þ

16

1

r2
þ � � �

�
−

B2

rlþ3
N0b0

�
1

4ðlþ 1Þ þ
4l2 þ 13lþ 18

16ðlþ 1Þð2lþ 3Þ
1

r
þ � � �

�
; ð69Þ

where we redefined the two independent coefficients and
introduced the constants B0 and B2. The above expressions
are valid for any b0.
To see the physical interpretation of the two con-

stants B0 and B2, let us perform similar calculations
for the Schwarzschild solution, ds2 ¼ −ð1 − 1=rÞdt2 þ
ð1 − 1=rÞ−1dr2 þ r2σabdxadxb, in GR. The quadratic
Lagrangian for the even-parity perturbations of the
Schwarzschild solution in GR can be reproduced by
setting N0 ¼ 1, b0 ¼ 0, and β ¼ 0 in the Lagrangian
(62) and removing b with an infinitesimal coordinate
transformation of t,

Lðeven;GRÞ
l≥2;m¼0 ¼ r

�
Ḣ2ffiffiffi
f

p −
2

r2
ðr2H̃1Þ0

�
H̃1 þ

j2r2

4

�
˙̃a −

H̃1

r
ffiffiffi
f

p
�2

þ j2

2
fã2 −

j2

4
½f þ ðrfÞ0�ãH2 þ

1

4
ðrfÞ0H2

2

þ f½rH0
2 − j2ðrãÞ0�H0 þ

�
j2

2
þ ðrfÞ0

�
H0H2

−
j2

2
½f þ ðrfÞ0�ãH0; ð70Þ

with f ¼ 1 − 1=r. Similar manipulations as described
above lead to

H0 ¼ −
1

2ðlþ 1Þ
B̄2

rlþ1

�
1þ lþ 2

2

1

r
þ � � �

�
; ð71Þ

H̃1 ¼ 0; ð72Þ

H2 ¼
B̄2

rlþ1

�
1þ l3 þ 5l2 þ 7lþ 4

2ðlþ 1Þðlþ 2Þ
1

r
þ � � �

�
; ð73Þ

ã ¼ −
B̄2

2rlþ1

�
1

lþ 1
þ lþ 4

2ðlþ 2Þ
1

r
þ � � �

�
; ð74Þ

where it is found that we are allowed to have only one
integration constant B̄2 in the case of GR. Equations (71)–
(74) agree with Eqs. (65)–(69) with b0 ¼ 0 ¼ B0, if one
identifies B2 as B̄2. This observation clearly shows that the
terms proportional to B2 come from the tensorial degrees of
freedom, while those with B0 originate from the instanta-
neous scalar mode.
Having determined the solution for large r, let us

investigate the behavior of the perturbations near the inner

boundaries, focusing on the case of the regular universal
horizon, b0 ¼ b0;c. If one sets B2 ¼ 0 to kill the tensorial
degree of freedom and integrates the equations of motion
inwards, the metric perturbations are found to diverge
at the universal horizon, r ¼ 3=4, as presented in Fig. 3.
This result shows that the terms with the coefficient B0 are
indeed induced by the instantaneous mode, whose causal
boundary is the universal horizon. By inspecting the
equations of motion in the vicinity of r ¼ 3=4, we find
that the metric perturbations diverge as

H̃1 ≃ ε1−klðcþ c0 ln εÞ; H2 ≃ −
2

ffiffiffi
3

p

N0

H̃1;

H0 ≃
ffiffiffi
3

p

N0

ε1−kl
�
c −

4
ffiffiffi
2

p
β

N0

ð2 − klÞð3 − klÞ
lðlþ 1Þ c0 þ c0 ln ε

�
;

ã ≃ −
3

ffiffiffi
3

p

8N0ð1 − klÞ
ε−kl

�
c −

c0

1 − kl
þ c0 ln ε

�
;

b̃ ≃
4

1 − kl
ε2−kl

�
c − c0

�
1

1 − kl
þ 2

ffiffiffi
2

p
β

N0

�

þ 2ð1 − klÞð3 − klÞ
lðlþ 1Þ c0 ln ε

�
; ð75Þ

where ε ≔ r − 3=4, kl ≔ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lðlþ 1Þ=2p

, and c
and c0 are constants. One can also see that the linear
perturbations of the three-dimensional Ricci scalar and the

FIG. 3. The behavior of the numerical solution for H2 near the
universal horizon. The boundary condition at large r is given by
B0 ¼ 1 and B2 ¼ 0. The modified gravity parameter is given
by β ¼ 1=5.

JIN SAITO and TSUTOMU KOBAYASHI PHYS. REV. D 108, 104063 (2023)

104063-10



extrinsic curvature diverge as δR ∼ ε1−klðc1 þ c2 ln εÞ and
K ∼ ε−ð4þklÞðc3 þ c4 ln εÞ as in the dipole case, where ci’s
are constants.
If one sets B2 ≠ 0 and integrates the equations of motion

inwards, one finds that the metric perturbations diverge at
the usual event horizon, r ¼ 1, before reaching the uni-
versal horizon, as shown in Fig. 4. Recalling that the
tensorial degrees of freedom propagate at the speed of
light in the present theory, it is reasonable that the inner
boundary in this case is given by the usual event horizon.
In this case, one can study the behavior of the metric
perturbations near the event horizon by expanding the
equations of motion around r ¼ 1 to obtain

H̃1 ≃ c̄ðr− 1Þ−1; H2 ≃
32c̄

3
ffiffiffi
3

p
N0

ðr− 1Þ−1;

H0 ≃−
1184c̄

81
ffiffiffi
3

p
N0

ln ðr− 1Þ;

ã≃
32c̄

3
ffiffiffi
3

p
lðlþ 1ÞN0

ðr− 1Þ−1; b̃≃
2c̄

lðlþ 1Þ ðr− 1Þ−1;

ð76Þ

where c̄ is a constant. One can see that the linear per-
turbations of the three-dimensional Ricci scalar and the
extrinsic curvature diverge as δR ∼ d1ðr − 1Þ−1 and K ∼
d2ðr − 1Þ−1 þ d3 ln ðr − 1Þ, where di’s are constants. In
any case the stationary perturbations diverge at the inner
boundaries, leading to the conclusion that no regular
perturbations with l ≥ 2 are allowed.

V. CONCLUSIONS

We have considered a spatially covariant theory of
gravity having just two tensorial degrees of freedom and

a nonpropagating (instantaneous) scalar mode. There is no
propagating scalar mode, and therefore the number of
propagating degrees of freedom is the same as in GR. In a
particular subset of such theories [20], the standard
Newtonian behavior of gravity is reproduced and the
propagation of gravitational waves in a cosmological
background obeys the same equation as in GR [21].
Moreover, in the same subset of theories of [20], the
Schwarzschild solution foliated by the maximal slices
is a solution to the field equations, as in the case of
Einstein-Aether theory [38]. The solution forms a uni-
versal horizon, which is the causal boundary for the
scalar mode with infinite propagation speed [21]. In this
paper, we have studied linear perturbations of this black
hole solution.
First, we have studied the odd-parity perturbations. The

odd-parity sector contains only one of the two tensorial
modes but is devoid of contributions from the instantaneous
scalar mode. We have presented the quadratic Lagrangian
for the odd-parity perturbations, which turned out to be
identical to that in GR after an appropriate identification
of the variables. Since the tensorial modes propagate at
the speed of light, the causal boundary of the odd-parity
perturbations is given by the usual even horizon rather than
the universal horizon inside of it.
Next, we have considered the even-parity sector of black

hole perturbations, in which the instantaneous scalar mode
and one of the two tensorial modes are mixed. We have
derived quadratic actions for monopole, dipole, and higher
multipole modes (l ≥ 2), and studied them separately.
The tensorial mode does not contribute to the monopole
and dipole perturbations. As a result, we have found no
radiative behavior in these perturbations. We have solved
the set of field equations for the monopole perturbations
and found no solution that is regular both at infinity and
at the inner boundary, i.e., the universal horizon, except
for the trivial one corresponding to a shift of the mass
parameter. For the dipole perturbations, we have derived a
single master equation which is a fourth-order differential
equation with respect to the radial coordinate. Again, we
have found no solution that is regular both at infinity and at
the universal horizon.
The situation gets more complicated for the even-parity

perturbations with l ≥ 2. We have derived the general
quadratic action. Although there is only one propagating
degree of freedom in the even-parity sector with l ≥ 2, we
have not been able to reduce the system to a single master
equation because of the complexity of the equations
stemming from the mixing with the instantaneous scalar
mode. We therefore focused on stationary perturbations
and investigated their properties. We have found that the
stationary perturbations with l ≥ 2 at large r are charac-
terized by two integration constants, B2 and B0, governing
respectively the contributions from the tensorial degree of
freedom and the instantaneous scalar mode. We carefully
identified the locations of the appropriate inner boundaries

FIG. 4. The behavior of the numerical solution for H2 near the
event horizon (blue solid line). The boundary condition at large r
is given by B0 ¼ 0 and B2 ¼ 1. The modified gravity parameter
is given by β ¼ 1=5. The analytic result is also shown as the
orange dotted line, with c̄ ¼ 1.
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and showed that the perturbations diverge at the inner
boundaries in any case unless B2 ¼ B0 ¼ 0.
To conclude, we have developed black hole perturbation

theory for the Schwarzschild solution foliated by the
maximal slices in spatially covariant gravity with just
two tensorial degrees of freedom and established its
perturbative uniqueness. As a future direction, it would
be interesting to study the wavelike behavior of the
even-parity perturbations with l ≥ 2 to see the impact of
mixing with the instantaneous scalar mode on gravitational
waves, which is technically more difficult and is left for
further study.
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APPENDIX: A QUICK RECAP OF TTDOF
THEORY AND ITS BLACK HOLE SOLUTIONS

1. The action of TTDOF theory

The general conditions to eliminate a propagating scalar
d.o.f. from a (would-be) scalar-tensor theory have been
derived in Ref. [20]. However, it seems almost unfeasible to
determine the concrete form of the general action satisfying
the conditions. Instead, one can start by assuming a simple
ansatz for the action and derive particular solutions for the
form of the action admitted by the conditions. Specifically,
it is assumed in Ref. [20] that the action is quadratic in the
extrinsic curvature and linear in the intrinsic curvature and
does not include the time derivatives of the lapse function.
A family of TTDOF theories thus obtained is described by

S ¼ 1

2

Z
dtd3x

ffiffiffi
γ

p
N

�
β0N

β2 þ N
KijKij

−
β0
3

�
2N

β1 þ N
þ N
β2 þ N

�
K2

þ α1 þ α2Rþ 1

N
ðα3 þ α4RÞ

�
; ðA1Þ

where α1;2;3;4 and β0;1;2 are arbitrary time-dependent
functions. This action includes previously known examples
as specific cases and extends them further: the cuscuton
theory [16] corresponds to the case with β0 ¼ α2 ¼ 1 and
β1 ¼ β2 ¼ α4 ¼ 0 (in the units of 8πG ¼ 1), while the
extension cuscuton theory [18] corresponds to the case with
β1 ¼ β2. It should be noted that the action (A1) is derived
by requiring that the scalar d.o.f. does not propagate rather
than by symmetry principles. A symmetry-based discus-
sion on this kind of theory can be found in Ref. [39].

From a purely theoretical point of view, the functions
α1;2;3;4 and β0;1;2 are free. However, it would be better to
restrict ourselves to the following phenomenologically
viable subset of theories. Let us consider metric pertur-
bations around Minkowski spacetime, N ¼ 1þΦðx⃗Þ,
Ni ¼ ∂iχðx⃗Þ, γij ¼ ½1 − 2Ψðx⃗Þ�δij þ hijðt; x⃗Þ, where Φ, χ,
and Ψ are the static part of the perturbations produced by
a Newtonian source and hij is a gravitational wave. One
can show from the analysis of the static part of the metric
perturbations that [21]

8πG ¼ α2 þ α4
α22

; γPPN ¼ α2
α2 þ α4

: ðA2Þ

The standard behavior of gravity can be reproduced by
taking α2 ¼ 1 and α4 ¼ 0. The coefficient of KijKij gives
the coupling between gravitational waves and matter.
We require that this coupling must be the standard one
by setting β0 ¼ const and β2 ¼ 0. Then, the speed of
gravitational waves is given by [21]

c2GW ¼ α2 þ α4
β0

¼ 1

β0
: ðA3Þ

For this to be the speed of light, we take β0 ¼ 1. These
observations tell us that, from the phenomenological point
of view, theories with β0 ¼ α2 ¼ 1 and β2 ¼ α4 ¼ 0 are of
primary interest and the action is now given by

S ¼ 1

2

Z
dtd3x

ffiffiffi
γ

p
N

�
KijKij −

1

3

�
2N

β þ N
þ 1

�
K2

þ Rþ α1 þ
α3
N

�
; ðA4Þ

where we defined β ≔ β1.

2. Static and spherically symmetric black
hole solutions

While having said that the action (A4) is of primary
interest, in this subsection we will consider static and
spherically symmetric black hole solutions in a slightly
different theory with

S ¼ 1

2

Z
dtd3x

ffiffiffi
γ

p
N

�
KijKij −

1

3

�
2N

β þ N
þ 1

�
K2

þ α2Rþ α1

�
; ðA5Þ

where α1 and α2 are constants, but β can be an arbitrary
time-dependent function. The reason for this change is
simply practical; theories with α3 ≠ 0 do not admit analytic
solutions, while we can find analytic solutions even if the
condition α2 ¼ 1 is relaxed.
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The ADM variables for static and spherically symmetric
solutions are taken to be

N ¼ NðrÞ; Nidxi ¼ BðrÞFðrÞ;
γijdxidxj ¼ F2ðrÞdr2 þ r2dΩ2; ðA6Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 It is straightforward to
see that the action (A5) admits the following particular
solution [21]:

N ¼ N0

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
; B ¼ N0b0

r2
; F ¼ 1ffiffiffiffiffiffiffiffiffi

fðrÞp ; ðA7Þ

where

fðrÞ ¼ 1þ α1
6α2

r2 −
μ0
r
þ b20
α2r4

; ðA8Þ

and N0, μ0, and b0 are integration constants. The metric
can be reduced to a diagonal form by introducing the
new time coordinate defined by dτ ¼ N0fdt − ½BF=
ðN2 − B2Þ�drg:

ds2 ¼ −
�
1þ α1

6α2
r2 −

μ0
r
þ 1 − α2

α2

b20
r4

�
dτ2

þ
�
1þ α1

6α2
r2 −

μ0
r
þ 1 − α2

α2

b20
r4

�−1
dr2 þ r2dΩ2:

ðA9Þ

In the case of α2 ¼ 1 (which is phenomenologically
viable), this metric describes Schwarzschild-(anti–)de
Sitter spacetime. In the main text, we focus on the case
withα2 ¼ 1 and avanishing cosmological constant (α1 ¼ 0),
yielding the Schwarzschild geometry.
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