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Generalized BMS (gBMS) is the Lie group of the asymptotic symmetries at null infinity, and is proposed
to be a symmetry of the quantum S-matrix. Despite much progress in understanding the symplectic
structure at null infinity consistent with the gBMS symmetries, the construction of a radiative phase space
where all the physical soft modes and their conjugate partners are identified remains elusive. We construct
just such a radiative phase space for linearized gravity by a systematic constraint analysis. In addition, we
highlight the difficulties that arise in extending this analysis to the nonlinear case. In order to analyze the
difficulties we face in extending these ideas to the nonlinear setting, we consider a toy model in which we
gauge the action of the Weyl scaling in the Weyl Bondi-Metzner-Sachs (BMS) group. We find that
supertranslations are no longer well-defined symmetries on the reduced phase space of the gauged Weyl, as
Weyl scalings do not commute with supertranslations. In this restricted case we obtain the symplectic form
and derive the reduced phase space.
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I. INTRODUCTION

Over the last decade or so, there has been a renewed
interest in understanding physics at the boundaries of
asymptotically flat spacetimes. The most well-understood
components of the boundary are the null infinities I�.
Their rich structure encompasses the beautiful discovery of
Bondi, Metzner, and Sachs (BMS) [1,2], that the symmetry
group that preserves asymptotic flatness at I� is an infinite
dimensional group which is termed the BMS group. It is
generated by the supertranslations, and the Lorentz group
on the celestial sphere. Supertranslations are the angle-
dependent translations in the null coordinates of I�, and
ordinary translations are a subgroup of it.
Starting from the seminal work of Barnich and

Troessaert [3,4], there have been numerous enhancements
of the BMS group obtained by relaxing the boundary
conditions on the spacetime metric at null infinity.
Allowing the celestial metric to fluctuate, while keeping
the determinant of the celestial metric fixed, we arrive at the
well-known extended BMS (eBMS) and generalized
BMS (gBMS) groups. In all of these extensions and

generalizations of the bms algebra, supertranslations form
an Abelian ideal. The Lorentz algebra is isomorphic to the
algebra of global Conformal Killing Vectors (CKVs) of the
celestial sphere, slð2;CÞ. Hence the original bms algebra is
a semidirect sum of supertranslations and slð2;CÞ. ebms
algebra extends the Lorentz algebra to include all the local
CKVs (meromorphic vector fields) on the celestial sphere.
The superrotations (ebms modulo supertranslations) form
two copies of the Witt algebra. The other generalization,
known as gBMS, enhances the Lorentz group to include all
the smooth diffeomorphisms on the celestial sphere. In the
case of gbms algebra, superrotations are generated by
smooth vector fields on the sphere. See Refs. [5,6] for a
comprehensive review of these developments.
Even though the asymptotic symmetries of asymptoti-

cally flat spacetimes have been studied since the 1960s, the
main reason for their resurgence in the last decade was the
realization that the conservation law associated with the
supertranslation symmetry is equivalent to the well-known
factorization of scattering amplitudes in the soft limit [7],
Weinberg soft graviton theorem [8]. The eBMS and gBMS
extensions were a further consolidation of this connection
between the asymptotic symmetries and constraints on the
S-matrix, as their conservation law was proved to be
equivalent to the subleading soft graviton theorem discov-
ered by Cachazo and Strominger [9–12]. The new exten-
sions also have an interesting consequence in classical
gravity, as the corresponding Noether charges defined at
null infinity have been shown to be associated with so-
called spin-memory effect [13].
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Once we accept the paradigm of studying the group of all
symmetries that preserve asymptotic flatness, it leads to
further enhancements of the BMS group at null infinity. It
was shown in [14] that asymptotic flatness remains
preserved even after allowing the area element (celestial
metric determinant) to fluctuate. This enhancement of the
BMS group is known as the Weyl BMS (WBMS) group. In
this, an arbitrary Weyl scaling of the celestial metric is
allowed along with the superrotations generated by all
smooth diffeomorphisms of S2. In this article, we mainly
focus on the gbms and wbms algebras.
The space of solutions to Einstein equations for a fixed

celestial metric is parametrized by the shear tensor
σabðu; x̂Þ. As was shown by Ashtekar and Streubel in
the 1980s [15], one can associate a phase space called
radiative phase space, parametrized by the shear tensor
ðσabÞ to this space of solutions. In order for the phase space
to have a faithful representation of the bms algebra and its
enhancements, the radiative phase space was enhanced so
that it is parametrized by the shear tensor σabðu; x̂Þ, and the
boundary modes Cðx̂Þ; Tabðx̂Þ that transform inhomoge-
neously under supertranslations and superrotations respec-
tively. The symplectic structure for this setup splits into the
hard sector, parametrized by the shear and News tensors
(Nabðu; x̂Þ ¼ ∂uσab) and the soft sector containing the
boundary modes and their conjugate partners. The soft
sector is termed so, because the quantized conjugate
partners to the boundary modes can be identified with
the soft modes of the gravitational field.
The hard and soft sectors are not independent. The

conjugate momenta of the soft modes are related to the hard
modes by constraints. Prior to imposing these constraints,
we call the phase space kinematical. The particular case in
which the celestial metric is fixed away from all but one
point of the celestial sphere was analyzed in [16]. In that
case, one could solve these constraints and obtain a
“physical radiative phase space” in which hard and inde-
pendent soft modes are identified and which generate a
Poisson algebra. However, the situation is far more intricate
in the presence of a dynamical celestial metric. The
conserved charges corresponding to all the gBMS gener-
ators have been derived [17], such that their canonical
action on the shear field matches with the spacetime action
of gBMS symmetries. Despite this, the radiative phase
space that comprises the independent set of fields obtained
by relating the hard shear modes and the soft conjugate
momenta to the boundary modes has not yet been derived.
Our goal in this paper is to initiate a study of just such a

radiative phase space at future null infinity Iþ in which the
sphere metric is smooth and dynamical. This would be a
direct extension of the phase space obtained by He, Lysov,
Mitra, and Strominger (HLMS) which admits a faithful
action of the BMS group [18].
In particular, we consider two scenarios. First, we obtain

the physical radiative phase space for the smooth celestial

metric, corresponding to gBMS in the linearized
setting. Second, we consider the case of HLMS phase
space augmented by arbitrary Weyl scalings of the
celestial metric, and we gauge the Weyl scaling. The main
results of the paper and its organization are summa-
rized below.

A. Summary and organization of the paper

In Sec. II, we begin with a review of supertranslations,
gBMS, and Weyl-BMS groups. In Sec. III, we consider the
radiative phase space for the gbms algebra. In Sec. III A,
we start with the symplectic structure proposed by
Campiglia-Peraza in [17], suitably adapted to linearized
gravity. We then obtain the physical radiative phase space
by imposing the appropriate second-class constraints via
the Dirac bracket analysis [19]. The main result of this
analysis is the identification of the physical mode conjugate
to the subleading soft News. To the best of our knowledge,
this is the first model of a radiative phase space that allows
for a smooth and dynamical celestial sphere metric. We
then outline the difficulties and subtleties in extending our
results to full general relativity.1

In Sec. IV, we move on to the second case of interest. We
consider the subgroup of Weyl-BMS which is generated by
super-translations and Weyl transformations at Iþ. In
particular we start with the expanded radiative phase space
comprising the News tensors, supertranslation soft modes
as well as the new modes corresponding to the dynamical
area element. The symplectic structure is determined by
demanding that it is degenerate along the Weyl orbit,
rendering Weyl rescaling to be pure gauge. We then show
that the constraints can be solved unambiguously, leading
to a radiative phase space. The reduced phase space turns
out to be different from the HLMS phase space in the
following manner: there is no notion of local hard News in
the reduced phase space. We also show explicitly that
supertranslations are not well defined on our reduced phase
space. The reduced phase space is parametrized by the
usual soft modes and the u integrals of arbitrary quantities
made out of the hard News. We note that they form a closed
algebra.

B. Notations and conventions

(i) ∇a is the two-dimensional covariant derivative
compatible with the celestial metric qab. Da is the
Diff-S2 covariant derivative as introduced in [17].
We also denote byLV the Lie derivative along vector
field V.

1Note that the Ashtekar-Streubel, as well as HLMS phase
spaces obtained in linearized gravity, are isomorphic to the ones
obtained in the fully nonlinear theory. However, in the cases
involving a dynamical smooth celestial metric, the radiative phase
space structure is considerably simplified due to linearization.
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(ii) The identity for the space of symmetric trace-free
two tensors is constructed out of the Kronecker delta
and the flat metric η on the sphere. It is denoted by

Iabcd ¼ δðac δ
bÞ
d −

1

2
ηabηcd; IabcdI

cd
mn ¼ Iabmn;

Iab;cd ¼ qamqbnImn
cd : ð1:1Þ

(iii) The symbols d and δ denote the exterior derivative
on spacetime and field-space respectively.

(iv) We denote by XA the Hamiltonian vector field
associated with arbitrary phase space variable A.
For a given symplectic form Ω, it is defined through

ΩðY; XAÞ ¼ δA½Y�; ð1:2Þ

where Y is any vector field on phase space.
(v) We use the following conventions for the Poisson

brackets endowed by a symplectic form Ω:

ff; gg ¼ ΩðXg; XfÞ ¼ δfðXgÞ ¼ XgðfÞ: ð1:3Þ

II. THE STORY SO FAR

We are interested in analyzing the null boundaries of the
asymptotically flat spacetimes. The null boundary Iþ is
parametrized by ðu; x̂aÞ. Note that x̂a are the coordinates on
the two sphere, transverse to the radial and temporal
directions. We choose the following gauge conditions:
grr ¼ gra ¼ 0 ¼ ∂r detðgab=r2Þ, referred to as Bondi
gauge. In this particular gauge choice, the metric at Iþ
takes the following form:

ds2 ¼ −2du2 − dudrþ dx̂adx̂bðr2qab þ rσab þ…Þ þ…:

ð2:1Þ

Now, we review the phase spaces for supertranslations,
gBMS and Weyl.

A. Review of the HLMS phase space

The symplectic potential at Iþ for the radiative data
(shear and News tensor) was famously derived by Ashtekar
and Struebel (AS) [15], and is given by

ΘAS ¼
Z
I

ffiffiffi
q

p
σabδNab: ð2:2Þ

For a well-defined symplectic structure, the News tensor is
required to have the following fall-off conditions:

Nab ≡ ∂uσab ⟶
u→�∞

Oðjuj−1−ϵÞ ðϵ > 0Þ: ð2:3Þ

It leads to the following symplectic form and Poisson
bracket:

Ω ¼
Z
I

ffiffiffi
q

p
δNab ∧ δσab; ð2:4Þ

½Nabðu; x̂Þ; Ncdðu0; ŷÞ� ¼
1

2
∂uδðu − u0ÞIab;cd

1ffiffiffi
q

p δ2ðx̂ − ŷÞ;

ð2:5Þ

where Iab;cd was introduced in (1.1).
Supertranslation symmetries generate a Hamiltonian

action on all the smooth functions defined on the
Ashtekar-Streubel phase space (ΓAS). The corresponding
charge (or flux) for supertranslation contains a term, linear
in soft News tensor (

R
duNab). However, the soft News or

its expected conjugate mode does not exist in ΓAS. HLMS
revisited the canonical derivation of the symplectic struc-
ture at I , and showed that there is an enhanced phase space,
which includes the constant shear as a boundary mode.2

The soft News tensor is its conjugate. HLMS’s analysis
involved extending the AS phase space by adding the soft
sector to it, and then imposing physical constraints that
relate the soft News as the zero mode of the News
tensor [5,18].
Recall that the shear tensor σabðu; x̂Þ need not vanish at

u → �∞. We define the constant zero frequency shear
mode Cab as follows:

2Cabðx̂Þ ¼ σabðu → þ∞; x̂Þ þ σabðu → −∞; x̂Þ: ð2:6Þ

Let us isolate this zero mode from the shear tensor, and

denote the zero-mode-free shear tensor as σ
o
ab,

σabðu; x̂Þ≡ σ
o
abðu; x̂Þ þ Cabðx̂Þ: ð2:7Þ

As a consequence of (2.6), we have

lim
u→∞

½σo abðu; x̂Þ þ σ
o
abð−u; x̂Þ�≡ σ

o þ
abðx̂Þ þ σ

o −
abðx̂Þ ¼ 0:

ð2:8Þ

Cab is precisely the boundary mode that HLMS intro-
duced into the Ashtekar-Streubel phase space structure.
Making this mode explicit within the original Ashtekar-
Streubel symplectic form, one can obtain the following
symplectic structure:

Ω ¼
Z
I

ffiffiffi
q

p
δNab ∧ δσ

o ab þ
Z
S2

ffiffiffi
q

p
δ

�Z
duNab

�
∧ δCab

ð2:9Þ

≡
Z
I

ffiffiffi
q

p
δNab ∧ δσ

o ab þ
Z
S2

ffiffiffi
q

p
δN

o

ab ∧ δCab; ð2:10Þ

2The HLMS phase space can also be denoted as ΓHLMS.
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where N
o

ab is defined through

N
o

ab ≡
Z

duNab: ð2:11Þ

Let us treat the mode conjugate to the constant shear as

independent of the hard News, and denote it by N
o

ab, to

allow for the soft (Cab; N
o

ab) and the hard (Nab) factoriza-
tion of the phase space. The physical phase space is now a
constraint surface inside ΓAS × Γs, with one of the con-

straints relating soft ðNo abÞ and hard ðN
o

ab ¼
R
duNabÞ

modes. While isolating the constant shear mode Cab, we
restrict the shear tensor to respect certain boundary con-
ditions, which acts as another constraint. Thus the con-
straints are

N
o

abðx̂Þ −N
o

abðx̂Þ ¼ 0; ð2:12Þ

σ
o þ
abðx̂Þ þ σ

o −
abðx̂Þ ¼ 0: ð2:13Þ

Before solving the second-class constraints and comput-
ing the physical brackets, there is a subtlety to be
considered. Note that the components of Weyl curvature
tensor can be identified as electric and magnetic
components, in analogy with the gauge theories. For
Christodolou-Klainermann spacetimes [20] and their
appropriate generalizations, the magnetic part of the
Weyl tensor vanishes at I . This amounts to the following
condition:

lim
u→�∞

∇½a∇cσcb� ≡∇½a∇cσ�cb� ¼ 0: ð2:14Þ

Since σþcb þ σ−cb ¼ 2Ccb and σþcb − σ−cb ¼ N
o

cb, the gen-
eral solution to (2.14) is the following:

Cab¼ð−2∇a∇bCÞTF; N
o

ab¼ð−2∇a∇bN
o
ÞTF: ð2:15Þ

Note that ∇a∇bCTF refers to the traceless part of the
symmetric two tensor ∇a∇bC:

ð∇a∇bCÞTF ¼ ∇a∇bC −
1

2
qabqcd∇c∇dC: ð2:16Þ

A symmetric trace-free (STF) two tensor has two scalar
functions worth of degrees of freedom. Expressing this in
terms of a single scalar funtion C reduces the degrees of
freedom of the boundary modes by half.
Let us consider the symplectic form, (2.10), treat the soft

News (N
o

ab) as independent from the hard News (Nab), find
the Hamiltonian vector fields [HVFs, refer to (1.2)] and
kinematical brackets. We denote the kinematical brackets
as ½·; ·�, and the physical Dirac brackets as ½·; ·��. Refer to

Appendix A for a short review of the Dirac constraint
analysis. Upon performing the Dirac analysis for HLMS
constraints, we obtain the following physical brackets:

½Nabðu; x̂Þ;Ncdðu0; ŷÞ� � ¼
1

2
∂uδðu− u0ÞIab;cd

1ffiffiffi
q

p δ2ðx̂− ŷÞ;

ð2:17Þ

½Cðx̂Þ; No ðŷÞ� � ¼ Gðx̂; ŷÞ; ð2:18Þ

with Gðx̂; ŷÞ being the Green’s function for the opera-
tor 4∇a∇bð∇a∇bÞTF.

B. gBMS phase space

Generalized BMS is one generalization of the BMS
group, which generalizes the Lorentz algebra to include all
the smooth diffeomorphisms of the celestial sphere as
superrotations. The following is the action of gbms on the
constant shear mode and the celestial metric:

δVCabðx̂Þ ¼
�
LV −

1

2
∇mVm

�
Cab; ð2:19aÞ

δVqabðx̂Þ ¼ ðLV −∇mVmÞqab: ð2:19bÞ

Note that for arbitrary Va, det qab is fixed. Since the action
of the gbms algebra deforms the celestial metric qab, the
associated phase space must include qab and its conjugate
mode pab.
The existence of superrotations requires relaxing the

boundary conditions on the metric components. For exam-
ple, the shear tensor ðσabÞ, upon the action of super-
rotations, picks up a linear in u contribution:
σabðu; x̂Þ → σabðu; x̂Þ þ uTabðx̂Þ. The coefficient of the
linear in u term is well known as the Geroch tensor
ðTabÞ. If we wish to separate the Tab mode from shear, then
the phase space is further expanded to include Tab and its
conjugate Πab. Note that both pab and Πab are some

functionals of the subleading ðN
1

abÞ and the leading ðN
o

abÞ
soft News tensors. The leading and subleading soft News
tensors are defined as follows:

N
o

ab ¼
Z

duNab; N
1

ab ¼
Z

du uNab;

Nabðu; x̂Þ⟶u→∞ juj−2−δ: ð2:20Þ

Since gBMS corresponds to the subleading soft graviton
theorem, it requires new subeading soft News modes in
phase space, as shown in [11,12]. One way to see how
subleading soft News comes into the picture is to see
how the ΓAS changes by the introduction of the Geroch
tensor,
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Z
I
δNab ∧ δσab →

Z
I
ðδNab þ δTabÞ ∧ ðδσo ab þ uδTabÞ ð2:21Þ

¼
Z
I
δNab ∧ δσ

o ab þ
Z
S2
δTab ∧

�Z
du σ

o ab

�
þ
Z
S2
δ

�Z
du uNab

�
∧ δTab

¼
Z
I
δNab ∧ δσ

o ab −
Z
S2
δTab ∧ δN

1
ab þ

Z
S2
δN

1

ab ∧ δTab: ð2:22Þ

Note that, for simplicity, we are not separating out σab into
the constant shear mode ðCabÞ, which would lead to theR
δN

o

ab ∧ δCab term.
With the relaxed falloff conditions on the spacetime

metric, and the metric on the celestial sphere being
dynamical, it is not straightforward to obtain a symplectic
structure from first principles. After the initial works by
Laddha and Campiglia [11,12], Compere et al. [21]
improved the understanding of gBMS phase space by
writing the renormalized surface charges (with controlled
radial divergences). However, the charges in [21] are
nonintegrable [Ωðδ; δVÞ is not an exact form]. The inte-
grable part of the charge can be separated out, and the
associated Ward identity turns out to be equivalent to the
subleading soft graviton theorem. Charges that differ by a
boundary term in the soft sector are equivalent to the correct
subleading soft theorem [22,23], because the quadratic
boundary modes have trivial action on the scattering states.
The absence of a canonical hard charge is precisely the
angular momentum ambiguity in general relativity.
The charges (integrable part) in [21] do not close among

themselves and have a 2-cocycle extension. This sits as an
obstruction if the superrotations are to be symmetries of the
quantum S-matrix. Campiglia and Peraza, in [17], obtained
the charges exploiting the angular momentum ambiguity
(adding quadratic boundary modes), such that there was no
2-cocycle. Demanding the charges close, they were able to
write down the following symplectic form compatible with
these charges3:

Ω ¼
Z
I
δNab ∧ δσ

o ab þ
Z
S2
ðδN

o

ab ∧ δCab þ δpab ∧ δqab

þ δΠab ∧ δTabÞ; ð2:23Þ

pab ¼∇ða∇cN
1

bÞc−
R
2
N
1

abþ
�
Bilinear inC;N

o �
; ð2:24Þ

Πab ¼ 2N
1

ab þ
�
Bilinear inC;N

o �
: ð2:25Þ

R here refers to the Ricci scalar curvature corresponding to
the celestial metric qab. Note that even though we have the
symplectic structure, since there is no hard and soft
factorization, we do not get a trivial reduced phase space.
This symplectic form shall be our starting point to obtain
the reduced phase space in Sec. III.

C. Weyl BMS

Weyl BMS is a further generalization of the gBMS
group, where a Weyl rescaling of the metric on the celestial
sphere is allowed, along with the smooth diffeomorphisms.
It was introduced in [14], where the authors separate the
scaling action due to Diff-S2 and include it into the action
of Weyl. A general infinitesimal asymptotic symmetry
transformation ξ is parametrized by a pair of functions
T , Wand a vector field V on S2. The associated Lie bracket
can be written as

½ξðT 1;V1;W1Þ; ξðT 2;V2;W2Þ� ¼ ξðT 12;V12;W12Þ; ð2:26Þ

where the parameters T 12, W12, and V12 are given by

T 12 ¼ Y1½T 2� − Y2½T 1� þW2T 1 −W1T 2; ð2:27Þ
W12 ¼ Y1½W2� − Y2½W1�; ð2:28Þ

V12 ¼ ½V1; V2�; ð2:29Þ

with the right-hand side of the last equation being the Lie
bracket of vector fields.
The infinitesimal transformations ξðT ;V¼0;W¼0Þ form an

Abelian ideal and are the usual supertranslations. Similarly,
the Weyl part of the Weyl BMS are the transformations
ξðT ¼0;V¼0;WÞ and gBMS superrotations are given by
ξðT ¼0;V;W¼1

2
∇aVaÞ. The form of the latter is dictated by the

property that these transformations preserve the determi-
nant of the celestial sphere metric, as can be seen from the
variations written below:

δVCabðx̂Þ¼LVCabðx̂Þ; δwCabðx̂Þ¼−wCabðx̂Þ; ð2:30Þ
δVqabðx̂Þ¼LVqabðx̂Þ; δwqabðx̂Þ¼−2wqabðx̂Þ: ð2:31Þ
The following are the finite Weyl transformation of the
radiative modes:

3In [17], Cabðu; x̂Þ refers to the shear tensor without separating
the constant shear mode. Here, we refer to the constant shear
mode as Cabðx̂Þ, and the rest of the shear tensor as σ

o
ab.
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Nabðu; x̂Þ → Nabðewðx̂Þu; x̂Þ; ð2:32Þ
ffiffiffi
q

p ðx̂Þ → e−2wðx̂Þ
ffiffiffi
q

p ðx̂Þ; ð2:33Þ

Cðx̂Þ → e−wðx̂ÞCðx̂Þ; ð2:34Þ

N
o ðx̂Þ → e−wðx̂ÞN

o ðx̂Þ: ð2:35Þ

In [14], the authors have performed detailed covariant
phase space analysis and obtained the symplectic structure
and charges corresponding to the sphere diffeomorphisms
and the Weyl rescalings.

III. GENERALIZED BMS REDUCED
PHASE SPACE

Our interest lies in understanding the reduced phase
space structure for the gBMS, the Diff(S2) algebra. Wewish
to find the physical brackets between the fundamental
fields so that they can be promoted to quantum commu-
tation relations. We start from the Campiglia-Peraza sym-
plectic structure [17] [see (2.23)]:

Ω ¼
Z
I
δNab ∧ δσ

o ab þ
Z
S2

�
δN

o

ab ∧ δCab

þ δpab ∧ δqab þ δΠab ∧ δTab

�
; ð3:1Þ

pab ¼ ∇ða∇cN
1

bÞc −
R
2
N
1

ab þ
�
bilinear inC;N

o �
; ð3:2Þ

Πab ¼ 2N
1

ab þ
�
bilinear inC;N

o �
: ð3:3Þ

Note that this particular symplectic form was not derived
from covariant phase space methods [24–26]. Even though
we have this symplectic form, and the action of super-
otations on all the fundamental fields, we lack the reduced
phase space analysis. The “kinematical” phase space is
parametrized by the following conjugate pairs:

fσoabg ∪ ffΠab; Tabg; fpab; qabg; fC;N
o gg:

There is no hard and soft factorization, and modes pab and
Πab are nonlinearly related to the radiative soft modes.
Also, Tab and qab are not independent but are related by the
following constraint [17]:

∇bTab þ
1

2
∇aR ¼ 0; ð3:4Þ

where R denotes the Ricci scalar for the celestial metric qab.
Thus, to obtain the reduced phase space for gBMS, we need
to find the physical brackets between the radiative modes
and the Goldstone modes ðC; TabÞ, starting from (2.23),

with (2.24), (2.25), and (3.4) as constraints, in addition to
the HLMS constraints. Just like the HLMS setup, constraint
analysis due to Dirac is used to obtain these physical
brackets, also referred to as Dirac brackets [19]. However,
such a constraint analysis turns out to be difficult. We
enumerate some of the obstacles in Sec. III B and in
Appendix B. But first, we perform this Dirac analysis
for the simplified case of linearized gravity.

A. Linearized gravity

The goal of this section is to study the symplectic
structure corresponding to the gbms algebra in linearized
gravity. Even though we have dynamical qab, it differs only
infinitesimally from the plane metric ηab. The radiative data
and the soft News modes are also to be treated perturba-
tively. We wish to find the physical brackets between the
modes of the HLMS phase space supplemented by the
mode qab corresponding to the celestial metric. The angular
part of the metric at Iþ takes the following form:

ds2 ¼ � � � þ dxadxb
�
r2ðηab þ habðx̂ÞÞ

þ rðσabðu; x̂Þ þ Cabðx̂ÞÞ þ � � ��: ð3:5Þ

Nab ¼ ∂uσab, the News tensor, is treated infinitesimally and
has the following falloff:

Nabðu; x̂Þ ⟶
u→∞ ðconstant modeÞ þ juj−2−δ: ð3:6Þ

The constant mode is the Geroch tensor Tab. Note that σab
in this section differs from σ

o
ab from earlier sections by the

uTab contribution.
The leading and subleading soft News tensors can be

defined as follows:

N
o

abðx̂Þ ¼
Z

du

�
Nabðu; x̂Þ − lim

u0→∞
Nabðu0; x̂Þ

�
; ð3:7Þ

N
1

abðx̂Þ ¼
Z

duuNabðu; x̂Þ: ð3:8Þ

In the second equation, we are relying on the prescriptionR
du u ¼ 0. Note that the σab, C; pab;Πab all are infini-

tesimal. The celestial metric is written as a perturbation hab
around the plane metric ηab:

qab ¼ ηab þ hab; qab ¼ ηab − hab: ð3:9Þ

The condition that the det qab ¼ det ηab ¼ 1 translates to
the following condition for hab:

1¼detðηþhÞ¼ exp tr logðηþhÞ¼1þηabhabþ… ð3:10Þ

⇒ ηabhab ¼ 0: ð3:11Þ
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Note that if qab andΠcd are conjugates, then their traces are
conjugate modes to each other as well. Hence the conjugate
mode pab to the dynamical metric is trace-free.

1. Setup: Symplectic form and constraints

Since the indices are raised/lowered using the non-
dynamical metric ηab and all the quadratic terms in
radiative data and soft modes are omitted, the symplectic
form (3.1) simplifies greatly. The constant shear mode Cab
and leading soft News tensor simplifies as follows:

Cab ¼ −2∂a∂bCTF; N
o

ab ¼ −2∂a∂bN
o

TF: ð3:12Þ

Let us introduce a scalar function C for the linearized case,
that is related to C as follows:

C¼4ð∂a∂bÞTF∂a∂bC¼4

�
∂a∂b−

1

2
ηab∂

2

�
∂
a
∂
bC: ð3:13Þ

Recall that at the linearized level, the contraction of
transversal indices a…b is carried out using the flat metric
ηab.

4 Since the differential operator relating C and C is
invertible [18], we do not lose any information treatingC as

the fundamental field. With C, N
o
, qab, and pab para-

metrizing the soft sector, the symplectic form (3.1) can be
expressed as follows:

Ω ¼
Z
I
∂uδσab ∧ δσab þ

Z
S2

�
δN
o ∧ δCþ δpab ∧ δqab

�
:

ð3:14Þ

Note that for the linearized case, the conjugate mode to Tab

is Πab ¼ 2N
1

ab, and we have absorbed the term δΠab ∧
δTab into the Ashtekar-Streubel term, as done in (2.22).
Let us enumerate the constraints that define the physical

phase space. The relation between the conjugate mode to
qab and the subleading soft News tensor is a constraint,
which we denote F 1. Another constraint, relating the
Geroch tensor to the dynamical celestial metric (3.4)
now manifests itself as F 2. These two are precisely the
linearized versions of (2.24) and (2.25) respectively. Since
we have not separated the Geroch tensor from News, we
replace Tab by limu→∞NabðuÞ. For the linearized gravity,
we have R ¼ ∂b∂chbc. Thus, we have

∇bTab þ
1

2
∇aR → lim

u→∞
∂
bNab þ

1

2
∂a∂b∂chbc ¼ 0: ð3:15Þ

The rest of the two constraints are the same as those from
the HLMS construction. We collect the constraints below:

F ab
1 ¼ pab −

�
∂
a
∂cN

1
bc

�
STF; ð3:16Þ

F 2a ¼ lim
u→∞

∂
bNab þ

1

2
∂a∂b∂chbc; ð3:17Þ

F 3ab ¼ σþab þ σ−ab; ð3:18Þ

F 4ab ¼ N
o

ab þ 2∂a∂bN
o
: ð3:19Þ

2. Kinematical structure

The following kinematical brackets can be derived5

from (3.14):

�
σabðu; x̂Þ; Ncdðu0; ŷÞ� ¼ 1

2
Icdabδðu − u0Þδ2ðx̂ − ŷÞ; ð3:20Þ

�
σabðu; x̂Þ;N

o
cdðŷÞ� ¼ Icdabδ

2ðx̂ − ŷÞ; ð3:21Þ

�
σabðu; x̂Þ;N

1
cdðŷÞ� ¼ 1

2
uIcdabδ

2ðx̂ − ŷÞ; ð3:22Þ

�
qcdðx̂Þ; pabðŷÞ� ¼ Iabcdδ

2ðx̂ − ŷÞ; ð3:23Þ
�
Cðx̂Þ; No ðŷÞ� ¼ δ2ðx̂ − ŷÞ; ð3:24Þ

where Iabcd , introduced in (1.1), ensures that the trace modes
are nondynamical. The rest of the brackets do not survive at
the linearized order. For example, all of the brackets of pab,
except for ½q; p�, have a radiative field on the right-hand
side, and hence are irrelevant in the linearized setting. For
the detailed kinematical structure of the full nonlinear
gBMS, please refer to Appendix B.
Thus, using these kinematical brackets, one can find the

nonzero brackets between the constraints:

½F ab
1 ðx̂Þ;F 2mðŷÞ� ¼

�
1

2
∂m∂

a
∂
b −

1

4
∂
2
∂
ðaδbÞm −

1

8
ηab∂2∂m

�
× δ2ðx − yÞ; ð3:25Þ

½F ab
3 ðx̂Þ;F 4cdðŷÞ�¼2

�
δðac δ

bÞ
d −

1

2
ηabηcd

�
δ2ðx̂− ŷÞ: ð3:26Þ

4The relation between C and C in the full nonlinear theory will
also involve Geroch tensor Tab.

5We have obtained these brackets by calculating the appro-
priate Hamiltonian vector fields. See Appendix B for details.
Strictly speaking, due to falloff properties of the first term of
(3.14), the HVFs derived from it are well defined only up to the
regularization

R
∞
−∞ du u ¼ 0 and

R
∞
−∞ du ∂uðuσabÞ ¼ 0, the latter

motivated by the falloffs on NabðuÞ − limu0→∞ Nabðu0Þ and the
constraint σþab þ σ−ab ¼ 0.
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Here we wish to clarify two things: (i) The Hamiltonian vector fields for the mode σab are not well defined and we require
a prescription for the ½F 3ab;F 3cd� bracket. Following Ref. [16], we set this bracket to 0. (ii) To evaluate ½F 2a;F 3bc�we need	

lim
u0→∞

Nabðu0; x̂Þ; σþcdðŷÞ þ σ−cdðŷÞ


¼ lim

u0→∞
lim
u→∞

½Nabðu0; x̂Þ; σcdðu; ŷÞ þ σcdð−u; ŷÞ� ∼ lim
u0→∞

lim
u→∞

δðu − u0Þ ¼ 0: ð3:27Þ

Another justification for the same is as follows:

lim
u0→∞

lim
u→∞

u½Nabðu0Þ; σcdðuÞ þ σcdð−uÞ� ¼ lim
u0→∞

	
Nabðu0Þ;

Z
du∂uðuσcdðuÞÞ




¼ lim
u0→∞

	
Nabðu0Þ;N

1
cd þ

Z
du σcdðuÞ




¼ lim
u0→∞

�
1

2
δcdabδ

2ðx̂ − ŷÞ − 1

2

δ

δσabðu0; x̂Þ
�Z

du σcdðu; ŷÞ
��

¼ 0; ð3:28Þ

where we explicitly used the Hamiltonian vector field corresponding to Nabðu0; x̂Þ.

3. Inverting the Dirac matrix

Getting on with the constraint analysis, we can see that the matrix of brackets of constraints, i.e., the Dirac matrix, is
block diagonal. This simplifies the inversion of the Dirac matrix, which we denote by the letter M. The “inverse” of the
Dirac matrix will be denoted by W and it is required to satisfy the following equation(s):Z

d2ŷMIJðx̂; ŷÞWJKðŷ; ẑÞ ¼ δ2ðx̂ − ẑÞδKI ; ð3:29Þ

Z
d2ẑ

0
BBBBB@

0 M12
ab
m 0 0

M21
ab
m 0 0 0

0 0 0 M34
cd
ab

0 0 M43
cd
ab 0

1
CCCCCAðx̂; ẑÞ

0
BBBBB@

0 W12
n
ab 0 0

W21
m
cd 0 0 0

0 0 0 W34
kl
cd

0 0 W43
kl
cd 0

1
CCCCCAðẑ; ŷÞ¼δ2ðx̂− ŷÞ

0
BBBBB@
Iabcd 0 0 0

0 δnm 0 0

0 0 Iklab 0

0 0 0 Iklab

1
CCCCCA:

ð3:30Þ

Some explanation of the notation used above is in order:
the capital letters I, J, K, range from 1–4. The sphere
indices that each constraint carries are understood. For
instance:

MIJjI¼1;J¼2 ¼ Mab
12m ¼ ½F ab

1 ;F 2a�: ð3:31Þ
Let us write the equations that define the inverse

for M12
ab
m :Z

d2z
�
F 1

abðx̂Þ;F 2mðẑÞ
�
W21

m
cdðẑ; ŷÞ ¼ δabcdδ

2ðx̂ − ŷÞ;

ð3:32ÞZ
d2z

�
F 2mðx̂Þ;F 1

abðẑÞ�W12
n
abðẑ; ŷÞ ¼ δnmδ

2ðx̂ − ŷÞ:

ð3:33Þ

We require the Green’s function for the following
differential operator:�
1

2
∂m∂

a
∂
b −

1

4
∂
2
∂
ðaδbÞm −

1

8
ηab∂2∂m

�
ðxÞ
W21

m
cdðx̂; ŷÞ

¼ PIabcdδ
2ðx̂ − ŷÞ; ð3:34aÞ

�
1

2
∂m∂

a
∂
b −

1

4
∂
2
∂
ðaδbÞm −

1

8
ηab∂2∂m

�
ðxÞ
W21

n
abðŷ; x̂Þ

¼ −Pδnmδ2ðx̂ − ŷÞ: ð3:34bÞ

As these differential operators may have nontrivial kernels,
we have included formal operators P that project functions
onto the subspace wherein they are invertible. In terms of
these abstract inverses, we can write down all the nonzero
entries of the inverse Dirac matrix:
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Wm
21abðx̂; ŷÞ ¼ −Wm

12abðŷ; x̂Þ; ð3:35Þ

Wcd
34abðx̂; ŷÞ ¼ −Wcd

43abðx̂; ŷÞ ¼
1

2
δcdabδ

2ðx̂ − ŷÞ: ð3:36Þ

Before moving on, let us check that the inverse of the Dirac matrix is trace-free ηabW21
m
ab ¼ 0:

	Z
d2xW21

p
abðŵ; x̂Þ


 Z
d2zM12

ab
m ðx̂; ẑÞW21

m
cdðẑ; ŷÞ ¼

	Z
d2xW21

p
abðŵ; x̂Þ



P Iabcdδ

2ðx̂ − ŷÞ;

⇒
Z

d2zW21
m
cdðẑ; ŷÞ

	Z
d2xW21

p
abðŵ; x̂ÞM12

ab
m ðx̂; ẑÞ



¼ W21

p
abðŵ; ŷÞPIabcd ð3:37Þ

⇒ W21
p
cdðŵ; ŷÞP ¼ W21

p
abðŵ; ŷÞPIabcd ð3:38Þ

⇒ ηcdW21
p
cd ¼ 0: ð3:39Þ

4. Dirac brackets

We are now ready to find the physical brackets between
the fundamental modes. We denote kinematical brackets as
½·; ·�, and the physical Dirac brackets, obtained after the
constraint analysis, as ½·; ·��.
We identify the dynamical modes of interest that have

kinematical brackets with particular constraints. This is
illustrated in Fig. 1. In the figure, an edge between the
nodes denoting the constraints indicates that the corre-
sponding entry from the inverse Dirac matrix is nonzero.
The kinematical bracket between quantities from the left
and right ends of the graph gets corrections from the Dirac
analysis. As can be noted from the diagrams, certain
brackets are identical to those of the kinematical ones.
The only nonvanishing bracket of this kind is

½Nabðu;x̂Þ;Ncdðu0; ŷÞ�� ¼
1

2
Icdab∂uδðu−u0Þδ2ðx̂− ŷÞ: ð3:40Þ

Upon imposing F 3 and F 4, we find that all the brackets

of N
o

ab and N
o

ab turn out to be the same. So, from now on,
we do not differentiate between the two. The only non-

vanishing bracket involving N
o

ab is

½N
o

abðx̂Þ;CðŷÞ�� ¼ 2∂a∂
TF
b δ2ðx̂ − ŷÞ: ð3:41Þ

This matches with the corresponding brackets from
HLMS [18]. We next consider

�
habðx̂Þ;N

1
cdðŷÞ�� ¼ −

Z
d2ẑd2ẑ0

�
habðx̂Þ;F ij

1 ðẑÞ
�
Wm

12ijðẑ; ẑ0Þ
�
F 2mðẑ0Þ;N

1
cdðŷÞ�

¼ 1

2
IijabI

cd
mn

∂

∂yn
Wm

12ijðx̂; ŷÞ ¼
1

2
Icdmn

∂

∂yn
Wm

12abðx̂; ŷÞ: ð3:42Þ

Note that in the last equality, we have used ηijW12
m
ij ¼ 0. We note from diagram (a):

½qabðx̂Þ; Ncdðu; ŷÞ�� ¼ 0 ∀ finite u: ð3:43Þ

FIG. 1. Corrections to the brackets due to second-class constraints.
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However, the two equations, (3.43) and (3.42), are not in contradiction with each other, because, in general,
½a; R b� ≠ R ½a; b�. The other nonvanishing bracket is

�
Nabðu; x̂Þ;N

1
cdðŷÞ�� ¼ 1

2
Icdabδ

2ðx̂ − ŷÞ −
Z

d2ẑd2ẑ0
�
Nabðu; x̂Þ;F ij

1 ðẑÞ
�
W12

m
ijðẑ; ẑ0Þ

�
F 2mðẑ0Þ;N

1
cdðŷÞ� ð3:44Þ

¼ 1

2
Icdabδ

2ðx̂ − ŷÞ − 1

4
Ikiab

∂

∂ye

∂
2

∂xk∂xj
W12

m
ijðx̂; ŷÞIcdem: ð3:45Þ

Note that the soft News sector does not decouple completely from the hard News, as was the case in [16].
Eliminating the inverse matrix element from (3.42) and (3.45), we obtain	�

2Nabðu; x̂Þ þ ∂
m
∂ðahbÞm −

1

2
ηab∂

m
∂
nhmn

�
;N

1
cdðŷÞ



�
¼ Icdabδ

2ðx̂ − ŷÞ: ð3:46Þ

Thus at the level of linearized gravity, we can find the conjugate mode toN
1

ab. The striking thing about this result is that the
explicit form of the Green’s function does not appear in this equation. We only require its existence. Note that since (3.46)
holds for all values of u, only the constant mode in News, which is exactly the Geroch tensor, is contributing to the Dirac
bracket. Had qab not been dynamical, we would have gotten 2Tab to be the conjugate to the subleading soft News tensor, as
expected:

�
Nabðu; x̂Þ; Ncdðu0; ŷÞ�∗ ¼ 1

2
Icdab∂uδðu − u0Þδ2ðx̂ − ŷÞ; ð3:47aÞ

h
ð2Nabðu; x̂Þ þ Imn

ab ∂p∂mqnpÞ;N
1 cd

ðŷÞ
i
∗ ¼ Icdabδ

2ðx̂ − ŷÞ; ð3:47bÞ

�
Cðx̂Þ; No ðŷÞ�∗ ¼ δ2ðx̂ − ŷÞ: ð3:47cÞ

Jacobi identities. At the linearized level, all the Dirac
brackets are differential operators (or constants) acting on
the Dirac delta function, hence the Dirac brackets satisfy
Jacobi identities.

5. Celestial plane vs celestial sphere

In the analysis so far, we have expanded the metric qab
around the flat ηab perturbatively. However, we could have
done the same analysis with qab being perturbed around

round sphere metric q
o
ab, for which the Ricci scalar R

o ¼ 2.
The significant difference lies in the kinematical mode
conjugate to hab (3.2). The updated constraints would be as
follows:

F ab
1 ¼ pab þ Iabmn

�
N
1

mn −∇o m∇o cN
1

nc
�

¼ pab þ
�
N
1

ab −∇o a∇o cN
1

bc
�STF

; ð3:48Þ

F 2a ¼ lim
u→∞

∇o bNab þ
1

2
∇o a∇

o
b∇o chbc; ð3:49Þ

F 3ab ¼ σþab þ σ−ab; ð3:50Þ

F 4ab ¼ N
o

ab þ 2∇o a∇
o

bN
o
: ð3:51Þ

Note that the covariant derivative ∇o a is compatible with

the round sphere metric q
o
ab. The nontrivial element of the

Dirac matrix is

½F ab
1 ðx̂Þ;F 2mðŷÞ�

¼
	
1

2
∇o m∇

o
a∇o b −

1

4
δðam∇

o
bÞ∇o 2 −

1

8
q
o ab∇o m∇

o
2

þ 1

2
ð∇o aδbmÞSTF



δ2ðx̂ − ŷÞ: ð3:52Þ

Proceeding as before, the final Dirac brackets are

�
Nabðu; x̂Þ; Ncdðu0; ŷÞ�� ¼ 1

2
Icdab∂uδðu − u0Þd2ðx̂ − ŷÞ; ð3:53aÞ
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h
ð2Nabðu; x̂Þ − habðx̂Þ þ Iikab∇

o

k∇
o

jqijÞ;N
1

cdðŷÞ
i
�
¼ Icdabd

2ðx̂ − ŷÞ; ð3:53bÞ

½Cðx̂Þ; No ðŷÞ�� ¼ d2ðx̂ − ŷÞ: ð3:53cÞ

We end this section with a few remarks.
(i) We have separated N

o
; C from the hard modes and

the reduced phase space admits Poisson brackets
between these soft modes along with the usual AS
bracket. Hence ΓHLMS is a subspace of the phase
space defined in this section.

(ii) An important distinction of the present analysis from
the earlier attempts [16,17] to derive the symplectic
structure on gBMS (eBMS) phase space is the
following: In [16] the authors separated the fields
in hard and soft sectors. In the gBMS case, the soft
sector is parametrized by qab; Tab which are related
by a constraint, namely the defining equation for the
Geroch tensor. As we have shown, at least in the
linearized gravity, separating the hard shear tensor in

σ
o
ab and Tab is not necessary. Parametrizing the

subleading soft sector by sphere metric and its
conjugate is sufficient to obtain the reduced phase
space in which all the functionally independent
conjugate partners can be identified. It is this phase
space which should be quantized and may lead us to
a more refined understanding of soft vacuua in
quantum theory. However, we leave the quantization
of this phase space for future work.

B. Obstacles in gBMS phase space analysis

In this section, we outline some difficulties we faced
while undertaking the constraint analysis for gbms algebra.
The following is the symplectic form proposed in [17], out
of which charges that faithfully represent the gbms algebra
can be computed:

Ω ¼
Z
I

ffiffiffi
q

p
δNab ∧ δσ

o ab

þ
Z
S2

ffiffiffi
q

p �
δN
o ∧ δCþ δΠab ∧ δTab þ δpab ∧ δqab

�
;

ð3:54Þ

where C ¼ ð−2∇a∇b þ qabΔþ TabÞð−2∇a∇b þ TabÞC.
Furthermore, pab and Πab, the modes conjugate to qab
and Tab respectively, are functions of subleading and
leading soft News modes. We include their definitions in
the set of constraints:

F ab
1 ¼ pab −

	
∇a∇cN

1
bc −

R
2
N
1

ab þ
�
bilinear inC;N

o �

;

ð3:55Þ

F ab
2 ¼ Πab −

	
2N

1
ab þ

�
bilinear inC;N

o �

: ð3:56Þ

R is the Ricci scalar for the two-dimensional celestial
sphere. Since we have included the definitions of pab and
Πab as constraints, we can treat them as independent from
other soft or hard modes, at the kinematical level.
Apart from these two, we have two constraints, (almost)

the same as the HLMS case. We refer to them as F 3;4. The
relation between Tab and qab is referred to as F 5. The same
constraints appear in [16]:

F 3ab ¼ N
o

ab þ 2½DaDbN
o �TF; ð3:57Þ

F 4ab ¼ σ
o þ
ab þ σ

o −
ab; ð3:58Þ

F 5a ¼ ∇bTab þ
1

2
∇aR: ð3:59Þ

Here the symbol D denotes the DiffðS2Þ covariant
derivative. We have to find the kinematical brackets for
this setup and perform the second-class constraint analysis
to obtain the reduced phase space. However, this problem
proved rather difficult. The interested reader may consult
Appendix B for further details.

IV. REDUCED PHASE SPACE FOR GAUGED
WEYL BMS

In this section, we analyze another example of the
radiative phase space with relaxed boundary conditions
at null infinity. The boundary conditions are such that the
celestial metric is fixed up to a conformal factor. These
boundary conditions are “complementary” to those which
lead to gBMS symmetries, for which the area form on the
celestial sphere is fixed.
It was shown in [14] that such a boundary condition

preserves asymptotic flatness. The resulting symmetry
group which we denote as W is a subgroup of the so-
called Weyl-BMS group, discovered in [14], which is a
semidirect product of the BMS group and the Weyl scaling
of the celestial sphere metric. The Weyl-BMS group
contains supertranslations, celestial diffeomorphisms, as
well as Weyl scalings. We focus on the phase space which
admits an action of W, that excludes the area-preserving
(celestial) diffeomorphisms.
AlthoughW (as well as Weyl-BMS) generates an action

on the solutions of Einstein’s equations, the charge asso-
ciated with Weyl rescaling does not constrain classical
scattering. Moreover, it can be argued that the conservation
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law for fluxQW at Iþ, generated by the conformal scaling,
is a consequence of the supertranslation conservation law.6

Motivated by this result, we consider the scenario where
the asymptotic structure at I is fixed up to rescaling
freedom of the celestial sphere metric but we then gauge
the Weyl symmetry. This model for a radiative phase space
is not physical as in generic radiative spacetime the Weyl
flux at Iþ need not vanish. However, this example helps us
in elucidating subtleties in analyzing the phase space at I
with a dynamical celestial sphere metric which we did not
encounter in the case of linearized gravity in Sec. III A.
As we show below, theQw ¼ 0 hypersurface is symplec-

tic and is a direct product of the “soft-sector” parametrized
by the supertranslation Goldstone mode, its symplectic
partner, and an additional pair of fields associated with
the shear field atI . The soft sector turns out to be isomorphic

to the soft sector in ΓHLMS as the only soft modes are ðC;No Þ.
The symplectic structure on this hypersurface which is
induced by the symplectic structure on ΓW nicely elucidates
the difficulties we face in separating hard and soft degrees of
freedom once the celestial metric is a dynamical mode.

A. Weyl Invariance of The CK condition

There are two polarizations of the graviton and hence two
soft theorems. However, there is only one charge associated
with each supertranslation parameter fðx̂Þ. The apparent
discrepancy is resolved by the Christodoulou-Klainerman
(CK) condition [20], which relates the positive and
negative helicity graviton insertions. CK conditions can be
interpreted as the vanishing of the magnetic charge at null
infinity [27].7 In the presence of a dynamical metric, the
magnetic part of the supertranslation charge is as follows:

QI ½ξf� ¼
Z
S2
f
Z

du

�
∇½a∇cNcb� −

1

2
T ½acNcb�

�
ð4:1Þ

Note the presence of an extra term containing the Geroch
tensor compared to the HLMS setup.
For the charge (4.1) to vanish for arbitrary fðz; z̄Þ, the

integrand should vanish, hence:

∇½a∇cN
o

cb� −
1

2
T ½acN

o

cb� ¼ D½aDcN
o

cb� ¼ 0: ð4:2Þ

Here, the Da are the gBMS covariant derivative, as
introduced in [17]. The general solution to the above

constraint is N
o

ab ¼ −2DaDbN
o

TF and hence:

DzDzN
o

z̄ z̄ ¼ Dz̄Dz̄N
o

zz ð4:3Þ

Since N
o

zz and N
o

z̄ z̄ create leading soft gravitons of different
helicities, the above equation implies that the two polar-
izations of the leading soft graviton are not independent [18].8

The counting for the leading soft gravitons remains the
same even in the presence of superrotations, as the CK
condition is invariant under superrotations:

δVðD½aDcN
o

cb�Þ ¼
�
LV þ 1

2
∇aVa

�

×

�
∇½a∇cN

o

cb� −
1

2
T ½acN

o

cb�

�
¼ 0: ð4:4Þ

Hence, even in the presence of superrotations, the counting
for leading soft graviton insertion is still the same.
In order to compute the transformation properties of the

magnetic charge under Weyl BMS, we make use of the
following identities:

δwϑa1…
b1… ¼ kwϑa1…

b1…

⇒ δwDaϑa1…
b1… ¼ kwDaϑa1…

b1…: ð4:5Þ

Wemake use of the crucial insight that theWeyl weights (k in
δwϑ ¼ kwϑ) and the gBMS weights [k in δVϑ ¼
ðLV þ kαÞϑ] coincide for all of the quantities.9 This implies
that the gBMS covariant derivative introduced by Campiglia-
Peraza in [17] is alsoWeyl covariant.10 As a consequence, the
CK condition is invariant under the Weyl scalings:

δw
�
D½aDcN

o

cb�
�
¼ 0: ð4:6Þ

6We thank Daniele Pranzetti and Laurent Freidel for commu-
nicating this result to us.

7In analogy with the gauge theories, certain components of the
Weyl tensor for the four-dimensional metric can be identified as
electric fields and magnetic fields.

8Superrotations correspond to the subleading soft insertions of
gravitons, and the insertions of the two helicities are independent.
There are two charges corresponding to Vaa∈ ½1; 2� and the
electric and magnetic parts for each vector field are identical,
hence a total of only two independent charges [27].

9This follows from the fact that the kα term in gBMS action,
δVϑ ¼ ðLV þ kαÞϑ, upon generalization, leads to the Weyl
scalings. α becomes the independent Weyl parameter w.

10As an interesting exercise, had the Weyl weight and the
gBMS weight been different, we could have constructed a Weyl-
Diff-covariant derivative (D̄) as follows:

δVϑa1…
b1… ¼ ðLV þ kαÞϑa1…b1…

⇒ δVD̄aϑa1…
b1… ¼ ðLV þ kαÞD̄aϑa1…

b1…;

δwϑa1…
b1… ¼ lwϑa1…

b1…

⇒ δwD̄aϑa1…
b1… ¼ lwD̄aϑa1…

b1…:

This derivative is metric compatible and has the following
form:

D̄aϑa1…
b1… ¼ Daϑa1…

b1… þ ðk − lÞAbϑa1…
b1…;

such that; δwAb ¼ ∇bw; δVAb ¼ LVAb:
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The usual counting of charges and soft theorems remains

unchanged andwe can expressCab andN
o

ab in terms of scalar
functions:

Cab ≡ −2DaDbCTF; N
o

ab ≡ −2DaDbN
o

TF: ð4:7Þ

B. Symplectic structure and kinematical brackets

In this case, a general ansatz for the presymplectic form
is a sum of the supertranslation sector from [16] and a term
corresponding to the mode

ffiffiffi
q

p
. Concretely,

Ω ¼
Z
I
δNab ∧ δ

� ffiffiffi
q

p
σ
o ab

�
þ
Z
S2
δN
o ∧ δ

� ffiffiffi
q

p
DC

�
þ 1

2

Z
S2
δΠ ∧ δ

ffiffiffi
q

p
: ð4:8Þ

The first two terms are the usual terms from ΓHLMS, with the
last term indicates that the

ffiffiffi
q

p
is dynamical.11 Recall that

D ¼ 4DaDbðDaDbÞTF. The presence of the dynamical
celestial sphere area element leads to a nonzero Geroch
tensor, and hence we have Diff-S2 covariant derivative Da,
rather than ∇a. Also note that since Tab is a functional offfiffiffi
q

p
, we are not treating it as an independent boundary

mode. The News tensor does not have the Geroch tensor as
the constant mode, and hence has the following falloffs:

Nabðu; x̂Þ ⟶
u→�∞ juj−2−δ: ð4:9Þ

An expression for the modeΠ in terms of the other phase
space variables can be obtained from covariant phase space
techniques [14]. Here we take a more simplistic approach to
fix Π: we compute it on the hypersurface ΓW within
the phase space, on which we demand that the Weyl flux
QW ¼ Ωðδ; δwÞ vanishes identically. The rest of our analy-
sis will be restricted to this hypersurface. The action of
Weyl BMS transformations on the modes in the phase
space are as follows:

δwNabðu; x̂Þ ¼ wu∂uNabðu; x̂Þ; ð4:10Þ

δwσ
o
abðu; x̂Þ ¼ w

�
−σoab þ uNab

�
ðu; x̂Þ; ð4:11Þ

δwCabðx̂Þ ¼ −wCabðx̂Þ ⇔ δwC ¼ −wC; ð4:12Þ

δwN
o

abðx̂Þ ¼ −wN
o

abðx̂Þ ⇔ δwN
o ¼ −wN

o
; ð4:13Þ

δw
ffiffiffi
q

p ðx̂Þ ¼ −2w
ffiffiffi
q

p ðx̂Þ: ð4:14Þ

For more details, we refer to [14].
Demanding that the Weyl flux vanishes puts the follow-

ing constraint on the phase space variables:

Ωðδ; δwÞ ¼
Z

du δNab
ffiffiffi
q

p �
σ
o ab þ uNab

�
−
Z

du u∂uNabδ
� ffiffiffi

q
p

σ
o ab

�
þ N

o
δ
� ffiffiffi

q
p

Cab
�
þ δN

o ð ffiffiffi
q

p
DCÞ

− δΠ
ffiffiffi
q

p
−

1

2w
δwΠδ

ffiffiffi
q

p ¼ 0: ð4:15Þ

Using the falloff conditions on Nab, and the relation

σ
o þ
ab ¼ −σo −

ab, we obtain

δ

�Z
duu

ffiffiffi
q

p
NabNabþ ffiffiffi

q
p

N
o
DC

�
¼ ffiffiffi

q
p

δΠþ 1

2w
δwΠδ

ffiffiffi
q

p
:

ð4:16Þ

For the right-hand side to be a total variation, we must have
the following:

δwΠ ¼ 2wðgðz; z̄Þf0ð ffiffiffi
q

p Þ þ ΠÞ: ð4:17Þ

This implies that Π has to be of the form

Πðx̂Þ ¼
Z

du uNabNab þ N
o
DCþ gðx̂Þfð ffiffiffi

q
p Þ: ð4:18Þ

Substituting it back into the symplectic form (4.8), we
see that the term gðx̂Þfð ffiffiffi

q
p Þ does not contribute to the

symplectic form. We, therefore, omit this term altogether.
We have the symplectic form (4.8), from which kinematical
Poisson brackets may be derived, and from which the
reduced phase space may be obtained by imposing on the
kinematic phase space the following constraints:

F 1 ¼ Π − N
o
DC −

Z
du uNabNab; ð4:19Þ

F 2ab ¼ N
o

ab −N
o

ab; ð4:20Þ

F 3ab ¼ σ
o þ
ab þ σ

o −
ab: ð4:21Þ

The symplectic form is degenerate by construction,
i.e., ∃X∶ ΩðY; XÞ ¼ 0 ∀ Y. The X in question is the
Hamiltonian vector field for the constraint F 1. This is
because F 1 is by construction the Noether charge that
generates the Weyl transformations.
At the kinematical level, i.e., prior to the constraints

being imposed, we find the brackets using the kinematical
11Note that (4.8) reduces to the HLMS symplectic structure

once
ffiffiffi
q

p
is nondynamical.
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HVFs derived from the symplectic form given by (4.8). The

second-class constraints among these involve the modes N
o
,

N
o

ab, σ
o
ab, and

ffiffiffi
q

p
. The nonvanishing brackets amongst

these modes are listed below, and these will prove useful
when we solve these constraints via the Dirac procedure:

�
Nabðu; x̂Þ; Ncdðu0; ŷÞ

� ¼ 1

2
∂uδðu − u0ÞIabcd

1ffiffiffi
q

p δ2ðx̂ − ŷÞ;

ð4:22Þ

�
N
o

abðx̂Þ; σocdðu0; ŷÞ
� ¼ −Iabcd

1ffiffiffi
q

p δ2ðx̂ − ŷÞ; ð4:23Þ

�
N
o ðx̂Þ; CðŷÞ� ¼ −

1ffiffiffi
q

p Gðx̂; ŷÞ; ð4:24Þ

�
σ
o
abðu; x̂Þ;ΠðŷÞ

� ¼ σ
o
ab

1ffiffiffi
q

p δ2ðx̂ − ŷÞ; ð4:25Þ

� ffiffiffi
q

p ðx̂Þ;ΠðŷÞ� ¼ 2δ2ðx̂ − ŷÞ: ð4:26Þ

C. Physical phase space

We have a dynamical system with Weyl scalings along I
as the gauge redundancy. Gauging the Weyl transforma-
tions implies that we consider the constraint hypersurface
F 1 ∼ 0 and quotient it out by the Weyl transformations. It
can be checked that this is a consistent restriction as the
HVF generating the Weyl action is tangential to the F 1 ∼ 0
hypersurface. We present two ways to “solve” such a
system, by gauge fixing, and by finding the explicit reduced
phase space.

1. Gauge fixing

One way to solve the first-class constraint is by intro-
ducing another constraint that has a nonzero bracket with
the first-class constraint, rendering it second class [28,29].
To begin with, we have a total of 5 ×∞ constraints, out of
which 1 ×∞ are first class. F 1 is the first-class constraint
and is the generator of theWeyl scalings. The new constraint
is the gauge fixing constraint. One natural gauge fixing
constraint for our current context is

ffiffiffi
q

p ¼ 1.12 We have thus
the following second-class constraints to solve

F 1 ¼ Π − N
o
DC −

Z
du uNabNab; ð4:27Þ

F 2ab ¼ −2½DaDbN
o �TF −N

o

ab; ð4:28Þ

F 3ab ¼ σ
o þ
ab þ σ

o −
ab; ð4:29Þ

F 4 ¼ ffiffiffi
q

p
− 1: ð4:30Þ

We can find the kinematical brackets among the con-
straints using the kinematical brackets from earlier. Using
the HVF,

XR du uNabNab ¼ 1ffiffiffi
q

p
Z

du uNab
δ

δσ
o
ab

þ 2

Z
du uNabNab δ

δΠ
; ð4:31Þ

we can check that	Z
du uNabNab;N

o

mn



¼ 0 ¼

	Z
du uNabNab;F 3mn



:

ð4:32Þ

Hence, the Dirac matrix is as follows13:

0
BBBBBB@

0 M12abðx̂; ẑÞ 0 −δ2ðx̂ − ẑÞ
M21abðx̂; ẑÞ 0 2ffiffi

q
p Iab;cdδ2ðx̂ − ẑÞ 0

0 2ffiffi
q

p Iab;cdδ2ðx̂ − ẑÞ 0 0

δ2ðx̂ − ẑÞ 0 0 0

1
CCCCCCA: ð4:33Þ

The inverse of the constraint matrix is defined as follows: (Note that I; J;… refer to the constraint number ½1; 2; 3; 4� along
with the sphere indices.)

12Other possibilities are C or N
o ¼ f−1; 0;þ1g. Note that the Weyl cannot switch the sign, and if for instance C ¼ 0 in some region,

the Weyl action will keep it zero. Hence such a gauge fixing will only be partial.
13Note that the antisymmetry of ½F 1;F 1� rules out terms proportional to δ2ðx − yÞ. One can check that the rest of the terms vanish,

and hence ½F 1;F 1� ¼ 0.
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Z
d2ẑMIJðx̂; ẑÞWJKðẑ; ŷÞ ¼ δ2ðx̂ − ŷÞδKI : ð4:34Þ

The explicit inverse of the Dirac matrix is as follows:

Z
d2ẑ

0
BBBBB@

0 M12mn 0 −δ2x̂;ẑ
M21ab 0 2ffiffi

q
p Iab;mnδ

2
x̂;ẑ 0

0 − 2ffiffi
q

p Iab;mnδ
2
x̂;ẑ 0 0

δ2x̂;ẑ 0 0 0

1
CCCCCA;

0
BBBBBB@

0 0 0 δ2ẑ;ŷ

0 0 −
ffiffi
q

p
2
Imn;cdδ2ẑ;ŷ 0

0
ffiffi
q

p
2
Imn;cdδ2ẑ;ŷ 0 −

ffiffi
q

p
2
M21

mn

−δ2ẑ;ŷ 0 −
ffiffi
q

p
2
M12

cd 0

1
CCCCCCA ¼

0
BBBB@

1 0 0 0

0 Icdab 0 0

0 0 Icdab 0

0 0 0 1

1
CCCCAδ2x̂;ŷ: ð4:35Þ

Let us look at the corrected brackets:

½φ; α�� ¼ ½φ; α� −
X
IJ

Z
d2ẑ1d2ẑ2

�
φ;F Iðẑ1Þ

�
×WIJðẑ1; ẑ2Þ

�
F Jðẑ2Þ; α

�
: ð4:36Þ

One immediate thing to notice is that14

�
F 3abðx̂Þ; α

�
� ¼ 0 ⇒

�
N
o

abðx̂Þ; α
�
� ¼

�
−2∇a∇bN

o
TF; α

�
�:

ð4:37Þ

The only independent modes after imposing the constraints

are fNo ; C;Nabg. One can notice that all of these modes
have vanishing brackets with F 3 and F 4. Hence, only the
F 1, F 2 block of the inverse matrix contributes to
the correction of brackets. This particular block [upper
left 2 × 2 in (4.35)] is identically zero. Hence the brackets
of these modes remain uncorrected:

�
Nabðu; x̂Þ; Ncdðu0; ŷÞ

�
� ¼

1

2
∂uδðu − u0ÞIab;cdδ2ðx̂ − ŷÞ;

ð4:38Þ

½Cðx̂Þ; No ðŷÞ�� ¼ Gðx̂; ŷÞ: ð4:39Þ

These brackets will be useful in computing the Poisson
algebra of the Weyl invariants in the next section. The
structure of the gauged fixed phase space is not meant to
imply that the reduced phase space is ΓHLMS. We show in

the next section that the supertranslations, which are a
genuine symmetry of ΓHLMS, are not well defined on the
reduced phase space of the gauged Weyl model.

2. Supertranslations in the presence of the gauged Weyl

In this section, we show that the action of supetransla-
tions is not well defined on the reduced phase space.
Consider the action of supertranslations on the News

tensor:

Nabðu; x̂Þ → Nabðuþ fðx̂Þ; x̂Þ: ð4:40Þ

Since Weyl is a gauge redundancy, we may choose to act
the same supertranslation on another representative of the
orbit of Nabðu; x̂Þ under the Weyl scaling, say Nabðewu; x̂Þ:

Nabðewu; x̂Þ → Nabðewuþ fðx̂Þ; x̂Þ: ð4:41Þ

As the right-hand sides of (4.40) and (4.41) are not
related by a Weyl transformation, we conclude that the
action of supertranslations take different points on the same
gauge orbit to points that do not lie on the same gauge orbit,
and are thus ill-defined on the reduced phase space. This is
because the supertranslations and Weyl generating vector
fields do not commute; see Weyl algebra from Sec. II C:

½δðf;0;0Þ; δð0;0;wÞ� ¼ δðwf;0;0Þ: ð4:42Þ

Thus, if we gauge Weyl, supertranslations are no longer
symmetries of the dynamical system. Since supertransla-
tions are true symmetries of the quantum S-matrix, the
gauged Weyl setup is unphysical. The absence of super-
translations as a symmetry manifests itself in the reduced
phase space approach to gauging the Weyl action.

14Note that after gauge fixing
ffiffiffi
q

p ¼ 1, Tab vanishes, and

hence N
o

ab ¼ −2∇a∇bN
o

TF.
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3. Reduced phase space

The Weyl action on Nab is induced by a scale trans-
formation of the null coordinate. The algebra of dilatation
invariant functions on R is isomorphic to the algebra of
functions on a non-Hausdorff space consisting of three
points. This nontrivial topology makes it clear why super-
translations no longer remain global symmetries in the
reduced phase space.
Let us now isolate the “physical” degrees of freedom

without gauge fixing. To begin with, we have the following
coordinates for the kinematical phase space:

f ffiffiffi
q

p
; Cðx̂Þ; No ðx̂Þg ∪ fNabðu; x̂Þg: ð4:43Þ

The reduced phase space is the one constructed by
endowing the space of Weyl orbits a symplectic form
induced from the kinematical phase space [28,29]. Since
each orbit may be parametrized by the values of the Weyl
invariant quantities, we may treat independent Weyl invari-
ant quantities as the coordinates on the reduced phase space.
For instance, in the soft sector, kinematically, fC;No ; ffiffiffi

q
p g

are the coordinates in the phase space. We can choose the
following coordinates for the soft sector, in which case, the
gauge mode and the physical modes are identifiable:

f ffiffiffi
q

p
;

ffiffiffi
q

p −1=2C;
ffiffiffi
q

p −1=2N
o|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamical modes

g: ð4:44Þ

In addition to the fC;No g modes, we have the following
integrals15 over I that are naturally Weyl invariant:

Ifang… ≡ ffiffiffi
q

p ð
P

nan−1Þ=2
Z

∞

−∞
du

Y∞
n¼0

�
∂
n
uN::ðuÞ�an ; an∈Z≥0:

ð4:45Þ

The … in Ifang… denotes the arbitrary sphere indices.16 Note
thatwe require only a finite number ofans to be nonzero for I
to be well defined. In holomorphic coordinates, these
integrals take the following form:

Ifang;fbng ≡ ffiffiffi
q

p ð
P

nðanþbnÞ−1Þ=2

×
Z

∞

−∞
du

Y∞
n¼0

�
∂
n
uNzzðuÞ

�
an
�
∂
n
uNz̄ z̄ðuÞ

�
bn ;

an; bn ∈Z≥0: ð4:46Þ

Not all of the Ifang are independent; while some of them
trivially vanish, others have relations amongst them arising
out of integration by parts. However, such relations keep
the rank of the tensor

P
nan and

P
an fixed. Examples

include

q
Z

duNabNab
∂uNcd þ 2q

Z
duNab∂uNabNcd ¼ 0:

ð4:47Þ

We can use the kinematical brackets to evaluate the
physical Poisson brackets amongst Weyl invariant quan-
tities. One can see clearly that the Ian form a closed algebra:
this is because, by virtue of (4.38), the Poisson bracket of
any two of these invariants is a sum over terms with one
higher power of

ffiffiffi
q

p
, one extra u derivative. This ensures

that the power of the prefactor
ffiffiffi
q

p
is always appropriate to

make the Weyl weight of the overall quantity zero. Now we
give a few examples of what the brackets look like. First,
we note that the following set of observables forms an
Abelian subalgebra:

	 ffiffiffi
q

p ð4n−1Þ=2
Z

du
�
NabNab

�
n
;

ffiffiffi
q

p ð4m−1Þ=2
Z

du0
�
NcdNcd

�
m


¼ 0: ð4:48Þ

For illustration, we write another Poisson bracket:	 ffiffiffi
q

p 3=2

Z
duNabðNmnNmnÞðx̂Þ; ffiffiffi

q
p 2m−1=2

Z
du0

�
NcdNcd

�
mðŷÞ




¼ 2ð1 −mÞ ffiffiffi
q

p 2m

Z
du∂uNab

�
NcdNcd

�
m
δ2ðx̂ − ŷÞ: ð4:49Þ

15Note that even though u integrals,
R�
0 du, can be made Weyl invariant, they are not a part of the phase space since one needs

distributional smearing functions to define them.
16One can verify the Weyl invariance of I by using ∂

n
uNabðuÞ→w enw∂nu0Nabðu0Þju0¼ewu.
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The algebra of Poisson brackets amongst Ifang is
compatible with the Poisson algebra derived by fixing the
gauge, (4.38).
We can act arbitrary Diff-S2 derivatives on any of these

Weyl invariant quantities, and with appropriate factors offfiffiffi
q

p
, we obtain more Weyl invariant tensors. The reduced

phase space is thus parametrized by the soft sector and the
integrals Ifang. These constitute an overcomplete set of
invariants, and characterizing the reduced phase space by
picking out a basis from this set of invariants will be a
challenging problem.

V. CONCLUSIONS

The recent studies in asymptotic symmetries beyond the
ones generated by BMS vector fields typically relies on
the relaxed boundary conditions in which the celestial
sphere metric is allowed to fluctuate. However, our
experience with asymptotic quantization of radiative
phase spaces in which the celestial metric is dynamical
is rather limited. This is because passing to quantum
theory requires that we find the conjugate pairs in the soft
and the hard sector. The broad goal in this paper has been
to provide examples of such radiative phase spaces, which
are in principle amenable to asymptotic quantization. We
have analyzed two scenarios in which the sphere metric is
dynamical: gBMS under the restricted setting of linearized
gravity and Weyl BMS where we treat the Weyl scalings
as pure gauge.
We obtained the physical radiative phase space

for gBMS in the context of linearized gravity. Even
though the generic Dirac bracket involves an abstract
Green’s function, we have identified a certain combination
of a Geroch tensor and celestial metric that is conjugate to
the subleading soft News tensor. The final phase space
does not factorize neatly into the hard and soft sectors,
as the brackets amongst these soft modes and hard
modes are nonvanishing. The results of this analysis
parallel those of [16], indicating the robustness of those
results.
In the linearized gravity approach to the gBMS phase

space, we showed that keeping the Geroch tensor Tab as a
constant mode of the News tensor leads to simplifications
in our analysis. A similar approach may help in the
nonlinear analysis as well.
We showed that the usual method of obtaining Poisson

brackets from the symplectic form via Dirac’s method of
eliminating second-class constraints runs into some issues
when applied to the symplectic form for gBMS in [17].
The core obstruction to the program is the fact that the
determinant of the Dirac matrix is an operator that has
functional dependence on soft modes. We believe that it
will require new ideas to solve the constraints in this case as
an inversion of an operator-valued Dirac matrix appears to

be a rather intractable problem. Given the importance
of obtaining the radiative phase space to perform (asymp-
totic) quantization and define a complete set of soft
vacua in quantum gravity, the problem merits a serious
investigation.
We then focused on a toy model involving the Weyl

BMS group but excluding the superrotation subgroup.
Restricting our attention to the special case with vanishing
Weyl flux, we obtained a symplectic form that is degenerate
over the orbit of the pure Weyl transformations of the
Weyl BMS group. We checked that the Christodoulou-
Klainerman condition is invariant under the action of the
Weyl rescaling and obtained the reduced phase space for
the gauged Weyl model. It is an intriguing observation that
the reduced phase space of the HLMS phase space
augmented with Weyl scalings as gauge is not HLMS
anymore, as it lacks supertranslations.
The gauge invariant observables are precisely those that

are fixed under Weyl rescalings. In the soft sector, this
transformation acts via an overall scaling and thus we have
specified a generating set of gauge invariant quantities by
supplementing the soft modes by appropriate factors of
sphere area element

ffiffiffi
q

p
. However, in the hard sector, there

is no notion of local hard News and the supertranslations
are not well defined. As a result, Weyl scalings cannot be a
gauge redundancy in any physical setting. Also, it leads to
the fact that in the hard sector, only the Weyl invariant
densities constructed out of the I integrals of hard News
survive in the reduced phase space. We have identified a set
of such quantities that form a closed algebra, and presum-
ably, form an overcomplete set of Weyl invariants.
It would be natural to explore how our work in both

settings connects with the flat space holography program
(see Refs. [30,31] for a review).
The reduced phase space defined in the gauged Weyl

setting may have an interesting connection with the space
of all asymptotically locally flat geometries which were
analyzed in [32]. The phase space description we provide in
this work may prove useful to better understand these
locally flat geometries.
Our reduced phase space analysis for linearized gBMS

could prove useful in a variety of settings. For instance, the
double soft graviton theorems are sensitive to the details of
charge algebras [33,34]. It would be useful to revisit the
double soft theorems in light of conservation laws emerg-
ing out of the gBMS phase space.
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APPENDIX A: DIRAC ANALYSIS

Given a dynamical system and the corresponding
Poisson brackets, if we wish to impose some constraints
Fk ¼ 0 on the dynamical variables, then we follow Dirac’s
analysis. (We refer to [19] for a comprehensive review.) The
brackets of the dynamical quantities on the constrained
surface are called Dirac brackets. Given the Poisson
brackets amongst the dynamical variables, we can find
brackets amongst the constraints as well. If a constraint
commutes with all the other constraints (valued on the
constrained surface), then it is called a first-class constraint.
Constraints that are not first class are termed second class.
Given a set of constraints, consider the maximal set of

second-class constraints. Let us denote them by F k. We
denote the kinematical brackets as ½·; ·�, and the Dirac
brackets as ½·; ·��. The prescription due to Dirac for
computing these new brackets is

�
φ; α

�
� ¼

�
φ; α

�
−
X
i;k

�
φ;F i

�
Wik

�
F k;α

�
: ðA1Þ

Here φ and α are arbitrary functions on phase space and
Wik is the inverse of the commutator of constraints, defined
as follows:X

i

�
F l;F i

�
Wik ¼ δkl ¼

X
i

Wki
�
F i;F l

�
: ðA2Þ

Note that ½·;F i�� ¼ 0: ðA3Þ

When the phase space is finite dimensional, one can
check that the Jacobi identity is satisfied. Hence the final
brackets are antisymmetric and satisfy the Jacobi identity
by construction.
The above construction can be generalized to the

continuous case. In that case, the sum over constraints
gets additional integrals appropriately as follows:

X
K

Z
d2ẑ

�
F Iðx̂Þ;FKðẑÞ

�
WKLðẑ; ŷÞ ¼ δLI δ

2ðx̂ − ŷÞ: ðA4Þ

Recall that the antisymmetry of the Dirac matrix manifests
itself as follows:

MIKðx̂; ẑÞ≡
�
F Iðx̂Þ;FKðẑÞ

� ¼ −
�
FKðẑÞ;F Iðx̂Þ

�
¼ −MKIðẑ; x̂Þ: ðA5Þ

The same holds for the inverse as well.

APPENDIX B: DIRAC MATRIX
IN THE GBMS CASE

Let us reiterate the symplectic form for the gBMS
case (3.54)17:

Ω ¼
Z
I

ffiffiffi
q

p
δNab ∧ δσ

o ab

þ
Z
S2

ffiffiffi
q

p �
δN
o ∧ δCþ δΠab ∧ δTab þ δpab ∧ δqab

�
;

ðB1Þ

with C ¼
�
−2∇a∇b þ qabΔþ TabÞð−2∇a∇b þ Tab

�
C:

ðB2Þ

We have traded off C in favor of C. Given C, we can
invert the differential operator and obtain C in terms of the
appropriate Green’s function. The information regarding
the boundary modes of shear is completely encoded in C,
rather than C. After finding the brackets of C, we can
use (B2) to obtain the brackets of C as well.
The variables pab and Πab are both trace-free. This is

because their conjugates also have 2 degrees of freedom
each, as they satisfy det qab ¼ 1 and qabTab ¼ 0. One can
see that by going to the local complex coordinates. In
abstract index notation, since qab is dynamical, the trace-
lessness condition itself is intricate, as can be seen in the
following illustration:

δpab ∧ δqab ¼ δpabTF ∧ δqab þ
1

2
δðpqabÞ ∧ δqab ðB3Þ

¼ δpabTF∧δqab

þ1

2
ðδp∧qabδqabþpδqab∧ δqabÞ ðB4Þ

¼ δpabTF ∧ δqab; ðB5Þ

where we used qabδqab ∼ δ
ffiffiffi
q

p ¼ 0; δqab ∧ δqab ∼
δðδ ffiffiffi

q
p Þ ¼ 0:
To obtain the kinematical brackets, we calculate the

HVFs,18

XNab
¼ 1

2
Iab;mn

δ

δσ
o
mn

− Nn
a

δ

δpnb ; ðB6Þ

17Note that the Geroch tensor is explicitly present, unlike the
case of Sec. III A. This is due to Πab being intricate in the
nonlinear case and there being no canonical way to incorporate
δΠ ∧ δT into the hard sector.

18Note that in the following, we treat σ
o
ab as the fundamental

field and σ
o ab as a functional of σ

o
ab and qab.
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X
N
o

ab

¼ Iab;mn

Z
du

δ

δσ
o
mn

; ðB7Þ

X
N
1

ab
¼ 1

2

Z
du u

δ

δσ
o
mn

þ qamN
1

bn δ

δpmn ; ðB8Þ

XTab
¼ −

δ

δΠab ; ðB9Þ

XΠab ¼ δ

δTab
; ðB10Þ

XC ¼ −
δ

δN
o ; ðB11Þ

X
N
o ¼ δ

δC
; ðB12Þ

Xqab ¼ −
δ

δpab ; ðB13Þ

Xpab ¼ δ

δqab
þ 2

Z
I
qðmaσ

o bnÞXNmn
: ðB14Þ

The relevant kinematic brackets among the phase space
variables follow from the HVFs, and here we state the
results:

�
σ
o
abðu; x̂Þ;Ncdðu0; ŷÞ

�¼ 1

2
δðu− u0ÞIab;cdδ2ðx̂− ŷÞ; ðB15Þ

�
σ
o
abðu; x̂Þ;N

o

cdðŷÞ
� ¼ Iab;cdδ2ðx̂ − ŷÞ; ðB16Þ

�
σ
o
abðu; x̂Þ;N

1
cdðŷÞ� ¼ 1

2
uIcdabδ

2ðx̂ − ŷÞ; ðB17Þ
�
Nabðu; x̂Þ; pcdðŷÞ� ¼ Nðc

a δ
dÞ
b δ

2ðx̂ − ŷÞ; ðB18Þ�
Tcdðx̂Þ;ΠabðŷÞ� ¼ Iabcdδ

2ðx̂ − ŷÞ; ðB19Þ�
qcdðx̂Þ; pabðŷÞ� ¼ δabcdδ

2ðx̂ − ŷÞ; ðB20Þ

�
pcdðx̂Þ;N

1
abðŷÞ� ¼ �

N
1

bðdqacÞ −
1

2
qcdN

1
ab

�
× δ2ðx̂ − ŷÞ: ðB21Þ

The kinematical structure is thus well understood. We
now have to impose the constraints (3.55)–(3.59) on this
kinematical phase space. We can compute the kinematical
brackets of the constraints yielding the Dirac matrix. At
generic points in the phase space, these constraints are rather
unwieldy, so as a first stepwe consider the regionΓts defined

as the subspace of the phase space where the modes N
o
and

N
1

ab vanish. In this special case, we note that the brackets of

the bilinear terms in C and N
o
vanish, and hence these terms

have no bearing on what follows.19 We then show that the
determinant of the resulting matrix is zero. This indicates
that the determinant of the Dirac matrix is functionally
dependent on the News tensor, unlike the case in [16].
Although the precise elements of the Dirac matrix can be

computed using these kinematical brackets, these expres-
sions are cumbersome and hence are omitted from this
article. For our purposes here, we merely need to keep
track of whether the element is nonzero or not, on the

points where N
1

ab and N
o
are set to zero. Crucial to our

results will be the vanishing of three kinematical brack-

ets: ½pab; pcd� ¼ ½pab;Πcd� ¼ ½N
1

ab;N
1

cd� ¼ 0.20

We begin with ½F ab
1 ;F cd

1 �. Notice that every term in F 1

(modulo expressions involving the C mode) has an explicit

N
1

ab in it. Since the only nonvanishing bracket involving

N
1

ab, of the form ½pcd;N
1

ab�, happens to be proportional to
N
1

cd, we deduce that ½F ab
1 ;F cd

1 � vanishes when the sub-
leading News tensor is set to zero.
The story is similar with ½F ab

1 ;F cd
2 �: since ½pab;Πcd� and

½N
1

ab;N
1

cd� vanish, the leftover bracket is precisely

½pcd;N
1

ab�, which is proportional to N
1

ab. Of the remain-
ing brackets, note that ½ðF 5Þa; ðF 5Þb� and ½F ab

2 ;F cd
2 �

vanish (modulo terms with the C mode). The brackets

½F ab
1 ; ðF 5Þc� and ½F ab

2 ; ðF 5Þc� are independent ofN
1

cd and

N
o
. Their precise form will not be required for our argu-

ments. The last brackets are those involving F 3 and F 4: in

this case, the condition N
o ¼ 0 implies that these constraints

decouple from the rest and the Dirac matrix block diag-
onalizes. The F 3,F 4 block is invertible and is functionally
independent of the shear tensor, see Eq. (B16). The
following is a block of the Dirac matrix, formed by
constraints F 1, F 2, and F 5:

19In addition to all the brackets that vanish, we have omitted
any bracket involving the modes C and N

o
. This is because by

virtue of (B12) the only nonzero bracket the soft mode N
o
has is

the ½C;No � bracket. But since in the constraints, C and N
o
always

come in pairs, all the brackets involving these vanish when N
o
is

set to zero. Thus we may ignore the terms from the constraints

that are bilinear in C, N
o
.

20We wish to remind the reader that the vanishing of the

½N
1

ab;N
1

cd� brackets is the result of a regularization of the
integral

R
∞
−∞ du u≡ limΛ→0

R
Λ
−Λ du u ¼ 0.
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0
B@

½F 1;F 1� ½F 1;F 2� ½F 1;F 5�
½F 2;F 1� ½F 2;F 2� ½F 2;F 5�
½F 2;F 1� ½F 5;F 2� ½F 5;F 5�

1
CA ¼

0
BBBBB@

ð…N
1

…Þ ð…N
1

…Þ ð…Þ

ð…N
1

…Þ 0 ð…Þ
ð…Þ ð…Þ 0

1
CCCCCA: ðB22Þ

Each entry in this 3 × 3 matrix is a 2 × 2 block. In the

matrix shown in (B22), …N
1

… denotes terms that are
linear in subleading soft News and vanish when it is set to

zero. Note that N
o
has already been set to zero. If N

1
ab is

also zero, the top four rows of the Dirac matrix form a set of
4 vectors, each of which is two dimensional. Thus, the
determinant of this matrix must vanish. On the other hand,
one can explicitly check that determinants of matrices with

nonzero entries in the locations represented by …N
1

… do
not trivially vanish. Thus we conclude that the determinant
of the Dirac matrix is functionally dependent on the Bondi
News tensor, as claimed in Sec. III B.
The aforementioned determinant also happens to be a

differential operator (acting on the Dirac delta function of
S2). Since the inverse matrix involves the inverse of the
determinant, we would expect it to involve Green’s

function for this operator. The problem of finding this
Green’s function, however, is intractable, as the operator is
dependent on the soft modes means that its coefficients are
arbitrary functions on the celestial sphere. We thus see that,
one cannot solve the Dirac constraints globally on the phase
space and that they can only be solved locally in phase
space (for fixed soft modes). However, this analysis is
outside the scope of the present paper. Though, the
extended covariant phase space of linearized theory that
includes (in addition to the canonical phase space of
linearized gravity) the radiative phase space of leading
and subleading soft modes turns out to be tractable, as
described in Sec. III A.
The entries of the inverse of the Dirac matrix, if it exists,

are precisely the functionals of physical brackets among the
soft sector modes. For instance consider the brackets
½qabðx̂Þ; qcdðŷÞ��. (Kinematically, qab and Tab only have
nonzero brackets with pab and Πab respectively.)

	
qabðx̂Þ; qcdðŷÞ



�
¼ −

Z
d2ẑ1d2ẑ2½qabðx̂Þ;F ij

1 ðẑ1Þ�W11
ij;klðẑ1; ẑ2Þ½F kl

1 ðẑ2Þ; qcdðŷÞ� ðB23Þ

¼ −
Z

d2ẑ1d2ẑ2½qabðx̂Þ; pijðẑ1Þ�W11
ij;klðẑ1; ẑ2Þ½pklðẑ2Þ; qcdðŷÞ� ðB24Þ

¼ W11
ab;cdðx̂; ŷÞ: ðB25Þ

Similarly, for Tab, we have �
Tabðx̂Þ; TcdðŷÞ

�
� ¼ W22

ab;cdðx̂; ŷÞ: ðB26Þ

Thus, finding the physical brackets is about as hard a problem as solving the set of coupled PDEs coming from the
constraint analysis.
First, let us plug in the variations involving only the shear tensor, which will be useful in computing the HVFs XNab

and X
N
o

ab

:

Ω
�
–;

δ

δσ
o
abðu0; x̂0Þ

�
¼

Z
I
d2ŷduδ2ðx̂ − ŷÞ

h
−∂uδðu − u0Þδð ffiffiffi

q
p

σ
o abðu; ŷÞÞ þ ffiffiffi

q
p

δðu − u0ÞqamqbnδNmn

i
¼ 2

ffiffiffi
q

p
qmaqnbδNmnðu0; x̂0Þ − Nabðu0; x̂0Þδ ffiffiffi

q
p

; ðB27Þ

Ω
�
–;
Z

du0
δ

δσ
o
abðu0; x̂0Þ

�
¼

Z
I
d2ŷdu

ffiffiffi
q

p �Z
du0δðu − u0Þδ2ðx̂ − ŷÞ

�
qamqbnδNmn

¼ ffiffiffi
q

p
qamqbnδN

o

mnðx̂0Þ: ðB28Þ
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These are the same as those from [16], with an additional δ
ffiffiffi
q

p
coming from the extra mode

ffiffiffi
q

p
that we introduced. The

following are the variations involving the soft modes of the phase space:

Ω
�
–;

δ

δΠðx̂0Þ
�

¼ −
1

2
δ

ffiffiffi
q

p
; ðB29Þ

Ω
�
–;

δ

δN
o ðx̂0Þ

�
¼ −

Z
x̂
δ2ðx̂ − x̂0Þδð ffiffiffi

q
p

DCÞ; ðB30Þ

Ω
�
–;
Z
ŷ
Gðx̂0; ŷ0Þ δ

δCabðŷ0Þ
�

¼
Z
x̂

ffiffiffi
q

p
δN
o

abδ
2ðx̂ − x̂0Þ ¼ ffiffiffi

q
p

δN
o

abðx̂0Þ; ðB31Þ

Ω
�
–;

δ

δ
ffiffiffi
q

p ðx̂0Þ
�

¼
Z
x̂
DCδN

o

abδ
2ðx̂ − x̂0Þ þ

Z
x̂

ffiffiffi
q

p
δN
o

ab
δ

δ
ffiffiffi
q

p DCδ2ðx̂ − x̂0Þ

þ 1

2
δΠðx̂0Þ þ

Z
duσ

o abδNabðx̂0ÞÞ

¼ Cabðx̂0ÞδNo abðx̂0Þ þ
1

2
δΠðx̂0Þ þ

Z
duσ

o abδNabðx̂0Þ: ðB32Þ

Note that there are subtleties like the following:

XR dyAðyÞ ≠
Z

dyXAðyÞ: ðB33Þ

This tells us that we should keep clear of the integrals over variations of the quantities whose HVFs we seek. For instance,
we shall see that X

N
o

ab

≠
R
duXNab

.

Making use of some hindsight, we note that

Ω
�
–;
Z

du0σ
o
ab

δ

δσ
o
abðu0; x̂0Þ

�
¼

Z
du

ffiffiffi
q

p
σ
o abδNab −

Z
du

ffiffiffi
q

p
Nabδσ

o
ab þ

Z
duNabσ

o abδ
ffiffiffi
q

p

¼ 2
ffiffiffi
q

p Z
duσ

o abδNab; ðB34Þ

where we used the relation σ
o þ
ab ¼ −σo −

ab and the falloffs in u
of the News tensor. This is exactly the term that appears
in (B32), and will be useful in writing the kinematical HVF
for the Π mode.
The kinematical HVFs we need for our Dirac analysis are

just linear combinations of the expressions given from (B27)–
(B34). One exception is the HVF for the shear tensor, which
will eventually be required to compute the brackets amongst
the components of F 3. For this task, we will introduce
the prescription that this bracket vanishes, similar to the one
in [16]. If we chose a different prescription, only the
fCab; Ccdg� bracket would differ from the one we derive
here, as can be deduced from the structure of theDiracmatrix.
Listed below are all the kinematical HVFs for Weyl-

BMS. To avoid cluttering, we omit the spacetime depend-
ence of these quantities:

XNab
¼ 1ffiffiffi

q
p

�
1

2
Iab;mn

δ

δσ
o
mn

− Nab
δ

δΠ

�
; ðB35Þ

X
N
o

ab

¼ 1ffiffiffi
q

p
�
Iab;mn

Z
du0

δ

δσ
o
mn

�
; ðB36Þ

X ffiffi
q

p ¼ −2
δ

δΠ
; ðB37Þ

X
N
o

ab
¼ 1ffiffiffi

q
p δ

δCab ; ðB38Þ

XCab ¼ −
1ffiffiffi
q

p
�

δ

δN
o

ab

− 2Cab δ

δΠ

�
; ðB39Þ
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XΠ ¼ 2

�
δ

δ
ffiffiffi
q

p −
1ffiffiffi
q

p Cab δ

δCab þ
1

2
ffiffiffi
q

p
Z

duσ
o
ab

δ

δσ
o
ab

�
:

ðB40Þ

We now recall the definition for the Poisson brackets:

ff; gg ¼ ΩðXg; XfÞ ¼ δfðXgÞ ¼ XgðfÞ: ðB41Þ

Using the above equation and all the HVFs, one can
readily find all the kinematical brackets, which are listed
in Sec. IV.
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