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The Bardeen black hole holds historical significance as the first model of a regular black hole. Recently,
there have been proposed interpretations of the Bardeen spacetime as quantum corrections to the
Schwarzschild solution. Our study focuses on investigating the quasinormal modes and Hawking radiation
of the Bardeen black hole. We have observed that previous studies on the quasinormal modes for the
Bardeen black hole suffer from inaccuracies that cannot be neglected. Therefore, we propose accurate
calculations of the quasinormal modes for scalar, electromagnetic, and neutrino fields in the Bardeen
spacetime. Additionally, we have computed the gray-body factors and analyzed the emission rates of
Hawking radiation. Even when the quantum correction is small and the fundamental mode only slightly
differs from its Schwarzschild value, the first several overtones deviate at an increasingly stronger rate. This
deviation leads to the appearance of overtones with very small real oscillation frequencies. This outburst of
overtones is closely linked to the fact that the quantum-corrected black hole differs from its classical limit
primarily near the event horizon. Moreover, the intensity of the Hawking radiation is significantly
suppressed (up to 3 orders of magnitude) by the quantum correction.
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I. INTRODUCTION

The problem of a central singularity in the Schwarzschild
solution represents a limitation of Einstein’s theory of
gravity. Consequently, the development of regular black
hole models within various approaches and theories of
gravity has become an important endeavor. The Bardeen
black hole stands as the first historically significant ad hoc
model describing a regular black hole [1]. Subsequently, an
interpretation of the Bardeen metric was proposed in the
context of a specific nonlinear electrodynamics in curved
spacetime, positing it as a giant gravitating magnetic
monopole [2]. However, if the weak field limit is reduced
to the usual Maxwell electrodynamics, the electric charge
must vanish, as per the Bronnikov theorem [3]. Despite such
an exotic interpretation of the Bardeen spacetime, numerous
studies have been dedicated to exploring various effects

around magnetic monopoles, particularly their characteristic
oscillation frequencies known as quasinormal modes [4–24].
Quasinormal modes not only serve as fundamental

observables that characterize black holes [25], but also
play a crucial role in gauge/gravity duality for describing
strongly coupled quantum systems [26], as well as in
determining the (in)stability of black holes [27].
However, a significant portion of the aforementioned

quasinormal mode calculations for the Bardeen black hole
suffer from considerable numerical inaccuracies due to the
utilization of various approximations. Consequently, it
becomes necessary to reexamine some of these results
using accurate methods based on converging procedures,
such as the Leaver methods [28].
Nevertheless, the focus of our investigation here is on the

Bardeen spacetime not within the context of an exotic
nonlinear electrodynamics, but rather as a quantum-
corrected solution to the Schwarzschild spacetime. In this
framework, the parameter that formerly represented the
magnetic charge now controls the magnitude of the quantum
correction for a neutral black hole. Remarkably, stringy
corrections to Schwarzschild black hole spacetimes arising
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from string T duality were proposed in [29]. As an initial
step, the static Newtonian potential was derived by exploit-
ing the relationship between T duality and path integral
duality. Subsequently, it was demonstrated that the intrinsic
nonperturbative nature of stringy corrections introduces an
ultraviolet cutoff known as the zero-point length, resulting
in a regular static potential. This finding was employed to
derive a consistent black hole metric for a spherically
symmetric, electrically neutral regular black hole, which
is equivalent to the Bardeen spacetime after redefinition of
constants. It is noteworthy that a similar duality is utilized
to probe the quantum fluctuations of the background
spacetime [30]. Ultimately, the Bardeen spacetime can also
be deduced as an effective metric that reproduces the
thermodynamics of a black hole within the generalized
uncertainty principle [31], which represents another, more
speculative approach to uncovering quantum corrections.
In this paper, we will investigate the quasinormal modes

of scalar, electromagnetic, and neutrino fields in the back-
ground of the Bardeen spacetime, considering its afore-
mentioned interpretation as a neutral quantum-corrected
black hole. Our aim is to demonstrate the inaccuracies
present in some of the previous calculations within certain
parameter ranges. Here, we present precise calculations
not only for the fundamental mode but also for the initial
overtones with l ≤ n, where l represents the multipole
number and n denotes the overtone number. While it is
commonly believed that the fundamental mode suffices as a
fingerprint of the black hole, this is not entirely accurate.
The fundamental mode is insensitive to the geometry of the
event horizon and is primarily determined by the geometry
near the peak of the effective potential. Consequently, if a
black hole were to be replaced by a wormhole with the same
geometry near the potential’s peak, the fundamental mode
would exhibit minimal change [32,33]. To ascertain the
near-horizon behavior, it is necessary to consider multiple
overtones [34], which also characterize the early phase
of the ringdown [35]. Therefore, studying the initial few
overtones will enable us to probe the geometry of the black
hole in the vicinity of the event horizon.
Wewill demonstrate that the overtones deviate from their

Schwarzschild limits at a significantly higher rate than
the fundamental mode, and this deviation stems from the
deformation of the metric near the event horizon [34].
Similar outbursts have recently been observed in the
context of black holes in higher-curvature corrected theo-
ries and asymptotically safe gravity [36–39].
Quantum-corrected black holes are expected to undergo

intense Hawking evaporation, making it crucial to inves-
tigate Hawking radiation in the vicinity of Bardeen black
holes. To the best of our knowledge, a comprehensive study
of Hawking evaporation in this context has not yet been
proposed.
In this paper, we will explore Hawking radiation of

massless Standard Model fields around Bardeen black

holes and demonstrate that the quantum correction signifi-
cantly reduces the energy emission rate of the test fields (up
to 3 orders of magnitude). To determine the emission rates,
we will solve the problem of field scattering around the
black hole, specifically by calculating the gray-body factors
that account for the reflection from the effective potential
and diminish the total emission rate.
The paper is organized as follows. In Sec. II, we provide

a brief review of the Bardeen solution and the correspond-
ing wavelike equations with effective potentials. In
Sec. III, we describe the numerical methods employed
to calculate quasinormal modes and gray-body factors,
including the WKB approach, accurate Frobenius method,
and time-domain integration. Section IV is dedicated to
discussing the obtained quasinormal modes and the out-
burst of overtones. In Sec. V, we present the results of the
calculations for gray-body factors and energy emission
rates in Hawking radiation. Finally, in the Conclusions
section, we summarize the obtained results and mention
some open problems.

II. BARDEEN SPACETIME AND THE
WAVELIKE EQUATIONS

The Bardeen spacetime is described by the following
line element:

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

where

fðrÞ ¼ 1 −
2Mr2

ðr2 þ l20Þ3=2
: ð2Þ

For l0 ≠ 0, the spacetime in Eq. (2) has horizons only if

jl0j ≤
4M

3
ffiffiffi
3

p ;

as was shown in [40]. The parameter l0 is related to the
Regge slope as follows:

ffiffiffiffi
α0

p
¼ l0

2π
≈ 0.117lP; ð3Þ

where lP is the Plank mass, so that, as in [30], we have
l0 ∼ lP. Stringy effects produce a de Sitter core at the origin,
because

fðrÞ → 1 −
Λeffr2

3
; r ≪ l0; ð4Þ

with an effective cosmological constantΛeff ¼ 6M=l30. This
repulsive effect at small distances stabilizes the matter
configuration against collapse.
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The general relativistic equations for the scalar (Φ),
electromagnetic (Aμ), and Dirac (ϒ) fields can be written
as follows:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð5aÞ

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð5bÞ

γα
�

∂

∂xα
− Γα

�
ϒ ¼ 0; ð5cÞ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic tensor,
γα are gamma matrices, and Γα are spin connections in
the tetrad formalism. After separation of the variables the
above equations (5) take the Schrödinger wavelike form:

d2Ψ
dr2�

þ ðω2 − VðrÞÞΨ ¼ 0; ð6Þ

where the “tortoise coordinate” r� is defined as follows:

dr� ≡ dr
fðrÞ : ð7Þ

The effective potentials for the scalar (s ¼ 0) and
electromagnetic (s ¼ 1) fields have the form

VðrÞ ¼ fðrÞlðlþ 1Þ
r2

þ ð1 − sÞ · fðrÞ
r

dfðrÞ
dr

; ð8Þ

where l ¼ s; sþ 1; sþ 2;… are the multipole numbers.
On the Fig. 1 the effective potential for the Maxwell field
is shown. For the Dirac field (s ¼ 1=2) one has two
isospectral potentials,

V�ðrÞ ¼ W2 � dW
dr�

; W ≡
�
lþ 1

2

� ffiffiffiffiffiffiffiffiffi
fðrÞp
r

: ð9Þ

The isospectral wave functions can be transformed one into
another by the Darboux transformation

Ψþ ¼ q

�
W þ d

dr�

�
Ψ−; q ¼ const; ð10Þ

so that it is sufficient to calculate quasinormal modes and
gray-body factors for only one of the effective potentials.

III. METHODS FOR FINDING OF QUASINORMAL
MODES AND GRAY-BODY FACTORS

Quasinormal modes represent eigenvalues of the wavelike
equations mentioned earlier, corresponding to purely out-
goingwaves at spatial infinity andpurely ingoingwaves at the
event horizon. Since methods for determining quasinormal
frequencies have been extensively discussed in numerous
papers, wewill provide a brief summary of the three methods
employed in this study: the WKB approach with Padé
approximants, the Leaver method, and time-domain integra-
tion. Furthermore, we will discuss the ordinary WKB
method’s application in finding gray-body factors.

A. WKB approach

We will utilize the semianalytic WKB approach devel-
oped by Will and Schutz [41] to determine the quasinormal
modes. The Will-Schutz formula has been extended to
higher orders [42–44] and improved further by implement-
ing Padé approximants [44,45].
The general form of the WKB formula, as derived by

Konoplya [46], is as follows:

ω2 ¼ V0 þA2ðK2Þ þA4ðK2Þ þA6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þA3ðK2Þ þA5ðK2Þ þA7ðK2Þ þ…Þ;

ð11Þ

where K ¼ nþ 1=2 is a half integer. The corrections
AkðK2Þ, of order k, in the eikonal formula are polynomials
of K2 with rational coefficients. These corrections depend
on the values of higher derivatives of the potential VðrÞ
at its maximum. To enhance the accuracy of the WKB
formula, we will follow the approach of Matyjasek and
Opala [44] by utilizing Padé approximants. Specifically, we
will employ the sixth-order WKB method with m̃ ¼ 4, 5,
where m̃ is defined in [44,46], as this choice yields the best
accuracy in the Schwarzschild limit and is also appropriate
for the Bardeen black hole, as confirmed by comparisons
with accurate data.
It is important to note that the WKB series converges

only asymptotically and does not guarantee improved
accuracy at each order. Therefore, it is necessary to cross
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FIG. 1. The effective potential for the l ¼ 1 perturbation of the
Maxwell field for the Schwarzschild (bottom) and near extreme
Bardeen l0 ¼ 0.7 (top) black holes; r0 ¼ 1.
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validate the WKB results with the convergent Frobenius
method. Additionally, the outburst of overtones, occurring
when l < n, cannot be captured by the WKB formula
in principle. Hence, in this study, we primarily employ the
WKB method as an additional check and solely for
calculating the fundamental modes.

B. Frobenius method

To obtain precise values of quasinormal modes, includ-
ing overtones with l < n, we will utilize the Frobenius
method, as initially employed by Leaver for calculating
quasinormal modes [28]. The wavelike equation always
exhibits a regular singularity at the horizon r ¼ r0 and an
irregular singularity at spatial infinity r ¼ ∞. To address
this, we introduce a new function:

ΨðrÞ ¼ Pðr;ωÞ
�
1 −

r0
r

�
−iω=F0ðr0Þ

yðrÞ: ð12Þ

Here, the factor P is chosen such that yðrÞ is regular for
r0 ≤ r < ∞, ensuring that ΨðrÞ corresponds to a purely
outgoing wave at spatial infinity and a purely ingoing wave
at the event horizon. Consequently, we can express yðrÞ in
terms of a Frobenius series:

yðrÞ ¼
X∞
k¼0

ak

�
1 −

r0
r

�
k
: ð13Þ

By employing Gaussian elimination in the recurrence
relation for the expansion coefficients, we reduce the
problem to solving an algebraic equation. To enhance
convergence speed, wewill implement the Nollert improve-
ment [47] in its general form for the n-term recurrence
relation [48]. When the singular points of the wavelike
equation appear within the unit circle jxj < 1, we employ a
sequence of positive real midpoints as described in [49].

C. Time domain integration

To determine the quasinormal modes and asymptotic
tails, we will employ the time-domain integration method.
We integrate the wavelike equation using the null-cone
variables u ¼ t − r� and v ¼ tþ r�. For the discretization
scheme, we will apply the Gundlach-Price-Pullin
method [50], which can be expressed as

ΨðNÞ ¼ ΨðWÞ þ ΨðEÞ −ΨðSÞ

− Δ2VðSÞΨðWÞ þ ΨðEÞ
4

þOðΔ4Þ: ð14Þ

Here, the points are denoted as follows: N ≡ ðuþ Δ;
vþ ΔÞ, W ≡ ðuþ Δ; vÞ, E≡ ðu; vþ ΔÞ, and S≡ ðu; vÞ.
Gaussian initial data are imposed on the two null surfaces
u ¼ u0 and v ¼ v0.

In the course of computations we need to find the
effective potential as a function of the tortoise coordinate
r� with great accuracy in order to avoid accumulation of
the numerical error. For this purpose one could integrate
Eq. (7), find r� as a function of r, and then use the inverted
function to find the effective potential. However, we find
that the more economic way is to integrate Eq. (7) as a
nonlinear differential equation r0ðr�Þ ¼ fðrÞ, for example,
with the help of the built-in function NDSolve of
MATHEMATICA [51], and find rðr�Þ with which we can
easily construct the effective potential as a function of the
tortoise coordinate. More details on the time-domain
integration method can be found in a review [27].
The dominant quasinormal frequencies can be

extracted from the time-domain profiles using the Prony
method [27]. While extracting the frequency from the time-
domain profile with high precision can be challenging, the
accuracy for the fundamental mode is guaranteed to be
sufficiently good.

D. Scattering problem

To investigate Hawking radiation, we will address a
different boundary problem that pertains to the scattering
of fields in the vicinity of the black hole. Gray-body
factors play a crucial role in determining the proportion
of initial radiation that gets reflected back to the event
horizon by the potential barrier nearby. Subsequently, by
employing the Hawking semiclassical formula along with
the gray-body factor, we can calculate the amount of
radiation that reaches an observer in the far zone. It is
worth noting that while temperature is typically the
dominant factor in estimating the intensity of Hawking
radiation, there are cases where gray-body factors can be
equally important [52].
We will examine the wave equations under boundary

conditions that permit incoming waves from infinity.
Owing to the scattering symmetry, this is equivalent to
considering the scattering of a wave originating from the
horizon. The boundary conditions for this scattering prob-
lem are as follows:

Ψ ¼ e−iωr� þ Reiωr� ; r� → þ∞;

Ψ ¼ Te−iωr� ; r� → −∞: ð15Þ

Here, R and T represent the reflection and transmission
coefficients, respectively.
The effective potentials for test Maxwell and Dirac fields

have the form of potential barriers which decrease mono-
tonically toward both infinities [53], allowing for applica-
tion of the WKB approach [41–43] to determine R and T.
As ω2 is real for the scattering problem, the WKB values
for R and T will be real as well [41–43], and

jTj2 þ jRj2 ¼ 1: ð16Þ
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Once the reflection coefficient is obtained, we can find the
transmission coefficient for each multipole number l,

jAlj2 ¼ 1 − jRlj2 ¼ jTlj2; ð17Þ

where Al is called the gray-body factor.
Here we will use the higher order WKB formula [43] for

a relatively accurate calculation of the gray-body factors.
However, this formula is not suitable for very small values
of ω, which correspond to almost complete wave reflection
and have negligible contributions to the overall energy
emission rate. For this mode, we employed extrapolation
of the WKB results at a given order to smaller ω [54].
According to [41,42], the reflection coefficient can be
expressed as follows:

R ¼ ð1þ e−2iπKÞ−1=2; ð18Þ

where K is determined by solving the equation

K − i
ðω2 − VmaxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2V 00
max

p −
Xi¼6

i¼2

ΛiðKÞ ¼ 0; ð19Þ

involving the maximum effective potential Vmax, its
second-order derivative V 00

max with respect to the tortoise
coordinate, and higher order WKB corrections Λi. As
mentioned above, the WKB series does not guarantee
convergence in each order, but only asymptotically, so
that usually there is an optimal moderate order at which the
accuracy is the best. This order depends on the form of the
effective potential. Here we used sixth order for Maxwell
perturbations and third order for the Dirac field with a plus
potential, because these orders provide the best accuracy
in the Schwarzschild limit, and we expect that this will
also take place for the Bardeen black hole. This approach
was used in a few papers [46,55–57], showing usually
reasonably good concordance with the numerical integra-
tion. Unfortunately, the Pade approximant, which greatly
improves the accuracy when finding quasinormal modes,
cannot be used when finding the gray-body factors, because
of the nonuniquness of such a procedure.

IV. QUASINORMAL MODES AND THE
OUTBURST OF OVERTONES

As a general rule, analytical solutions for quasinormal
frequencies of four- and higher-dimensional black holes are
not available. However, they can often be obtained in the
regime of large multipole numbers l. By utilizing the first-
order WKB formula and expanding the position of the
maximum of the effective potential, we can derive the
following WKB expression for ω in terms of 1=L and l0,
where L ¼ lþ 1

2
:

rmax ¼ 3M −
5l20
6M

−
65l40

216M3
þOðl60Þ ð20Þ

ω ¼ L

3
ffiffiffi
3

p
M

−
ið2nþ 1Þ
6

ffiffiffi
3

p
M

þ l20

�
L

18
ffiffiffi
3

p
M3

þ ið2nþ 1Þ
54

ffiffiffi
3

p
M3

�

þ l40

�
17L

648
ffiffiffi
3

p
M5

þ 7ið2nþ 1Þ
324

ffiffiffi
3

p
M5

�
þO

�
1

L
; l60

�
: ð21Þ

It is evident that the above expressions are accurate in the
limit of large l, while still providing reasonable accuracy
even at moderate values of l. When l0 ¼ 0, these analytical
formulas reduce to the well-known expressions for the
Schwarzschild black hole [58] (see Refs. [59,60] and
references therein for various generalizations of these
relations). Furthermore, the aforementioned eikonal for-
mula can be derived through the correspondence between
eikonal quasinormal modes and null geodesics [61–63].
However, it should be noted that this correspondence has
several limitations, as described in [62–64].
From this point onward in this section, we will compute

quasinormal frequencies in units of the fixed radius of the
event horizon, r0 ¼ 1, rather than fixing the mass of the
black hole, M. The mass and radius of the event horizon
are related by the following equation:

M ¼ ðr20 þ l20Þ3=2
2r20

: ð22Þ

This equation allows us to switch between the units
r0 ¼ 1 and M ¼ 1. The units of the fixed event horizon
are more convenient for the application of the Frobenius
method, which requires a precise understanding of
the singular points of the differential equation under
consideration.
The fundamental quasinormal modes for the test

scalar field (l ¼ n ¼ 0), electromagnetic field (l ¼ 1,
n ¼ 0), and Dirac field (l ¼ 1=2, n ¼ 0) are presented
in Tables I–III for various values of l0. These values are
chosen in such a way that the range between the
Schwarzschild limit l0 ¼ 0 and the last value before the
near extreme one l0 ¼ 0.707107 is split into equal parts, in
order to track smooth dependence of the frequencies on l0.
The accurate values are obtained using the convergent
Frobenius method [28] for scalar and electromagnetic
fields, while for the Dirac field, which has a nonpolynomial
wave equation, we were limited to using the WKB method.
A comparison of these values with earlier published
results [4,7] reveals that the ordinary sixth order WKB
data (without Padé approximants) is inaccurate, with a
relative error reaching approximately 10%. However, the
advanced WKB method with Padé approximants consid-
ered here [44] shows much better agreement with accurate
quasinormal frequencies, reducing the relative error to a
small fraction of 1%. The Frobenius method can only be
applied to polynomial forms of the metric function and
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effective potentials. To meet this requirement, we expand
the metric function in terms of small l0 (see Appendix for
the explicit form of the expansion) and apply the Frobenius
method to this expanded metric. We observe that the

quasinormal frequencies calculated using the metric func-
tion expanded up to the 20th and 24th orders in l0 are in
excellent agreement (see Tables I and II). An example
of the convergence in terms of l0 is shown in Fig. 2.

TABLE III. Fundamental quasinormal modes for the Dirac perturbations (n ¼ 0, l ¼ 1=2).

WKB

l0 Sixth Sixth (Pade 5) Sixth (Pade 6)

0 0.366162 − 0.194105i 0.365943 − 0.193956i 0.365813 − 0.193991i
0.07698 0.364600 − 0.191742i 0.364392 − 0.191630i 0.364267 − 0.191664i
0.15396 0.359889 − 0.184810i 0.359702 − 0.184821i 0.359589 − 0.184851i
0.23094 0.351950 − 0.173766i 0.351761 − 0.174019i 0.351660 − 0.174036i
0.30792 0.340642 − 0.159328i 0.340367 − 0.159983i 0.340279 − 0.159978i
0.3849 0.325739 − 0.142490i 0.325228 − 0.143677i 0.325166 − 0.143648i
0.46188 0.306947 − 0.124700i 0.306169 − 0.126350i 0.306135 − 0.126322i
0.53886 0.284334 − 0.107994i 0.283432 − 0.109828i 0.283418 − 0.109814i
0.61584 0.259273 − 0.094155i 0.258320 − 0.095939i 0.258314 − 0.095930i
0.69282 0.233822 − 0.083456i 0.232929 − 0.085144i 0.232909 − 0.085107i
0.707107 0.229173 − 0.081764i 0.228298 − 0.083422i 0.228278 − 0.083383i

TABLE II. Fundamental quasinormal modes for the electromagnetic perturbations (n ¼ 0, l ¼ 1).

WKB Frobenius

l0 Sixth Sixth (Pade 5) Sixth (Pade 6) 20th order 24th order

0 0.496383 − 0.185274i 0.496509 − 0.184993i 0.496509 − 0.184961i 0.496527 − 0.184975i 0.496527 − 0.184975i
0.069282 0.494945 − 0.183682i 0.495092 − 0.183337i 0.495086 − 0.183305i 0.495104 − 0.183318i 0.495104 − 0.183318i
0.138564 0.490564 − 0.178948i 0.490767 − 0.178429i 0.490754 − 0.178398i 0.490772 − 0.178411i 0.490772 − 0.178411i
0.207846 0.483055 − 0.171211i 0.483353 − 0.170467i 0.483338 − 0.170434i 0.483353 − 0.170452i 0.483353 − 0.170452i
0.277128 0.472162 − 0.160742i 0.472577 − 0.159796i 0.472563 − 0.159759i 0.472572 − 0.159784i 0.472572 − 0.159784i
0.34641 0.457592 − 0.147991i 0.458107 − 0.146925i 0.458095 − 0.146889i 0.458099 − 0.146918i 0.458099 − 0.146918i
0.415692 0.439053 − 0.133649i 0.439614 − 0.132573i 0.439603 − 0.132545i 0.439605 − 0.132570i 0.439605 − 0.132570i
0.484974 0.416343 − 0.118720i 0.416890 − 0.117721i 0.416882 − 0.117704i 0.416881 − 0.117720i 0.416881 − 0.117720i
0.554256 0.389608 − 0.104530i 0.390103 − 0.103633i 0.390099 − 0.103626i 0.390100 − 0.103635i 0.390096 − 0.103636i
0.623538 0.359764 − 0.092365i 0.360192 − 0.091561i 0.360190 − 0.091559i 0.360256 − 0.0915651i 0.360201 − 0.0915712i
0.69282 0.328400 − 0.082759i 0.328778 − 0.082042i 0.328774 − 0.082038i 0.329444 − 0.0819892i 0.328945 − 0.0820359i
0.707107 0.321891 − 0.081076i 0.322262 − 0.080374i 0.322258 − 0.080369i 0.323296 − 0.0802851i 0.322542 − 0.0803561i

TABLE I. Fundamental quasinormal modes for the scalar perturbations (n ¼ 0, l ¼ 0).

WKB Frobenius

l0 Sixth Sixth (Pade 5) Sixth (Pade 6) 20th order 24th order

0 0.220934 − 0.201633i 0.221584 − 0.209367i 0.221357 − 0.208847i 0.220910 − 0.209791i 0.220910 − 0.209791i
0.07698 0.220288 − 0.199177i 0.220818 − 0.206828i 0.220585 − 0.206324i 0.220146 − 0.207248i 0.220146 − 0.207248i
0.15396 0.218078 − 0.192489i 0.218398 − 0.199312i 0.218146 − 0.198876i 0.217717 − 0.199765i 0.217717 − 0.199765i
0.23094 0.214096 − 0.182285i 0.213780 − 0.187430i 0.213541 − 0.187065i 0.213239 − 0.187801i 0.213239 − 0.187801i
0.30792 0.209605 − 0.165605i 0.205935 − 0.172526i 0.205928 − 0.172054i 0.206151 − 0.172156i 0.206151 − 0.172156i
0.3849 0.203168 − 0.140512i 0.195809 − 0.154749i 0.195900 − 0.154227i 0.195821 − 0.154042i 0.195821 − 0.154042i
0.46188 0.186592 − 0.119218i 0.183120 − 0.134872i 0.182642 − 0.134402i 0.181717 − 0.135270i 0.181717 − 0.135270i
0.53886 0.166413 − 0.106640i 0.164673 − 0.118464i 0.164432 − 0.118343i 0.164121 − 0.118732i 0.164119 − 0.118735i
0.61584 0.149688 − 0.096004i 0.147642 − 0.106578i 0.147526 − 0.106419i 0.146968 − 0.106725i 0.146995 − 0.106719i
0.69282 0.134525 − 0.086147i 0.132643 − 0.095711i 0.132524 − 0.095546i 0.132241 − 0.0959643i 0.132129 − 0.0958409i
0.707107 0.131840 − 0.084424i 0.129995 − 0.093798i 0.129879 − 0.093637i 0.129702 − 0.0941100i 0.129521 − 0.0939448i
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The higher the overtone n one needs to find, the higher the
order of expansion of the metric that should be used.
Integration of the wave equation in the time domain

and subsequent extraction of dominant frequencies
from the profile using the Prony method also confirm
the accuracy of the Frobenius and WKB (with Padé) data.

For instance, for the quasiextremal state l0 ¼ 0.707107
and l ¼ 0 scalar perturbations, the frequency ω ¼
0.12958 − 0.09393i is extracted from the time-domain
profile. This is in close agreement with the Frobenius
method for the metric expanded up to the 24th order,
which gives ω ¼ 0.129521 − 0.0939448i, and the sixth
order WKB method with Padé approximants, which gives
ω ¼ 0.129879 − 0.093637i. On the other hand, the usual
sixth order WKB method produces an approximately
10% error in the damping rate.
At asymptotically late times, when the quasinormal

ringing is suppressed by power-law tails, the Price decay
law for the test scalar and gravitational fields [65] is
fulfilled:

jΨj ∼ t−ð2lþ3Þ; t → ∞: ð23Þ

This can be observed in Fig. 3.
The first several overtones exhibit the most interesting

feature. They deviate from their Schwarzschild values at a
significantly higher rate compared with the fundamental
mode, and this rate increases with the overtone number
(see Figs. 4 and 5). While the fundamental mode undergoes
only a slight change, limited to moderate values of the
quantum deformation parameter l0 (as shown in Fig. 4), the
real oscillation frequency of the sixth overtone decreases by
more than twice its Schwarzschild limit.
This outburst of overtones occurs because the Bardeen

spacetime differs from the Schwarzschild spacetime
mainly in a region near the event horizon. This character-
istic could potentially enable us to discern the quantum
corrections near the horizon through the early phase of the
quasinormal ringing, which includes contributions from
the overtones [34,35]. It is important to note that if we
consider the Bardeen spacetime as a deformation of the
Schwarzschild black hole, this deformation is not highly
localized and, therefore, is not related to the so-called

FIG. 2. An example of the convergence of the scalar field
quasinormal modes ω calculated by the Frobenius method as
the order of the expansion N in terms of small l0 is increased
(n ¼ 0, l ¼ 0) and l0 ¼ 0.46669.

50 100 150 200 250
t

10 5

10 4

0.001

0.01

0.1

1

10 1005020 2003015 15070
t

10 5

10 4

0.001

0.01

0.1

1

FIG. 3. Time-domain profile of the scalar field perturbations l ¼ 0 for the quasiextremal Bardeen black hole l0 ¼ 0.707107; r0 ¼ 1.
Left: semilogarithmic plot. Right: logarithmic plot with the line ∼t−3.
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“high-frequency perturbations” (which actually refer to
“highly localized deformation”) discussed in [66] and
subsequent works. The deformation of the Schwarzschild
spacetime introduced by the parameter l0 is smooth and
extends over a neighborhood of the event horizon, gradu-
ally decaying as we move away from the black hole.
The significant decrease in the real oscillation frequen-

cies of the overtones with increasing deformation param-
eter l0 suggests the possibility of purely imaginary
quasinormal modes in the spectrum at larger values of l0.
However, owing to the computational limitations, we were
unable to find such modes as they would require much
longer computation times. It is important to note that the
quantum correction parameter is intended to represent a
relatively small or at most moderate correction to the
Schwarzschild spacetime. Therefore, the metric should
remain sufficiently far from its extreme state, ensuring
that the corrections remain within a reasonable range.

V. HAWKING RADIATION

It is essential to note that radiation from test fields
surpasses that of gravitons: as is known using
Schwarzschild black holes as an example, gravitons
account for less than 2% of the total radiation flux, as
illustrated in [67] and also summarized in Table I of [52].

Here we will assume that during sufficiently short
periods of time the temperature of the black hole remains
constant between the emission of two consecutive particles.
According to this assumption, the system can be charac-
terized by the canonical ensemble, which is extensively
discussed in the literature (see, e.g., [68]). Consequently,
the well-known Hawking formula for the energy emission
rate [69] can be applied:

dE
dt

¼
X
l

NljAlj2
ω

exp ðω=THÞ � 1
·
dω
2π

; ð24Þ

where TH is the Hawking temperature, Al are gray-body
factors, and Nl are the multiplicity factors which depend
on the number of species of particles and l. The Hawking
temperature is [69]

T ¼ f0ðrÞ
ð4πÞ

����
r¼r0

: ð25Þ

The dependence of the temperature on the parameter l0 is
shown in Fig. 6.
As long as we are considering the evaporation stage

when the black hole is large enough, one can neglect
emission of massive particles [70] as compared with

FIG. 4. Quasinormal frequencies for the scalar perturbations
(l ¼ 0) and n from 0 to 6.

FIG. 5. Quasinormal frequencies for the electromagnetic per-
turbations (l ¼ 1) and n from 0 to 6.
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massless ones. Accordingly, we will here consider only
massless particles of the Standard Model, and, as was
argued above, we neglect the emission of gravitons. Once
the black hole is small enough, or, alternatively, the
deformation parameter l0=r0 is large enough, massive
particles, such as electrons and positrons, are emitted in
an ultrarelativistic mode, that is, roughly at the same rate as
massless neutrinos for each helicity.
The multiplicity factors for the 4D spherically symmet-

rical black holes consist of the number of degenerate m
modes (which are m ¼ −l;−lþ 1;…: − 1; 0; 1;…l, that
is 2lþ 1 modes) multiplied by the number of species of
particles, which in turn depends also on the number of
polarizations and helicities of particles. Therefore, we have

Nl ¼ 2ð2lþ 1Þ ðMaxwellÞ; ð26Þ

Nl ¼ 8l ðDiracÞ: ð27Þ

The multiplicity factor for the Dirac field is fixed taking
into account both the “plus” and “minus” potentials related
by Darboux transformations, which leads to an isospectral
problem and the same gray-body factors for both chiralities.
We will use here the “plus” potential, because the
WKB results are more accurate for that case in the
Schwarzschild limit.
The energy emitted makes the black hole mass decrease

at the following rate [67]:

dM
dt

¼ −
ℏc4

G2

α0
M2

≈ −1.91 × 1029α0
g
s
·

�
g2

M2
0

�
; ð28Þ

where we have restored the dimensional constants. Here
α0 ¼ dE=dt is taken in units used in Table IV for a given
initial mass M0. Indeed, this can be seen by comparison of
our data in the Schwarzschild limit with [67]. A relatively

small difference with the Page’s results (less than 2%) is
due to the systematic error of the WKB method [46]
and can be neglected, taking into account that the overall
effect of deviation of the energy emission rate from the
Schwarzschild limit achieves a few orders, i.e. the relative
error is a few orders smaller than the effect.
From Table IV, it is evident that the energy emission rate

dE=dt decreases by 3 orders of magnitude as the defor-
mation parameter l0 approaches the quasiextreme limit.
The effect observed in our current research can be

attributed to two factors. The primary and dominant factor
is the decrease in the Hawking temperature of the black hole
when the quantum correction is introduced (see Fig. 9). The
second factor is the gray-body coefficient. Analyzing the
shape of the effective potentials of the Bardeen black hole
shown in Fig. 1, it is evident that the height of the potential
barrier increases with the inclusion of the quantum correc-
tion. Consequently, a taller effective potential reflects a
larger portion of the initial radiation flow, contributing to the
suppression of Hawking radiation. The examples of gray-
body factors for the electromagentic and Dirac fields are
shown in Figs. 6 and 7 respectively.
From Fig. 8, we observe that while the emission rate

of the Maxwell field per unit frequency decreases signifi-
cantly when the near-extreme quantum correction is
applied, the peak of the radiation occurs at approximately
the same frequency ω. Similar behavior is observed for the
Dirac particles.
We have calculated the contributions of the first five

multipoles l. However, it is noteworthy that the contribu-
tions of only the first two multipoles are significant for the
total energy emission rate. Therefore, higher multipoles can
be safely neglected.
Such a strong attenuation of flux of the Hawking

radiation could also be explained in an analytic way.
The influence of the gray-body factors could be roughly
estimated via the WKB arguments. Using Eq. (18) and the

FIG. 6. Gray-body factors for the Maxwell field as a function of ω for the Schwarzschild solution (left panel) and the near extreme
(l0 ¼ 0.7) Bardeen black hole (right panel) computed by the sixth order WKB approach for the first five multipoles l ¼ 1; 2; ::5 from
left to right.
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double expansion in terms of 1=L and l0 we find in the
leading orders of 1=L that

K ≈
ið18M2 − l20Þð81M4ω2 − 3M2L2 − l20L

2Þ
108M4L

: ð29Þ

Using the above equation in (19), one can see that the
gray-body factors are suppressed exponentially as l0 is
turned on, so that we have

Al ¼ 1

1þ eαðl0;ω;M;lÞ ; ð30Þ

where

αðl0;ω;M;lÞ ¼ −108πM2ω2 þ 4πl2 þ 4πlþ π

2ð2lþ 1Þ

þ l20ð108πM2ω2 þ 20πl2 þ 20πlþ 5πÞ
36M2ð2lþ 1Þ

þOðl40Þ: ð31Þ

The above formula could be extended to higher orders
beyond the eikonal approximation according to [71]
showing great concordance with the sixth order WKB
numerical data already at the first orders of expansion in
terms of 1=L.
However, the essential factor of strong decreasing of the

total flow at all frequencies ω remains the temperature
which also exponentially suppresses the emission as can
be seen from Eq. (24) and Fig. 9. One can see that as l0
approaches its extreme value lexto ≈ 0.7698M, the Hawking
temperature vanishes, so the energy emission rate goes to
zero. This is the main factor of suppression in the regime of
relatively large l0.
As there are currently several concurrent models for

quantum corrections to black hole spacetime, an important
question arises: to what extent does the suppression of
Hawking radiation depend on the specific model of
quantum correction? Based on our current knowledge, in
the majority of cases, corrections to Einstein gravity in four
or higher dimensions lead to the effect of suppression. For
instance, in Einsteinian cubic gravity, the Maxwell field
experiences suppression of up to 2 orders [72], while the
Dirac field is suppressed by approximately 1 order. In the
4D-Einstein-Gauss-Bonnet theory, suppression occurs
by a few times even at small values of the coupling
constant [56]. The Einstein-Weyl gravity shows a slight
enhancement at a small coupling, owing to larger gray-
body factors, but experiences considerable suppression
at larger coupling, where the temperature plays the main
role [52]. Finally, it is worth noting that in the higher-
dimensional Einstein-Gauss-Bonnet theory, there is a
few orders’ suppression when compared with the
D-dimensional Einstein theory [55].
In the case of apparent enhancement in the Einstein-

dilaton-Gauss-Bonnet theory [64], a comparison with the
Schwarzschild case must be made not in units of the radius
of the event horizon, but appropriately rescaled to the units
of mass. An evidently opposite effect has been observed
in the nonperturbative Kazakov-Solodukhin model of
quantum correction [57,73]. However, in this model, the
Hawking temperature of the quantum-corrected black hole
remains the same as in the Schwarzschild case, which raises
some skepticism regarding the possibility that the calcu-
lated correction is dominant. The above observations
indicate that quantum corrections may indeed lead to the
suppression of Hawking radiation. However, it is important
to acknowledge that a final, single, and noncontradictory
model for quantum black holes has not yet been established.

TABLE IV. Energy emission rate dE=dt for the Bardeen black
hole.

l0=M Maxwell Dirac

0 ðl ¼ 1Þ 0.0000335107 0.00015963
0 ðl ¼ 2Þ 6.67916 × 10−7 5.8691 × 10−6

0 ðl ¼ 3Þ 1.00693 × 10−8 1.16695 × 10−7

0 (total) 0.0000341888 0.000165617

0.1 ðl ¼ 1Þ 0.0000323629 0.000155663
0.1 ðl ¼ 2Þ 6.28544 × 10−7 5.58669 × 10−6

0.1 ðl ¼ 3Þ 9.23148 × 10−9 1.08274 × 10−7

0.1 (total) 0.0000330008 0.00016136

0.2 ðl ¼ 1Þ 0.0000290019 0.000144034
0.2 ðl ¼ 2Þ 5.1916 × 10−7 4.78308 × 10−6

0.2 ðl ¼ 3Þ 7.02324 × 10−9 8.55366 × 10−8

0.2 (total) 0.0000295282 0.000148904

0.3 ðl ¼ 1Þ 0.0000236953 0.00012464
0.3 ðl ¼ 2Þ 3.64925 × 10−7 3.5915 × 10−6

0.3 ðl ¼ 3Þ 4.24242 × 10−9 5.53788 × 10−8

0.3 (total) 0.0000240645 0.000128288

0.4 ðl ¼ 1Þ 0.0000169636 0.000102356
0.4 ðl ¼ 2Þ 2.03653 × 10−7 2.23439 × 10−6

0.4 ðl ¼ 3Þ 1.84218 × 10−9 2.70179 × 10−8

0.4 (total) 0.0000171691 0.000104618

0.5 ðl ¼ 1Þ 9.71567 × 10−6 0.0000658481
0.5 ðl ¼ 2Þ 7.69549 × 10−8 1.01073 × 10−6

0.5 ðl ¼ 3Þ 4.57759 × 10−10 8.10308 × 10−9

0.5 (total) 9.79308 × 10−6 0.000066867

0.6 ðl ¼ 1Þ 3.45285 × 10−6 0.000031204
0.6 ðl ¼ 2Þ 1.26319 × 10−8 2.34735 × 10−7

0.6 ðl ¼ 3Þ 3.44314 × 10−11 8.70239 × 10−10

0.6 (total) 3.46552 × 10−6 0.00003144

0.7 ðl ¼ 1Þ 2.34399 × 10−7 4.29524 × 10−6

0.7 ðl ¼ 2Þ 1.18349 × 10−10 4.79822 × 10−9

0.7 ðl ¼ 3Þ 4.36355 × 10−14 2.55798 × 10−12

0.7 (total) 2.34517 × 10−7 4.30004 × 10−6
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Further research and theoretical developments are still
needed in this area.

VI. CONCLUSIONS

The Bardeen spacetime characterizes a regular black
hole featuring a de Sitter core in place of a central
singularity. By interpreting this spacetime as the metric
of a quantum-corrected black hole within the framework
of string T duality [29], we conducted a comprehensive
analysis of the quasinormal spectrum for scalar, electro-
magnetic, and Dirac fields in this background. Our inves-
tigation revealed that some previous studies focusing on the
fundamental mode exhibited inaccuracies, allowing for a
relative error of up to 10%. However, our primary findings
pertain to the calculations of overtones, which probe the

FIG. 8. Energy emission rates per unit of frequency for the Maxwell field for the Schwarzschild spacetime (left plot) and for the near
extreme Bardeen black hole l0 ¼ 0.7 (right plot). One can see that the contribution consists almost completely from the first multipole
l ¼ 1 (blue, top) and l ¼ 2 (yellow, bottom), while higher multipoles could be neglected. The black line is for the total emission rate
summed over the first five multipoles.

FIG. 9. Temperature of the Bardeen black hole at fixed mass
M ¼ 1 as a function of the deformation parameter l0.

FIG. 7. Gray-body factors for the Dirac field as a function of ω for the Schwarzschild solution (left panel) and the near extreme
(l0 ¼ 0.7) Bardeen black hole (right panel) computed by the third order WKB approach for the first five multipoles l ¼ 1; 2; ::5 from
left to right.
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geometry near the event horizon and thus play a crucial role
in discerning potential quantum corrections through obser-
vations of classical radiation emitted by black holes.
Notably, we observed that the initial few overtones deviate
from their Schwarzschild values at a significantly higher
rate compared with the fundamental mode. This deviation
stems from the quantum correction-induced deformation of
the Schwarzschild spacetime.
Additionally, we derived an analytical expression for the

quasinormal modes in the eikonal regime and established
the decay law at asymptotically late times.
Furthermore, we computed the gray-body factors and

energy emission rates for massless fields surrounding the
Bardeen black hole. Our analysis revealed that the quantum
correction leads to a significant suppression of the Hawking
radiation intensity by several orders of magnitude. This
suppression arises from two factors: a decrease in the
Hawking temperature and a smaller gray-body factor.
Our study on the Hawking evaporation of the Bardeen

black hole holds potential significance in estimating the
number of primordial black holes formed during the early
Universe. Specifically, for M ≲ 1015g, the evaporation of
primordial black holes is predominantly constrained by big
bang nucleosynthesis [74]. Therefore, the quantum correc-
tion examined in this study could serve as one of the
mechanisms, alongside those considered in [75], that
changes the speed of the black hole evaporation, potentially
influencing the constraints imposed by big bang nucleo-
synthesis on the abundance of primordial black holes.
There are several avenues for extending our work.

Firstly, one could investigate the Hawking radiation of
massive particles to obtain a more accurate understanding
of the radiation process during the later stages of black
hole evaporation. Secondly, the decreasing real oscillation
frequencies of the overtones at moderate values of l0
suggest that, at a sufficiently large deformation parameter,
some of these overtones may become purely imaginary,
corresponding to nonoscillatory modes. However, owing
to the slow convergence of the procedure in this regime,

we were unable to explore this phenomenon within
a reasonable computation time. It is possible that
alternative methods, such as the Bernstein polynomial
method [76,77], which are more effective at finding purely
imaginary modes, could offer a solution to this challenge.
Finally, quasinormal frequencies of massless fields could
be complemented by the analysis of massive fields, which
may have arbitrary long-lived modes called quasireso-
nances [78,79]. It would be interesting to understand how
these long-lived modes affect the overtones’ structure.
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APPENDIX

The expansion of the metric function fðrÞ in terms of
small l0 has the following form:

fðrÞ ¼
�
1−

2M
r

�
þ 3l20M

r3
−
15l40M
4r5

þ 35l60M
8r7

−
315l80M
64r9

þ 693l100 M
128r11

−
3003l120 M
512r13

þ 6435l140 M
1024r15

−
109395l160 M
16384r17

þ 230945l180 M
32768r19

−
969969l200 M
131072r21

þ 2028117l220 M
262144r23

−
16900975l240 M
2097152r25

þOðl260 Þ: ðA1Þ
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