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Lorentz symmetry is a fundamental property of Einstein’s theory of general relativity that one may wish
to test with gravitational wave observations. Einstein-æther theory is a model that introduces Lorentz-
symmetry breaking in the gravitational sector through an æther vector field, while still leading to second-
order field equations. This well-posed theory passes particle physics constraints because it modifies directly
only the gravitational sector, yet it predicts deviations in the inspiral and coalescence of compact objects.
We here, for the first time, put this theory to the test by comparing its gravitational wave predictions directly
against LIGO/Virgo gravitational wave data. We first construct a waveform model for Einstein-æther
theory, EA_IMRPhenomD_NRT, through modifications of the general relativity IMRPhenomD_NRTi-
dalv2 model (used by the LIGO/VIRGO collaboration). This model constructs a response function that
not only contains the transverse-traceless polarization but also additional Einstein-æther (scalar and
vectorial) polarizations simultaneously. We then use the many current constraints on the theory to construct
nontrivial priors for the Einstein-æther coupling constants. After testing the waveform model, we conduct
parameter estimation studies on two gravitational wave events: GW170817 and GW190425. We find that
these data are not sufficiently informative to place constraints on the theory that are stronger than current
bounds from binary pulsar, Solar System, and cosmological observations. This is because, although
Einstein-æther modifications include additional polarizations and have been computed beyond leading
post-Newtonian order, these modifications are dominated by (already-constrained) dipole effects. These
difficulties make it unclear whether future gravitational wave observations will be able to improve on
current constraints on Einstein-æther theory.
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I. INTRODUCTION

Gravitational waves (GWs) are beginning to allow for
unprecedented ways to probe the gravitational interaction
in regimes in which gravity is strong and highly dynamical.
Since the first detection in 2015, there have so far been 90
GW events detected by the LIGO/Virgo Collaboration [1].
These waves originate from compact binary mergers and
allow for the study of the astrophysical objects that
comprise them and for tests of fundamental physics, such
as tests of Einstein’s theory of general relativity (GR) [2].
Though this theory has passed every test encountered to
date, there are still reasons to believe that it might need to
be extended [3,4]. Thus, it is imperative that GR be tested in
previously unexplored regimes.
One property of gravity that is especially interesting to

compare against experiment is Lorentz invariance. This
property is a general principle that states that experiments
are independent of the reference frame they are performed
in. Though Lorentz violation has already been strongly
constrained for matter interactions, violations that couple

only to the gravitational sector have not yet been stringently
constrained [3,5]. Furthermore, there are theoretical
reasons to believe that Lorentz invariance may not hold
at all energies, and that Lorentz violation may be induced
by quantum gravity models [5]. All of this provides a good
motivation to search for and/or constrain Lorentz violation
in the gravitational sector, since any evidence of a violation
would be clear evidence of new physics.
The simplest theory that violates Lorentz symmetry

by introducing a single vector field while still leading
to second-order equations of motion is Einstein-æther
theory [6]. In this theory, spacetime is filled with a
congruence of timelike curves, the four-velocity of the
æther field [6]. This congruence establishes a preferred
direction, implying that there is a locally determined state of
rest and breaking local Lorentz invariance [7].Modifications
to the gravitational action in this theory are regulated by four
dimensionless coupling constants, which determine the
strength of the coupling of the æther field four-velocity to
the action. Hence, constraining these coupling constants
constrains the theory.
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Einstein-æther theory has already been constrained with
a plethora of astrophysical observations. The most stringent
of these constraints comes from the simultaneous obser-
vation of GWs and a gamma ray burst from the 2017 binary
neutron star (BNS) merger. This event placed tight obser-
vational bounds on the speed of the tensor polarization of
GWs, immediately restricting one of the coupling constants
of Einstein-æther theory to be on the order ofOð10−15Þ [8].
The lack of observational evidence for gravitational
“Cherenkov type” radiation further places tight constraints
on the speed of the GWs in Einstein-æther theory, which
can be related back to the coupling constants [9].
Meanwhile, cosmological observations of the abundance
of primordial Helium restrict the amount by which the
æther field can rescale the effective value of Newton’s
constant that appears in the Friedman equation [10]. Solar
System constraints on the preferred frame parametrized
post-Newtonian (PN) parameters, due to lunar laser ranging
experiments and observations of the solar spin axis, can be
translated into constraints on the Einstein-æther coupling
constants [11,12]. Finally, in recent work, observations
of the damping of the period of binary pulsar and
triple systems have further constrained Einstein-æther
theory [13]. However, even after combining all of these
constraints there are still large regions of parameter space
that are not yet stringently constrained.
The inspiral and merger of compact objects, as

observed with GWs, provide a new laboratory in which
we may place new constraints on Einstein-æther theory,
considering the many modifications to GWs in this theory.
For instance, modifications to the amplitude and phase of
quadrupole radiation in this theory can be searched for in
GW data [14,15]. Note that the quadrupole correction is
partially degenerate with the chirp mass of the binary
system, since this also enters at leading-order in a post-
Newtonian (PN) expansion1 of the phase. Similarly, the
emission of dipole radiation due to the propagation of
vector and scalar modes is another signature of Einstein-
æther theory (though this particular signature is already
well constrained by binary pulsar observations) [14].
Finally, the mass of strongly gravitating objects is affected
by the æther field, in a way described by the “sensitivity”
of objects in this theory [13,17]. This sensitivity enters the
Einstein-æther prediction of the gravitational waveform
and it depends on the coupling constants of the theory and
the binding energy of the compact objects generating the
GWs. If these signatures of Einstein-æther theory are not
observed in GW data, the coupling constants of the theory
can be constrained to smaller and smaller values.
In this paper, we compare the predictions of Einstein-

æther theory for the GWs emitted in the inspiral of neutron
stars (NS) to all LIGO/Virgo data taken during the O1, O2,

and O3 observing campaigns to try to place constraints
on the coupling constants of the theory. To execute
this analysis the predictions of Einstein-æther theory must
first be encoded into a new waveform template that can
be directly compared with data. Building off of the
IMRPhenomD and IMRPhenomD_NRTidalv2 wave-
form templates, we construct a new waveform template
we call EA_IMRPhenomD_NRT. We first update the code
we are using, GW Analysis Tools [18], to be consistent
with LALSuite’s IMRPhenomD_NRTidalv2 waveform
template in GR. From there, we add the binary Love
relations to the IMRPhenomD_NRTidalv2model so that
we can search for the symmetric combination of tidal
deformabilities instead of searching for each tidal deform-
ability individually [19–21]. Next, we include the C-Love
relations into the model to obtain the compactness of each
NS, given the tidal deformability, and thus be able to
compute the binding energies and the sensitivities in
Einstein-æther theory [13,21–24]. Finally, we add the
Einstein-æther corrections to the waveform model to
1PN order, as computed in [15], which now explicitly
depend only on the coupling constants, the chirp mass, the
symmetric mass ratio, the inclination angle, and the tidal
deformabilities, leading to the EA_IMRPhenomD_NRT
model.
Onceconstructed,weuse thenewEA_IMRPhenomD_NRT

waveform model to conduct parameter estimation studies
with Bayesian inference on the public LIGO/Virgo data. In
parameter estimation studies, previous knowledge about
the sampling parameters is encoded in their prior and used
to determine the correct sampling region of parameter
space. Therefore, we begin by constructing a prior for the
Einstein-æther coupling constants, describing in detail how
each of the current constraints on the theory affects the
complicated shape of this prior. We further use this prior to
motivate our choice of a particular parametrization of the
coupling constants. We then test the capabilities of our
waveform model by using it to recover synthetic (injected)
data for GWs as predicted both in GR and in Einstein-æther
theory. Finally, we conduct parameter estimation studies
on the two BNS mergers so far observed with LIGO:
GW170817 and GW190425.
We find that current LIGO/Virgo data is not sufficiently

informative to place constraints on Einstein-æther theory
that are stronger than other stringent observational bounds
from the Solar System [11,12] and binary pulsar [13]
observations. That is, marginalized posteriors on the
Einstein-æther coupling parameters from gravitational
wave observations are statistically indistinguishable from
their priors, even when the latter are enlarged beyond what
is allowed by current observational bounds. This is because
Einstein-æther modifications are dominated by dipole
radiation (which enter at -1PN relative order in the wave-
form) and corrections to the binary’s orbital energy (which
enter at 0PN relative order in the waveform). Dipole effects

1A PN expansion is one in which all quantities are series
expanded in small velocities and weak fields [16].
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are already very well constrained by binary pulsar obser-
vations, because these binaries are sufficiently widely
separated that dipole modifications can become large
unless suppressed by the coupling constants. Leading
PN order corrections to the orbital energy are highly
correlated with the chirp mass, therefore diluting any
constraints.
Even though constraints placed with GWs cannot yet

surpass those from other experiments, it is possible that
future observations with more advanced detectors will be
able to better constrain Einstein-æther theory. For instance,
previous work predicted that third-generation and space-
based GW detectors may place comparable constraints, or
improve them by a factor of 2 [14]. This work, however,
was carried out in a now ruled-out region of parameter
space, before the coincident GW and electromagnetic
observation of GW170817, which bounded the speed of
GWs to be essentially identical to that predicted in GR.
Additionally, if the sensitivities of black holes (BHs) in
Einstein-æther theory were calculated, studies with BH
binaries or mixed NS/BH binaries could also be considered.
Even without these two specific advancements, constraints
from GWs will only improve over time as more BNS
mergers are observed and constraints are stacked. Thus, our
current work serves as an important foundation for how
such parameter estimation studies with GWs in Einstein-
æther theory can be performed in the fourth and fifth
observing runs of the LIGO/Virgo collaboration, and in the
future with third-generation detectors. Only by carrying out
such studies will we be able to determine whether future
observations can place competitive bounds on Einstein-
æther theory relative to binary pulsar and Solar System
constraints.
The remainder of this paper is organized as follows. In

Sec. II we give a brief introduction to Einstein-æther theory,
describing the coupling constants of the theory and the
sensitivities of strongly gravitating objects. Here we justify
why these studies can currently only be performed with BNS
inspirals. Section III mathematically describes GWs in
Einstein-æther theory, presenting the Fourier transform of
the response function for an L-shaped GW detector, so that
we can understand what modifications and extensions had to
be made to current waveform template models in Sec. IV to
create and test the new Einstein-æther waveform template,
EA_IMRPhenomD_NRT. To determine what priors to use
for parameter estimation, all current constraints on Einstein-
æther theory are collected in Sec. V. Once we have a prior,
the waveform template is tested on injected data in Sec. VI
and finally used on GW data from BNS inspirals in Sec. VII.
Section VIII discusses our results and potential future work.
There are four appendices included to facilitate reproduc-
ibility. In Appendix A, we describe in detail the modifica-
tions we made to our code to make it consistent with
LALSuite’s IMRPhenomD_NRTidal waveform model.
Appendix B provides more detail about the sensitivities in

Einstein-æther theory for the region of parameter space we
are considering and justifies why this region cannot be
extended. Appendix C gives the exact mathematical expres-
sions used for one of the conditions in the prior, and
Appendix D contains plots that demonstrate the recovery
of injected parameters with our waveform template.
Conventions. Greek letters specify spacetime indices,

while Latin letters specify spatial indices only. The Einstein
summation convention and c ¼ 1 is assumed. The gravi-
tational constant GN is explicitly listed because there are
other gravitational constants in Einstein-æther theory and
this allows us to keep track of which one is which. Finally,
following the conventions of much of the earlier Einstein-
æther literature, we use the metric signature ðþ;−;−;−Þ.

II. EINSTEIN-ÆTHER THEORY

In this section, we present a brief overview of Einstein-
æther theory, following mostly [13]. We begin by intro-
ducing the action and the field equations, and then continue
by discussing the sensitivities of compact objects, which
play a key role in our GW model.

A. Einstein-æther coupling constants

The general action of Einstein-æther theory is [25,26]

S ¼ Sæ þ Smat; ð2:1Þ

where Smat denotes the matter action and Sæ is the
gravitational action of Einstein-æther theory:

Sæ ¼ −
1

16πGæ

Z ffiffiffiffiffiffi
−g

p
d4x

�
Rþ λðUμUμ − 1Þ

þ 1

3
cθθ2 þ cσσμνσμν þ cωωμνω

μν þ caAμAμ

�
: ð2:2Þ

In this expression, the quantity Gæ is the “bare” gravita-
tional constant, related to Newton’s constant GN via

GN ¼ Gæ

1 − ðca=2Þ
; ð2:3Þ

g is the determinant of the metric, R is the four-dimensional
Ricci scalar, λ is a Lagrange multiplier that enforces the unit
norm of the æther’s four-velocity Uμ, and fcθ; cσ; cω; cag
are dimensionless coupling constants. In much of the
earlier Einstein-æther theory literature, the action was
written in terms of different coupling constants, namely
fc1; c2; c3; c4g. However the constants used here (which
were defined in [26]) appear in many of the physical
quantities relevant to GWs in Einstein-æther theory, so they
are particularly convenient to us. The two sets of constants
can be related to each other through

cθ ¼ c1 þ c3 þ 3c2; ð2:4aÞ
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cσ ¼ c1 þ c3; ð2:4bÞ

cω ¼ c1 − c3; ð2:4cÞ

ca ¼ c1 þ c4: ð2:4dÞ

The rest of the terms in the action are the expansion θ, the
shear σμν, the vorticity (also called the twist) ωμν, and the
acceleration Aμ of the æther’s four-velocity. These quan-
tities are defined via

Aμ ¼ Uν∇νUμ; ð2:5aÞ

θ ¼ ∇μUμ; ð2:5bÞ

σμν ¼ ∇ðνUμÞ þ AðμUνÞ −
1

3
θhμν; ð2:5cÞ

ωμν ¼ ∇½νUμ� þ A½μUν�; ð2:5dÞ

with hμν ¼ gμν −UμUν a projector to directions orthogonal
to the æther’s four velocity.
Varying the action with respect to the metric, the æther

field, and the Lagrange multiplier (and eliminating this last
from the equations) gives the modified Einstein field
equations [13]

Eαβ ≡Gαβ − Tæ
αβ − 8πGTmat

αβ ¼ 0 ð2:6Þ

and the æther equations

Æμ ≡
�
∇αJαν −

�
ca −

cσ þ cω
2

�
Aα∇νUα

�
hμν ¼ 0: ð2:7Þ

In these expressions, Gαβ is the usual Einstein tensor, the

matter stress-energy tensor is Tαβ
mat, and the æther stress-

energy tensor is

Tæ
αβ ¼ ∇μðJðαμUβÞ − JμðαUβÞ − JðαβÞUμÞ

þ cω þ cσ
2

�ð∇μUαÞð∇μUβÞ − ð∇αUμÞð∇βUμÞ�
þUνð∇μJμνÞUαUβ

−
�
ca −

cσ þ cω
2

��
A2UαUβ − AαAβ

�
þ 1

2
Mσρ

μν∇σUμ∇ρUνgαβ; ð2:8Þ

with

Jαμ ≡Mαβ
μν∇βUν; ð2:9Þ

Mαβ
μν ≡

�
cσ þ cω

2

�
hαβgμν þ

�
cθ − cσ

3

�
δαμδ

β
ν

þ
�
cσ − cω

2

�
δανδ

β
μ þ caUαUβgμν: ð2:10Þ

Linearizing these field equations and perturbing about
Minkowski space results in propagation equations for the
gravitational wave polarization tensor, which can be
classified into a transverse-traceless (spin-2) part, a vector
(spin-1) part, and a scalar (spin-0) part. Henceforth, we
shall refer to these different spins as the tensor, vector, and
scalar parts, respectively, of the gravitational wave polari-
zation. The speeds with which these polarizations propa-
gate are given by [27]

c2T ¼ 1

1 − cσ
; ð2:11aÞ

c2V ¼ cσ þ cω − cσcω
2cað1 − cσÞ

; ð2:11bÞ

c2S ¼
ðcθ þ 2cσÞð1 − ca=2Þ
3cað1 − cσÞð1þ cθ=2Þ

: ð2:11cÞ

B. Sensitivities

The æther field in Einstein-æther theory couples to
matter indirectly via the metric perturbation. In regions
where these perturbations are great, as around strongly
gravitating bodies, their effect is more important. Hence,
the mass of strongly gravitating objects is affected by the
æther field. This coupling depends on the relative velocity
between the æther field and the object, γ ≡ uαUα, with uα

the four-velocity of the object. In most situations, including
the inspiral of two widely separated objects, this quantity γ
will be small compared to the speed of light. Thus we
can Taylor expand the mass of a gravitating body about
γ ¼ 1 [13]:

μðγÞ ¼ m̃

�
1þ σð1 − γÞ þ 1

2
σ0ð1 − γÞ2 þ � � �

�
; ð2:12Þ

where m̃, σ, and σ0 are constants. The quantity σ is often
referred to as the “sensitivity” and σ0 its derivative [13,28]:

σ ≡ −
d ln μðγÞ
d ln γ

				
γ¼1

; ð2:13aÞ

σ0 ≡ σ þ σ2 þ d2 ln μðγÞ
dðln γÞ2

				
γ¼1

: ð2:13bÞ

Computing the equations of motion for a binary system
leads to the definition of an “active” mass for each object
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mA, related to the constant m̃A via mA ¼ ð1þ σAÞm̃A. This
is done such that the Newtonian limit of Einstein-æther
theory agrees with Newtonian gravity, with a rescaled
gravitational constant GAB ¼ GN=½ð1þ σAÞð1þ σBÞ� [28].
The sensitivities play a key role in the GWs emitted by

binary systems in Einstein-æther theory. This is because not
only do they appear in the Hamiltonian (and, therefore, in
the equations of motion) of binaries, but they also enter the
fluxes of radiation that backreact on the binary, forcing it to
inspiral faster than it would otherwise. Unfortunately, the
sensitivities of black holes (BHs) have not yet been
calculated, but they are known for neutron stars (NSs) [13].
For these objects, the sensitivities range between 10−8 and
1 depending on the region of parameter space considered
for the coupling constants (see Sec. IV C and Appendix B
for more detail). The sensitivities also vary depending on
the mass and radius of the NS [and thus on the equation of
state (EOS)]. Given that we can only model the sensitivity
of NSs, henceforth we focus exclusively on GW events
produced by binary NS inspirals, namely GW170817 and
GW190425.
The calculation of the sensitivity of NSs is highly

nontrivial. To solve for this quantity in terms of
Einstein-æther parameters, Gupta et al. [13] solved the

field equations through linear order in the NS’s velocity and
extracted the sensitivity from the asymptotic fall off of the
metric and æther field. This calculation was done both for
(tabulated) realistic EOSs, as well as for the Tolman VII
phenomenological EOS. The latter has the advantage of
allowing for an analytic solution to the field equations at
zeroth-order in velocity, which then renders the calculation
of the sensitivities semianalytical. When compared to the
numerical solutions using the other EOSs, the Tolman VII
results are highly accurate, and in fact, the sensitivities
present an approximately universal behavior (with less than
3% variation between EOSs studied) when written in terms
of the stellar binding energy ΩA.
With this at hand, Gupta et al. were able to find an

analytic representation of the sensitivities [13]. First,
rescaling to a more convenient parameter in the description
of GWs, one defines the sensitivities sA for body A in a
binary system via [28]

sA ≡ σA
1þ σA

: ð2:14Þ

Then, carrying out a small binding energy expansion using
the Tolman VII EOS, one finds

sA ¼ ð3α1 þ 2α2Þ
3

ΩA

mA
þ
�
573α31 þ α21ð67669 − 764α2Þ þ 96416α22 þ 68α1α2ð9α2 − 2632Þ

25740α1

�
Ω2

A

m2
A

þ 1

656370000cωα21



−4α21ðα1 þ 8Þ½36773030α21 − 39543679α1α2 þ 11403314α22�

þ cω½1970100α51 − 13995878400α32 − 640α1α
2
2ð−49528371þ 345040α2Þ − 5α41ð19548109þ 788040α2Þ

− 16α21α2ð1294533212 − 29152855α2 þ 212350α22Þ þ α31ð2699192440 − 309701434α2 þ 5974000α22Þ�
�Ω3

A

m3
A

þO
�
Ω4

A

m4
A

�
; ð2:15Þ

where α1 and α2 are the preferred frame parametrized
post-Newtonian parameters for Einstein-æther theory,
namely [29],

α1 ¼ 4
cωðca − 2cσÞ þ cacσ
cωðcσ − 1Þ − cσ

; ð2:16aÞ

α2 ¼
α1
2
þ 3ðca − 2cσÞðcθ þ caÞ

ð2 − caÞðcθ þ 2cσÞ
; ð2:16bÞ

and ΩA=mA is the ratio of the stellar binding energy to the
NS mass mA. For the Tolman VII EOS, the compactness of
the star, C ≔ mA=RA, where RA is the radius of the star, can
be expressed in terms of this ratio [13],

C ¼ −
7ΩA

5mA
þ 35819α1Ω3

A

85800m3
A

þO
�
Ω4

A

m4
A

�
ð2:17Þ

for small compactnesses and binding energies. The leading-
order terms of the expansion of the sensitivity in Eq. (2.15)
agrees with that derived by Foster [28]. Inverting this
relationship, one finds the binding energy over the mass as
a function of compactness

ΩA

mA
¼ −

5

7
C −

18275α1C3

168168
þOðC4Þ: ð2:18Þ

Our Einstein-æther waveform model relies on knowing
the sensitivities sA, but as shown in Eqs. (2.15) and (2.18),
these depend ultimately on the compactness. We can
relate the compactness of each star to their tidal

GRAVITATIONAL WAVE CONSTRAINTS ON … PHYS. REV. D 108, 104053 (2023)

104053-5



deformabilities as follows. First, following previous work
on nuclear astrophysics with GWs [8,30–32], we will
sample the GW likelihood by varying the symmetric tidal
deformability Λs ¼ ðΛ1 þ Λ2Þ=2 (among many other
parameters). From Λs, we can obtain Λa ¼ ðΛ2 − Λ1Þ=2
using the binary Love relations [21,23], and from Λs and
Λa we can easily obtain Λ1 and Λ2. Now, from the latter
two quantities, we will obtain the compactness through the
approximately universal C-Love relations [21,23]

CAðΛAÞ ¼ 0.2496Λ−1=5
A

1þP
3
i¼1 aiΛ

−i=5
A

1þP
3
i¼1 biΛ

−i=5
A

; ð2:19Þ

where the fitting coefficients are

ai ¼ f−919.6; 330.3;−857.2g; ð2:20Þ

bi ¼ f−383.5; 192.5;−811.1g: ð2:21Þ

From the compactness, we can then evaluate the stellar
binding energy, and from that, the sensitivities. The logic is
outlined in Fig. 1.
The binary Love and C-Love relations feature heavily in

the construction of our waveform model, but they are
known to only be approximately EOS insensitive. In fact,
their variability is about 10% [33]. One can include this
variability in Bayesian parameter estimation, and then
marginalize over it, as done for example in [33]. We will
here not include it, however, because the statistical error in
the extraction of the symmetric tidal deformability domi-
nates over any systematic error introduced by this vari-
ability, as shown in [21], at least in the current GW
detector era.

III. GWs IN EINSTEIN-ÆTHER THEORY

In this section, we review the work of [15] to construct
expressions for the GW polarizations of Einstein-æther

theory for a quasicircular inspiraling binary composed of
nonspinning NSs. We then present the Fourier transform of
the response function in explicit form, ready for use in
parameter estimation and data analysis.

A. GW polarizations in Einstein-æther theory

Following the example of many other studies
[15,25,34,35], we begin by considering linear perturbations
to a backgroundMinkowski metric, ημν ¼ diagð−1; 1; 1; 1Þ,
and linear perturbations to a stationary æther field:

hμν ¼ gμν − ημν; w0 ¼ U0 − 1; wi ¼ Ui: ð3:1Þ

The one-form h0i and the vector wi can be uniquely
decomposed into irreducible transverse and longitudinal
pieces, while the spatial components of the metric pertur-
bation hij can be uniquely decomposed into a transverse
traceless tensor, a transverse vector, and transverse and
longitudinal traces [34]:

wi ¼ νi þ ν;i; ð3:2aÞ

h0i ¼ γi þ γ;i; ð3:2bÞ

hij ¼ ϕij þ 2ϕði;jÞ þ
1

2
Pij½f� þ ϕ;ij; ð3:2cÞ

where the quantity Pij ≔ δijΔ − ∂i∂j is a transverse differ-
ential operator, the quantity Δ ≔ δij∂i∂j is the flat-space
spatial Laplacian, and F ≔ Δf is a scalar. The transverse
vector and tensor fields here satisfy the divergence-free
condition,

∂
iγi ¼ ∂

iνi ¼ ∂
iϕi ¼ 0; ∂

jϕij ¼ 0; ð3:3Þ

and the field ϕij is also traceless, ϕi
i ¼ 0. Note that

we also make the conventional gauge choice, ϕi ¼ 0 and
ν ¼ γ ¼ 0 [34].
With these convenient decompositions in hand, we

would like to use the formula for GW polarizations in
generic modified theories of gravity provided by [36].
However, that work made the implicit assumption that all
polarizations of the GW travel at the same speed,
specifically the speed of light, and this assumption does
not hold for Einstein-æther theory. We extended the work
of [36] in [37] to accommodate for theories that allow
for modes with different and arbitrary speeds. In that
work, we also explicitly computed the expressions for
GW polarizations in Einstein-æther theory by inserting
Eqs. (3.2) and (2.11) into our general formula. We found
that

hþ ¼ 1

2
ϕije

ij
þ; h× ¼ 1

2
ϕije

ij
× ; ð3:4aÞ

FIG. 1. A flow chart of computing sensitivities from the
parameter sampled on (symmetric tidal deformability, Λs). We
use the binary Love relations, the C-Love relations, the Tolmann
VII EOS, and the equation for sensitivities as a function of the
binding energy to mass ratio. These sensitivities will then be used
in the waveform as described in Sec. III B.
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hb ¼
1

2
F; hL ¼ ð1þ 2β2Þhb; ð3:4bÞ

hX ¼ 1

2
β1νieiX; hY ¼ 1

2
β1νieiY; ð3:4cÞ

where

β1 ¼ −
2cσ
cV

; ð3:5Þ

β2 ¼
ca − 2cσ

2cað1 − cσÞc2S
; ð3:6Þ

and eijþ ¼ eiXe
j
X − eiYe

j
Y and eij× ¼ eiXe

j
Y þ eiYe

j
X are combi-

nations of basis vectors, defined in the orthogonal basis
for GWs propagating in the eZ direction:

eX ¼ ðcos ϑ cosφ; cos ϑ sinφ;− sinϑÞ; ð3:7aÞ

eY ¼ ð− sinϑ; cosφ; 0Þ; ð3:7bÞ

eZ ¼ ðsinϑ cosφ; sin ϑ sinφ; cos ϑÞ: ð3:7cÞ

Equation (3.6) corrects a small minus sign error in [15]
that has since been addressed. Aside from that, our results
in Eq. (3.4) agree with those of Eq. (3.28) in [15], which
were computed in a different way (i.e. starting from the
timelike geodesic deviation equation and working with the
linearized Riemann tensor in terms of the metric pertur-
bation; see Ref. [15] for more details).
An intuitive understanding of these different GW polar-

izations in Einstein-æther theory can be gleaned from
considering their impact on a ring of test particles. In
modified theories of gravity, the most general GW has up to
six polarization modes. This includes two each of tensor,
vector, and scalar type. The two tensor polarizations, hþ
and h×, are the plus and cross modes familiar from GR. The
two vector polarizations, hX and hY , are labeled for the
plane in which they would make a ring of test particles
oscillate for a wave propagating in the z direction (see
Fig. 2). Finally, the two scalar polarizations, hb and hL, are
called the breathing and longitudinal modes for the way in
which they would make a ring of test particles oscillate in
and out or longitudinally along the direction of propagation
(again see Fig. 2).
We continue to follow [15] to compute the GW polar-

izations that appear in Eq. (3.4) specifically for a binary
system. We will not repeat that calculation here, but
the details can be found in [15]. That paper assumes that
the detectors are far away from the source and solves the
linearized Einstein-æther field equations to derive expres-
sions for ϕij, νi, γi and F in terms of the Einstein-æther
coupling constants, the mass quadrupole moment, the
trace-free mass quadrupole moment, the renormalized

versions of these quantities, the renormalized mass dipole
moment and the renormalized current quadrupole moment.
Reference [15] then focuses on two nonspinning compact
objects in a quasicircular orbit to find expressions for these
multipolar moments in terms of typical binary system
parameters (for example, the binary chirp mass and orbital
frequency of the system). Unlike previous work, Ref. [15]
allows the center of mass of the binary system to not be
comoving with the æther, essentially letting their relative
velocity be nonzero, Vi ≠ 0. We will again choose to set
Vi ¼ 0 since we know it must be Vi ≈Oð10−3Þ, given the
peculiar velocity of our own galaxy relative to the cosmic
microwave background, and we consider this to be neg-
ligible compared to the other Einstein-æther modifica-
tions [28,35].

B. The response function

Parameter estimation on actual data from advanced
LIGO, advanced Virgo, or KAGRA requires the Fourier
transform h̃ðfÞ of the response function hðtÞ for an
L-shaped GW detector. From [38], we can write the latter as

hðtÞ ¼
X
N

FNðθ;ϕ;ψÞhNðtÞ; ð3:8Þ

where N ∈ fþ;×; b; L; X; Yg and FNðθ;ϕ;ψÞ are the angle
pattern functions, which depend on the polar, azimuthal and
polarization angles (θ, ϕ, and ψ , respectively)2:

Fþ ≡ 1

2
ð1þ cos2θÞ cos 2ϕ cos 2ψ

− cos θ sin 2ϕ sin 2ψ ; ð3:9aÞ

FIG. 2. The oscillation of a ring of test particles when each of
the six possible polarizations of a GW in Einstein-æther theory
passes through, propagating in the z direction. The solid black
line represents the ring at times ωt ¼ 0; π, the dashed blue line
represents the ring at time ωt ¼ π=2, and the dotted orange line
shows ωt ¼ 3π=2.

2Figure 2 of [39] and Fig. 11.5 of [38] illustrate how these
angles relate the orientation of the detector and the source.
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F× ≡ 1

2
ð1þ cos2θÞ cos 2ϕ sin 2ψ

þ cos θ sin 2ϕ cos 2ψ ; ð3:9bÞ

Fb ≡ −
1

2
sin2θ cos 2ϕ; ð3:9cÞ

FL ≡ 1

2
sin2θ cos 2ϕ; ð3:9dÞ

FX ≡ − sin θðcos θ cos 2ϕ cosψ − sin 2ϕ sinψÞ; ð3:9eÞ

FY ≡ − sin θðcos θ cos 2ϕ sinψ þ sin 2ϕ cosψÞ: ð3:9fÞ

Through the stationary phase approximation, one can
compute the Fourier transform of the response function,
namely

h̃ðfÞ ¼
Z

hðtÞe2iπftdt: ð3:10Þ

Doing so, we have reproduced Eq. (5.7) of [15], and then
collect terms by theFN functions of Eq. (3.9).We also choose
to separate contributions to these expressions from the l ¼ 2
and l ¼ 1 orbital harmonics. We do so because the l ¼ 1
harmonics are multiplied by an overall amplitude factor that
depends on the coupling constants and that is of Oð10−5Þ
relative to the overall amplitude of thel ¼ 2 harmonic, when
one saturates current constraints. Ultimately, we arrive at

h̃ðfÞ ¼
X
N

X
l¼1;2

h̃N;lðfÞFN; ð3:11Þ

with the expressions for h̃N;l given by3

h̃ðþ;2ÞðfÞ ¼ Að2ÞðfÞ
�ð1þ cos2ιÞ�eiΨð2Þe−i2πfDLð1−c−1T Þ;

ð3:12Þ

h̃ð×;2ÞðfÞ ¼ Að2ÞðfÞ
�
2i cos ι

�
eiΨð2Þe−i2πfDLð1−c−1T Þ; ð3:13Þ

h̃ðb;2ÞðfÞ ¼ Að2ÞðfÞ
�

1

2 − ca

�
3caðZ − 1Þ − 2S

c2S

�
sin2ι

�
eiΨð2Þe−i2πfDLð1−c−1S Þ; ð3:14Þ

h̃ðL;2ÞðfÞ ¼ abLh̃ðb;2ÞðfÞ; ð3:15Þ

h̃ðX;2ÞðfÞ ¼ Að2ÞðfÞ
�

β1
cσ þ cω − cσcω

1

2cV

�
S −

cσ
1 − cσ

�
sinð2ιÞ

�
eiΨð2Þe−i2πfDLð1−c−1V Þ; ð3:16Þ

h̃ðY;2ÞðfÞ ¼ Að2ÞðfÞ
�

iβ1
cσ þ cω − cσcω

1

cV

�
S −

cσ
1 − cσ

�
sinðιÞ

�
eiΨð2Þe−i2πfDLð1−c−1V Þ; ð3:17Þ

h̃ðb;1ÞðfÞ ¼ Að1ÞðfÞ
�

2i
ð2 − caÞcS

sin ι

�
eiΨð1Þe−i2πfDLð1−c−1S Þ; ð3:18Þ

h̃ðL;1ÞðfÞ ¼ abLh̃ðb;1ÞðfÞ; ð3:19Þ

h̃ðX;1ÞðfÞ ¼ Að1ÞðfÞ
�

iβ1
cσ þ cω − cσcω

cos ι

�
eiΨð1Þe−i2πfDLð1−c−1V Þ; ð3:20Þ

h̃ðY;1ÞðfÞ ¼ Að1ÞðfÞ
�
−

β1
cσ þ cω − cσcω

�
eiΨð1Þe−i2πfDLð1−c−1V Þ; ð3:21Þ

with common amplitude and phase functions given by

Að2ÞðfÞ ¼ −
1

2

ffiffiffiffiffiffi
5π

48

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − caÞ

ð1 − s1Þð1 − s2Þ

s
1

DL
G2

NM̄
2κ−1=23 ðGNπM̄fÞ−7=6

�
1 −

1

2
ðGNπM̄fÞ−2=3η2=5ϵx

�
; ð3:22Þ

3To use these expressions in the IMRPhenomD waveform model, we need to convert to the convention of that paper, which defined
the Fourier transform as h̃ðfÞ ¼ R

hðtÞe−2iπftdt [40], instead of as in Eq. (3.10). To transform these expressions to those used in the
code, one can simply take i → −i.
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Ψð2ÞðfÞ ¼
3

64

ð1 − s1Þð1 − s2Þ
ð2 − caÞ

κ−13 ðGNπM̄fÞ−5=3
�
1 −

4

7
ðGNπM̄fÞ−2=3η2=5ϵx

�
þ 2πft̄c − 2ΦðtcÞ −

π

4
; ð3:23Þ

Að1ÞðfÞ ¼ −
1

4

ffiffiffiffiffiffi
5π

48

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ca

ð1 − s1Þð1 − s2Þ

s
1

DL
ΔsG2

NM̄
2κ−1=23 η1=5ðGNπM̄fÞ−3=2

�
1 −

1

2
ð2GNπM̄fÞ−2=3η2=5ϵx

�
; ð3:24Þ

Ψð1ÞðfÞ ¼
3

128

ð1 − s1Þð1 − s2Þ
ð2 − caÞ

κ−13 ð2GNπM̄fÞ−5=3
�
1 −

4

7
ð2GNπM̄fÞ−2=3η2=5ϵx

�
þ 2πft̄c −ΦðtcÞ −

π

4
: ð3:25Þ

Note that the l ¼ 1 harmonic only affects the additional
non-GR polarizations.
The quantities in these expressions that we have not yet

explicitly defined are given in [15], but we repeat their
definitions here for completeness:

abL ¼ 1þ 2β2; ð3:26aÞ

t̄c ¼ tc þDL; ð3:26bÞ

M ¼ ðm1 þm2Þη3=5; ð3:26cÞ

Z ¼ ðα1 − 2α2Þð1 − cσÞ
3ð2cσ − caÞ

; ð3:26dÞ

ϵx ¼
5Δs2

32κ3
C; ð3:26eÞ

Δs ¼ s1 − s2; ð3:26fÞ

κ3 ¼ A1 þA2S þA3S2; ð3:26gÞ

where

S ¼ s1μ2 þ s2μ1; ð3:27aÞ

μA ¼ mA

ðm1 þm2Þ
; ð3:27bÞ

η ¼ m1m2

ðm1 þm2Þ2
; ð3:27cÞ

and

A1¼
1

cT
þ 2cac2σ
ðcσþcω−cσcωÞ2cV

þ3caðZ−1Þ2
2ð2−caÞcS

; ð3:28aÞ

A2 ¼ −
2cσ

ðcσ þ cω − cσcωÞc3V
−

2ðZ − 1Þ
ð2 − caÞc3S

; ð3:28bÞ

A3 ¼
1

2cac5V
þ 2

3cað2 − caÞc5S
; ð3:28cÞ

C ¼ 4

3cac3V
þ 4

3cað2 − caÞc3S
: ð3:28dÞ

For convenience, we also have defined a new quantity

M ¼ ð1 − s1Þð1 − s2ÞM: ð3:29Þ

Now that we have the mathematical expressions for the
Fourier transform of the response function separated out
into these convenient pieces, corresponding to the l ¼ 2
and l ¼ 1 contributions to each of the different polar-
izations of the GW, we can implement them in a waveform
model, as we shall describe in the next section.

IV. AN EINSTEIN-ÆTHER WAVEFORM
TEMPLATE

To compare gravitational wave predictions from
Einstein-æther theory directly with data, we need an
Einstein-æther waveform model. This section starts with
a basic description of GW Analysis Tools (GWAT), the
code used for this analysis. Next we follow [41] and update
GWAT to incorporate the IMRPhenomD_NRTidalv2
model for binary NS mergers. Finally, we describe the
additions that were made to the GWAT implementation
of the IMRPhenomD_NRTidalv2 model to create the
EA_IMRPhenomD_NRT model, which is capable of mod-
eling coalescing NSs in Einstein-æther theory. Throughout
this section, we compare output from our code to previous
work to demonstrate its functionality and validity.

A. GWAT implementation of BBH
waveform models in GR

The code used for the parameter estimation analysis that
will be presented in this paper was built off of GWAT, a set of
tools for statistical studies in GW science developed by
Scott Perkins and collaborators at the University of Illinois
Urbana Champaign [18]. This software allows the user to
select different waveform templates and perform parameter
estimation on binary BH systems using Bayesian inference
(for a review of how parameter estimation is done in GW
science, see e.g. [30]). To gather independent samples for
the posterior, GWAT uses a Markov chain Monte Carlo
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(MCMC) sampler, aided by parallel tempering and a mix of
jump proposals. For example, for the untempered chains,
30% of jumps are proposed with differential evolution and
70% of jumps are proposed along the eigenvectors of the
Fisher matrix.

GWAT contains several waveform templates available for
use, but for the purposes of this paper, we started develop-
ment from the IMRPhenomD model [40,42]. This wave-
form is defined in GR with an 11-dimensional parameter
space, spanned by the parameter vector θ⃗ ¼ fα0; sin δ;ψ ;
cos ι;ϕref ; tc; DL;M; η; χ1; χ2g, where α0 and δ are the right
ascension and declination angles of the binary in the sky, ψ
is the polarization angle with respect to Earth-centered
coordinates, ι is the inclination angle of the binary, ϕref is
the phase at a reference frequency (fref , chosen to be
consistent with LALSuite), tc is the time of coalescence, DL
is the luminosity distance, M is the chirp mass of the
binary, as defined in Eq. (3.26c), η is the symmetric mass
ratio, as defined in Eq. (3.27c), and χ1 ðχ2Þ is the
dimensionless spin of the heavier (lighter) object. The
dimensionless astrophysical parameters are sampled from
uniform priors in the following regions: α0 ∈ ½0; 2π�,
sin δ∈ ½−1; 1�, ψ ∈ ½0; π�, cos ι∈ ½−1; 1�, ϕref ∈ ½0; 2π�,
χ1 ∈ ½−.01; .01�, χ2 ∈ ½−.01; .01�. The dimensionful astro-
physical parameters have the following priors: tc has a flat
prior that is restricted to be within 0.1 seconds of the trigger
time of the event, DL is sampled uniformly in the volume
defined by the range [5, 300] Mpc, and instead of using a
prior uniform inM and η, we use a prior uniform inm1 and
m2 in the range ½1; 2.5�M⊙ for NSs.

B. Extending the GWAT implementation of BBH
waveform models to BNS inspirals in GR

As mentioned in Sec. II, constraints on Einstein-æther
theory can currently be studied only with signals from BNS
inspirals. Thus, as a first step, the GWAT implementation of
the IMRPhenomD model has to be extended to include
finite-size BNS effects. This extension requires modi-
fications to the GW amplitude and phase, which we
implemented following the IMRPhenomD_NRTidalv2
model [43]. The exact form of these modifications can be
found in Appendix A, but in essence, they are characterized
by the mass-weighted tidal deformability Λ̃, which is
defined by [44]

Λ̃ ¼ 8

13

h
ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ

i
: ð4:1Þ

Therefore, in addition to the BH astrophysical parameters
of Sec. IVA, θ⃗ must now also include the tidal deform-
abilities of each NS, Λ1 and Λ2, increasing the dimension-
ality of the parameter space to 13. Another important
modification is the smooth filtering of the signal at the end

of the inspiral, which is accomplished with a Plank taper
function. This is implemented to avoid including the
merger phase of the BNS coalescence, whose phenomeno-
logical analytic description does not yet exist and which
would otherwise be present because the IMRPhenomD
model includes merger and ringdown.
To compare our code with LALSuite, we first generated 100

different random combinations of source parameters, and
then we computed their respective waveforms in GWATand in
LALSuite. We then calculated the relative fractional difference
between the amplitudes computed with both codes

ALAL − AGW

Aavg
¼ 2ðALAL − AGWÞ

ALAL þ AGW
; ð4:2Þ

whereALAL is the amplitude calculated byLALSuite andAGW is
the amplitude calculated byGWAT. The difference in the phase
computed by the two programs was calculated via
ΨLAL −ΨGW. The relative amplitude and phase differences
are below 0.001% and constant across frequency, which will
thus not affect our parameter estimation studies.
As we explained in Sec. II B, however, the Einstein-

æther modifications to the waveform model will require
knowledge of the sensitivities, which are functions of the
compactness, and through the Love-C relations, functions
of the individual tidal deformabilities. To extract the
individual tidal deformabilities, we will use the binary
Love relations [21,23]. The symmetric and antisymmetric
combinations of the NS tidal deformability [21,23]:

Λs ¼
Λ2 þ Λ1

2
; ð4:3Þ

Λa ¼
Λ2 − Λ1

2
; ð4:4Þ

can be related to each other through nearly EOS-insensitive
relations Λa ¼ ΛaðΛsÞ. The most recent incarnation of this
relation is4

Λa ¼ FnðqÞ
1þP

3
i¼1

P
2
j¼1 bijq

jΛ−i=5
s

1þP
3
i¼1

P
2
j¼1 cijq

jΛ−i=5
s

Λα
s ; ð4:5Þ

where FnðqÞ is the Newtonian limiting-control factor, q is
the mass ratio with m2 ≤ m1, and fn; αg are constants,
given by

FnðqÞ ¼
1 − q10=ð3−nÞ

1þ q10=ð3−nÞ
; q ¼ m2

m1

; ð4:6aÞ

n ¼ 0.743; α ¼ 1; ð4:6bÞ

4Note that the exponent on Λs in Eq. (4.5) is negative, which
corrects a small typo in Ref. [21] that those authors also corrected
recently.
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while the coefficients fbij; cijg are given by

bij ¼

2
64
−14.40 14.45

31.36 −32.25
−22.44 20.35

3
75; ð4:7Þ

cij ¼

2
64
−15.25 15.37

37.33 −43.20
−29.93 35.18

3
75; ð4:8Þ

which were obtained by fitting 100 EOSs that obey
physical constraints [21].
Using the binary Love relations, we can then sample

the waveform on all astrophysical parameters plus
just Λs, reducing the dimensionality of the parameter
space to 12. Moreover, from the sampled value of Λs, we
can also compute Λa from the binary Love relations, and
from these two quantities, we can recover Λ1 and Λ2. All
of this, however, requires that we choose a prior for Λs.
We here choose an uniform prior in ð10; 104Þ. However,
for the set of EOSs used to generate the binary Love
relations, Λs and q are also related by the approximate
inequality,

q ≥ 1.2321 − 0.124616 lnðΛsÞ; ð4:9Þ

which can be obtained by fitting data from Ref. [21].
Therefore, any point that does not satisfy the above
constraint does not pass the prior and is rejected.
To validate our GWAT implementation of the binary Love

relations, we computed ΛaðΛs; qÞ for three different values
of q ¼ f0.5; 0.75; 0.9g and 250 randomly generated values
of Λs each. Figure 3 compares our results to the data
published in [21]. Observe that the relative fractional
difference is below 5% in all cases, which confirms that
our implementation is correct.
Given the agreement between our code and previous

work, we conclude that our GWAT implementation of
IMRPhenomD_NRT can successfully perform parameter
estimation for BNS inspirals, sampling on the symmetric
tidal deformability.

C. Extending the GWAT implementation of BNS
waveform models in GR to Einstein-æther theory

With the GR groundwork in place, we now implement
Einstein-æther modifications to the IMRPhenomD_NRT
model, thus generating the EA_IMRPhenomD_NRT
model. We will describe here what these modifications
are and how we will implement them in GWAT.
As we discussed in Sec. III B the Einstein-æther mod-

ifications to the inspiral part of coalescence include
corrections to the amplitude and phase of the Fourier
transform of the plus and cross GW polarizations, as well
as the introduction of the Fourier transform of the four

additional GW polarizations present in this theory
[Eqs. (3.12)–(3.25)]. We extend the IMRPhenomD_NRT
model by introducing these modifications to the inspiral
portion of coalescence. Beginning at the merger, a Planck
taper function takes the amplitude of the response function
to zero, ending the waveform model, because both the
IMRPhenomD_NRT and the EA_IMRPhenomD_NRT
models do not include the merger or postmerger portions
of coalescence for NSs.5

Since the EA_IMRPhenomD_NRT model is new, there
does not yet exist any other code infrastructure that has
implemented Einstein-æther modifications to a coalescence
model. We therefore implemented it all within the GWAT

code as follows. Given a point in the 16-dimensional
parameter space of

FIG. 3. Comparison between the binary Love relation imple-
mented in GWAT (points in blue) and that computed in [21] (points
in black) for three different values of q. Beneath, the relative
fractional differences (for q ¼ 0.50, q ¼ 0.75, and q ¼ 0.90,
respectively) demonstrate that the GWAT implementation is
correct.

5The EOS of NSs is not yet known, so there are different
possible outcomes of a binary NS merger including stable NSs,
hypermassive NSs, supramassive NSs, and BHs [45]. Thus, any
model of the merger or postmerger portions of coalescence is not
accurate for NS binaries.
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θ⃗ ¼ fα0; sin δ;ψ ; cos ι;ϕref ; tc; DL;M; η; χ1; χ2;Λs;

ca; cθ; cω; cσg;

the code first computes sensitivities, since they play a
prominent role in all of the Einstein-æther modifications
discussed above. The logic for this calculation is outlined in
Fig. 1 and proceeds as follows. From the symmetric
combination of the tidal deformabilities Λs, the code uses
the binary Love relations to find the antisymmetric combi-
nation of the tidal deformabilities Λa, and from these two
quantities, the individual tidal deformabilities Λ1 and Λ2

(see discussion in Sec. IV B). From the latter two, the code
uses the C-Love relations to compute the individual
compactnesses C1 and C2 (see Sec. II B). Finally, from
the compactnesses and the Einstein-æther coupling con-
stants, the code computes the sensitivities s1 and s2 [see
Eqs. (2.15) and (2.18)].
For validation purposes, the inverse of the Love-C

relation, CðΛÞ as computed by the GWAT implementation,
is shown in the left panel of Fig. 4 for 100 random tidal
deformabilities (ranging between 1 and 104). Comparing
this to the data from [21], we can compute the
relative fractional difference, shown in the left-bottom
panel of Fig. 4. Observe that the relative fractional
difference is at most 0.5%, due mostly to interpola-
tion error.

The s-C relation, sðCÞ, as computed by the GWAT

implementation, is plotted in the right panel of Fig. 4.
First, for direct comparison to [13], we fix the Einstein-
æther coupling constants to fca; cθ; cω; cσg ¼ ð10−4; 4 ×
10−7; 10−4; 0Þ and compute sensitivity for 250 random
values of compactness. As before, the relative fractional
difference between the GWAT sensitivities and that of the
original paper are shown in the right-bottom panel of Fig. 4.
Observe again the relative fractional difference is at most
5%, once more validating our implementation.6 We then
compute sensitivity for 500 random values of compactness
when the Einstein-æther parameters, fca; cθ; cω; cσg, are
also varied. These coupling constants are randomly drawn
from the complicated region of parameter space allowed by
current constraints on the theory (described in detail in
Sec. V). Note the wide range of sensitivities possible for a
single compactness when these coupling constants are
varied. Furthermore, Appendix B discusses the magnitude
of sensitivities in a wider region of parameter space that
will become useful later.

EOS

FIG. 4. Left: compactness as a function of Λ computed by GWAT for 100 random combinations of source parameters and compared to
data from [21]. The relative fractional difference between these two data sets is plotted below and serves as a test of the C-Love relations
in our code. Right: comparing the sensitivity as a function of compactness computed by GWAT with that published in [13]. For direct
comparison, we follow the example of [13] and fix the Einstein-æther coupling constants to fca; cθ; cω; cσg ¼ ð10−4; 4 × 10−7; 10−4; 0Þ,
plotted in blue. The relative fractional difference between these points and those from [13] is shown below. Though these points are
computed using different EOSs (APR4 in [13] and Tolmann VII in GWAT), they differ by less than 5% for realistic values of compactness
for NSs. We also compute sensitivity as a function of compactness varying the Einstein-æther parameters in the full range of parameter
space allowed by current constraints (for a description of this allowed region, see Sec. V). These points are plotted in orange and
represent the typical values of sensitivity we expect to appear in the waveform.

6Note that though there is good agreement in the range of
compactnesses relevant for this study, this agreement does not
hold in the small C limit. As described in Sec. II B, the sensitivity
calculation depends on the Tolmann VII EOS. While this analytic
EOS is physically reasonable for realistic NS compactnesses, the
justification for this model breaks down for very small C.
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Once the sensitivities have been evaluated, we can
then proceed to evaluate all of the other Einstein-æther
quantities that appear in the Fourier transform of the
response function. Explicitly, this includes the quantities
fcS; cV; β1; Z;S;A1;A2;A3; C; κ3; ϵx;M̄g as defined in
Eqs. (2.11c), (2.11b), (3.5), (3.26d)–(3.27a), and (3.28a)–
(3.29). With these Einstein-æther quantities computed, the
response function can be put together by first evaluating the
amplitude and phase of each of the GW polarizations on a
frequency array, and then linearly combining the product of
the latter with the antenna patterns.
We want to take advantage of the full machinery of

IMRPhenomD_NRT that has already been successfully
implemented in GWAT. Thus, we promote the chirpmass,
M, to the Einstein-æther scaled version, M̄ [Eq. (3.29)],
everywhere in IMRPhenomD_NRT. We then use this
waveform template to compute the amplitude, ANRTðfÞ,
and phase, ΨNRTðfÞ, of the plus and cross GW polar-
izations such that

h̃þ;NRTðfÞ ¼ ANRTðfÞð1þ cos2ιÞeiΨNRTðfÞ; ð4:10Þ

h̃×;NRTðfÞ ¼ ANRTðfÞð2i cos ιÞeiΨNRTðfÞ: ð4:11Þ

This introduces uncontrolled remainders at higher orders.
However, since the Einstein-æther waveform has not yet
been computed to those orders, it is reasonable to use the
“promoted” IMRPhenomD_NRT version for higher order
terms. Note that the EA_IMRPhenomD_NRT waveform
template is only accurate to 0PN.7

Now we are ready to construct the amplitude and phase
of all of the different GW polarizations in Einstein-æther
theory in GWAT for EA_IMRPhenomD_NRT. We will do
this by adding the appropriate corrections to the already
computed ANRT and ΨNRT. First for the plus and cross
modes,

h̃þ;EAðfÞ ¼ AEAðfÞð1þ cos2ιÞeiΨEAðfÞ; ð4:12Þ

h̃×;EAðfÞ ¼ AEAðfÞð2i cos ιÞeiΨEAðfÞ; ð4:13Þ

where

AEAðfÞ ¼ ANRTðfÞ þ Að2ÞðfÞ − A0PNðfÞ; ð4:14Þ

ΨEAðfÞ ¼ ΨNRTðfÞ þΨð2ÞðfÞ −Ψ0PNðfÞ þ ΨcN ðfÞ:
ð4:15Þ

ANRT and ΨNRT are the amplitude and phase computed by
IMRPhenomD_NRT as described above. Að2Þ and ψ ð2Þ are
given in Eqs. (3.22) and (3.23). A0PN and Ψ0PN are the 0PN

contributions present in both IMRPhenomD_NRT and Að2Þ,
Ψð2Þ, respectively, that are subtracted off so as not to be
double counted. Explicitly,

A0PNðfÞ ¼ −
ffiffiffiffiffiffi
5π

96

r
1

DL
G2

NM̄
2ðGNπM̄fÞ−7=6;

Ψ0PNðfÞ ¼
3

128
ðGNπM̄fÞ−5=3 þ 2πf t̄c; ð4:16Þ

−2ΦðtcÞ −
π

4
: ð4:17Þ

Finally, ΨcN is a term that depends on the speed of the GW
polarization,

ΨcN ≡ −2πfDLð1 − c−1N Þ ð4:18Þ

for N ∈ fT; S; Vg. Since the plus and cross modes are
tensor polarizations, Eqs. (3.12) and (3.13) show that the
ΨcN term should be −2πfDLð1 − c−1T Þ.
EA_IMRPhenomD_NRT similarly computes the other

terms in the response function that come from the second
harmonic of the orbital period [h̃N;2 with N ∈ fb; L; X; Yg
fromEqs. (3.14)–(3.17)]. For example, followingEq. (3.14),

h̃ðb;2Þ ¼ AEA

�
1

2 − ca

�
3caðZ − 1Þ − 2S

c2S

�
sin2ι

�
eiΨEA ;

ð4:19Þ

where AEA andΨEA are defined as in Eqs. (4.14) and (4.15),
with ΨcN ¼ −2πfDLð1 − c−1S Þ. For each of the two
scalar modes, h̃ðb;2Þ and h̃ðL;2Þ, ΨcN depends on the scalar
speed, cS, and likewise for each of the two vector modes
h̃ðX;2Þ and h̃ðY;2Þ, ΨcN depends on the vector polarization
speed, cV .
For the terms that come from the first harmonic

of the orbital period [h̃N;1 with N ∈ fb; L; X; Yg from
Eqs. (3.18)–(3.21)], EA_IMRPhenomD_NRT computes a
new amplitude and phase, AEA;1 and ΨEA;1. Since there is
no l ¼ 1 component of amplitude in IMRPhenomD_NRT,
AEA;1 is simply equivalent to Að1Þ as defined in Eq. (3.24).
Meanwhile,

ΨEA;1ðfÞ ¼ ΨNRTðf=2Þ þ Ψð1ÞðfÞ − Ψ0PN;1ðfÞ þ ΨcN ðfÞ;
ð4:20Þ

where

Ψ0PN;1ðfÞ ¼
3

256
ð2GNπM̄fÞ−5=3 þ 2πft̄c −ΦðtcÞ −

π

4

ð4:21Þ
7For the PN accuracy of the IMRPhenomD_NRT model, see

Refs. [40–42,46].
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and ΨcN is defined the same as in the l ¼ 2 case
[Eq. (4.18)].
Finally, EA_IMRPhenomD_NRT linearly combines

each h̃N;l with the appropriate antenna pattern function,
FN , to construct the full waveform. In the limit
that the Einstein-æther coupling constants go to zero,8

EA_IMRPhenomD_NRT reduces to IMRPhenomD_NRT.
We demonstrate this by comparing the two waveform
templates for 100 randomly generated combinations of
source parameters, varying each of the parameters in the
16-dimensional parameter space except for the Einstein-
æther coupling constants, which are fixed to small values.
We draw these parameters from the same priors described in
Secs. IVA and IV B. The relative fractional difference in the
amplitude and the difference in the phase are below 0.001%
and constant across frequency. Hence, we conclude that our
Einstein-æther waveform template is consistent with GR in
the limit that the coupling constants go to zero.

V. CURRENT CONSTRAINTS ON THE THEORY

Several theoretical and experimental results have placed
constraints on Einstein-æther theory and its coupling
constants. In this section, we discuss the most stringent
constraints so that we can use them to construct nontrivial
priors for each of the Einstein-æther parameters in two
separate parametrizations of the theory. We also explain
why the second parametrization is more convenient for
analysis of GW data and will be used throughout the rest of
this work.

A. Summary of existing constraints

Let us begin with theoretical constraints. In order to
avoid gradient instabilities and ghosts, the squared speed of
the GW polarizations must be positive [27,47],

c2T > 0; c2V > 0; c2S > 0: ð5:1Þ

Furthermore, if we consider a plane wave solution of the
linearized field equations with wave vector ðk0; 0; 0; k3Þ,
the energy densities of the different modes [34,48]

ET ¼ 1

8πG
k23jAj2; ð5:2aÞ

EV ¼ 1

8πG
k23jAj2

cσ þ cωð1 − cσÞ
1 − cσ

; ð5:2bÞ

ES ¼
1

8πG
k23jAj2cað2 − caÞ; ð5:2cÞ

must be positive. Since c2T >0⇒ ð1−cσÞ>0, Eqs. (5.2b)
and (5.2c) immediately imply

cω ≥ −
cσ

1 − cσ
; ð5:3aÞ

0 ≤ ca ≤ 2; ð5:3bÞ

respectively. We refer to Eqs. (5.1) and (5.3) together as the
stability conditions, since they are both required to have
stable Einstein-æther GWs.
Now we turn to constraints on the Einstein-æther

parameters due to experimental results. The most stringent
of these constraints comes from the simultaneous
observation of GWs from a NS binary merger and the
corresponding short gamma ray burst, GW170817 and
GRB170817A. This event placed observational bounds on
the speed of the tensor polarizations of GWs: −3 × 10−15 <
cT − 1 < 7 × 10−16 [8]. Given the simple dependence of c2T
on cσ , these observations restrict cσ ≈Oð10−15Þ. Thus, we
will henceforth set cσ ¼ 0, dramatically simplifying many
of the expressions and reducing the total parameter space
from 16 to 15.
Another observational bound on Einstein-æther theory

derives from the observation of high-energy cosmic rays. In
Einstein-æther theory, the amount of energy atmospheric
cosmic rays have is higher than that in GR because GWs
and æther field excitations can endow cosmic rays with
more energy through a gravitational “Cherenkov type”
process [9]. By considering the amount of energy observed
in high energy cosmic rays, one can place an upper limit
on how efficient this Cherenkov process can be, further
constraining the coupling constants of Einstein-æther
theory. This was done separately for tensorlike, vectorlike,
and scalarlike excitations, assuming that all speeds cN (with
N ¼ T, V, S) are subluminal. The constraints obtained
in [9] with these assumptions are very strict and we will
refer to them hereafter as the Cherenkov constraints.
They are often summarized in the literature ([13,49] and
others) as9

c2N ≳ 1 −Oð10−15Þ; ð5:4Þ

because the constraints give very strict conditions on
fca; cθ; cω; cσg that must be satisfied if c2N < 1. It is very
challenging, though not impossible, to pick a point in
parameter space that satisfies the latter. For a more careful

8Setting the coupling constants identically to zero can lead to
NANS in the code because of the many instances of NANS in the
mathematical expressions due to 0=0 numerical problems. In
order to take the GR limit without introducing NANS, we set the
coupling constants to very small values: ca ¼ 1.0 × 10−30,
cθ ¼ 2 × 10−30, cω ¼ 2 × 10−30, cσ ¼ 0.

9Note also that cN > 1 is allowed. This does not violate
causality in Lorentz-violating theories such as Einstein-æther
theory.
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summary of what the constraints are and how we applied
them in our code, see Appendix C.
Another constraint on Einstein-æther theory derives from

big bang nucleosynthesis (BBN). The Lorentz-violating
æther field of Einstein-æther theory rescales the effective
value of Newton’s constant that appears in the Friedman
equation [6,10,50],

Gcosmo ¼
GNð1 − ca=2Þ

1þ cθ=2
: ð5:5Þ

However, observations of primordial 4He from BBN
restrict [10] 				Gcosmo

GN
− 1

				≲ 1

8
: ð5:6Þ

Inserting Eq. (5.5) into this requirement and simplifying
leads to the two inequalities

cθ þ
8ca
7

≲ 2

7
; ð5:7aÞ

cθ þ
8ca
9

≳ −
2

9
: ð5:7bÞ

This constraint becomes simpler in certain regions of
parameter space, as will be described in the next section.
There are three more experimental constraints that

should be discussed here, all of which lead to bounds on
the preferred-frame PN parameters α1 and α2, which were
defined in Eq. (2.16). With the constraint that cσ ¼ 0, these
parameters simplify to

α1 ¼ −4ca; ð5:8aÞ

α2 ¼ −2ca þ
3caðcθ þ caÞ
ð2 − caÞcθ

: ð5:8bÞ

Two of the constraints arise from Solar System observa-
tions. The first one comes from the close alignment of the
solar spin axis with the total angular momentum vector of
the Solar System, which restricts [12]

jα2j≲ 4 × 10−7: ð5:9Þ

The second one comes from lunar laser ranging observations,
which bound −1.6 × 10−4 < α1 < 2 × 10−5 to (1-σ) [11];
for simplicity, this bound can be conservatively stated as

jα1j≲ 10−4 ð5:10Þ

as done in several previous papers [3,13,49]. This choice
will not affect our results (as discussed later). The bounds in
Eqs. (5.9) and (5.10) will be referred to as Solar System

constraints. Finally, combining these constraints with obser-
vations of the damping of the orbital period of certain binary
pulsars and the triple binary pulsar places the even tighter
bound [13]

−1.6 × 10−5 ≲ α1 ≲ 4.6 × 10−6 ð5:11Þ

to 1-σ uncertainty.

B. Priors on (ca, cθ, cω) from existing constraints

Now that we have introduced all of the main constraints
on the theory in the previous subsection, let us now study
how they lead to a prior on the coupling constant parameter
space of Einstein-æther theory. One way to do so is via
rejection sampling of the constraints, i.e. to evaluate a given
constraint millions of times by sampling uniformly on
fca; cθ; cωg and rejecting those choices of these parameters
that violate the given constraint. We will start by sampling
each of these parameters in the arbitrarily chosen region
½−3; 3� and show how the parameter space shrinks with the
addition of constraints.
Let us first focus on the stability constraints.

Equation (5.3) requires that ca be restricted to the range
[0, 2] and cω be positive, as shown in the top left panel of
Fig. 5, which we generated via rejection sampling.
Similarly, Eq. (5.1) disallows cθ ∈ ð−2; 0Þ because, from
Eq. (2.11c) with cσ ¼ 0,

c2S ¼
cθð1 − ca=2Þ
3cað1þ cθ=2Þ

; ð5:12Þ

which by Eq. (5.1) must be positive. Equation (5.3)
required already that ca ∈ ½0; 2� and this implies that ð1 −
ca=2Þ=3ca ≥ 0 always. Thus, c2S ≥ 0 requires that

cθ
ð1þ cθ=2Þ

≥ 0; ð5:13Þ

which implies cθ ≥ 0 or cθ < −2, leading to the shape of
the top right panel of Fig. 5.
Let us now focus on the Cherenkov constraint, which

through rejection sampling leads to the constraints on
parameter space shown in the bottom left panel of
Fig. 5. To better understand these constraints, consider
first the Cherenkov bound cS ≥ 1, which leads to

c2S¼
cθð1−ca=2Þ
3cað1þcθ=2Þ

≥1⇒
1−ca=2
3ca

≥
1þcθ=2

cθ
: ð5:14Þ

Using the stability restriction of Eq. (5.13), the above
expression becomes

1 − 2ca
3ca

≥
1

cθ
: ð5:15Þ
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At this point we must keep careful track of negative signs
since both cθ and ð1 − 2caÞ can be either positive or
negative in the region of parameter space considered.
There are four possible combinations with their respective
version of the inequality. For example, consider cθ < 0 and
ca > 1=2. Then Eq. (5.15) becomes

1 − 2ca
3ca

cθ ≤ 1 ⇒ cθ ≥
3ca

1 − 2ca
: ð5:16Þ

Therefore, in the bottom right corner of the ðcθ; caÞ
correlation of the bottom left panel of Fig. 5, all the points
accepted in our rejection sampling must fall above the line

FIG. 5. Plots demonstrating the effect of successively adding current constraints on Einstein-æther theory to the prior in the c
parametrization. Each parameter was sampled uniformly in the region ½−3; 3� (the bottom right panel is shown in a smaller range simply
so that it is visible). Points that did not obey these constraints were rejected. The constraints were applied in the following order
(beginning in the top left corner and ending in the bottom right corner): positive energy conditions, Eq. (5.3); positive speeds of different
GW polarizations, Eq. (5.1); Cherenkov constraint, Eq. (5.4); BBN constraint, Eq. (5.18).
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3ca=ð1 − 2caÞ. The other accepted points in this panel can
be explained similarly.
Let us now focus on the BBN constraints of Eqs. (5.7a)

and (5.7b). The lower bound on cθ [Eq. (5.7b)] is mini-
mized when ca is maximized, and since ca ∈ ½0; 2�, this
implies that

cθ ≳ −2: ð5:17Þ

The stability conditions, however, already required the
condition cθ < −2 or cθ ≥ 0 from Eq. (5.1). Since cθ < −2
and cθ ≥ −2 cannot simultaneously be true, we must have
that cθ ≥ 0. Thus, the BBN constraint becomes

cθ ≥ 0; cθ þ
8ca
7

≲ 2

7
: ð5:18Þ

Adding this BBN constraint immediately restricts any
sampling to the top left corner of the cθ-ca parameter
space in the bottom left panel of Fig. 5, and adds an upper
bound along the line ð2 − 8caÞ=7, resulting in the bottom
right panel of Fig. 5.
Let us now finally discuss Solar System constraints,

dividing them into two separate cases, as described in
previous work [13,49,51]. In the first case, α1 ≲ 10−4 (but
not α1 ≪ 10−4), which saturates the Solar System con-
straint of Eq. (5.10). In this region of parameter space,
which we will denote region 1, ca ≈Oð10−5Þ and
cθ ≈ 3cað1þOð10−3ÞÞ in order to satisfy α2 ≲ 4 × 10−7

from Eq. (5.9). In this limit, the Einstein-æther coupling
constants become

fca; cθ; cω; cσg ¼ fca; 3cað1þ δcθÞ; cω; 0g;
≈ fOð10−5Þ;Oð10−5Þ; cω; 0g; ð5:19Þ

where δcθ ≈Oð10−3Þ and the only restriction on cω is that
it is positive. One might wish to assume that δcθ ≪ 1 and
thus ignore this term and set cθ ¼ 3ca exactly; however,
inserting this expression into Eq. (5.14) shows that when
ca ≠ 0, the Cherenkov constraint, c2S ≥ 1, is no longer
satisfied. In this regime, when ca ≈Oð10−5Þ, the BBN
constraint [Eq. (5.18)] is automatically satisfied (because
when cθ ¼ 3ca the BBN constraint becomes ca ≲ 2=29),
so previous papers did not mention it in association with
this region.
Let us now discuss a second way to satisfy the Solar

System constraints by setting α1 ≪ 10−4. In this region
of parameter space, which we will denote region 2,
Eq. (5.8a) tells us that ca ≪ 10−4 and cθ is essentially
unconstrained if one forces ca ≲ 10−7, other than by the
BBN constraint. In this case, the BBN constraint simplifies
to 0 ≤ cθ ≤ 2=7, which is consistent with what was
reported in [13,49]. Thus, in this limit, the Einstein-
æther coupling constants are

fca; cθ; cω; cσg ¼ fca; cθ; cω; 0g;
≈ fOð10−7Þ;Oð10−1Þ; cω; 0g; ð5:20Þ

where the only restriction on cω is that it is positive. Notice
that this equation defines a region that does not overlap
with the region defined in Eq. (5.19).
One can show analytically that in region 2 of parameter

space, Z ¼ 1þOðcaÞ, κ3 ¼ 1þOðc7=2a Þ, s ¼ OðcaÞ and
ϵx ¼ Oðc5=2a Þ, assuming a finite, nonzero cθ and cω, which
were taken to be independent from ca for the purposes of
this expansion. Furthermore, for ca ≈ 10−7, c5=2a ≈ 10−18,
and c7=2a ≈ 10−25. Therefore, these quantities barely differ
from their values in the GR limit10: Z ¼ 1, κ3 ¼ 1, s ¼ 0,
and ϵx ¼ 0. On the other hand, in region 1 where we take
cθ ≈ 3ca, Z ¼ 4=3þOðcaÞ, κ3 ¼ 1þOðcaÞ, s ¼ OðcaÞ,
and ϵx ¼ OðcaÞ. Recall that in region 1, ca ≈Oð10−5Þ.
Hence, the Einstein-æther modifications to GWs in region
2 of parameter space are negligible compared to those in
region 1. Therefore, for the remainder of this work, we will
consider only region 1.
Restricting our attention to region 1,11 we examine the

combined constraints. With the addition of the Solar
System constraints, we arrive at the left panel of Fig. 6.
We can see that ca ≈Oð10−5Þ and is uniformly distributed,
as expected, and the correlation between ca and cθ gives a
clear diagonal line on the parameter space. Furthermore,
adding the bound on α1 from binary pulsar and triple
systems results in a Gaussian distribution of ca (and
hence cθ) as in the right panel of Fig. 6.

C. Priors on (α1, α2, c̄ω) from existing constraints

In this subsection, we discuss the priors on a simpler
reparametrization of the theory in terms of fα1;α2g instead
of fca; cθg and in terms of a new parameter c̄ω instead of
cω. We will work a lot with this parametrization in the
next section because, as you will see here, the priors are
simpler and the GW observables depend more cleanly
on them.
Let us first discuss this new parameter c̄ω. In the previous

sections, we saw that cω is unconstrained from ð0;∞Þ and
that both cases cω → 0 and cω → ∞ limit to GR. Since we
cannot realistically sample across an infinite range, we will
define a new variable,

c̄ω ¼ 1

1þ cω
; ð5:21Þ

10Note that if ca is exactly zero, the quantities fZ; κ3; s; ϵxg are
identical to their GR limit, even for a nonzero cθ, cω. This implies
that if ca were restricted to exactly zero, GW data would not be
able to constrain Einstein-æther theory.

11Recall that in region 1, α1 ≲ 10−4 but it is not true that
α1 ≪ 10−4.
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such that as cω → 0 then c̄ω → 1, and as cω → ∞ then
c̄ω → 0. With this new parameter, the range of the prior
becomes c̄ω ∈ ½0; 1� and one is able to cover the entire
cω range.
Let us now discuss the shape of the priors when we

impose all existing constraints. To do so, we sample
uniformly on fα1;α2; c̄ωg, and reject those points that
violate the constraints on Einstein-æther theory described
in Sec. VA. We start by sampling each of these parameters
in the regions

α1 ∈ ½−0.25; 0.25�; ð5:22aÞ

α2 ∈ ½−0.025; 0.025�; ð5:22bÞ

c̄ω ∈ ½−1; 1�; ð5:22cÞ

and show how this parameter space shrinks with the
addition of constraints.
Let us begin by discussing the stability conditions of

Eq. (5.3). Using the definition of α1 when cσ ¼ 0, one then
finds that −8 ≤ α1 ≤ 0, while c̄ω > 0 as expected and
shown in the top panel of Fig. 7 through rejection sampling.
As we will see later, this is the only constraint that will have
any impact on c̄ω. Further, requiring that the propagation
speeds of the GW polarizations be real [Eq. (5.1)] we can
derive a constraint on α2. Let us then rewrite cS in terms of
the α1 and α2 to find

c2S ¼
α1

α1 − 8α2
: ð5:23Þ

Since we know that −8 < α1 < 0, the numerator of the
above equation is negative. Thus, to obtain c2S ≥ 0, we need
the denominator of the above equation to also be negative,
which implies that

α2 ≥
α1
8
: ð5:24aÞ

This explains the relationship between α1 and α2 in the top
right panel of Fig. 7.
Let us now consider the Cherenkov constraints of

Eq. (5.4). Requiring that the scalar speed be larger than
unity now translates to

c2S ¼
α1

α1 − 8α2
≥ 1 ⇒ α1 ≤ α1 − 8α2; ð5:25aÞ

since the denominator of the first expression is negative.
This immediately leads to α2 ≤ 0. This restriction to
negative α2 is the only difference between the top right
panel of Fig. 7 and the bottom left panel of Fig. 7.
Let us now study the BBN constraint. Rewriting

Eq. (5.18) in terms of α1 and α2, gives two inequalities

×10 ×10

×10 ×10 ×10 ×10

FIG. 6. Plots showing how the addition of the Solar System and binary pulsar constraints affect the prior in region 1 of parameter
space. In this region, we sample uniformly on ca, δcθ, and cω as described in Eq. (5.19). Both plots include all the constraints of Fig. 5 as
well as the Solar System constraints, Eqs. (5.9) and (5.10). The plot on the right further adds the constraint from binary pulsar and triple
systems, Eq. (5.11).
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α2 ≥
α1
2

�
α1 þ 2

α1 þ 8

�
; ð5:26aÞ

α2 ≳ α1
8

�
4α1 þ 1

α1 þ 1

�
: ð5:26bÞ

The second constraint is much tighter and results in the
curved line visible in the bottom right panel of Fig. 7.

Let us then close by discussing Solar System constraints.
Since these are bounds on α1 and α2 directly, it is easy to
see how they shrink the allowed range for those parameters
in the left panel of Fig. 8. Note that because we are
sampling linearly in α1, this is automatically the region 1 of
parameter space discussed in the previous section [where
α1 ≈Oð10−4Þ]. We do not have to enforce any extra
conditions on cθ to be in region 1 when we sample in

FIG. 7. Similar to Fig. 5 but for ðα1; α2; c̄ωÞ parametrization uniformly sampled in the region described by Eq. (5.22). Again, the
constraints were applied in the following order (beginning in the top left corner and ending in the bottom right corner): positive energy
conditions, Eq. (5.3); positive speeds of different GW polarizations, Eq. (5.1); Cherenkov constraint, Eq. (5.4); BBN constraint,
Eq. (5.18).
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this parametrization. Finally, we add the binary pulsar and
triple system constraint on α1. This takes α1 from a uniform
distribution in the allowed region to a Gaussian distribution
as seen in the right panel of Fig. 8. It has no impact on
α2 or c̄ω.
Due to the simpler priors in this reparametrization,

and the fact that sampling linearly in α1 is equivalent to
sampling in region 1 of parameter space, we will use this
parametrization of the theory for the remainder of the
paper.

VI. VALIDATION OF EINSTEIN-ÆTHER MODEL
THROUGH PARAMETER ESTIMATION STUDIES

WITH INJECTIONS

As confirmation that our Einstein-æther waveform tem-
plate can successfully recover source parameters from GW
data, we performed parameter estimation studies on
injected data. This section describes those studies, first
for data constructed in GR, and then for data constructed in
Einstein-æther theory.

A. GR injection

We begin by constructing a set of injections in GR. We
use the IMRPhenomD_NRTwaveform template and source
parameters similar to the GW170817 event. We “observe”
this data in a three detector network comprised of Hanford,
Livingston, and Virgo O2–O3 type senstivity for Hanford
and Livingston and an optimistic O4 model for Virgo [52]

sensitivities, respectively. The distance to the source was
rescaled such that the signal-to-noise ratio (SNR) of the
synthetic data as measured by this detector network
is 32.4, matching the GW170817 event [8]. Explicitly,
the parameters used are listed in Table I. The Einstein-æther
parameters, fα1; α2; c̄ωg, were not specified, because they
are not part of the IMRPhenomD_NRT injection. However,
it is useful to note that in the GR limit, α1 → 0, α2 → 0 and
c̄ω → 0 or12 c̄ω → 1.
We then ran an MCMC exploration of the likelihood

to perform parameter estimation on this dataset, using
the EA_IMRPhenomD_NRT waveform template as our
recovery model. The code randomly draws points in the 15-
dimensional13 parameter space of

θ⃗ ¼ fα0; sin δ;ψ ; cos ι;ϕref ; tc; DL;M; η; χ1; χ2;Λs;

ca; cθ; cωg;

using the priors described in Secs. IVA, IV B, and V C.
Unfortunately, for the Einstein-æther coupling constants,
the posteriors were identical to the priors. This means that
the prior was more restrictive than the likelihood and we
did not learn any new information from the analysis.

×10

10 ×× 10

×10

×10 ×10

FIG. 8. Similar to Fig. 6 but for ðα1; α2; c̄ωÞ parametrization uniformly sampled in the region described by Eq. (5.22). Both plots
include all the constraints of Fig. 7 as well as the Solar System constraints, Eqs. (5.9) and (5.10). The plot on the right further adds the
constraint from binary pulsar and triple systems, Eq. (5.11).

12c̄ω → 0 or equivalently cω → ∞ leads to khronometric
gravity [26], which reduces to GR if the remaining three coupling
constants are set to 0 simultaneously.

13Recall that cσ is set to zero.

SCHUMACHER, PERKINS, SHAW, YAGI, and YUNES PHYS. REV. D 108, 104053 (2023)

104053-20



However, if the most restrictive of the constraints
were removed, the posterior was distinct from the prior.
In this way, one can attempt to place constraints on the
Einstein-æther parameters from GW data that, even
if not competitive with the most restrictive constraints
to date, is at least independent of other experimental
measurements. Hence, throughout the remainder of this
paper, the prior used for the Einstein-æther parameters
include the stability conditions, the Cherenkov constraint,
and the BBN constraint [Eqs. (5.1), (5.3), (5.4), and (5.18)],
but it excludes the Solar System constraints and the
constraint on α1 from the triple system [Eqs. (5.9), (5.10),
and (5.11)].
As a test of the code, we performed parameter estimation

on the same injected data three different times. In each test,
the MCMC began sampling from a different seed point, but
all three converged to the same posteriors. The Gelman-
Rubin statistic was also used to test convergence [53]. This
method takes the square root of the ratio of two estimates of
the variance in the MCMC chains to compute a quantity
commonly denoted by R̂. The numerator of this ratio
overestimates the variance and the denominator under-
estimates it, but both converge to the true value as the
number of samples increases. Therefore, R̂ → 1 from above
as the number of samples goes to infinity. Reference [54]
recommends that R̂ ≤ 1.1 be the condition for convergence.
Comparing chains from our three injections, the maximum
R̂ ¼ 1.001 < 1.1. Therefore, we are reasonably confident
that the MCMC is exploring the parameter space appro-
priately and converging properly.
Next we compare the posteriors recovered to the injected

parameters. For everything but the Einstein-æther specific
parameters, plots of the posterior distributions recovered
from these injections are compared to the injected values in
Appendix D (labeled as “GR Injec 1–3”). All were
consistent with the injected value, with the chirp mass
exhibiting a bias due to correlations with the α1 Einstein-
æther parameter. This correlation is better exhibited in
Fig. 9, which shows a corner plot in the α1-M̄ plane.
Clearly, the injected value is a point in the top-right
corner of the covariance panel, which is poorly recovered
by the analysis. The reason for this is that the α1 ¼ 0

line in the α1–M̄ plane is strongly disfavored by the prior
(as discussed already in Sec. V C). This pushes the
posterior away from the injected value of α1, which can

be compensated for through a different choice of chirp
mass.
Posteriors on the Einstein-æther parameters are pre-

sented in Figs. 10 and 11. The posterior distribution for
α1 is distinct from the prior and shifted towards the injected
value. However, given the shape of the prior, note again that
α1 ¼ 0 is possible, but there are fewer combinations of α2
that allow α1 to have this value. This is what pushes the
peak of α1 slightly away from the injected value of zero.
The posterior distribution for c̄ω includes both possible GR
limits, but seems to favor the limit c̄ω → 0. It is easier to
understand why if we translate these points into the
fca; cθ; cωg parameter space.14 Looking at a corner plot
of the ca − cω plane for all three injections as compared to
the prior (Fig. 12), we can see that small values of cω are
only allowed when ca is also small. Examining the
Einstein-æther quantities that are important to the like-
lihood, we find analytically that ϵxðcωÞ has an interesting
shape (Fig. 13). This function is very large for small cω, and
then quickly drops to very small values as cω increases.
Plotting this curve for three different values of ca, we see
that the larger the ca, the larger the region of cω space in
which ϵx is very large. Given that the size of ϵx will
determine the dipole contribution to the phase and ampli-
tude of the waveform [Eqs. (3.23) and (3.22)], it makes
sense that large ϵx would be disfavored for a GR injection.
This seems to explain the disallowed region in the ca − cω

FIG. 9. A covariance plot of the posterior of M̄ and α1
recovered with EA_IMRPhenomD_NRT from three injections
of GWs in GR. Note that the α1 prior biases the M̄ posterior to
smaller values because it is peaked away from zero.

TABLE I. Source parameters used for injections. The Einstein-
æther parameters were not explicitly set for the GR injection, and
were set to nonzero values listed in Eq. (6.1) for the Einstein-
æther injection. Note that in the GR case, M and M̄ are
equivalent.

α0 sinðδÞ cosðιÞ tc DL M̄ η χ1 χ2 Λs

3.42 −.37 −.82 3.0 63 1.188 0.25 .003 −.002 242

14Recall that by Eq. (5.21) c̄ω ¼ 1 is equivalent to cω ¼ 0.
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covariance plot. Translating back to c̄ω, very small cω ≈ 0
corresponds to c̄ω ≈ 1. Hence, the lack of support for
c̄ω ¼ 1 in Fig. 11 is explained. Note that this dip at c̄ω ¼ 1
did not happen in the case when all constraints were
applied, probably because it was already ruled out by
the binary pulsar and the triple system constraints.
Finally, note that we ran this parameter estimation on

injected data with the entire waveform, and separately with
just the l ¼ 2 contribution to the waveform. The posteriors

in both cases were identical. This is not surprising, as
the l ¼ 1 contribution should be suppressed compared
to the l ¼ 2 contribution given how small Δs is when
s ≈Oð10−3Þ [see Eq. (3.24) for how this impacts the
waveform and Appendix B for a description of why we
expect s to be of this order]. However, if we include the
l ¼ 1 contribution, the code takes at least twice as long to
run, because of all the extra terms in the model that are
required to evaluate the likelihood. In the interest of
efficiency, and since it makes no difference, for the

FIG. 10. The posterior of α1 and α2 recovered with EA_
IMRPhenomD_NRT from an injection of a GW in GR compared
to the prior. Note that both are peaked towards the expected zero
value, though α1 is peaked slightly away from 0 because there are
fewer combinations of α2 that lead to α1 ¼ 0.

FIG. 11. The posterior of c̄ω recoveredwithEA_IMRPhenomD_
NRT from an injection of a GW in GR compared to the prior. Note
that both c̄ω ¼ 0 and c̄ω ¼ 1 are possible GR values, but c̄ω ¼ 1 is
slightly disfavored by the posterior.

FIG. 12. A covariance plot of the posterior of ca and cω
recovered with EA_IMRPhenomD_NRT from three injections of
GWs in GR (in color) as compared to the prior (in black).

FIG. 13. A plot of ϵx [Eq. (3.26e)] as a function of cω for three
different values of ca. From the shape of this curve, we can see
that for small values of cω, ϵx is very large. This will make the
dipole contribution to the GW very large. If ϵx above some cutoff
is disfavored by GW data, then these small values of cω will also
be disfavored.
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remainder of the paper, we do not include the l ¼ 1
contribution to the waveform.

B. Non-GR injection

The next test of the waveform template involved
recovering injected data when the values of the
Einstein-æther parameters are distinct from those in GR.
To test this we constructed a set of injection data with the
EA_IMRPhenomD_NRTwaveform template and Einstein-
æther parameter injected values set to

α1 ¼ −0.245; ð6:1aÞ

α2 ¼ −6.586 × 10−8; ð6:1bÞ

c̄ω ¼ 0.163453: ð6:1cÞ

These values were chosen because they satisfy the com-
plicated Einstein-æther prior and are as distinct as possible
from the GR injection (for α1). All the other source
parameters were the same as in the GR injection and are
listed in Table I.
Again, we ran an MCMC to perform parameter estima-

tion on this data set, using the EA_IMRPhenomD_NRT
waveform template as our recovery model. Plots of the
posterior distribution recovered from this injection com-
pared to the injected value are in Appendix D (this is the
“EA Injec” dataset). All of the posteriors are consistent

with the injected parameters. The only posterior that
dramatically changes from the recovery of a GR injection,
is that of the chirp mass. We can see from Fig. 14 that when
the value of α1 is at the other edge of the prior, the posterior
on the chirp mass is biased in the other direction.
As for the Einstein-æther parameters, shown in Figs. 15

and 16, the posterior for α1 is only slightly different when
the injection is an EA signal from when it is a GR
one, while the posteriors for α2 and cω remain approx-
imately the same. This implies that observations similar to
the GW170817 event are not sufficiently informative to

FIG. 14. A covariance plot of the posterior of M̄ and α1
recovered from an injection of a GW in Einstein-æther theory.
Note that when the injected value of α1 is close to the maximum
possible magnitude, the M̄ parameter is biased in the other
direction compared to Fig. 9.

FIG. 15. The posterior of α1 and α2 recovered from an injection
of a GW in Einstein-æther theory compared to the posterior
recovered from an injection in GR. Note that all posteriors are
consistent with the injected value, though as in Fig. 10, α1 is
peaked slightly away from the injected value because there are
fewer combinations of α2 that lead to α1 ¼ −0.245.

FIG. 16. The posterior of c̄ω recovered from an injection of a
GW in Einstein-æther theory compared to an injection in GR.
These look identical.
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distinguish between a GR and an EAmodel. The small shift
in the posterior of α1, however, also implies that future
signals at a higher SNR might be able to begin to
distinguish EA and GR effects. From this, we conclude
that the EA_IMRPhenomD_NRT model is functioning as
expected for both GR and non-GR cases.

VII. CONSTRAINTS ON EINSTEIN-ÆTHER
THEORY WITH GRAVITATIONAL WAVE

EVENTS FROM O1–O3

Once the waveform template has undergone testing, we
are able to use it to recover the source parameters from
GW events. To date, there have been two BNS mergers

FIG. 17. Comparison of our posteriors with those published by the LIGO/Virgo (LVC) collaboration for six of the source parameters
of GW170817. All are consistent except for the chirp mass, which, as discussed in the text, is shifted due to Einstein-æther correlations.
Our spin posteriors are also different from LVC’s because of our use of a small spin prior.
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well above the detection threshold: GW170817 and
GW190425 [8,32]. In this section, we describe the param-
eter estimation studies we have conducted with these two
events. We remind the reader again that we have not
considered GW events produced by binaries with one or
more BHs, because the Einstein-æther sensitivities have not
yet been calculated for these objects, and these sensitivities
enter the dominant Einstein-æther modifications to the GR
waveform.
We performed parameter estimation on both events,

using data from the Gravitational Wave Open Science
Center [55]. The priors used for the IMRPhenomD
parameters15 were those described in Sec. IVA. Note that
because of the good sky localization for GW170817, we
were further able to narrow the priors on the right ascension
and declination for this event to α0 ∈ ½3.4; 3.5� and
sin δ∈ ½−.4;−.3�. For both events, the prior on the sym-
metric tidal deformability, Λs, was the same as that given in
Sec. IV B. Finally, the prior on the Einstein-æther param-
eters was the less restrictive prior described in Sec. VI,
which included the stability conditions [Eqs. (5.3) and
(5.1)], Cherenkov constraints [Eq. (5.4)], and the BBN
constraint [Eq. (5.18)]. The complicated shape of this prior
is shown in the bottom right panel of Fig. 7.
We will start by examining the results we obtain

when we analyze the GW170817 event. We perform
three different parameter estimation studies on this data,
starting the MCMC from three different seed points. The
posteriors from each run are identical, giving us good
reason to believe that the MCMC explored the space
adequately and converged. Visual inspection of the MCMC
chains suggests the analysis has converged to a stable
distribution. Furthermore, the Gelman-Rubin statistic for
these runs gave an R̂ ¼ 1.0009 < 1.1, which also indicates
convergence.
We plot the posteriors we obtain when we analyze the

GW170817 event directly on top of LIGO’s for convenient
comparison (Fig. 17) [31]. Note that the prior we use for the
χ1 and χ2 parameters is narrower than that used by LIGO. If
we use the same prior as LIGO’s for χ1 and χ2, our
posteriors for these parameters match LIGO’s and the
results for all the other parameters are statistically con-
sistent with our previous posteriors. Comparing the plots in
Fig. 17, we find that all the posteriors for the GR
parameters are consistent with LIGO’s except for the chirp
mass. Given what we saw with this parameter in the
injection studies (Figs. 9 and 14), this is not surprising.
Correlations between the Einstein-æther parameter α1 and
the chirp mass tend to dramatically increase the width of the
posterior on the latter parameter and expand it asymmet-
rically. Furthermore, if the injected value of α1 is on the
edge of the prior, the recovery of chirp mass will be skewed

by the correlation. This widened posterior on chirp mass is
explicitly demonstrated for the GW170817 event in Fig. 18.
The posteriors for the Einstein-æther parameters are

shown in Figs. 19 and 20. There is no improvement over
the prior aside from a slight disfavoring of c̄ω ¼ 1

FIG. 18. Correlation between the M̄ and α1 parameters for
GW170817. Just as in the injections, this correlation tends to
widen the chirp mass posterior.

FIG. 19. The posteriors for α1 and α2 from GW170817 plotted
over the prior. Three separate runs are shown here and they all
converge to the same answer, which is indistinguishable from the
prior.15θ⃗ ¼ fα0; sin δ;ψ ; cos ι;ϕref ; tc; DL;M; η; χ1; χ2g
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(equivalent to cω ¼ 0). The reason for this was explained in
Sec. VI. We did not expand the prior on the Einstein-æther
parameters further to explore wider regions of parameter
space because numerical instabilities and floating-point
errors in the waveform calculation prevented us from
performing the inference analysis. Furthermore, the sensi-
tivity model breaks down for certain combinations of the
Einstein-æther coupling constants outside the priors we
have chosen (see Appendix B for more detail).
For the GW190425 event, the Einstein-æther posteriors

were no more informative (they were identical to those
obtained from the analysis of the GW170817 event). This is
not surprising given the lower SNR of this signal. The
combined SNR of GW170817 was estimated to be 32.4
(accounting for the SNR in each of the three detectors,
LIGO Hanford, LIGO Livingston and Virgo), while the
SNR of GW190425 was just 12.9 (in the LIGO Livingston
detector) [8,32]. The SNR of the GW170817 detection was
about 2.5 times larger than that of GW190425. We expect
statistical error to be inversely proportional to SNR.
Therefore, as the SNR increases, the statistical error
decreases. Thus, it makes sense that posteriors from
GW190425 do not contain more information than those
from GW170817.

VIII. CONCLUSIONS

The posteriors shown in the previous section represent
the first direct search for Einstein-æther modifications in
GW data. Our study is also one of the first tests to compare
LVC data to a waveform with the GR transverse-traceless
polarization and with additional non-GR polarizations
simultaneously, as predicted from a specific modified
theory. While this study was unable to place tight con-
straints on the Einstein-æther parameters, there is still a lot

to learn from it. Our analysis reveals the complications that
may arise in modified theories with multiple coupling
constants to constrain, especially if any of those constants is
degenerate with astrophysical parameters. Our analysis
further demonstrates that constraints from the absence of
a dipole term in GW radiation may continue to dominate
other constraints from GWobservations. Finally, this work
summarizes all of the current constraints on Einstein-æther
theory, giving a careful description of each region of
parameter space and how sensitivities in this theory are
affected in those regions. From this study, it is clear that
region 1 of parameter space (as described in Sec. V B) will
be accessible to GW studies before region 2 is.
The results of this study prompt the question: what might

improve the constraints that GW data can place on Einstein-
æther theory? There are several possible avenues to
approach this question. First we can consider the types
of events that are being studied. It is possible that there are
certain combinations of astrophysical source parameters
that are better for constraining this theory than others. We
only considered source parameters similar to those detected
with BNS mergers to date. Perhaps there is some type of
“golden event,” that if we were fortunate enough to observe
it, would greatly constrain the theory further. A good
candidate for such a golden event is a mixed compact
binary consisting of a low-mass BH and a neutron star. The
analysis of such a system would require first the calculation
of Einstein-æther sensitivities for BHs. We can also
consider what might be achieved with future events and
future GW detectors. As detectors continue to improve and
higher SNR events are detected, how will constraints on
Einstein-æther theory change? It seems reasonable to
expect some improvement that scales as 1=SNR, but it
is unclear exactly how much the posteriors will change,
because of the strong correlations between the Einstein-
æther parameters and other system parameters (like the
chirp mass). Furthermore, as more BNS events are
detected, constraints from each event can be combined,
since the value of the Einstein-æther coupling constants
must be consistent across all events. On the order of
10 BNS events are predicted for the LVC fourth observing
run, O4, starting later this year [56].
Another possible consideration is improvement of the

waveform template itself. This waveform template was
built off of IMRPhenomD_NRT, which was fit to numeri-
cal relativity simulations in GR. There have so far been no
numerical relativity simulations of binary NS mergers in
Einstein-æther theory. It is possible that fitting a waveform
template to NR simulations in this theory would make it
more accurate and better able to constrain the theory.
However, developing such a simulation comes with its
own set of challenges, and we doubt that the modifications
would be so large to improve constraints beyond what has
already been achieved with binary pulsar and Solar System
observations.

FIG. 20. The posteriors for c̄ω from GW170817 plotted over
the prior. Again three separate runs are shown that are all
consistent with each other and indistinguishable from the prior
aside from a slight disfavoring of c̄ω ¼ 1 (reason explained in
Sec. VI).

SCHUMACHER, PERKINS, SHAW, YAGI, and YUNES PHYS. REV. D 108, 104053 (2023)

104053-26



Another large avenue of possible future work would be
to extend this analysis to BHNS mergers or BBH mergers,
if Einstein-æther theory sensitivities were known for BHs,
as mentioned before. If that were accomplished, the number
of events that could be used for this study would increase
dramatically, even before the next observing runs begin. At
the very least, one could make assumptions about what the
sensitivity for BHs in this theory is likely to be, and then
examine the BHNS merger events. This would not place
true constraints on Einstein-æther theory parameters,
because simplifying assumptions would have been made,
but it may give some idea of what we might hope to learn
from these events in the future. Ultimately, there is still
much that could be investigated about GWs in Einstein-
æther theory. It would be especially useful to determine if
there is any point at which GW constraints on Einstein-
æther theory will surpass those from current experiments.
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APPENDIX A: IMRPhenomD_NRTidal
MODIFICATIONS

Tominimize confusion for anyone attempting to reproduce
our code, we will describe here in detail the modifications
that were made to the IMRPhenomD waveform template to
make it consistent with IMRPhenomD_NRTidalv2.
Equation (17) of Dietrich et al. gives the tidal phase

correction in the frequency domain [41]:

ψTðxÞ ¼ −κTeff
39

16η
x5=2P̃NRTidalv2ðxÞ; ðA1Þ

with

κTeff ¼
3

16
Λ̃; ðA2Þ

where Λ̃ is the commonly used mass-weighted tidal
deformability [Eq. (4.1)], η is the symmetric mass ratio
[Eq. (3.27c)], and

x ¼
�
ω̂

2

�
2=3

¼ ðπmfGWÞ2=3; ðA3Þ

since ω̂ ¼ 2πmfGW, with m ¼ m1 þm2, is the dimension-
less GW frequency. The last expression in Eq. (A1) is the
Padé approximant [Eq. (18) of Dietrich et al.] which is a
function of x with eight numerical coefficients, four of
which were determined by fitting to data [43]:

P̃NRTidalv2ðxÞ ¼
1þP

4
i¼0 ñ1þi=2x1þi=2

1þP
2
j¼0 d̃1þj=2x1þj=2

: ðA4Þ

The coefficients are given in Eqs. (19)–(21) of the NRTidal
paper [41]. However, in order for our waveform to match
LALSuite as well as it does, we needed to use the same
number of significant digits. Hence, we took the values of
these coefficients directly from LALSuite’s code. We copy
them here in Table II for convenience.
The tidal amplitude correction in the frequency domain

is given by Eq. (24) of Dietrich et al. [41]:
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ÃNRTidalv2
T ¼ −

ffiffiffiffiffiffiffiffi
5πν

24

r
9m2

R
κTeffx

13=4
1þ 449

108
xþ 22672

9
x2.89

1þ 13477.8x4
:

ðA5Þ

A Planck taper is used to end the inspiral waveform,
beginning at the merger frequency [43],

fmerger ¼
0.3586
2mπ

ffiffiffiffiffiffi
m2

m1

r
1þ n1κTeff þ n2ðκTeffÞ2
1þ d1κTeff þ d2ðκTeffÞ2

; ðA6Þ

with n1 ¼ 3.354 × 10−2, n2 ¼ 4.315 × 10−5, d1 ¼
7.542 × 10−2, d2 ¼ 2.236 × 10−4, and reducing the ampli-
tude to zero by the time f ¼ 1.2fmerger [43,58]. The exact
form of this taper, ÃPlanck, can be found in Eq. (7) of [58].
We repeat it here for convenience,

ÃPlanck ¼

8>><
>>:

1; f ≤ fmerger

1
exp ðzðfÞÞþ1

; fmerger ≤ f ≤ 1.2fmerger

0; f ≥ 1.2fmerger

; ðA7Þ

where

zðfÞ ¼ fmerger − 1.2fmerger

f − fmerger
þ fmerger − 1.2fmerger

f − 1.2fmerger
: ðA8Þ

Putting it all together, the final amplitude in the frequency
domain is [41]

Ã ¼ ðÃBBH þ ÃNRTidalv2
T Þ × ÃPlanck: ðA9Þ

The IMRPhenomD_NRTidalv2 waveform template
also accounts for spin-spin effects in the phase. The terms
added to the BBH baseline phase are [41]

ΨSS ¼
3x−5=2

128η

�
ψ ð1Þ
SS;2PNx

2 þ ψ ð1Þ
SS;3PNx

3

þψ ð1Þ
SS;3.5PNx

7=2


þ ½ð1Þ ↔ ð2Þ� ðA10Þ

where (1) and (2) represent the two bodies in the binary
system (with m1 ≥ m2 as before). The 2PN and 3PN terms
were already implemented in LALSuite [59–61]:

ψ ð1Þ
SS;2PN ¼ −50ðCð1Þ

Q − 1Þμ21χ21; ðA11Þ

ψ ð1Þ
SS;3PN ¼ 5

84
ð9407þ 8218μ1 − 2016μ21ÞðCð1Þ

Q − 1Þμ21χ21;
ðA12Þ

and the 3.5PN term was added by [41]

ψ ð1Þ
SS;3.5PN¼ 10

��
μ21þ

308

3
μ1

�
χ1þ

�
μ22−

89

3
μ2

�
χ2−40π

�

× ðCð1Þ
Q −1Þμ21χ21−440ðCð1Þ

Oc−1Þμ31χ31; ðA13Þ

where μ1;2 ¼ m1;2=m as before, χ1;2 are the spins of each

body, and Cð1;2Þ
Q and Cð1;2Þ

Oc are the spin-induced deform-
abilities for the individual stars which can be related to the
tidal deformability with the universal relations [62],

Cð1;2Þ
Q ¼ exp

�X4
i¼0

qi lnðΛ1;2Þi
�
; ðA14Þ

Cð1;2Þ
Oc ¼ exp

�X4
i¼0

oi lnðCð1;2Þ
Q Þi

�
; ðA15Þ

with coefficients in Table III. We computed CQ and COc for
the specific case Λ1 ¼ Λ2 ¼ 350 to compare against the
values used for Fig. 7 of [41], and caught a small typo in the
caption of that image. The correct values, which were used
to create the plot, are CQ ¼ 5.29 and COc ¼ 10.5.
Note that because the 2PN and 3PN spin-spin terms

were added to the code earlier, they are implemented in a
different way from the 3.5PN spin-spin term and the tidal
effects. To make our code consistent with LALSuite, we had
to follow their convention. Thus, the 2PN and 3PN spin-
spin terms were added to the PN terms in the inspiral only.
This carries through to higher frequencies via boundary
conditions when the different parts of the waveform are
stitched together. Meanwhile, the 3.5PN spin-spin term and
the tidal modifications to the phase and amplitude are
added to the entire waveform so that the underlying BBH
model did not need to be recalibrated.

TABLE III. The coefficients for the quadrupolar and octupolar
spin-induced deformabilities as a function of tidal deformability.

i 0 1 2 3 4

qi 0.1940 0.09163 0.04812 −0.004283 0.00012450
oi 0.003131 2.071 −0.7152 0.2458 −0.03309

TABLE II. The coefficients of the Padé approximant used in the
tidal correction to the phase. To make our code consistent with
LALSuite it was necessary to use these exact numbers.

i ñ1þi=2 d̃1þi=2

0 −12.615214237993088 −15.111207827736678
1 19.0537346970349 22.195327350624694
2 −21.166863146081035 8.064109635305156
3 90.55082156324926 0
4 −60.25357801943598 0
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APPENDIX B: ORDER OF MAGNITUDE OF THE
SENSITIVITY PARAMETER

The implementation of the sensitivity model in GWAT

was tested in Sec. IV C and compared against previous
work [13]. However, this was done for the most restrictive
prior on the Einstein-æther parameters (described in detail
in Sec. V C) and as discussed in Sec. VI, in this region of
parameter space the prior is more informative than the
likelihood. Thus, we also considered a slightly less restric-
tive prior as outlined in Sec. VI. In this appendix we
demonstrate how this new prior affects the calculation of
sensitivities in Einstein-æther theory.
We begin by plotting sensitivity as a function of

compactness for 50,000 random values of compactness
when the Einstein-æther parameters are varied in the region
of parameter space relevant to this work (Fig. 21). Recall
from Sec. VI, the prior includes the stability conditions, the
Cherenkov constraint, and the BBN constraint, while it
excludes the Solar System constraints and the constraint on
α1 from binary pulsars and the triple system. In this region,
the sensitivities calculated are approximately three orders
of magnitude larger than in the region considered in
previous work. This increase is consistent with the increase
in magnitude of α1 from one region to the other since the
dominant contribution to sensitivity from the Einstein-
æther coupling constants is linear in α1 [recall Eq. (2.15)
and the fact that α2 is much smaller than α1].
One important consequence of working in a less restric-

tive region of parameter space is that it is possible to select a
combination of coupling constants with s ≥ 1. Given the
definition of s in terms of σ [Eq. (2.14)], s ≥ 1 is
unphysical. Furthermore, when s > 1, there are quantities
in the waveform [namely Að2ÞðfÞ, Eq. (3.22)] that depend

on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − sÞp

that the code will fail to calculate. Therefore,
points with s ≥ 1 should also be rejected.
Note that in the region of parameter space we use in this

study, only 10 out of 50,000 points had s ≥ 1. So the
problematic points are occurring with a frequency of 0.02%
and can be safely removed from our data without affecting
our result. However, this issue only gets worse as one
moves to larger regions of parameter space and the
magnitude of α1 increases. We recommend that anyone
wishing to examine a less restrictive region of the parameter
space thoroughly test the sensitivity model in that region to
ensure it does not break down.
To explicitly illustrate how much our result depends on

the sensitivity model, we performed parameter estimation
on the same injected data16 while computing the sensitivity
to different orders in the binding energy to mass ratio. In
Fig. 22, we compare three different runs with s computed to
fOðΩ=mÞ;OðΩ2=m2Þ;OðΩ3=m3Þg, respectively. The dif-
ference in shape for the correlation between M̄ and α1 can
be explained with Eqs. (2.15) and (3.29). To explain this
shape analytically, we will treat α2 as negligible compared
to α1 (a good approximation in the region we sample in)
and keepΩ=m constant. Then as α1 is varied from ½−.25; 0�
the first term in Eq. (2.15) is the largest and is positive, the
second term is smaller and negative, and the third termFIG. 21. Sensitivity as a function of compactness varying the

Einstein-æther parameters in the region of parameter space used
for this study. A comparison with Fig. 4 reveals that in this region,
the sensitivities are approximately three orders of magnitude
larger than in the most restrictive region of parameter space.

FIG. 22. The posteriors for M̄, α1, and α2 for injected data
when sensitivity is computed to different orders. This demon-
strates how much our results might depend on the sensitivity
model.

16The injected data was generated with the IMRPhenomD_NRT
waveform template and used the source parameters listed
in Table I.
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provides a very small positive contribution. All three terms
tend to zero as α1 → 0. Adding these terms together order
by order, we get three different expressions for s and we can
see how they depend on α1. This same dependence appears
in the correlation plot between M̄ and α1 because of the
dependence of M̄ on s [Eq. (3.29)]. Given how much our
posteriors depend on how many terms are included in the
sensitivity calculation, we recommend that the sensitivity
model be further investigated (for instance, computed to
higher orders) before constraints are placed with GW data.

APPENDIX C: CHERENKOV CONSTRAINTS

To summarize the constraints of [9], when cT < 1,

−cσ
2

< 5 × 10−16; ðC1Þ

when cV < 1,				 2c2σ½c2σ − 2ca − ðcσ þ cωÞ�
ðcω þ cσÞ2

				 < 7 × 10−32; ðC2Þ

and when cS < 1,				 ðcσ − caÞ2
ca

				 < 1 × 10−30: ðC3Þ

This last constraint only holds when				 2½ðcθ þ 2cσÞ=3 − ca�
cω þ cσ

				 > 10−22 ðC4Þ

is also satisfied.
Note that all of the emission processes which would

place the constraints of Eqs. (C1)–(C3) vanish as the cis
tend to zero. However, the emission of two scalar æther

field excitations via an off-shell graviton propagator does
not vanish in this limit and provides a bound on the ratios of
the ci for cS < 1, namely

				 2½ca − ð2cσ þ cθÞ=3�
cω þ cσ

				 < 3 × 10−19: ðC5Þ

Together, Eqs. (C1)–(C5) are the conditions explicitly
checked by GWAT as part of the prior. Any points that meet
the conditions for the constraint to be imposed (e.g.
cV < 1), but do not satisfy these equations [in this example,
Eq. (C2)] are rejected. It is important to note that because
we are setting cσ ¼ 0 identically, the constraint of Eq. (C2)
will be satisfied for every combination of the Einstein-
æther parameters. Thus, for the prior, note that cV < 1 is
actually allowed. However, given that cV ¼ cω=2ca when
cσ ¼ 0, there are conditions in the likelihood that disfavor
cω < 2ca (or equivalently cV < 1) in the posterior, as
discussed in Sec. VI.

APPENDIX D: RECOVERY OF INJECTED
PARAMETERS

In this section we present comparisons between poste-
riors recovered with the EA_IMRPhenomD_NRT wave-
form template and injected values (Figs. 23 and 24). As
described in Sec. VI, this was done for two different cases:
a GR case and a non-GR case. In the GR case, the input
data was constructed with the IMRPhenomD_NRT wave-
form template which does not specify the Einstein-æther
parameters. In the non-GR case, the EA injection, the input
data was constructed with the EA_IMRPhenomD_NRT
waveform template and the Einstein-æther parameters were
given values distinct from those in the GR case (no longer
zero or 1).
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FIG. 23. Posteriors recovered from injections (GWs in GR and then GWs in Einstein-æther, labeled EA on the plots) with the
EA_IMRPhenomD_NRT waveform template. All injected values lie within the 90% credible region.
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