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We show via both analytical calculation and numerical simulation that the optimal cross-correlation
statistic (OS) for stochastic gravitational-wave-background (GWB) searches using data from pulsar timing
arrays follows a generalized chi-squared (GX2) distribution—i.e., a linear combination of chi-squared
distributions with coefficients given by the eigenvalues of the quadratic form defining the statistic. This
observation is particularly important for calculating the frequentist statistical significance of a possible
GWB detection, which depends on the exact form of the distribution of the OS signal-to-noise ratio

ρ̂≡ Â2
gw=σ0 in the absence of GW-induced cross correlations (i.e., the null distribution). Previous

discussions of the OS have incorrectly assumed that the analytic null distribution of ρ̂ is well approximated
by a zero-mean unit-variance Gaussian distribution. Empirical calculations show that the null distribution
of ρ̂ has “tails”which differ significantly from those for a Gaussian distribution but which follow (exactly) a
GX2 distribution. Thus, a correct analytical assessment of the statistical significance of a potential detection
requires the use of a GX2 distribution.

DOI: 10.1103/PhysRevD.108.104050

I. INTRODUCTION

Pulsar timing array (PTA) collaborations have recently
reported evidence for a stochastic background of nanohertz
gravitational waves [1–3]. These findings were corrobo-
rated by a meta-analysis of these separate data sets by the
International Pulsar Timing Array (IPTA) [4]. All of these
studies confirmed the presence of a common-spectrum red-
noise process across pulsars, along with evidence for the
quadrupolar spatial correlations [5] necessary to attribute
the signal to a GWB.
A computationally efficient technique used by the pulsar

timing community to calculate the significance of the
cross correlations involves the so-called optimal statistic
(OS) [6–8]. This statistic, denoted Â2

gw, is an unbiased
estimator for the squared GWB amplitude A2

gw derived by
maximizing the logarithm of the likelihood ratio. The
corresponding signal-to-noise ratio ρ̂≡ Â2

gw=σ0, where σ20
is the variance of the estimator Â2

gw in the absence of GW-
induced spatial correlations, can be related to the Bayesian
odds ratio between a model with correlations and a model

without correlations via the Laplace approximation [9].
The work in this paper concerns the calculation of the
probability distribution for ρ̂.
The distribution for ρ̂ in the absence of such spatial

correlations is called the null distribution and is denoted
by pðρ̂jH0Þ. Here, H0 is the null hypothesis—i.e., the
hypothesis that there are no GW-induced spatial correla-
tions in the data. Although H0 assumes no spatial corre-
lations, it does allow for the presence of a nonzero
common-spectrum red-noise process, whose amplitude
Acp is determined from a joint noise analysis for the pulsars
in the array. As such, the null distribution H0 depends on
the particular value of Acp—i.e., H0 ¼ H0ðAcpÞ. However,
to simplify the notation in what follows, we will not
explicitly display the Acp dependence of H0, although we
will investigate the dependence of the null distribution on
the amplitude and spectral shape of the common-spectrum
red-noise process.
Given the null distribution, we can calculate the prob-

ability that our measured signal-to-noise ratio, denoted ρ̂obs,
could have resulted from noise alone. This is called the
p-value and is defined as

p≡ Probðρ̂ > ρ̂obsjH0Þ≡
Z

∞

ρ̂obs
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The false alarm probability α is similarly defined:

α≡ Probðρ̂ > ρ̂thjH0Þ≡
Z

∞

ρ̂th

pðρ̂jH0Þdρ̂; ð2Þ

where ρ̂th is the detection threshold, above which one
would reject the null hypothesis and claim detection of a
GWB. The detection threshold is typically chosen so that
the false alarm probability has a sufficiently small value,
e.g., α < 1 × 10−3 above that threshold. Note that the right-
hand sides of both (1) and (2) can also be written as
1 − CDFðxjH0Þ, where CDFðxÞ is the standard cumulative
distribution function and x ¼ ρ̂obs and ρ̂th, respectively.
By construction, both the p-value and the false alarm

probability (or, equivalently, the choice of the detection
threshold) depend on the detailed form of the null dis-
tribution. In previous work [6–8], appealing to the central
limit theorem (and also for simplicity), this distribution was
assumed to be Gaussian. Here, we show that the null
distribution for the OS follows a generalized chi-squared
(GX2) distribution [10], and we explore the consequences
of this observation. (A paper by Cordes and Shannon [11]
also noted that the distribution of the cross-correlation
statistic was highly non-Gaussian and skewed, but did
not identify it as a GX2 distribution.) We show that
differences between the GX2 and Gaussian distributions
can be significant for current pulsar timing array configu-
rations (defined by the numbers of pulsars, observation
spans, noise parameters, etc.), as well as the amplitude and
spectral shape of the common-spectrum process, especially
in the tails of the distribution. Thus, the GX2 distribution
should be used to calculate more accurate p-values in the
case of a GW detection. In particular, we show that the
Gaussian distribution assumption for the null distribution of
the OS leads to overestimates of the significance of a
potential detection, i.e., smaller p-values, than for the GX2
distribution.
We also compare the GX2 and Gaussian distributions

of the OS to the null distributions obtained from phase
shifts [12] and sky scrambles [13] of the PTA data. The
phase shifts are analogous to applying time shifts in
ground-based GW detectors, while sky scrambles replace
the actual pulsar locations with random sky locations, thus
removing the dependence of the spatial correlations on the
angular separation between pairs of pulsars. Both of these
techniques work well at removing GW-induced correla-
tions and are now standard methods to determine null
distributions for our statistics, be it the OS or the Bayes
factor, directly from our data [14]. We show that the GX2
distribution is an excellent fit to the phase-shifted or sky-
scrambled data compared with the standard Gaussian
approximation, especially in the tails of the distribution
(where it matters most) at larger values of the OS signal-to-
noise ratio ρ̂.

The rest of the paper is organized as follows: In Sec. II,
we summarize the results of [10], explaining how GX2
distributions arise whenever one has a (symmetric) quad-
ratic combination of random variables satisfying a multi-
variate Gaussian distribution. We then show, in Sec. III, that
the OS used for PTA searches is an example of such a
quadratic combination, explicitly describing the various
pieces that enter the calculation of the eigenvalues needed
for the GX2 distribution. In Sec. IV, we first calculate GX2
distributions for the OS for several different sets of
simulated data, in the absence of simulated GW-induced
cross correlations. We show how these distributions depend
on the relative contribution of red and white noise, the
number of pulsars, fitting to a timing model, etc., and
compare these distributions with unit (i.e., standard normal)
Gaussians, which often deviate significantly from the GX2
distributions in the tails of the distributions. We then
compare the GX2 distribution for the OS with the null
distribution of ρ̂ obtained by phase shifting the NANOGrav
12.5-year data [14]. Finally, we conclude in Sec. V by
discussing possible extensions or modifications to the
calculations presented here—e.g., which might simplify
the calculation of GX2 distributions for realistic PTA data
sets. The Appendix describes a simple “tail-fitting”
approach that allows us to extrapolate the tail of the OS
null distribution beyond empirically determined phase-shift
or sky-scramble values.

II. MATHEMATICAL FORMALISM

By definition, the GX2 distribution is the probability
distribution of a quadratic form of multivariate-Gaussian
random variables x ∼N ðμ;ΣÞ:

qðxÞ≡ 1

2
xTQ2xþ qT

1xþ q0; ð3Þ

where

pðxjμ;ΣÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πΣp Þ e

−1
2
ðx−μÞTΣ−1ðx−μÞ: ð4Þ

Here, q0 is a real constant, q1 is a real vector of the same
dimension as x, and Q2 is a real symmetric matrix
QT

2 ¼ Q2. As we shall describe in Sec. III, the cross-
correlation statistic that we are interested in has the simpler
form

qðxÞ≡ 1

2
xTQx; x ∼N ð0;ΣÞ: ð5Þ

In this last equation, we have dropped the subscript 2 from
Q2 to simplify the notation since there is no chance of
confusing it with a linear or constant term. We will work
with this simpler form for the rest of the paper.
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To use the formalism of [10] to explicitly compute the
GX2 distribution of qðxÞ, we need to write (5) as a linear
superposition of standard normal distributions v ∼N ð0; 1Þ.
This is done via a series of eigenvalue-eigenvector decom-
positions which we summarize below.
Following [10], we start by converting x ∼N ð0;ΣÞ to a

vector of uncorrelated standard normal distributions z ∼
N ð0; 1Þ by finding the eigenvalues and eigenvectors of Σ:

D ¼ ETΣE or Σ ¼ EDET; ð6Þ

where D is a diagonal matrix of eigenvalues D ¼
diagðσ21; σ22; � � �Þ and E is an orthogonal matrix (i.e.,
ET ¼ E−1) whose columns are the corresponding (ortho-
normal) eigenvectors of Σ. Since Σ is a covariance matrix,
we are guaranteed that its eigenvalues are all positive, hence
the form σ21, σ

2
2, …. We then take the square root of D:

Λ≡ ffiffiffiffi
D

p
; ð7Þ

for which

xTΣ−1x¼ xTED−1ETx¼ xTEΛ−1Λ−1ETx¼ zT1z; ð8Þ

where

z≡ Λ−1ETx ⇔ x ¼ EΛz: ð9Þ

In terms of z the quadratic combination (5) has the form

qðxÞ ¼ 1

2
zTQ̃z; z ∼N ð0; 1Þ; ð10Þ

where

Q̃≡ ΛTETQEΛ: ð11Þ

The final step is to diagonalize Q̃, by finding its
eigenvalues ðẽ1; ẽ2; � � �Þ and the orthogonal matrix of
eigenvectors U. This gives

Q̃ ¼ Udiagðẽ1; ẽ2;…ÞUT; ð12Þ

for which

qðxÞ ¼ 1

2

X
i

ẽiv2i ; where v≡ UTz ∼N ð0; 1Þ: ð13Þ

(Note that v is standard normal since U is an orthogonal
matrix and z is standard normal.) Since the probability
distribution of the square of a standard normal distribution
is chi-squared distributed with 1 degree of freedom (DOF),
it follows that qðxÞ is a general linear combination of χ21
distributions, which is the form of the generalized chi-
squared distribution discussed in Ref. [10]. The analytic

form of this distribution for the quadratic form (5) is
completely specified by the eigenvalues of Q̃ defined by
(6), (7), and (11).
Note that the mean and variance of qðxÞ can be simply

written in terms of sums (and sums of squares) of the
eigenvalues used to construct the optimal statistic:

μq ≡ hqi ¼ 1

2

X
i

ẽi; σ2q ≡ hq2i − hqi2 ¼ 1

2

X
i

ẽ2i ;

ð14Þ

where hi denotes the expectation value. The above results
follow from the expansion (13) with v2i ∼ χ21 being sta-
tistically independent of one another, and each having
mean ¼ 1 and variance ¼ 2.

III. APPLICATION TO THE OPTIMAL STATISTIC
FOR PTA SEARCHES FOR GWBs

Now we show that different forms of the OS used for
PTA searches for GWBs are examples of GX2 distribu-
tions. For more details regarding the OS, we refer the reader
to [7], with which this work shares notation, and also [6,8].

A. Optimal statistic signal-to-noise ratio and GWB
amplitude estimator

The optimal statistic signal-to-noise ratio for PTA
searches for GWBs is typically written as

ρ̂≡ Â2
gw=σ0; ð15Þ

where

Â2
gw ≡N

X
a<b

rTaP−1
a S̃abP−1

b rb; ð16Þ

σ0 ≡N 1=2; ð17Þ

N ≡
�X

a<b
tr½P−1

a S̃abP−1
b S̃ba�

�
−1
: ð18Þ

In the above expressions, Â2
gw is an estimator of the squared

amplitude of the GW signal, σ20 is its variance in the
absence of GW-induced spatial correlations, and N is a
normalization factor constructed from terms involving the
total autocorrelated power and cross-correlated power in
pulsars labeled by a, b (more about these expressions
below). More compactly,

ρ̂≡X
a<b

rTaQabrb ¼
1

2

X
a;b

rTaQabrb; ð19Þ

where
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Qaa ≡ 0; Qab ≡N 1=2P−1
a S̃abP−1

b ð20Þ

define the (symmetric) quadratic form for ρ̂. Note that
summations denoted by

P
a<b run over distinct pulsar

pairs, while
P

a;b ≡P
a

P
b double counts the pulsar

pairs [hence the factor of 1=2 in (19)] and also includes
the autocorrelations (which do not contribute to ρ̂
since Qaa ¼ 0).
The data r are zero-mean multivariate Gaussian random

variables defined by

pðrjθ⃗Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πΣÞp exp

�
−
1

2
rTΣ−1r

�
; ð21Þ

where

Σ≡ �
rrT

� ¼
0
BBBBB@

P1 S12 � � � S1M

S21 P2 � � � S2M

..

. ..
. . .

. ..
.

SM1 SM2 � � � PM

1
CCCCCA ð22Þ

and

Pa ≡GT
aNaGa; Sab ≡GT

aXabGb;

a; b ¼ 1; 2;…;M: ð23Þ

Here, M denotes the number of pulsars, and Ga is the
G-matrix [15] for pulsar a, which encodes information
about the timing-model fit

ra ¼GT
aδta; a¼ 1;2;…;M; ð24Þ

where δta are the timing residuals for pulsar a. If we
denote the number of TOAs for pulsar a by NTOA;a and the
number of timing model parameters by Npar;a, then Ga has
dimensions NTOA;a × ðNTOA;a − Npar;aÞ, and ra is a vector
with components

½ra�αa ; αa¼ 1;2;…;Na≡ ðNTOA;a−Npar;aÞ: ð25Þ

The covariance matrix Σ is thus a symmetric block matrix
and has overall dimension ðN1 þ N2 þ � � � þ NMÞ×
ðN1 þ N2 þ � � � þ NMÞ.
The diagonal terms of the covariance matrix involve the

autocorrelations

Na ≡
�
δtaδtTa

� ¼ Z
fNyq

0

df cos½2πfτaa�PaðfÞ

þ F aWa þQ2
a1; ð26Þ

where the last two terms specify the white-noise contribu-
tions, and

PaðfÞ≡ Pred
a ðfÞ þ PgwðfÞ ð27Þ

consists of both intrinsic pulsar red-noise and a potential
common-spectrum red-noise process contribution most
likely from the GWB. We assume that both of these red-
noise contributions can be described by power-law spectra

Pred
a ðfÞ≡ A2

a

12π2f3

�
f
fref

�
2αa

;

PgwðfÞ≡ A2
gw

12π2f3

�
f
fref

�
2αgw

: ð28Þ

For the GWB formed from the superposition of signals
from inspiraling supermassive binary black holes in the
centers of merging galaxies, αgw ¼ −2=3. Finally, τaa is the
time-lag matrix, whose components are given by ½τaa�ij ≡
tia − tja , which are the differences of the TOAs of the
pulses from pulsar a.
The off-diagonal terms in the covariance matrix are

assumed to have only a GWB contribution,

Xab≡ hδtaδtTbi¼Γab

Z
fNyq

0

df cos½2πfτab�PgwðfÞ; ð29Þ

where

Γab ≡ 1

2
þ 3

2

�
1 − cos ξab

2

��
ln

�
1 − cos ξab

2

�
−
1

6

�
þ 1

2
δab

ð30Þ

are the values of the Hellings-and-Downs function,
Γab ≡ ΓðξabÞ, evaluated for two pulsars a and b separated
by the angle ξab (see [5]). The quantity

S̃ab ≡GT
aX̃abGb; ð31Þ

which enters the expression for the quadratic form Qab,
(20), is a normalized version of Sab defined in terms of

X̃ab ≡Xab=A2
gw: ð32Þ

Note that these cross-correlations are proportional to the
spectral shape of the GWB—i.e., they do not depend on its
amplitude.
Finally, it is a simple matter to show that the GWB

amplitude estimator Â2
gw can also be written as a (sym-

metric) quadratic combination of the multivariate Gaussian
random variables r with quadratic form

Kab ≡N 1=2Qab: ð33Þ

Thus, according to the discussion in Sec. II, both ρ̂ and Â2
gw

will be described by GX2 distributions. For calculating
the distributions of these statistics in the absence of
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GW-induced spatial correlations (i.e., null distributions),
we should setXab ¼ 0 in the definition of Σ and replace the
GW contribution PgwðfÞ to Na by a potential common-
spectrum red-noise process PcpðfÞ (with amplitude Acp

and spectral index αcp), which is common to all pulsars.
(The normalized cross-correlation terms S̃ab in Qab do not
change since they involve the normalized cross-correlations
X̃ab.) These null distributions are obviously also described
by GX2 distributions since they are special cases of the
non-null quadratic combinations.
Using (14), it follows that the eigenvalues ẽi that specify

the GX2 distribution for ρ̂≡ Â2
gw=σ0 in the absence of GW-

induced spatial correlations satisfyX
i

ẽi ¼ 0 and
X
i

ẽ2i ¼ 2: ð34Þ

These are consequences of ρ̂ having zero mean and unit
variance for the null distribution case.

B. Optimal statistic pulsar-pair cross-correlation
estimators

One can also construct cross-correlation estimators for
individual pulsar pairs:

ρ̂ab ≡N abrTaP−1
a S̄abP−1

b rb ≡ rTaQ̄abrb;

a < b ¼ 1; 2;…;M; ð35Þ

where

Q̄ab ≡N abP−1
a S̄abP−1

b ; ð36Þ

N ab ≡
	
tr


P−1
a S̄abP−1

b S̄ba

��−1; ð37Þ

S̄ab ≡GT
aX̄abGb; ð38Þ

X̄ab ≡Xab=ðΓabA2
gwÞ ¼

Z
fNyq

0

df cos½2πfτab�P̄gwðfÞ;

ð39Þ

P̄gwðfÞ≡ 1

12π2f3

�
f
fref

�
2αgw

: ð40Þ

Using �
rarTb

� ¼ Sab; ð41Þ

it follows that ρ̂ab is an unbiased estimator of the cross-
correlated power in the GWB—i.e.,

hρ̂abi ¼ ΓabA2
gw; ð42Þ

with variance

σ2ab ¼ N ab þ
	
A2
gw

�
2N 2

abtr


P−1
a S̄abP−1

b S̃baP−1
a S̄abP−1

b S̃ba

�
:

ð43Þ

In the absence of GW-induced spatial correlations, the
variance simplifies to

σ2ab ¼ N ab ≡ σ20;ab: ð44Þ

Recall that Γab are the values of the Hellings and Downs
function evaluated for different angular separations between
the two pulsars labeled by a and b. The matrix X̄ab is the
time-domain representation of the spectral shape of the GW
power spectrum, which (by its definition) is independent of
the GWB amplitude Agw and the spatial correlation coef-
ficients Γab. It depends on the pulsar pair ab only via the
discrete times tia , tjb of the timing residuals δta, δtb, which
enter the time-lag matrix τab. This means that X̄ab is a
rectangular matrix with dimensions NTOA;a × NTOA;b.
Since ρ̂ab ¼ ρ̂ba, we can write

ρ̂ab ¼
1

2
ðρ̂ab þ ρ̂baÞ ¼

1

2

	
rTaQ̄abrb þ rTbQ̄bara

� ¼ 1

2
xTQx;

ð45Þ

where

xT ≡ 

rTa rTb

�
; Q≡

�
0 Q̄ab

Q̄ba 0

�
; x≡

�
ra
rb

�
:

ð46Þ

Note that Q is a symmetric matrix since Q̄T
ab ¼ Q̄ba. Note

also that x ∼N ð0;ΣÞ, where

Σ≡ �
xxT

� ¼ �
Pa Sab

Sba Pb

�
: ð47Þ

Thus, given that ρ̂ab is a symmetric quadratic combination
of multivariate Gaussian random variables, it obeys a GX2
distribution.
If desired, one can express both the OS signal-to-noise

ratio ρ̂ and the GWB amplitude estimator Â2
gw in terms of

the pulsar-pair cross-correlation estimators ρ̂ab:

ρ̂ ¼
P

a<bΓabρ̂ab=σ20;abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c<dΓ2

cd=σ
2
0;cd

q ; Â2
gw ¼

P
a<bΓabρ̂ab=σ20;abP

c<dΓ2
cd=σ

2
0;cd

:

ð48Þ

These results are a consequence of S̃ab ¼ ΓabS̄ab and the
definitions (15), (16), and (35) of ρ̂, Â2

gw, and ρ̂ab. Thus, ρ̂
and Â2

gw are simple noise-weighted and Γab-matched linear
combinations of ρ̂ab.
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IV. DEMONSTRATION OF THE GX2
DISTRIBUTION ON PTA DATA

The exact form of the GX2 distribution varies with the
amplitude of the GW signal and the noise properties of the
data. The characteristics of PTA noise have been studied
extensively in the literature [16–18]. The considerations for
PTA detector characterization vary widely from radiometer
noise at the telescope receiver to possible intrinsic spin
instabilities of the neutron star. However, they can be split
into a few categories including white noise, red noise, the
fit of the deterministic timing model for the radio pulse
times of arrival, and the number and sky position of the
pulsars. In this section we demonstrate the influence that
these characteristics of PTAs have on the GX2 distribution.
Fig. 1 shows various GX2 distributions constructed from

the parameters defining some simple (fictitious) PTAs, with
the spectral properties of the pulsars calculated using the
pulsar spectral characterization software HASASIA [19].
The panels demonstrate how differences in the GW signal
(spatial correlations, spectral index), noise, and timing
parameters change the shape of the distribution. Note that
we have not included a comparison of different white-noise
levels because the noise power spectral densities cancel out
of the numerator and denominator of Q̃, which defines the
GX2 distribution.1

The interplay of the parameters makes it difficult to
predict exactly what the distribution will look like. How-
ever, the trends for any individual parameter follow the
simple rule that as the sensitivity of the PTA is increased, the
tail of the GX2 distribution becomes smaller at larger values
of ρ̂. A couple other general observations are as follows:
(i) adding sufficiently large red noise to the pulsars quickly
obscures the subtle differences in the GX2 distributions, as
seen in panel (b) of Fig. 1, and (ii) the sky positions of the
pulsars matter via the S̃ab terms in the expression for ρ̂.
Next, we present a realistic GX2 distribution calculated

using the noise and sensitivity parameters of the NANOGrav
12.5-year dataset [20,21] to demonstrate the usefulness of an
accurate analytic GX2 distribution in calculating p-values
or false-alarm probabilities. Diagonalizing the various
matrices described in Sec. III over full PTA data sets is
challenging because of the length of the data sets. None-
theless, by using the salient noise and sensitivity parameters
of the NANOGrav 12.5 data set, we obtain fairly reasonable
agreement with the phase-shift method for determining the
null distribution of the optimal statistic. This is illustrated in
Fig. 2, which compares the analytic GX2 distribution with a
histogram of ρ̂ values for 1000 different phase shifts of the
NANOGrav 12.5-year data. For reference, we also show the
unit (standard normal) Gaussian distribution.

By looking at the right-hand panel of Fig. 2, one
immediately sees the inaccuracy that would arise if the
p-value was calculated assuming that the null distribution
was Gaussian. Table I gives the p-values for ρ̂ ¼ 5 and
ρ̂ ¼ 1.3 calculated using the analytic form of the GX2
distribution and the Gaussian distribution, and from phase
shifts and sky scrambles of the NANOGrav 12.5-year data,
the latter as described in [12–14]. (The value ρ̂ ¼ 1.3 is
what was measured in the NANOGrav 12.5-year data set.)
While the agreement between the various methods2 is
reasonable for the lower value of ρ̂, assuming that the null
distribution is Gaussian for ρ̂ ¼ 5 leads to a p-value that is
more than 1000 times smaller than it should be.

V. DISCUSSION

We have demonstrated that a GX2 distribution is the
correct analytical distribution for the optimal cross-
correlation statistic (OS) used for analyzing PTA data sets.
Although we focused on the null distribution of the OS
signal-to-noise ratio ρ̂ for this paper, our analyses in
Secs. III A and III B were sufficiently general to show that
GX2 distributions also apply to the optimal estimator of the
squared-amplitude Â2

gw and pulsar-pair cross-correlations
ρ̂ab in the presence of a signal.
We applied the general formalism to calculate the GX2

distribution for ρ̂ using parameters appropriate for
NANOGrav’s 12.5-year data set and showed that it agreed
quite well with the empirical null distribution that was
obtained by phase shifting the NANOGrav data. We also
calculated the GX2 distribution for several different sets of
simulated data in the absence of a GWB cross-correlation,
varying, in turn, the number of pulsars, the relative
contribution of red and white noise, etc., to see how these
affected the shape of the resulting distributions.
Generically, the GX2 distributions we obtained differed

from the best-fit (standard normal) Gaussian distribution by
having a mode less than their mean and having “fatter” tails
at high values of the statistic. (Both distributions have
zero mean and unit variance for the null distribution case.)
The fatter tails are especially important when calculating
p-values for the null distribution, which is needed to assess
the statistical significance of a possible detection.
As mentioned in Sec. IV, constructing the quadratic form

for the GX2 distribution—which requires solving for the
eigenvectors of large matrices—is challenging for realistic
data. Using the full NANOGrav 12.5-year data set would
require solving the eigenvalue problem for an N ¼ 410064
dimensional matrix twice. An additional complication
is that the detailed dispersion-measure-variation (DMX)
model that NANOGrav uses [23] has a large effect on the
transmission function of the pulsars [18,24]. This shows up

1See (11), (20), and (22), noting that Σ is block diagonal for the
null distribution case.

2Note that sky scrambles are currently being revisited as a
robust method for retrieving the null distribution empirically [22].
We have included the values here for historical completeness.
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in the timing model fit, which enters the quadratic form via
the G-matrix, e.g., ra ¼ GT

aδta.
As such, the key to constructing a valid GX2 distribution

for a realistic PTA data set is to find a reduced set of
parameters that faithfully describes the spectral properties

of the PTA pulsars and the corresponding timing model of
the array. We used HASASIA to calculate the spectra for all
of the NG12.5 pulsars, using their full data sets [18]. The
noise power spectral density (from the spectrum) and red-
noise parameters (from the Bayesian noise analyses) were

FIG. 1. Comparison of GX2 distributions when varying different PTA parameters: (a) varying the number of pulsars for fixed pulsar
white noise, (b) varying the amplitude of the common-spectrum red-noise process for fixed pulsar white noise and number of pulsars,
(c) comparing distributions with different spatial correlations for fixed pulsar white noise and number of pulsars, (d) comparing
distributions having a nontrivial and trivial (i.e., identity) timing models, (e) varying the spectral index of the GWB search (here written
in terms of the spectral index in timing residuals, γ ≡ 3 − 2α) for fixed white noise and number of pulsars, and (f) comparing a set
of realistic NANOGrav parameters, with a simple white-noise plus common-spectrum red-noise process. The insets show plots of the
p-values of the various GX2 distributions as functions of ρ̂. The gray bands show the p-values for traditional 3σ and 4σ detection
significances based on a unit (standard normal) Gaussian distribution. Note that the 11, 22, and 45 pulsar cases all fall along the same
p-values in (a).
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then used to construct shorter data sets with similar
properties, including the broadband effect of the DMX
model. Spectra of these simulated data sets were taken to
iteratively find the correct effective level of white-noise
power spectral density to inject into the pulsars to match the
spectra from the full data sets.
This process proved expeditious to obtain a fairly

accurate realization of a GX2 distribution on a modest
laptop. However, it is computationally inefficient for
generating GX2 distributions for several different choices
of noise parameters, for example. Fortunately, PTA calcu-
lations are usually carried out using a rank-reduced
formalism [25] that drastically reduces the size of matrices
dealt with in the analysis. This reduced representation of
the data alleviates the main problem discussed previously.
For example, we are currently developing techniques to use
a frequency-domain implementation of the optimal statistic
to speed up the calculation, taking advantage of the rank-
reduced matrix, which is only 2Nfreq × 2Nfreq, as opposed
to NTOA × NTOA. However, we leave that discussion for
future work.
An alternative to using noise estimates from a previous

Bayesian inference run to calculate the optimal statistic is to
marginalize over the noise parameters. As described in [8],
marginalizing over the red-noise parameters tends to
remove biases that would otherwise exist due to correla-
tions between the noise estimates and the timing residual
data used to construct the optimal statistic. For the analyses
described in this paper, we used maximum-likelihood

estimates of noise parameters from a Bayesian analysis to
construct the quadratic forms needed for calculating the GX2
distributions. We did not investigate any source of bias that
might have been introduced by using noise estimates as
opposed to noise marginalization. However, we are currently
investigating the possibility of marginalizing over the noise
for future uses of the GX2 distributions.
Finally, optimal cross-correlation statistics are also used

when analyzing data from ground-based GW detectors like
Advanced LIGO, Virgo, and KAGRA. However, for this
case, the optimal statistics are well described by Gaussian
distributions, so GX2 distributions are not needed. This is
because the data from pairs of detectors are analyzed in
roughly 100-sec segments (to account for potential non-
stationarities in the detector noise power) and then averaged
together over ≳105 such segments, corresponding to a
typical year-long observation. The cross-correlation esti-
mates of the amplitude of the GWB for each 100-sec
segment are GX2 distributed. However, the final averaged
optimal-statistic value (inverse-noise weighted by the
variance of the individual estimates) is well described by
a Gaussian distribution due to the central-limit theorem.
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FIG. 2. Comparison of various distributions of the OS signal-to-noise ratio ρ̂ in the absence of GW-induced spatial correlations.
Shown are (i) an empirical null distribution for the NANOGrav 12.5-year data, obtained from performing 1000 phase shifts (blue
histogram), (ii) the analytic GX2 distribution (black solid line), and (iii) the best-fit (standard normal) Gaussian distribution (gray dashed
line). The right panel is a plot of the p-value as a function of ρ̂. The phase shifts do not show up in the right-panel plot out to these large
values of ρ̂.

TABLE I. The p-values calculated using various methods in the
context of the NANOGrav 12.5-year data set.

ρ̂ Analytic GX2 Gaussian Phase shifts Sky scrambles

5 3.3 × 10−4 2.87 × 10−7 � � � � � �
1.3 0.0983 0.0951 0.091 [14] 0.082 [14]
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APPENDIX: EMPIRICAL TAIL FITTING
AND EXTRAPOLATION

The GX2 is the analytic null distribution for the optimal
statistic, but it depends upon specific characteristics of the
data set, e.g., white-noise and red-noise parameters. In the
case of red noise, a Bayesian analysis is used to obtain a
posterior distribution on the amplitude and spectral index;
using different draws from that posterior to calculate the
GX2 changes the resulting distribution. Choosing the best
parameters to use requires care and potentially comparison
with empirical distributions. In this appendix we introduce
a technique that can be used in the interim. In situations
where we need to evaluate the null distribution in a place
where we have few empirical simulations, but we do not yet
have the full GX2 method, we can empirically fit the tail of
the empirical simulations with an exponential function.
This method has been used to extrapolate the tail of the null
distribution in, e.g., searches for GWs from rapidly rotating
neutron stars [28]. The uncertainty on the fit parameters can
then be used to bound our estimate of the p-value or false
alarm probability.
We begin by choosing a point beyond which pðρ̂Þ looks

like an exponential. This choice is arbitrary, but the
procedure can be done using several choices, picking the
one that looks most reasonable. We call this value ρ̂tail.
Therefore, for ρ̂ > ρ̂tail, we have

pðρ̂jρ̂ > ρ̂tailÞ ¼ λ exp


−λðρ̂ − ρ̂tailÞ

�
: ðA1Þ

The shape parameter λ is a free parameter that we fit using
the values in the tail of the empirical distribution.
Since there is only a single free parameter, we can fit this

using a brute-force Bayesian approach, with a uniform
prior on λ

p


λjfρ̂igNtail

i¼1

� ¼ 1

λmax
λNtail exp

("
−λ

XNtail

i¼1

	
ρ̂i − ρ̂tail

�#)
;

ðA2Þ

where Ntail is the number of empirical distribution values
satisfying ρ̂i > ρ̂tail, and λmax is the upper bound on the
uniform prior on λ. In this notation, fρ̂igNtail

i¼1 denotes the set
of empirical distribution results that populate the tail.
The posterior on λ can then be used to quantify the

uncertainty in the tail of the distribution on ρ̂. We show an
example of fits to the tail of the empirical distribution in
Fig. 3 using 300 different draws from the posterior on λ (the
90% credible interval is shown in orange), along with the
GX2 estimate (black line) and the empirical distribution
(blue histogram). The blue histogram uses the phase shifts
from the NANOGrav 12.5-year analysis that were used to
generate Fig. 2. For the sake of comparison, we also include
the best-fit Gaussian PDF (gray dashed), which clearly
underestimates pðρ̂Þ in the tail. The exponential fit agrees
with the GX2 estimate out to ρ̂ ¼ 6, indicating it can be
effectively used to extrapolate the tail and still be consistent
with the analytic distribution. We can also quantify the
uncertainty in the tails of the empirical distribution due to
having a small number of points in the tail of the empirical
distribution.
Once we have a fit for pðρ̂Þ, we can analytically calculate

the cumulative distribution function (CDF), pðρ̂ < ρÞ,
which can be used to estimate the false alarm probability.
The CDF is given by

FIG. 3. Comparison of GX2 fit to empirical phase shifts and tail-fitting procedure. Left: 90% credible interval of fit (orange) to the
empirical PDF (blue). The theoretical distribution from the GX2 distribution is shown in black. Right: same as the left but for the p-value
ð1 − CDFÞ. In both cases we can see that fitting the empirical distribution from phase shifts with an exponential gives a reasonable
approximation of the GX2 in the region in which we are interested.
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pðρ̂ < ρjλÞ ¼
(

1
N

P
N
i¼1 1ρ̂i≤ρ ρ ≤ ρ̂tail;

1
N

P
N
i¼1 1ρ̂i≤ρ̂tail þN

	
1 − e−λðρ−ρ̂tailÞ

�
ρ > ρ̂tail;

ðA3Þ

where 1 is the indicator function that equals 1 if the subscript condition is met and equals zero otherwise. In this expression,
N is the total number of empirical trials, and ρ̂i is now any one of those N trials (as opposed to being taken only from the
tail). The normalization factor N is chosen such that the CDF evaluates to 1 at infinity.
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