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All the magnetically charged ultrastatic and spherically symmetric spacetime solutions in the framework
of linear/nonlinear electrodynamics, with an arbitrary electromagnetic Lagrangian density £(F) depending
only of the electromagnetic invariant 7 = F 3 F @ /4, minimally coupled to Einstein-scalar-Gauss-Bonnet
gravity [EsGB-L(F)], are found. We also show that a magnetically charged ultrastatic and spherically
symmetric ESGB-L(F) solution with invariant F having a strict global maximum value F, in the entire
domain of the solution, and such that £, = £(F,) > 0, can be interpreted as an ultrastatic wormhole
spacetime geometry with throat radius determined by the scalar charge and the quantity £,. We provide
some examples, including Maxwell’s theory of electrodynamics (linear electrodynamics) Lygp = F,
producing the magnetic dual of the purely electric Ellis-Bronnikov EsGB Maxwell wormhole derived in
[P. Canate, J. Sultana, D. Kazanas, Phys. Rev. D 100, 064007 (2019)]; and the nonlinear electrodynamics
(NLED) models given by Born-Infeld Ly = —44% + 44?+/1 + F/(2?), and Euler-Heisenberg in the
approximation of the weak-field limit Lgy = Lypp + yF2/2. With those NLED models, two novel
magnetically charged ultrastatic traversable wormholes (EsGB Born-Infeld and EsGB Euler-Heisenberg
wormbholes) are presented as exact solutions without exotic matter in EsGB-L(F) gravity, and we show that
these solutions have in common the property that in the weak electromagnetic field region the magnetically

charged Ellis-Bronnikov EsGB Maxwell wormhole is recuperated.

DOI: 10.1103/PhysRevD.108.104048

I. INTRODUCTION

Wormbholes are an interesting type of spacetimes which
arises from the geometrical description of gravity [1].
These involve a topological spacetime configuration in
the form of a shortcut that links two spacetimes or two
distinct regions of the same spacetime. The idea originates
from the work of Einstein and Rosen in 1935, with their
solution known as the Einstein-Rosen bridge [2], which is
basically the maximally extended Schwarzschild solution.
However, it quickly turned out that the “throat” of such a
wormbhole is dynamic and hence nontraversable [3], mean-
ing that its radius expands to a maximum and quickly
contracts to zero so fast that even a photon cannot pass
through. Following this, interest in wormholes was revived
by the seminal work of Morris and Thorne in 1988 [4], who
discuss the construction of traversable wormholes (T-WHs)
within the general relativity (GR) context, and showed that
the throat of these wormholes can be kept open by some
form of “exotic” matter [5] having negative energy density,
and whose energy momentum tensor violates the null-
energy condition (NEC). This suggests that, at a classical
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level, T-WHs of the Morris-Thorne type are forbidden in
general relativity because all know types of physically
reasonable matter satisfy the NEC.

Nevertheless, at the quantum level the need for NEC
violation is not in itself a big problem; quantum fields can
easily violate NEC [6]. From this perspective, recently,
using ideas from gauge/gravity duality, it has been shown
that quantum matter fields can provide the necessary
negative energy to keep the throat of the wormhole open
and thus achieve traversable wormholes (see Refs. [7,8] for
a review). More recently [9], it was shown that wormholes
can also be produced through a quantum tunneling event,
where a backreaction from quantum fields can make these
wormbholes traversable.

Lately, in order to avoid the exotic matter issue in the
traversable Morris-Thorne wormholes at a classical level,
several modifications to GR have been explored,' for
instance see Refs. [10-20]. More precisely, the necessity
of the presence of exotic matter in classical T-WHs can be

'Modified theories of gravity have been developed primarily in
the hope of finding solutions to the several issues of current
observational astrophysics and cosmology (such as dark matter
and dark energy questions).
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circumvented in modified theories of gravity which contain
higher curvature corrections in their gravitational actions,
so that additional curvature degrees of freedom can support
such geometries. In order to do so, it is necessary that the
effect of the higher-order curvature terms leads to the
existence of spacetime regions with negative effective
energy density and can thus mimic the exotic matter
contribution required for T-WHs.

It should be pointed out that the most natural higher-
order curvature extension of D-dimensional general rela-
tivity, satisfying the criteria of general covariance and
leading to second order field equations for the metric, is
given by the Lanczos-Lovelock (LL) gravity theory [21],
which is defined by the action

1 4
SLL [gmnv/] = /deV -9 <Eza(p)£(p) (R’RmnR;u/a/i))
p=0
+ Smatter [g;w ’ ‘I/] ’ ( 1 )

where the first term to the right side of the equation is
the Lovelock action for D-dimensional spacetimes with
metric signature (—, +, 4+, - - -, +), while the second is the
usual action for the matter, where y represents schemati-
cally the matter fields. Here, £, are functions of the
curvature scalar R, and the curvature tensors R, , R
given by

uvs Nuvaps

L pvipypy, ' -
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where 57,:2:;2272” is the generalized totally antisymmet-
PP

ric Kronecker delta,” the parameters «a,) are coupling
constants, being a) = —2A (cosmological constant),
() = 1, whereas {a(;)}_, are arbitrary constants of the
theory, and the parameter ¢ is called the order of the
Lovelock gravity. Remarkably, the Lovelock gravity
besides being special because its field equations are still
second-order differential equations for the metric tensor
components g,, (as in GR), this theory has also gained
much importance because it appears as the low energy limit
of string theories, where the parameter a ;) (known as the
second order Lovelock coefficient) is proportional to the

The generalized totally antisymmetric Kronecker delta is
defined as
J VIV Hplp Vsl svr gy s o v,
5/310113202“‘[3,;0,; - (zp)'éﬂl 5516,52502 5Zp551’

= (2p)!8];, 6 555 -+ 5%5;',’,1' (3)

inverse string tension [22], or related to the coupling
constant o' in the string world sheet action [23].

Let us now sketch some reductions of the action (1).
First, notice that the generalized totally antisymmetric
Kronecker delta in Eq. (2) causes E( p) to become identi-
cally zero for all p > [D/2] where [D/2] denotes the
integral part of D/2, and then without loss of generality
one can always set £ = [D/2]. The L, functions for
p=1 2 3 are Ly =R, L= R? — 4R, R" +

R0 R and

L) = R? = 12RR,,R* + 16R,,R* ;R* + 24R R ,,R**"
+ 3RR,,,, R — 24R,,,R¥
+ 4R, R*TIR,, — 8R

vopy
o R

W o RUIPH
Hvop ;wapR 4 ,7R . (4)

First (¢ = 1)- and second (¢ = 2)-order curvature LL
gravity. Expanding the Lovelock action up to £ = 1 (for an
arbitrary value of D), the D-dimensional Einstein-Hilbert
action with cosmological constant is recovered; whereas,
working up to £ = 2 yields the D-dimensional Einstein-
Gauss-Bonnet (EGB) theory with cosmological constant,
which is defined by the action

1
SecBlGuw- W] = / dPxy _Q{E (R—2A+ aGBRZGB)}

+ Smatter [.gyw 'I/] ’ (5)

where RéB stands for the quadratic Gauss-Bonnet (GB)
term (also known as Gauss-Bonnet invariant) defined by
REs = Ropu R — 4R ,5RP + R*; while agp is a dimen-
sionless coupling constant known as the Gauss-Bonnet
coefficient. So that, according with Eq. (1), L) + L)
corresponds to the Einstein-Hilbert Lagrangian density
with cosmological constant, while L) is the quadratic
Gauss-Bonnet term L) = RéB and ap) = agg. In this
context, for D > 5, D-dimensional Lorentzian wormbhole®
solutions are investigated in Ref. [24].

It is worth stressing that in D = 4 the quadratic curvature
term aggR%g (With agp finite) is a total derivative, and
hence does not contribute to the gravitational dynamics. In
fact, the Gauss-Bonnet term contribution to all the compo-
nents of modified Einstein’s field equations are propor-
tional to (D — 4), and therefore vanish identically at D = 4,
see Refs. [25,26] for a discussion; whereas, in D = 4 with
singular agg (i.e. agg = %, being agg €R) yields a
nontrivial case recently discussed in [27,28].

Summarizing, we can say that in four-dimensional
gravity the quadratic curvature term, aggRgg (With regular

’Le. higher-dimensional T-WHs of the Morris-Thorne type.
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agg), does not modify the Einstein field equations.4
However, if a massless scalar field, ¢, is coupled to the
GB term through a nontrivial well-defined coupling func-
tion’ f(¢), then the new field equations are substantially
different from the standard general relativity due to the
presence of the f(¢)-Gauss-Bonnet (fGB) curvature tensor
(which will be introduced later). In this way arises one of
the best four-dimensional higher curvature gravity theories,
known as the Einstein-scalar-Gauss-Bonnet (EsGB)
theory.6 The general action for an EsGB theory in the
presence of a cosmological constant A, with an arbitrary
coupling function f(¢) between the scalar field and the GB
term, is given by

SESGB [gﬂl/’ ¢’ lI/]
~ [ vl (R-2n- 000 r0)RE ) |
+ Smatter [gyw Vl] (8)

Despite the presence of a quadratic curvature invariant
Sf(¢)R%y in the EsGB action, the resulting field equations
arising from the variation of this action with respect to the
metric are of second order and therefore avoid the
Ostrogradski instability and ghosts.

In similarity with LL theory, the EsGB gravity also arises
from the low energy limit of a heterotic string theory [29].
Furthermore, the EsGB gravity can be interpreted as a
subclass of Horndeski gravity [30,31] and also arise from
an effective field theory perspective [32,33]. As a conse-
quence of the above aspects, the predictions of the EsGB
theory are dramatically different from GR in high-curvature
regions, such as the early universe epochs, and the interior
of black holes, where it aims at resolving curvature
singularities. Indeed, the coupling between the GB term
and the scalar field is responsible for the fact that the black
holes in the EsGB gravity context can violate no-hair
theorems [34,35] and black holes with scalar hair arises; the
stability of those scalarized black holes has been addressed
in [36]. Also, free curvature singularity black holes (that

*The action (5) leads to the following modified Einstein’s field
equations in D-dimensional spacetime:

G/u/ + aGBHyb + g/wA = ST[TM, (6)

where G5 and T, respectively, are the components of Einstein
tensor and energy-momentum tensor of the matter fields; whereas
H,, =2(RR

w— 2R, sR? + R

1
g o 2
;wﬂyRu br — 2R;40R1/ ) - Eg;wRGB'

(7)

In g)amcular ‘H,, vanishes identically in D = 4.

That is, f((/)) # constant, and f(¢) € C2.

®This theory is also known as generalized Einstein-dilaton-
Gauss-Bonnet gravity.

evade the Penrose singularity theorem [37]) have been
numerically derived in EsGB, see Ref. [38]. It is also
noticeable that the Gauss-Bonnet curvature tensor allows
the presence of regions with negative effective energy
densities [39], and one of the consequences is that
structures like T-WHs can be sustained without invoking
exotic matter. For instance, in [40] linearly stable T-WHs
were numerically derived with a coupling function given by
f(¢) = e7? with no need of exotic matter for supporting
the wormhole.

Recently [41], anumber of novel T-WH solutions in EsGB
theory have been obtained numerically for several coupling
functions. Other numerically T-WHs have been obtained
earlier in Einstein-dilaton-Gauss-Bonnet theory [42], which
involve an exponential coupling between the scalar field
representing the dilaton and the Gauss-Bonnet term.

The construction of interesting exact solutions like black
holes or novel T-WHs in the framework of the EsGB
gravity, to date, has only been possible using nonlinear
electromagnetic fields as sources in the EsGB field equa-
tions (see Refs. [43—46]). Concretely, the nonlinear electro-
dynamics (NLED) theories are extensions of Maxwell’s
electromagnetism that suggest that the Lagrangian density
of the electromagnetic field depends in a nonlinear way on
the two electromagnetic invariants, F = 2(B? — £?) and
G = E- B, where £ and B are the electric and magnetic
fields, respectively. Therefore, the most general NLED
Lagrangian density is characterized by an arbitrary function
L(F,G) of the electromagnetic invariants, F and G.
For more details on these aspects see Refs. [47-51] (see
also [52] for a recent review) and references within. The
most simple £(F, G) model corresponds to the linear case
(LED), given by

'CLED =F (9)

which is known as Maxwell’s theory of electrodynamics.7
In 1933-1934 Born and Infeld (BI) constructed the first
nonlinear generalization of Maxwell’s electrodynamics for
strong fields, which was invented to ensure that electric
field self-energy of charged point particles is finite and,
therefore, a solution of the Maxwell’s electrodynamics
problem of point charges and their diverging self-energy is
proposed [47]. The proposed BI Lagrangian that depends
nonlinearly on the electromagnetic invariants F and G was
inspired in a finiteness principle for the electromagnetic
field magnitude (analogous to the special relativity theory

"The Maxwell’s electrodynamics is one of the most notable
and experimentally verified classical field theories ever con-
structed. Since its formulation (about 1860), it has been the
source of remarkable predictions such as the electromagnetic
radiation. In addition, the Maxwell’s theory has served as a
keystone for the proposal of new theories, such as Einstein’s
theory of special relativity.
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that assumed an upper limit to the velocity of light), and has
the form

_ap( i
EBI_4ﬂ< e[l smt e ) (0

Lgy = Ligp + 55

where £ is a constant which has the physical interpretation
of a critical field strength. Later, in 1935 Euler and
Heisenberg (EH) computed a complete effective action
describing nonlinear corrections to Maxwell’s theory due to
quantum electron-positron one-loop effects. In a nonper-
turbative form, it is given by

G-=(q.0*F —1|do, (11)

87> Jo o

where m, is the mass of the electron and ¢, is the
elementary charge. Writing Lgy as a power series of F
and G yields

160 (F2 17
Lgy = Ligp ~i5mt (7+§92>

+O(F, G, F*G, FG), (12)

where a = ¢?/(4r) is the fine structure constant. Assuming
that the electromagnetic field is sufficiently small, and
taking into account the terms up to the quadratic order of F
and G, the EH Lagrangian is approximated by

7
Len = Ligp +g]__2+§}’gz (13)

which corresponds to the weak field approximation of

[50,51], and the coupling constant y is written as y =

_ 1607
45m?

theories, other types of L(F, G) electrodynamics (contain-
ing such instances as power law [53,54], inverse [55,56],
exponential [57], rational [58], logarithmic [59], double
logarithmic [60] and other NLEDs) have been discussed in
the literature. They have been created for applications in
gravity and cosmology, as well as for a gravity/condensed
matter theory holographic description of certain strongly
coupled condensed matter systems [52].

The main objective of this article is to present a method
to generate magnetically charged ultrastatic nonexotic
traversable wormhole solutions in Einstein-scalar-Gauss-
Bonnet gravity coupled to £(F) electrodynamics (depend-
ing only on the invariant ). In our case the fGB curvature
is what creates the necessary violation of the null-energy
condition required for the traversability of wormholes, thus,
in a sense, the effective negative energy density comes from
the geometry itself instead of the matter source as in GR.
In the next section we obtain the field equations for the
EsGB-L(F) gravity. Then in Sec. III the generic metric of a
static, spherically symmetric and asymptotically flat tra-
versable wormhole spacetime is presented, and we examine
the relation between traversability and the requirement of
exotic matter in GR and EsGB gravity contexts. In IV a

. In addition to Born-Infeld and Euler-Heisenberg

1 [ e [( P Re{cosh (¢, 0v2F + 2iG)} 2

Im{cosh (q.0v2F +2iG)} 3

|

simple method to generate ultrastatic spherically symmetric
and asymptotically flat T-WH solutions without exotic
matter in EsGB-L(F) is presented, and some examples of
T-WHs supported by purely magnetic fields and fGB
curvature are displayed in V. This is followed by the
conclusion and discussion. In this paper we use units
where G = ¢ = h = €5 = py = 1, and the metric signature
(—+++). Greek indices run from 0 to 3 and Latin indices
run from 1 to 3.

I1. BASIC FIELD EQUATIONS IN EINSTEIN-
SCALAR-GAUSS-BONNET-L(F) GRAVITY

In this section we shall briefly describe the dynamical
equations of Einstein-scalar-Gauss-Bonnet theory mini-
mally coupled to linear/nonlinear electrodynamics L(F)
acting as a source. The general action for an EsGB-L(F)
theory of gravity is given by

1 1
S[g;w’ql)’Aa] :/d4x\/__g{E(R_§ a¢aa¢+f(¢)RéB

1
-—r 14
) (14
which is basically the action (8) with L e =

—L(F)/(4x), where L(F) is a function of the electro-
magnetic invariants F = %F apF % where F ap = 20/44p
are the components of the electromagnetic field tensor
F = 1F,5dx® A dxP, and A, the components of the electro-
magnetic potential.

Using the notation Ly = % and f = % (we shall use
similar notation for higher derivatives), the EsGB-L(F)
field equations arising from varying the action (14) with
respect to the metric tensor g,,, the electromagnetic
potential A, and the scalar field ¢, are given by

Gaﬁ + @,lﬂ = 871(Ea/} )sF + SﬂT,,/’ (15)
V,(LrF) =0 = dF (16)
V2 +f(¢)REs = 0, (17)
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where G, =R, —%5,/ are the components of the
Einstein tensor, whereas the quantities 0,7, (E,”)qr and
T,/ are defined by

1 -
®a/} = 5 (ga/)all[} + ga/lé/)ﬂ)nwlyo—Rpévavfa;J‘(gb) (18)

Sﬂ(Eaﬁ)SF = % (aﬂ¢aﬂ¢)5a/} + %aa¢aﬂ¢ (19)

8T, = 2L 5F o " —2L5,F (20)

with R/’Vﬂy =" Ryp, = €7 Ry //=9. Thus, the quan-
tities ®,” are the components of a tensor which we refer to as
the fGB curvature tensor, since that captures the contribution
to the spacetime curvature due to the effects of the fGB term
in the action; (E,”)q are the components of the canonical
energy-momentum tensor of the massless scalar field ¢,
while T,/ are the components of the energy-momentum
tensor associated with the £(F) electrodynamics.

The structure of the field equation (15) motivates the
definition of the effective energy-momentum tensor, &,”, as
87&, = 8n(E,l)sr — O, + 8xT,P, thus, the field equa-
tion (15) can be written in a GR-like form as G,/ = 8z& 7.

Now, we focus on obtaining the relevant motion
equations of the EsGB-L(F) system (without cosmologi-
cal constant) for a static and spherically symmetric space-
time with a magnetic field as the source. To do this, we
assume the static and spherically symmetric spacetime
metric in standard coordinates (¢, r, 0, @), also known as
Schwarzschild like coordinates, is given by

ds® = —e*di? + B dr? + r2(d6? 4 sin*0dg?)  (21)

with A(r) and B(r) unknown functions to be determined,
and also the scalar field is static and spherically symmetric,
¢ = ¢(r). Taking into account the line element (21), the
nonvanishing components of the Einstein tensor can be
expressed as

e B e B
G'=—(-rB'—ef+1), G,/ =—(rA'-ef+1),
r r
-B
G’ =G,? = ‘Z_(m’z —rA'B'+2rA" +24' —2B"), (22)
r

where the prime ’ denotes the derivative with respect to the
radial coordinate r (i.e. A’ = %). For the nontrivial com-
ponents of the energy-momentum tensor of self-interacting
scalar field we have

87(E, sk = 8”(E96)SF = 8”<E¢¢)SF = —87(E,")sp

__1 —B 412
=3¢ (23)

The nonvanishing components of the fGB curvature
tensor are

e—ZB

0, = {16(e? - 1)f¢”
r

= 8[(eP =3By — 2P = 1)¢"[F}  (24)

_ 8(ef —3)e2BAYSf

0, = e (25)
@gg - @ 4
028 .
— _T {8A{f¢/2 + 4[(A/2 + 2A//)¢/
+ (24" = 3B'9)A }. (26)

Regarding the electromagnetic field tensor, since the
spacetime is static and spherically symmetric, then the only
nonvanishing terms are the electric component F,, = £(r)
and the magnetic component Fg, = B(r,6). However,
in this work, we can restrict ourselves to the purely
magnetic field, i.e. F,, = 0 and Fy, # 0. With this restric-
tion, the electromagnetic field tensor has the form F43 =
(8%8) — 846}) Fq,- In this way, for a static and spherically
symmetric spacetime with line element (21), the general
solution of the equations V,(LzF*) = 0 is

Fy, = r*Q(r)sin0, (27)

»
where Q(r) is a function of r only. This means F =
r*Q(r) sin0dO A dg, and therefore dF = (r*Q(r))’ sinfdr A
dO Adgp=0. This implies Q(r) = v/2¢/r*, where \/2q is
an integration constant associated with magnetic charge.
Hence, in the pure magnetic sector, the components of the
electromagnetic field tensor F4 and the invariant F are
given by

Fop = V2qsin0(838) — 648%),  F==;. (28)

Finally, the nonvanishing components of T,” for an arbitrary
L(F) function, considering the standard static and spheri-
cally symmetric line element ansatz (21) and a purely
magnetic field (28), are written as

8nT,! = 8xT," = 2L,
82Ty’ = 8xT,» =2Q2F Ly - L). (29)

After replacing the components (22)—(26) and (29), in the
field equation (15), we obtain

104048-5
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G, =81 = 4eB(rB + 8 — 1) = [rZeB +16(ef - 1)f} ¢ -8 [(eB —3)B'¢ —2(eP - 1)¢”} f 4 82e2L  (30)

G, =8rE" = 4eB(—rA' + 8 - 1) = -

rreBg? + 8(ef —3)A'Pf + 8r2e®EL (31)

Gy = 81Es = P [rA’2 — 2B+ (2-rB)A + 2rA”}

= —reBp? + 8AfP? + 4[(A2 + 24" + (2¢" — 3B )A'|f — 8re®B (L —2F Ly). (32)

The equation of motion for the scalar field, Eq. (17), can be
written as

2r" +(4+rA" —rB") ¢

+@b[(e3 —3)A'B' = (eB—1)(2A" +A?)]=0. (33)

This ends the general treatment of the static, spherically
symmetric and pure magnetic solutions in EsGB-L(F).

III. THE GENERIC METRIC OF A STATIC,
SPHERICALLY SYMMETRIC AND
ASYMPTOTICALLY FLAT TRAVERSABLE
WORMHOLE SPACETIME

In accordance with [4,5], the generic metric of a
(3 + 1)-dimensional static, spherically symmetric and
asymptotically flat traversable wormhole spacetime of
the Morris-Thorne type is given by
dr?
b(r)

r

ds? = —e>®de + + r}dQ?, (34)
1

where ®(r) and b(r) are smooth functions, respectively
known as redshift function (since this gives a measure of
the gravitational redshift) and shape function (since this
determines the topological configuration of the spacetime).
Moreover, the WH spacetime is characterized by the
existence of a throat, where this is a two-sphere of radius
ro satisfying b(rg) = ro, acting as a membrane connecting
the two sides of the WH. The range of the r coordinate, is
r € [rg, ). Therefore, here the coordinate r has a special
geometric interpretation, such that 477 is the area of a
sphere centered on the WH throat. On the other hand, as
was shown in Refs. [4,5], for the WH to be traversable, the
fulfilling of the following conditions is required:

b
Wormhole domain: 1 — b(r) >0 Vr>r (35)
r

Absence of horizons: ¢*®") eR* — {0} Vr>r, (36)

Flare-out condition: »'(r)|,_, <1 (37)

r=ry

b
AF spacetime: lim®(r) =0 and lim b(r) =0, (38)

r—00 r—oo r

where, as well as in Eq. (22), the prime ’ denotes derivative
with respect to r.
Let us identify the metrics (21) and (34), that is Al =

e*®() and eB() = (1 - &;))_1 and consider the null vector

n=e*0,+ (1 - @)%dr, written as a linear combina-
tion of elements of a basis {0, 9,, 0y, 9, } of vector space,
whereas {dt,dr,d0,d¢} is a basis of dual vector space,

such that dx“(dy) = dy(dx”) = 55. We can see that n is
a null vector since ds?(n,n) = g,zn"n” = 0. Using (22)
and assuming the flaring out condition is fulfilled [i.e.
b'(rg) < 1], after contracting the Einstein tensor with r and
evaluating at r = r,, yields

1
Gagtn |,y = (G =G|, =1/ (r0) = 1] <0. (39)
0

Below, let us examine the effects of inequality (39) in the
gravity contexts of GR and EsGB-L(F).

(1) Traversability of wormhole and violation of null
energy condition (NEC) in GR. Let us consider the
construction of a T-WH solution (34), in the context
of GR. Then, demanding the fulfillment of the
Einstein field equations G5 = 87T 4, the condition
(39) implies that

Topnn?|,_, <O. (40)

This yields that in GR the NEC (which establishes
that for any null vector n%, Taﬁn"nﬁ > 0) is violated
for a T-WH spacetime. Therefore, in GR the fulfill-
ment of the flaring out condition, which is consid-
ered fundamental for a T-WH, implies the existence
of exotic matter (i.e. matter whose energy momen-
tum tensor violates the NEC). In summary, in the GR
context, the violations of the energy conditions at
wormhole throats are unavoidable.

(i) Traversability of wormhole and fulfillment of NEC
in EsGB-L(F). Now, with regards to EsGB-L(F),
the field equation (15) has an analogous structure to

104048-6
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those in GR with a effective energy-momentum
tensor given by 87&,;=87(Eyp)sp—0up+87T 4.
In the same way as (39), us to calculate Saﬂn“nﬂ

i — @) G)Y:
using the null vector n = e 0; + (1 ==7)%0,.
Thus, one finds that
8ﬂ5aﬂna”ﬂ = 8”[(Err)SF - (Ert)SF} -[6,"-©/]

+ 8x[T,” —T/]. (41)

From (29) it follows that 7,” — T," = 0, and hence

8aEapnn = 87 (E)se = (E/)se | - [0, - 0],
(42)

Taking advantage of the structure of the EsGB field
equation (15) and using (39), we conclude that in
EsGB-L(F) theory (in the pure magnetic sector), for
a traversable wormholes spacetime (34), the flaring
out condition (37) implies that

f a r
8ty nenl,_,, = 8z | (E)se = (E/)se]

r=ry

- [®rr - ®tt“r:r0 <0. (43)
But, according to (23), if the scalar field is real
defined [¢(r) €R] in the whole T-WH spacetime,
this yields

B (Ese=3 (1= )00 Vrzrg

r

(44)

hence, the fGB curvature is solely responsible for
fulfilling the inequality (43). Therefore, in the
framework of EsGB-L(F) gravity, the existence
of nonexotic static and spherically symmetric tra-
versable wormhole solutions is not ruled out. Now
we are ready to present a general procedure to derive
ultrastatic T-WH spacetime solutions supported by
nonexotic matter in this modified gravity context.

IV. A SIMPLE METHOD TO GENERATE
ULTRASTATIC SPHERICALLY SYMMETRIC
AND ASYMPTOTICALLY FLAT TRAVERSABLE
WORMHOLES WITHOUT EXOTIC
MATTER IN EsGB - £(F)

We start by mentioning some general aspects about the
ultrastatic spherically symmetric and asymptotically flat
spacetimes. A spacetime is called ultrastatic if it admits an
atlas of charts in which the metric tensor takes the form

ds* = —di® + g jldxjdx’ (45)
in some coordinate system {x*}}_, = (1, {x'};_,), where
the Latin indices label spatial coordinates only, where 7 is
the time relative to a free-falling observer moving with
four-velocity u®* = —g”’/’()ﬂt, and where the metric coeffi-
cients g;; are independent of the time coordinate 7. In an
ultrastatic spacetime the only nonvanishing Christoffel
symbols are I ji (and their partial derivatives with respect
to spatial coordinates), see Ref. [61] for details. In other
words, computing the Christoffel symbols for the metric
(45), we get

Foaﬂ - Faﬂo - 60Fijl - O (46)

which implies that the only components of the Riemann
tensor R%,,, of the metric (45), that do not vanish
identically, coincide with those of the Riemann tensor
()R%,,, of the three-dimensional metric ®ds? = g;dx/dx'.
As a consequence, the differential geometrical properties of
ultrastatic spacetime (45) are completely determined by the
Riemannian metric induced on three-dimensional hyper-
surface 1 = constant, ¥ds? = g;dxdx' (see Refs. [62-65]
for details).

For the particular case of interest, setting ®(r) = 0 in the
line element ansatz (34) and preserving the conditions
(35)—-(38), one arrives at the canonical metric for an
ultrastatic, spherical symmetric and asymptotically flat
T-WH spacetime.

A. Method to generate ultrastatic spherically
symmetric spacetime solutions in EsGB-L(F)

Below, the more general magnetically charged ultrastatic
and spherically symmetric spacetime solution of EsGB-
L(F) gravity is presented.

Method. Starting from an arbitrary £(F) model, the
following shape function

with F=2 (47

where o, and ¢ are real parameters (representing the scalar
and magnetic charge, respectively), determines a magneti-
cally charge ultrastatic and spherically symmetric space-
time metrics given by

2

d
dS2 = —dl‘2 + 1 rh(r) + r2 (d92 + Sin26d¢2) (48)

r

which is an exact solution of EsGB-L(F) field equa-
tions (30)—(33), with EsGB theory determined by a mass-
less scalar field and coupling function (in terms of the radial
coordinate), given respectively by
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o X
ﬂﬂ—[#WVWﬁ (49)
with f(r) given by

0= i)

r’ [0’(2)(%’()()—2)(1?0()—03)<1_b)(;()> :

=2
d 9
8> d

(50)

where r( is a integration constant, which we are setting
as the minimum value of the radial coordinate r, i.e.
r € [rg, ). Therefore, given a linear/nonlinear electrody-
namics with an arbitrary electromagnetic Lagrangian
density L(F), being L(F) a well-definite function of F,
it follows that the metric (48) with shape function (47),
together with the scalar field (49) and sGB coupling
function (50), is the more general purely magnetic ultra-
static and spherically symmetric solution of EsGB-L(F)
field equations (30)—(33).

It is important to stress that Eqs. (47)—(50) come from
integrating the field equations (30)—(33), for an arbitrary
magnetically charged ultrastatic spherically symmetric
spacetime geometry. This means that any magnetically
charged ultrastatic and spherically symmetric ESGB-L(F)
solution must be compatible with Eqs. (47)-(50).

We now turn to the form of the solution of the field
equations at large distances from the spacetime region
r = ry. Although Egs. (47)—(50) are valid for any L(F)
model, not all those models correspond to physically
reasonable models of electrodynamics. In order to do this,
several assumptions on the Lagrangian density £(F) must
be considered. An important assumption is to require that
in the weak field limit (F — 0 = r - o) the Lagrangian
density L(F) approaches the Maxwell Lagrangian
L(F) =~ F. Thus, for a L(F) model satisfying the weak
field limit yields that at the asymptotic region (r — oo0) the
shape function (47) goes to zero as b(r) ~ (8¢*> — 63)/(4r),
and the scalar field (49) has the following asymptotic
behavior:

#0) = =2 +0( ). (51)
r r

Thus, the parameter o, can be associated with the charge of
the scalar field (49), and ¢, is a parameter that denotes the
asymptotic value of the scalar field® (see Ref. [41] for
details).

“That is, lim, b (r) = lim, o, [ % (1 - YRy = b, for
the £(F) model with a Maxwell asymptotic limit.

Notice that a magnetically charged ultrastatic and spheri-
cally symmetric EsGB-L(F) solution, with F(r) =%
having a strict global maximum’ F, at ry, and such that
Ly = L(Fy) is a positive number (L, > 0), admits a
magnetically charged ultrastatic wormhole interpretation
with throat radius given by

1+ /263L + 1
= . 52
o \/ 4L, (52)

Theorem 1. In an Einstein-scalar-Gauss-Bonnet theory
whose action is given by Eq. (14), where f(¢) is a
continuous and differentiable function of the class C? (as
a minimum), the only ultrastatic spherically symmetric and
asymptotically flat traversable wormhole solution of the
pure EsGB field equations [i.e. field equations (15)—(17),
with £(F) = 0] is the Ellis-Bronnikov wormhole metric
characterized by an imaginary scalar field (with negative
kinetic energy term) and f(¢) = constant, everywhere of
the T-WH spacetime.

Proof. The problem of describing an ultrastatic spheri-
cally symmetric and asymptotically flat T-WH solution in
pure EsGB theory (i.e. in Einstein-scalar-Gauss-Bonnet
without additional matters fields) reduces to solving the
equations (47)—(50) with £(F) = 0. For this case the shape
function (47) becomes b(r) = —c3/(4r); hence, the line
element (48) with ®(r) = 0 takes the form

d 2
ds® = —df? + - 1 P2(d6? + sin®0dg?).  (53)

143

The scalar field (49) becomes

2
0y

2 VAT ol
$= % _tan~! (\/)”—+260) = 42tanh™! (

45? —I—a%)

(54)

Evaluating Eq. (50) yields f(¢p) = constant. Hence, for this
case, the Finstein-scalar-Gauss-Bonnet theory reduces to
general relativity, and the spacetime metric (53) describes
a naked singularity spacetime. If one allows o, to be an
imaginary number, that is oy = 2ai being a€R and

i> = —1, the scalar field becomes imaginary, and is given by

2 2
¢ = £2itan™! < i ) (55)

a

whereas the line element (53) becomes

*That is, Fo = F(rg) > F(r) for all r # rq in the entire range
of the radial coordinates.
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2 -1
ds? = —di? + <1 —Crl—2> dr? + r*(d6? +sin’*0dgp?).  (56)

This metric was originally introduced in [66,67], admits a
T-WH interpretation since satisfies the properties (35)—(38)
with wormhole throat radius ry = |a|, and is known as
the Ellis-Bronnikov wormhole metric.'’ Since for this
case L(F) = f(¢) = 0 yields that the gravitational action
(14) for the which the metric (56) together with the
massless scalar field (55) becomes an exact solution, it
takes the following form:

Sloand1 = [ ¢rv=af e (R-0000) ). 9

Alternatively, defining a new scalar field by w = i¢
(phantom field), the wormhole metric (56) becomes a
solution to the theory with gravitational action

Slounv] = [ d“w—_g{ﬁ (R T %%W‘w) } (59)

with y given by

2_ 2
1//—2tan_1< r 2q>€|R. (60)
q

This is the action that was used by Ellis in Ref. [66] to get
the wormhole solution (56), independently derived also by
Bronnikov in Ref. [67], where this is the first example of a
Morris-Thorne traversable wormhole solution in general
relativity theory. Therefore, the Ellis-Bronnikov wormhole,
whose energy momentum tensor (in the GR context) can
be represented by a massless phantom scalar field with
negative kinetic term playing the role of exotic matter, is
considered as one of the first and simplest examples of
T-WHs in GR. This solution has been extensively studied,
and its properties like gravitational lensing [68], quasinor-
mal modes [69], shadows [70] and stability [71] have all
been thoroughly investigated.

'OTransforming the standard radial coordinate r into a new

radial coordinate p defined as p = +V/r> — a®, where the plus
(minus) sign is related to the upper (lower) part of the wormhole,

which implies dp = £(r/Vr* — a®)dr, the line element (56)
acquires a simpler structure given by

ds* = —di* + dp? + (p* + a®)(d&* + sin’0d¢*)  (57)

that has the form of the metric originally introduced by the Ellis
metric (drainhole).

V. CONSTRUCTION OF TRAVERSABLE
WORMHOLES WITHOUT EXOTIC MATTER
IN EINSTEIN-SCALAR-GAUSS-BONNET-L(F)

GRAVITY

Considering L£(F) electromagnetic models coupled to
GR or modified theories of gravity, interesting solutions
like regular black holes and traversable wormholes, have
been constructed. See, for instance, Refs. [43,45,46,53-55,
57,60,72—76] among others. However, most NLED models
used require an unreasonable amount of fine-tuning and,
furthermore, lack a fundamental theoretical origin.

Below, let us display some examples of applications of
the method presented in Sec. IV. It is important to remark
that all of the £(F) models that will be used to produce our
solutions have a fundamental theoretical origin. Moreover,
these models in the weak field limit become the Maxwell
electrodynamics, and have been used in other issues, such
as the problem of infinite energy of electron as point
charge, the black hole singularity problem, and cosmology
(generate primordial magnetic fields in the Universe).

A. Magnetically charged Ellis-Bronnikov wormhole
in EsGB Maxwell gravity

Let us consider the Maxwell’s electromagnetic theory
which is defined by a linear Lagrangian in the electro-
magnetic invariant F, i.e. Lygp = F. For this case,
computing the shape function (47) and substituting in (48)
yields the following ultrastatic spacetime metric:

802 — o2\ -
ds? = —d* + (1 _4(14 260) dr?
r

+ r}(d6* + sin*0dg?) (61)

whereas, according to Egs. (49) and (50), the corresponding
EsGB model for which this metric is an exact purely
magnetic solution of the EsGB Maxwell field equations can
be determined by

8q2 - 0%

b= 20 4 (\/4r2 —8q% + o%) 62)

fd) =

qz(a% ~84°)¢ sec4< V8~ - 63¢>. (63)

2
2
4o} 20

Using these expression, the sGB coupling function f(¢) =
fg’of(q;ﬁ)da) becomes
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f(9)= %2 { sec? <7” 8(1226_ 6(2)¢> +In [sec4 (7” 86122 — a%qb) ]
0 00
_ V34’ =0 {2 +sec? <4' 8q_~ 6%¢>]
0o

2
260

X tan <7'8q220__602¢> } +ap). (64)
0

where a(») is a constant determined by the parameters g, o
and ¢y = ¢p(ry). Without any loss of generality, one can
always set a(;) = 0. It is important to note that this first
example corresponds to the magnetic dual of the electri-
cally charged Ellis-Bronnikov wormhole in EsGB Maxwell
gravity, presented in Ref. [44].

1. Magnetically charged Ellis-Bronnikov T-WH
in EsGB Maxwell theory without exotic matter

It can be seen that the line element (61), for the case
8¢*> > o3, has an ultrastatic spherically symmetric and
asymptotically flat WH structure with shape function
biep(r) = (8¢*> —63)/(4r), and throat radius given by
ro = /(8¢ — 63)/4. Moreover, since this shape function

byep(r) satisfies the flaring-out condition, that is

b
1—7LE‘;(r)>o Vr>ro, and blgp(rg)=—1, (65)

we conclude that, for this case, the line element admits a
T-WH interpretation. In contrast with the Ellis and
Bronnikov works [66,67], here the scalar field (62) is real
in the whole T-WH spacetime. Furthermore, notice that the
electromagnetic Lagrangian in consideration, i.e. £;gp =
F = z—j, satisfies the constraints (A8) and (A9), guaranteeing
the positivity of the local energy density associated with the
magnetic field.

Summarizing, the metric (61) with 8¢ > 63 becomes a
purely magnetic ultrastatic traversable wormhole solution
supported by nonexotic matter in the framework of EsGB-
Maxwell gravity.

Figure 1 shows the behavior of the shape function for
several values of s = (8¢ — 63)/4; for s < 0 the solution
describes a naked singularity spacetime; s = 0, the solution
becomes the Minkowski metric; s > 0, the solution admits
an ultrastatic T-WH interpretation.

Below, the particular cases of vanishing scalar field
(69 = 0 # g), and vanishing magnetic field (¢( # 0 = q)
are discussed.

2. Magnetically charged Ellis-Bronnikov T-WH in EGB
Maxwell theory with variable GB coefficient

The line element (61) for the particular case with
o9 = 0 # g takes the form

Ultra-static EsGB Maxwell solution

______________

— Naked singularity (s = -2)
— Naked singularity (s =-1)
— — Minkowski (s = 0)

— — T-WH((s=1)

""" T-WH (s =2)

FIG. 1. Behavior of ¢"" = 1 — bygp(r)/r, for different values
of s = (8¢*> — 63)/4. The ordinate is ¢ = 1 — s/r*; T-WHs are
only possible for s > 0. The abscissa is r; zeros indicate the
location of a wormhole throat.

2 2\ -1
ds? = —df* + (1 - %) dr
r
+ 2(d6? + sin*0dg?), (66)

which has a magnetically charged ultrastatic T-WH inter-
pretation, since this line element is equivalent to an Ellis-
Bronnikov wormhole, Eq. (56), but with a throat of radius
determined by the magnetic charge only, ry = \/2¢>. On
the other hand, regarding the absence of scalar charge
oy = 0, this implies that ¢ = 0, ¢’ = 0, ¢" = 0. However,
according to Egs. (62) and (64), the following limits
limgo_,oz;% and lim, _qf(¢) exist, and correspond to well-
defined (nontrivial) functions of r. On the other hand,
limgo_,of (¢p) > o0, and limaoﬁof (¢p) = 0. Despite this, the
quantities f(¢) and f(¢) appear in the field equations (30),
(31) and (32), as multiplicative factors to derivatives of the
scalar field, i.e. ¢'f(¢), ¢"f(p) and ¢*f(¢), and these
factors (as oy = 0) are well-defined functions in the whole
wormhole domain, given by

. rtan~! ( r22_(122‘12>
¢{f(¢)|00=0 == ’
V8a\/rP =24
. (r* — ¢*)r*tan™! r-2g
$F (D)0 = V) (67)

V2q(r? = 2¢°)}

and
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r? [q +1/8(r* = 2¢*)tan™! (
2q(2¢% = 1)

r? —2q2
247

(68)

¢/2f(¢) |60:0 =

Therefore there is no conflict with the fulfillment of the
field equations when oy = 0.

Alternatively, the above can also be interpreted as follows:
when oy = 0, the scalar field turns off ¢(r) = 0, and the
EsGB theory defined by Egs. (62) and (64) reduces to an
Einstein-Gauss-Bonnet theory with variable Gauss-Bonnet

coefficient agg(r) = f(r) = lim, _of (¢) given by
2P (R
ST U Y

1 r? r? —2q2
—-— (49 +—)y\/r* — 2¢*tan”! ,
\/72< 7 61) I 24

(69)

so that agg(r) = ¢f (#)ls,—0 and agy(r) = ¢"f(¢)ls,—0+
& (@) | ,—0- In summary, we can say that when ¢, = 0 the
line element (61) is a purely magnetic solution of an EGB-
Maxwell theory with variable Gauss-Bonnet coefficient,
agg =f(r), given by (69). In this case the traversable
Ellis-Bronnikov wormhole is nonexotic, and is supported
by the source-free magnetic field'' and fGB curvature.

3. Ellis-Bronnikov wormhole without electric charge
supported by a phantom scalar field

For the particular case 6y # 0 = ¢, the line element (61)
becomes

r

2 2 AN
dS = —dt + 1 + F dr
+ r2(d6? + sin®0dyp?) (70)

while the expressions (62) and (63) take the form

¢ = 260 tan_l <7°4r2_|_6(2)>

2 2

—0p —00
45 + 62 ;
_ -1 0 _
= 42tanh ( 2 ), f(¢)=0. (71)

Hence, we conclude that when g = 0, the electromagnetic
effects are turned off and the original Ellis-Bronnikov work
(53)—(60) is recovered.

"Le. for this solution the electromagnetic field tensor satisfies
the source-free generalized Maxwell equations (16).

B. New magnetically charged wormhole in EsGB
Euler-Heisenberg gravity

In the following we shall consider the Euler-Heisenberg
nonlinear electrodynamics model in the approximation of
the weak-field limit:

Ley = Ligp + g]:z. (72)

In order to expand the range of this model, let us consider y
as an arbitrary parameter which can be positive, negative or
null. Notice that, regardless of the sign of the parameter y,
the electrodynamics model (72) satisfies the correspon-
dence to Maxwell theory (i.e. Lgg ~ F as F = 0). On the
other hand, evaluating (47) from (72) and then substituting
into (48) we find the following novel ultrastatic metric:

2

8 2—6 4N\ -1
ds2:—dt2+(1—q4r2—yrqé) dr?

+ r2(d6* + sin’*0dgp?) (73)

while, according to (49) and (50), the corresponding EsGB
model for which this metric is an exact purely magnetic
solution of the EsGB Euler-Heisenberg field equations can
be determined by

260y

b(r) = / ' oo dz.

8¢ —o3)x* — 4r4"

fir) = / o (R ()7 (74)
37

" 200[(847 — o) + 47

x <\/4r6 — (847 — B2)r* — dyg*

+2r2 r
30’0 ro

fr) =

(4% 3)(2)45’()()61)()- (75)

In accordance with Sec. IV, one can see that the above
expressions (72)—(75) verify the EsGB-L(F) field equa-
tions (30)—(33) for the pure magnetic field.'?

Limit case of zero scalar field charge. For the case
o9 = 0, the line element (73) becomes

2

2 4\ -1
dszz—dr2+<1—q—7q> dr

r2 }"6

+ r2(d6? + sin0dg?). (76)

For this case, according to Eq. (75), the scalar field
becomes vanished ¢ = O for all values of the r coordinate.

"LLe. for this solution the electromagnetic field tensor has the
form (28).

104048-11



PEDRO CANATE

PHYS. REV. D 108, 104048 (2023)

It is to be noted that in this case the following expressions
d/oo, P'f, ¢''f and ¢*f, when o, — 0, become nontrivial
well-defined functions of the radial coordinate. For in-
stance, as o, — 0 the factor ¢/f becomes

. 37
PN =-—r= 2,4 (g 2 4 4
VA0 = 8¢%r* — 4yt 18¢%r* + dyq]

X (\/41‘6 —8¢%r* — 4yq*

472 Aq? — 32
A (g — ) 4d)() (77)
ro V/4x°® — 8% — 4rg

and then (¢'f) = ¢"'f + (¢')*f is well defined for the case
with 6y = 0. Summarizing, we can say that, when o, = 0,
the scalar field becomes trivial, ¢(r) = 0. However, the line
element (76) is still a pure-magnetic ultrastatic solution
of the EsGB Euler-Heisenberg system. Alternatively, this
frame of EsGB-Heisenberg gravity is equivalent to an EGB
Euler-Heisenberg theory with a variable GB coefficient

determined by agg(r) = [} ¢'( (Ff(F)dF with ¢/ (r)f (r)

given by (77).

Limit case of linear electrodynamics. For the case y = 0
(for all oy, g) the Lagrangian density (72) becomes the
Maxwell’s electrodynamics Lagrangian, the metric (73)
reduces to (61), and the scalar field (74) becomes (62);
whereas the expression (75) reduces to (63). Therefore, for
this limit case the solution (61)—(64) is recovered.

Now we consider the particular cases y > 0 and y < 0,
and we determine the parameter settings needed so that the
three-parameter solution (73) admits T-WH interpretations.

1. Casey >0

For this case replacing y = u> (being u€R) into
Eq. (72), and since F = ¢?/r* (i.e. positive defined for
any values of the radial coordinate), yields that Lgy obeys
the following inequalities:

Iu2
EEH:f‘F?j:Q_

dﬁj‘f_‘{ =14+u2F>0. (78)

This indicates that the energy momentum tensor associated
with this nonlinear electrodynamics satisfies the null and
weak energy conditions (A8) and (A9). Furthermore, the
line element (73) takes the form

82 — o2 ula*\-!
ds2——dt2+<1—7q4260—ﬂq> dr?
r

76

r?(d6? + sin’0dg?) (79)

which has an ultrastatic WH structure with shape function

given by bgy(r)
ao/r +a;/r’, with ay =

= # —5—’%. For simplicity bgy(r) =
(84> —c3)/4 and a; = pq*.

Specifically, considering nontrivial
effects (i.e. imposing that a; # 0) yields

Euler-Heisenberg

,  (80)

where x is an auxiliary variable with range x € (0, o). In
Fig. 2 we can see that in the whole range of auxiliary
variable x, the function ¢""(x) vanishes only at x = xj,
where x is such that

2 8 1243 3=
xgzlg:§<“_f) 6[108+ a°+12( a°+81”
31 3 a; ay
1

+2(“f> [108+8a°+12[12“0+81H EI)

a3l a a

Then, the throat radius squared is given by

r%:—ao—|—6

1
3 [108511+8a0+12(120001+81a1)%]

1

2 1 3
+§a(2) |:108a1 +8aj+12(12a3a, +81a%)7] (82)

Ultra-static EsGB Euler-Heisenber solution with y>0

grr

—— T-WH(s=2) —— T-WH (s=1)
— —T-WH(s=0) —— T-WH (s=-1)
----- T-WH (s = -2)

FIG. 2. Behavior of g = 1 — bgy(r)/r, for several real values

1

of the parameter s = ay/aj, with ay = (84> —03)/4€R and

a; = p*q* € R* — {0}, is shown; the ordinate is ¢ = 1 — 5 /x>~
1

1/x%; the abscissa is x being x = r/af.
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which satisfies

b
el g _de_a gy
r o
ap 5a1 ag a 461]

By (rg) = ~20 291 _ %o _ a1 ta

e (7o) 2 rgorS 1§
4

S R (83)

ry

Thus the solution (73), under the action of nontrivial effects
of EH theory (i.e. Lgy with u, g € R —{0}), fulfills the
flaring out condition, and hence represents a traversable
wormbhole interpretation which is supported by nonexotic
matter, since EH theory satisfies the WEC Eq. (78) and the
scalar field (74) is real in the whole T-WH spacetime, that is

[
SN
Hence, for the setting of parameters {y > 0,g€R — {0},
oo €R} the line element (76) can be interpreted as the
metric of a T-WH spacetime supported by nonexotic
matter in the gravity context of EsSGB Euler-Heisenberg
gravity.

New magnetically charged T-WH in EGB Euler-
Heisenberg (y > 0) theory with variable agg. The line
element (79) for the particular case 6y = 0 reduces to

2 2 2 4N\ —1
dszz—dt2+<1—i—”q> dr?

r2 r6

dy>0 VYr>r. (84)

r2(d6* + sin*0dgp?) (85)

which still admits a T-WH interpretation. We can say that
when oy = 0, the scalar field becomes trivial, ¢(r) = 0.
However, the line element (85) is a pure-magnetic T-WH
solution of an EGB Euler—Heisenberg theory with variable
GB coefficient agg(r) = (F)f (7)d7, where

@ (r)f (r) is determined by (77) with y = p2. In this case
the traversable wormhole is supported by a physically
reasonable Euler-Heisenberg electrodynamics and fGB
curvature.

2. Casey <0

For this case replacing y = —u? (being p€R) into
Eq. (72) yields

2 2 2.2
H q K 4q
LEH:f_?f2:F<1_7> and

2.2
dﬁEH:l_/ﬂ]-‘:l_Mq

dF o (86)

Hence, we conclude that the energy momentum tensor
associated with this nonlinear electrodynamics satisfies

the null and weak energy condition (i.e. the inequalities
Lgg > 0and df% > 0, are simultaneously satisfied) only for

r> \/W (87)

The line element (73) takes the form

8q2 _ 6(2) M2q4 -1
dSZZ—dl‘Z—F <1_T+ 6 dr?
r2(d6* + sin*0dgp?) (88)

8¢°~0p _ g
4r

simplicity bgy (r) = ao/r — a,/r, with ay = (8¢* — 63) /4

and a, = p*q*. Specifically, considering nontrivial NLED

effects (i.e. imposing that a; # 0) yields

bEH(r):l_
r X

with shape function given by bgy(r) =

1
g=1- caa T (89)

) X=

Q‘Q
S

(ST
S|~

We can see that the equation 1 — bgy(xg)/xg =0 only
admits real solutions if s > 3/(2)?/3, which are at most two
positive solutions, x,, and x;,., such that x,, > x;,., with
x2,. given by

2

N
Xout = g
4

[~108+ 85 4 12(=125 + 81)%}%

1
6
2

[—108 4853+ 12(=125% + 81)%} S (90)

Ifs = 3/(2)%? this yields xyy = Xine = 2'/3, whereas, if s >
3/(2)%/3 these solutions are such that x,, > 2'/3 > x;, see
Fig. 3 for illustration. Hence, for the case s = 3/(2)%3 the
solution (73) describes a wormhole spacetime with worm-

hole throat radius r, = aélxo, with xy = x,, = 2'/3, and
satisfying bpy(ry) = 1 (indicating that the flaring out con-
dition is not fulfilled) and hence for this particular case the
corresponding metric describes a nontraversable wormhole
spacetime (NT-WH). For the case s > 3/(2)%/3 ~ 1.8898,
the wormhole solution has a wormhole throat radius

1
ro = a$xp, with xy = xoy > 2'/3, and fulfills the flaring
out condition:

1_1’L(’>:1_a_g+“_61>o V>,
r r r
a, Sa 0, @ 44
ben(ro) ==+~ =——F+—
(7o) 28 rgoors
4a,
rg

Hence, for this case the solution (73) represents a traversable

1
wormhole interpretation. Since xo = ry/aj > 2173 this
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Ultra;lstatic EsGB Euler-Heisenber solution with y<0

2,
1 -
tm 0 T ,/ T T T T 1
\H: 4 s 6
\\/ /.'
177
-1 \\//
— Naked singularity (s =1.2599)
—— NT-WH (s ~ 1.8898)
— — T-WH (s = 2.5198)
— — T-WH (s =3.1498)
----- T-WH (s =3.7797)
FIG. 3. Behavior of ¢ = 1 — bgy(r)/r, for several real values

1
of the parameter s = ag/a; [with ay = (8¢*> — 63)/4€R and
a; = p*q* €R* - {0}], is shown; the ordinate is ¢ = 1—

1
s/x* 4+ 1/x5; the abscissa is x being x = r/aj.

yields 7§ > 4a;. Thus, for the T-WH case s > 3/(2)%/3, the
domain of the radial coordinate r > r, is restricted by a
wormhole throat radius such that

4)q\3
g > (|7||> lugl. (92)

Therefore, according to Eqgs. (87) and (92), by imposing

(% > 1) the traversability of the wormhole without the

requirement of exotic mater in this modified gravity context
is guaranteed.
Thus, for the setting of parameters {y < 0,g€R — {0},

6o ER,s >§,%2 1} the line element (73) can be
3

interpreted as the metric of a T-WH spacetime supported
by nonexotic matter in the gravity context of ESGB Euler-
Heisenberg.

New magnetically charged T-WH in EGB Euler-
Heisenberg (y < 0) theory with variable agg. For the case
of trivial scalar field oy = 0, the metric (88) reduces to

2 2 2 4\ —1
ds2:—dt2+<1—i2+”q> dr
r

6
+ r?(d6* + sin*6dep?). (93)
which, as long as s > 3/(2)*?3 and 4|q|/|u| > 1, becomes

a magnetically charged ultrastatic T-WH solution of an
EGB Euler-Heisenberg theory with variable GB coefficient

acs(r) =f(r) = [} ¢ (P)f (F)d7, where ¢/ (r)f (r) is given
by (77) with y = —u?. This traversable wormhole is
supported by a physically reasonable Euler-Heisenberg
electrodynamics and fGB curvature.

3. New magnetically charged wormhole
in EsGB Born-Infeld gravity

Let us consider the Born-Infeld nonlinear electrodynam-

ics model:
f
=442 -1 14— 4
Ly ﬂ( +\/ +2ﬁ2>’ (94)

where £ is a constant which has the physical interpretation
of a critical field strength [47].

For this case, evaluating Eqs. (47) and (48) yields the
following ultrastatic metric:

-
2 / 2
0p o 2 4, 4 2
1+m+8ﬂ <r — /|7 +2—ﬁ2>1 dr

+ r?(d6* + sin*6dgp?). (95)

ds? = —di* +

According to (49) and (50), the corresponding EsGB model
for which this metric is an exact purely magnetic solution of
the EsGB Euler-Heisenberg field equations can be deter-
mined by

¢m-/’ 260 dr.
o \/4)(4 4 6%)(2 +32 2)(4 ()(2 _ /)(4 + 2’?_}22)
ﬂﬂ—/%WVmﬁ (96)

B 165%r*
o} {0(2) + 3287 (r2 -

, 2
N

ro ){4 + %
Limit case of linear electrodynamics. For any o, and ¢,
when f — oo, the Lagrangian density (94) becomes the
Maxwell’s electrodynamics Lagrangian, the scalar field
(96) becomes (62), whereas Eq. (97) will be reduced to

Eq. (63). Therefore, for this limit case the solution (61)—(64)
is recovered.

7 ek

)wmw. (97)

4. New magnetically charge T-WH in EsGB Born-Infeld
theory without exotic matter

For the solution (94)—(97), the electromagnetic invariant
F is positive definite F = ‘Z—: > 0, therefore it is fulfilled
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£B124ﬂ2<_1+ 1+

dEBI o
dF

f

2_ﬂ2> ZO and
1

1+

>0

— (98)
27

indicating that the energy momentum tensor associated

Ultra-static EsGB Born-Infeld solution

with this nonlinear electrodynamics satisfies the null and
weak energy conditions (A8)-(A9). Moreover, the space-
time metric (95) has an ultrastatic WH structure with shape

/ 22
= 4r_8ﬁ2(r3_ V6+[127).

Specifically, considering nontrivial Born-Infeld effects
(i.e. as long as g # 0 # f3), the metric component g"" =

function given by bg(r) %

=

1 — bg(r)/r can be written as

¢ =1+ 5+ e(V2R - V2r 1 1),
X

(99)

— Naked singularity (0=1, €=0)
— Naked singularity (0=1, e=4)
— — NT-WH (0=1, £%5.757998)
— — T-WH (0=1, &=9)

T-WH (0=0, £=9)

2
where a = %ﬁ, e = % and x = %r. Plots of ¢'" as a
function of x, for different values of @ and ¢, are illustrated ~ FIG- 4. Behaviog of g = 1/g,, with respect to x for different
in Fig. 4. values of a= Z"l—‘qﬁ“ and €= Sli\/g‘. The ordinate is ¢ =

On the other hand, introducing the auxiliary parameter
¢ as

1+ a/x® + e(v/2x* = V2x* + 1); the abscissa is x =

.
lq]

¢ =8ae[3(1 — &2)(2 4 2) + (6V2e? — 8ae — 15V2)ae] + 2V262(e* — 362 +3) —2V/2

+ 24ae? \/6\/5(8052 + 362 — 6V2ae + 5)ae — 3(e2 — 1)? — 602, (100)
we conclude that only if the following expression is true,
& = (32)ad —|—8a2€21— (128)iae — 262 + 1 el (101)
2e ets

the equation 1 — bg;(x()/xo = 0 admits positive real solutions. In fact, in general, there are at most two

solutions x,,; and x;,; such that x,, > x;,, respectively given by

real positive

2 1/’;% et — (32)2063 + 8ae? - (128)2ae — 26 + 1 N e — (8)%78 -1 (102)
12¢ 6ets (72)2¢
2 = x2u N e — (8)%(]18 -1 i | <f% et - (32)2ae® 4 8a2e? - (128)2ae — 262 + 1>. (103)
2 (32)2¢ (48): \2¢ s

Then, if x2, > x2,,, the metric admits a T-WH interpreta-

tion with a wormhole throat radius ry = x,, holding

bgi(ro) < 1. If x%, =x2, €RT the metric admits a

C. New magnetically charged T-WH in EGB
Born-Infeld theory with variable GB coefficient

Now, we want to focus on the limit case 6y = 0 (for all f3,

NT-WH interpretation with a wormhole throat radius
ro = Xou holding by (ry) = 1.

q). For this limit case the metric (95), with parameters
satisfying (101), preserves its T-WH interpretation. But
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now the scalar field (96) becomes zero, whereas f(¢)|,,_o
becomes a nontrivial well-defined function of r. Therefore,
for this case, the metric becomes an exact purely magnetic
solution of an EGB Born Infeld field theory with variable

GB coefficient, agg(r) = [ ¢’ (7)f (7)dF, where ¢/ (r)f (r)
is a well-defined functlon of the radial coordinate, given by

2

<F>¢< )
s

¢ (nf(r)=

}(44‘2“152

dy.

T\_/
m

4+32ﬁ2 (;(2

)]

(104)

VI. CONCLUSION

In this work, we have presented a method to obtain
magnetically charged, ultrastatic and spherically symmetric
spacetime solutions of the EsGB-L(F) theory whose action
is given by Eq. (14), with a sGB coupling function f(¢)
constructed from an arbitrary electromagnetic Lagrangian
density £(F). Using this method, considering vanishing
electromagnetic Lagrangian £(F) = 0, a theorem which
discards the existence of ultrastatic, spherically symmetric
and asymptotically flat traversable wormholes in pure EsGB
theories [with f(¢) #constant], has been proved. Using the
Maxwell’s electromagnetic theory L;pp = F yields the
magnetically charged Ellis-Bronnikov EsGB Maxwell
wormhole (61) which can be interpreted as the magnetic
dual of the purely electric solution derived in Ref. [44].
Additionally two novel magnetically charged ultrastatic
T-WH solutions, with metrics (73) and (95), respectively
associated with the nonlinear electrodynamics models of
Euler-Heisenberg (in the approximation of the weak-
field limit) Lgy = Lygp + 7F2%/2, and Born-Infeld Ly =
—4p% + 43%+\/1 + F/(25?), have been constructed. Both
solutions in the limit of weak electromagnetic field (i.e. as
F =~ 0) are reduced to the magnetically charged Ellis-
Bronnikov EsGB Maxwell wormhole metric. Moreover,
in each solution, the limiting cases, (i) absence of magnetic
charge ¢ = 0 and (ii) vanishing of scalar charge o7 = 0,
were analyzed. In the former case the magnetic field
disappears F = 0, the quantity f(¢) becomes a constant
function and the respective line elements reduce to the Ellis-
Bronnikov wormhole metric as long as the scalar charge
becomes imaginary o, € L In the latter case the T-WHs are
kept open by the fGB curvature with no need of exotic
matter. Thus, for the first time, the construction of T-WH
geometries supported by viable models of nonlinear
electrodynamics, a real scalar field having positive kinetic
term and fGB curvature, has been discussed. In a forth-
coming paper shall be determined the quasinormal modes,

the corresponding Penrose diagrams, as well as we shall
explore the stability of these novel T-WHs. In addition, in
view of the results obtained in this work, it may also be
interesting to investigate whether the stability of the worm-
hole can be guaranteed by a suitable choice of L(F).
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APPENDIX A: NULL AND WEAK ENERGY
CONDITIONS IN EsGB-L(F)

For an energy-momentum tensor 7, the null energy
condition (NEC) stipulates that for every null vector, n%,
yields T,,,n*n” > 0. Following [77], for a diagonal energy-
momentum tensor (7T,;) = diag(T,;, T,,, Ty, T,,), Which
can be conveniently written as

Taﬂ = _ptéatél/} + Prﬁarér/} + Pﬂaagaeﬁ + P(/)(sa(ﬂa(/)ﬂv (Al )
where p, may be interpreted as the rest energy density of
the matter, whereas P,, Py and P, are respectively the
pressures along the r, € and ¢ directions. In terms of (A1)
the NEC implies

pi+P, >0 with a={r6 ¢} (A2)
The weak energy condition (WEC) states that for any
timelike vector k = k*d,, (ie., k,k* <O0), the energy-
momentum tensor obeys the inequality 7, k*k* > 0, which
means that the local energy density pjo. = T, k"k" as
measured by any observer with timelike vector k is a
non-negative quantity. For an energy-momentum tensor of
the form (A1), the WEC will be satisfied if and only if

p=-T,/20,

pi+P,>0 with a={r,0,¢}. (A3)

1. NEC and WEC for a massless scalar field

For static and spherically symmetric spacetime metric,
identifying (19) with (A1), and using (23), yields

(A4)

1
87(p;)sp = —87(Py)sp = =87 (P, )sr = 16_345’2

1
82(P,)gr = 34 (A5)
since (p;)sp + (Py)sg = O forall @ = 0, @, in this geometry
the energy—momentum tensor (E,”)q satisfies the NEC,

Eq. (A2), if

(A6)

1
87(p;)sp + 87(P,)sg = 56’_345/2 > 0.
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Since (A4), in this case the fulfillment of (A6) implies
(p:)sk > 0. Hence, in this case, NEC holds if and only if
WEC holds.

2. NEC and WEC for the linear/nonlinear
electrodynamics: Pure-magnetic case

Using (20) and (29) yields

87(ps)nLep = =87 (P, )niep = 2L,

8”(P6‘)NLED = 8”(P¢)NLED = 2(2-7:£f - E)- (A7)

Since p, + P, =0, the tensor (E/)ygp satisfies the
NEC if

87 (pt)NLED + 8z (pH)NLED

= 87(p;)nLED + Sﬂ(p(/})NLED =4F Ly >0. (A8)
In addition to (AS) if
Sﬂ(ﬂt)NLED =2L2>0 (A9)

the WEC is satisfied.

APPENDIX B: MAGNETICALLY CHARGE
ULTRASTATIC AND SPHERICALLY
SYMMETRIC SOLUTION OF THE
EINSTEIN-GAUSS-BONNET THEORY
(WITH VARIABLE GAUSS-BONNET
COEFFICIENT) COUPLED TO
L(F) ELECTRODYNAMICS

According to Eq. (49) the trivial case of vanishing scalar
field, ¢(r) = 0, is obtained when setting 67 = 0, whereas
for this case the line element (48), with shape function (47),
takes the nontrivial form

dr?
ds* = —df* + ——5——
¢ 127207
2
. . q
+ r2(d®? + sin*0d¢?), with F = T (B1)

However, oy — 0 also implies that ¢/ =0, ¢’ =0,
f(¢) = oo, and f(¢) = co. Despite this, the quantities
f(¢) and f(¢) appear in the EsGB-L(F) field equations
as multiplicative factors to derivatives of the scalar field,

ie., ¢'f(p), ¢"f(¢) and ¢™f (), and these (when 6y = 0)

are nonzero and a regular function in the spacetime domain,
and are given by

POF0) =5 (1-22) P (B2
wf) =PI (B)
1) = s (1- 7))

where we use the auxiliary function

o [ )] )

The quantities (B2), (B3) and (B4) are not independent;
they satisfy

(BS)

W) = ¢'f + 4.

Moreover, for this case the scalar field ¢ and the coupling
function f are decoupled, in such a way that f as a function
of the radial coordinate takes the form

fr) = /ror 4;0) <1 b (?7’)) _%P(?)d?.

Summarizing, we can say that when ¢y = 0, the scalar
field becomes trivial, ¢(r) = 0. However, the line element
(B1), together with the linear/nonlinear electromagnetic
Lagrangian density £(F), scalar field and coupling func-
tion given respectively by (49) and (50), is still a solution
of EsGB-L(F). In this case the parameter ¢ in the line
element (B1) represents the magnetic charge and the
ultrastatic solution is only supported by the source-free
magnetic field and the fGB curvature.

Alternatively, the metric (B1) can be also interpreted as
an exact purely magnetic solution of an of EGB-L(F)
theory with variable GB coefficient agg(r) =f(r) given

by Eq. (B7); hence, agg(r) = ¢'(r)f(r) given by (B2),

whereas afis(r) = ¢" (r)f(r) + ¢*(r)f (r) given by the
sum of Egs. (B3) and (B4).

(B6)

(B7)
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