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Dynamical Chern-Simons (dCS) gravity is a four-dimensional parity-violating extension of general
relativity. The standard mechanism to obtain this extension predicts negligible observational effects due to a
large decay constant f close to the scale of grand unified theories. Here, we present two constructions of
dCS that permit much smaller decay constants, ranging from sub-eV to Planck scales. That is, we show
that, in the same manner as axions, dCS gravity can arise from both spontaneous and dynamical symmetry
breaking. In either case, the angular part of a complex scalar field develops a pseudoscalar Yukawa
interaction with a set of fermions. In the former case, the complex scalar field is a fundamental particle, and
in the latter case, it is a bound state of short-wavelength fermion modes arising from strong four-Fermi self-
interactions. Due to the Yukawa interaction, loop corrections with gravitons then realize a linear coupling
between the angular pseudoscalar and the gravitational Chern-Simons term. The strength of this coupling is
set by the Yukawa coupling constant divided by the fermion mass. Therefore, since fermions with small
masses are ideal, we identify neutrinos as promising candidates. For example, if a neutrino has a mass
mν ≲meV and the Yukawa coupling is order unity, the dCS decay constant can be smaller than
f ∼ 103mν ≲ eV. We discuss other potential choices for fermions and give two examples of four-Fermi UV
completions.
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I. INTRODUCTION

The Einstein-Hilbert (EH) action is the most successful
description of gravity today [1,2]. However, even at
energies far below the regime of quantum gravity, there
is no reason to expect the EH action to be a complete
descriptor of gravity from an effective field theory (EFT)
perspective [3,4]. A large body of work has thus been
extensively researched in order to search for its deviations
[5–10]. One extension is to look for parity violation within
our description of gravity, as we know parity-violating
effects to already be present within the Standard Model
[11,12]. The lowest-order term that encapsulates such
parity violation is given by dynamical Chern-Simons
(dCS) gravity, where an additional pseudoscalar field a

is added that is linearly coupled to the Pontryagin density
�RR [13,14].
The dCS gravity emerges naturally in the low-energy

limit of string theory through the Green-Schwartz anomaly
canceling condition with a decay constant that is typically
the string scale [15,16].1 However, such large decay
constants render compact astrophysical signals and super-
radiance effects to be undetectable. Attempts to generate
dCS through radiative corrections by explicitly including
Lorentz-violating terms [17–19] have also been investi-
gated, although it may be the case that such terms must
vanish by gauge invariance [20]. The dCS gravity is also a
possible solution to the gravitational analog to the strong
CP problem in QCD if the pseudoscalar takes a suitable
minimum [21–23]. In these cases, a gravitational axion is
created either through the breaking of a global Peccei-
Quinn (PQ) [24–26] or axial [27,28] symmetry.
In this work, we generalize the works of Refs. [27,28]

and show that dCS gravity emerges as the low-energy limit
of a wide range of global PQ or axial symmetry-breaking
theories and explicitly calculate its decay constant f.
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1The scale of the decay constant can also depend on com-
pactification volume factors.
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In doing so, we also show that it is possible to generate the
mass of any fermion involved in the symmetry-breaking
process, similar to Refs. [27,29,30]. We finish by demon-
strating that the dCS decay constant can be made to reach
the sub-eV regime for a large range of phenomenological
parameters. Specifically, we point out that, within the
Standard Model, light neutrinos are great candidates for
reaching this threshold.
This paper is organized as follows. First, in Sec. II, we

review the definition and dynamics of dCS gravity. We then
present the physics of spontaneous symmetry breaking of a
global Uð1ÞPQ symmetry in Sec. III and confirm that it
yields a Yukawa coupling between a pseudoscalar and a set
of fermions. With this new coupling, we then show, in
Sec. IV, that it induces a gravitational Chern-Simons
interaction through a triangle diagram with fermion loops.
Then, in Sec. V, we review how a single massive fermion
with attractive self-interactions yields a complex scalar
bound state, thus dynamically breaking the initial axial
symmetry of the theory and giving rise to dCS gravity
similar to Sec. IV. We quantify the parameter space of
generating dCS in Sec. VI and point out possible candidates
for the fermion in Sec. VII. Finally, we discuss and
conclude in Sec. VIII and Sec. IX, respectively.

II. CHERN-SIMONS GRAVITY

Let κR be the EH term with κ ¼ ð16πGÞ−1 and R the
Ricci scalar. Then the vacuum action S of dCS gravity is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κRþ a

4f
�RR −

1

2
ð∇μaÞð∇μaÞ

�
: ð1Þ

The dCS extension beyond EH consists of the dynamical
pseudoscalar field, a, which linearly couples to the
Pontryagin density through the dCS decay constant f.
The Pontryagin density is defined as

�RR ¼ �Rρ
σ
μνRσ

ρμν; ð2Þ

where

�Rρ
σ
μν ¼ 1

2
ϵμναβRρ

σαβ ð3Þ

is Hodge dual to the Riemann tensor and ϵμναβ is the Levi-
Civita tensor. The Pontryagin density can also be written in
terms of divergence of the Chern-Simons topological
current,

∇μKμ ¼ 1

4
�RR; ð4Þ

where

Kμ ≔ ϵμναβ
�
Γσ

νρ∂αΓρ
βσ þ

2

3
Γσ

νρΓρ
αλΓλ

βσ

�
; ð5Þ

giving rise to the name “Chern-Simons gravity.” Varying
the action, Eq. (1), with respect to the metric yields the
modified vacuum field equations,

Gμν þ
1

κf
Cμν ¼

1

2κ
Tμν; ð6Þ

which include a modification from the C tensor,

Cμν ¼ ð∇αaÞϵαβγðμ∇γRνÞ
β þ ð∇α∇βaÞ�RβðμνÞα: ð7Þ

The total energy-momentum tensor Tμν is the sum of any
matter stress-energy tensor (assumed in this subsection to
be zero) and the stress-energy tensor of the pseudoscalar,

TðaÞ
μν ¼ ð∇μaÞð∇νaÞ −

1

2
gμνð∇λaÞð∇λaÞ: ð8Þ

The pseudoscalar field itself obeys the following vacuum
equation of motion:

□a ¼ −
1

4κf
�RR; ð9Þ

which can be obtained by varying the action in Eq. (1) with
respect to a.
The dCS-backreacted solutions of the pseudoscalar onto

a gravitational wave h lead to an amplitude birefringence
between left hL and right hR polarizations, resulting in
parity violation:

FIG. 1. One-loop diagrams for the process a → hh, with a
pseudoscalar particle a depicted as a dashed line and hμν the
graviton as the solid wiggly line. The loops are generated by a
fermion Ψ.

ALEXANDER and CREQUE-SARBINOWSKI PHYS. REV. D 108, 104046 (2023)

104046-2



hL;R ¼ e�Aða;ȧÞL;Reikμxμ : ð10Þ

A key observation of dCS theory concerns the coupling
f. Since f has dimensions of energy, this theory is non-
renormalizable, seen at energies E ≫ f, and so we are
therefore motivated to search for a UV completion of dCS
gravity. More specifically, we expect that the dCS action be
generated by loop diagrams of the UV complete theory, for
example, those shown by Fig. 1. Taking these diagrams as
inspiration, and imposing minimal gravitational couplings,
we must thus construct a theory with a vertex interaction
between the pseudoscalar and two fermions; i.e. we must
obtain a pseudoscalar Yukawa interaction. In what follows,
we show that fermions, and in particular neutrinos, that
self-interact generate such diagrams.

III. SPONTANEOUS SYMMETRY BREAKING

We first review the mechanism to generate pseudoscalar
Yukawa couplings via spontaneous symmetry breaking
[31,32]. Consider the following Lagrangian of a complex
scalar field and Dirac fermion with a Yukawa interaction in
Minkowski spacetime, ημν ¼ diagð−1; 1; 1; 1Þ,

LΦ ¼
X
j¼L;R

iΨ̄jγ
μ
∂μΨj − m̃ΨðΨ̄LΨR þ Ψ̄RΨLÞ

þ ∂μΦ∂
μΦ� − VðjΦj2Þ − yðΦΨ̄LΨR þΦ�Ψ̄RΨLÞ;

ð11Þ

with γμ theDirac gammamatrix, m̃Ψ theDirac fermion’s bare
mass, VðxÞ a Uð1Þ symmetry-breaking potential, and y the
Yukawa coupling constant (which may be attractive or
repulsive). This theory has a vector symmetry, Uð1ÞV,
whereby fermions of vector charge qV are rotated by angle
α,Ψ → eiqVα, and the complex scalar is unchanged,Φ → Φ.
In addition, in themassless limit m̃Ψ → 0, it also enjoys a PQ
symmetry, Uð1ÞPQ, whereby the fermions of PQ charge qPQ
are axially rotated by the angle β,Ψ → eiqPQγ

5βΨ, along with
a compensating rotation of the complex scalar with twice the
opposite PQ charge, Φ → e−2iqPQβΦ. In the fermionic axial
rotations, the fifth gamma matrix is defined through the
relation γ5 ¼ iγ0γ1γ2γ3.
Below some energy scale ∼4πF, the shape of the

potential is assumed to change so that the field falls from
a minimum energy configuration at Φ ¼ 0 to one at
Φmin ¼ F=

ffiffiffi
2

p
, spontaneously breaking the Uð1ÞPQ sym-

metry. Afterwards, the dynamics of the scalar field are then
best captured by performing a field redefinition around this
minimum,ΦðxÞ ¼ ð1= ffiffiffi

2
p Þ½F þ ρðxÞ� exp½iaðxÞ=F�, with ρ

the radial and a the angular degrees of freedom. From
writing the classical PQ current with this redefinition,
J̃μPQ ¼ iψ̄γμγ5ψ − ∂

μa, one can see that the angular degree
of freedom is a pseudoscalar, as the current transforms as a
pseudovector. Plugging the field redefinition back into

Eq. (11), and also expanding the pseudoscalar exponential,
we thus obtain

LΦ ¼ Ψ̄ðiγμ∂μ −mΨÞΨþ 1

2
∂μa∂μa − igaΨ̄γ5Ψ; ð12Þ

with mΨ ¼ m̃Ψ þ gF the total mass of the Dirac field
postsymmetry breaking and g ¼ y=

ffiffiffi
2

p
the new pseudo-

scalar Yukawa coupling. In the above expression, we
neglected higher-order terms of the pseudoscalar field as
they are suppressed by additional powers of the energy
scale F. For smaller energies than F, we also integrated out
the heavy radial ρ field [which is the only degree of
freedom in the potential VðxÞ]. As is standard in the Higgs
mechanism, the mass of the fermion has been shifted
through by the factor gF. It follows that it is possible to
generate the entire mass of a massive Dirac fermion when
m̃Ψ ¼ 0. Moreover, we see that, in this way, we generate a
massless Nambu-Goldstone (NG) boson a with a pseudo-
scalar Yukawa coupling to a fermion Ψ, as desired.

IV. LOOP GENERATION OF dCS

We now place our fermion in a curved background in
order to realize dCS. That is, we begin with a Dirac fermion
Ψ that has both a minimal gravity and a pseudoscalar
Yukawa interaction,

Lg ¼ Ψ̄ðiγbeμbDμ −mΨÞΨþ igaΨ̄γ5Ψ; ð13Þ

with eμb an orthonormal tetrad basis, Dμ ¼ ∂μ −
ði=4Þσabωμab the covariant spinor derivative, σab ¼ ½γa;γb�
the Lorentz group generator for Dirac fermions, and
ωμab ¼ ð1=2Þeνað∂μebν − ∂νebμÞ− ð1=2Þeνbð∂μeaν − ∂νeaμÞþ
ð1=2Þeρaeσbð∂σecρ − ∂ρecσÞecμ the torsion-free spin connec-
tion. Here, Greek indices indicate the global Lorentzian
structure and Latin indices the local structure.
In order to generate dCS, we perform the same steps as to

derive pion decay into photons and integrate out the
fermion Ψ from our theory. For energies below the fermion
mass mΨ, integrating out the field Ψ is equivalent to
evaluating the Ψ-dependent Lagrangian in a fixed gravi-
tational field. As a result, the effective Lagrangian is then

Leff
g ¼ gaJa; ð14Þ

Ja ¼ ihhjΨ̄γ5Ψjhi; ð15Þ

where Ja is the pseudoscalar composite operator, expressed
as an expectation value over a gravitational field h. In order
to evaluate this expectation value, we use the alternative,
and equivalent, expression for the gravitational Adler-Bell-
Jackiw (ABJ) anomaly,
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hhj∂μJ̃μ5jhi ¼ −
1

384π2
�RR; ð16Þ

with ∂μJ̃
μ
5 ¼ 2mΨiΨ̄γ5Ψ the divergence of the classical

axial current associated with Ψ. Note that this current is not
to be confused with the total axial current ∂μJ

μ
5 ¼

∂μJ̃
μ
5 þ �RR=ð384π2Þ. The expression for the ABJ anomaly

can be obtained in numerous different ways (e.g.
Fujikawa’s method) [33–35]. The equivalent perturbative
triangle loop diagram is obtained by an interaction vertex
between the graviton and the fermion and by evaluating the
amplitude integrals. The relevant graviton-fermion inter-
actions for the amplitude can be found in Ref. [36]. For
example, a typical triangle amplitude for the decay of the
pseudoscalar to gravitons is

Mða → hhÞ ¼ ga
16

Z
d4keμνðq1Þeδγðq2Þ

× ½S̃ðk − q1ÞγγδS̃ðk − q1Þνγμγ5�
þ ðμν → δγ; 1 → 2Þ; ð17Þ

where eμν is the graviton polarization tensor. However,
since this diagram is one-loop exact, the choice of computa-
tional scheme does not alter the result. Therefore, since
Ja ¼ ½1=ð2mΨÞ�hhj∂μJ̃μ5jhi, we obtain the CS term

Leff
g ¼ −

g
384π2

a
2mΨ

�RR: ð18Þ

In this procedure, dCS is specified by two parameters: the
mass of the fermion, and its Yukawa coupling to the
pseudoscalar a. Moreover, connecting Eq. (18) with
Eq. (1) we see that the dCS decay constant is

f ¼ 192π2
mΨ

g
: ð19Þ

Thus, similar to standard axions, a PQ symmetry-
breaking theory also yields dCS gravity.

V. DYNAMICAL SYMMETRY BREAKING

Our goal is now to show that a theory that undergoes
dynamical symmetry breaking can also give rise to dCS
gravity. In order to do so, we will show that it is possible to
dynamically obtain a theory of spontaneous symmetry
breaking from a theory of self-interacting fermions upon
condensation of said fermion. Afterwards, dCS is then
obtained through the exact same manner as Sec. II. That
being said, the two theories are different UV completions of
dCS and thus exhibit distinct observables (e.g. the presence
of self-interactions among the fermions). For simplicity, we
consider the Lagrangian of a single massive fermionΨwith
attractive self-interactions in Minkowski space,

LΨ ¼ Ψ̄ðiγμ∂μ − m̃ΨÞΨ − λ½ðΨ̄ΨÞ2 − ðΨ̄γ5ΨÞ2�; ð20Þ

with γμ the Dirac gamma matrices, m̃Ψ the bare mass of the
fermion, andλ the fermion self-interaction coupling constant.
Similar to dCS, this Lagrangian is also nonrenormalizable,
and thus has a cutoffΛ. Following theNambu–Jones-Lasinio
formalism presented in [37–39], an attractive four-fermion
interaction will generate a new bound state Φ below this
cutoff.
If we were to investigate this theory at extremely low

energies E ≪ Λ, where self-interactions dominate, we
could perform a Hubbard-Stratonovich transformation on
the fermion pair and integrate out the fermion from our
theory, in accordance to the mean-field approximation.
Here, we consider the intermediate regime and perform a
Hubbard-Stratonovich transformation on fermion modes
between the scales E and Λ, integrating them out after-
wards. More specifically, we first expand the fermion
modes into long (l; k < E) and short (s; k > E) wavelength
modes, Ψ ¼ Ψl þ Ψs. Next, we multiply the path integral
of our theory by a constant,

Zα ¼
Z

DαDᾱ exp

�
−
Z

d4x m̃2
Φᾱα

�
; ð21Þ

with α an auxiliary field and m̃Φ an as-of-yet unspecified
bare mass scale. Then, we perform a field redefinition
Φ ¼ α − m̃−2

Φ Ψ̄R;sΨL;s in accordance with the Hubbard-
Stratonovich transformation. We therefore get the new
Lagrangian

L̃Ψ ¼ LΨ − m̃2
Φᾱα

¼ Ψ̄ðiγμ∂μ − m̃ΨÞΨ − λ½ðΨ̄ΨÞ2 − ðΨ̄γ5ΨÞ2�
þ m̃−2

Φ Ψ̄L;sΨR;sΨ̄R;sΨL;s þ ðΦΨ̄R;sΨL;s þ H:c:Þ
þ m̃2

ΦjΦj2: ð22Þ

Now, we integrate out the short scale modes, normalize the
kinetic term, and remove the l subscript from the long-
wavelength modes to obtain the Lagrangian

L̃Ψ ¼ Ψ̄ðiγμ∂μ − m̃ΨÞΨ − λ½ðΨ̄ΨÞ2 − ðΨ̄γ5ΨÞ2�
þ ð∂μΦ�Þð∂μΦÞ − yðΦΨ̄LΨR þ H:c:Þ

þm2
ΦjΦj2 − λΦ

4
jΦj4; ð23Þ

with

m2
Φ ¼ ðm̃2

Φ þ Π0Þ=Π2; ð24Þ

y ¼ λΠ0=Π
1=2
2 ; ð25Þ

λΦ ¼ V4=Π2
2; ð26Þ
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the renormalized parameters due to the condensation at one loop. Defining S̃ðkÞ ¼ ð−=kþmΨÞ=ðk2 þm2
ΨÞ to be the Fourier

transform of the full fermion propagator (including self-interaction loops),

Π¼
Z

Λ

E

d4l
ð2πÞ4Tr½S̃ðlÞS̃ðlþkÞ− S̃ðlÞγ5S̃ðlþkÞγ5� ð27Þ

¼ −
1

2π2
ðΛþ E − 2kÞðΛ − EÞ − 2mΨ

π2k

�
k2 −

m4
Ψ

k2 þ 4m2
Ψ

��
atan

�
kþ Λ
mΨ

�
− atan

�
kþ E
mΨ

��

−
m3

Ψ
π2k

�
1 −

2m2
Ψ

k2 þ 4m2
Ψ

��
atan

�
Λ
mΨ

�
− atan

�
E
mΨ

��
−

1

2π2

�
ðk2 − 2m2

ΨÞ þ
m4

Ψ
k2 þ 4m2

Ψ

�
log

�
m2

Ψ þ ðkþ ΛÞ2
m2

Ψ þ ðkþ EÞ2
�

−
1

2π2
m4

Ψ
k2 þ 4m2

Ψ
log

�
m2

Ψ þ Λ2

m2
Ψ þ E2

�
ð28Þ

≡ Π0 − k2Π2 ð29Þ

is then the self-energy and

V4 ¼ 6

Z
Λ

E

d4l
ð2πÞ4 Tr½S̃ðlÞ

4� ð30Þ

¼ m2
Ψ

2π2

�
−
11m4

Ψ þ 30m2
ΨE

2 þ 27E4

ðm2
Ψ þ E2Þ3

þ 8m4
Ψ

ðm2
Ψ þ Λ2Þ3 −

24m2
Ψ

ðm2
Ψ þ Λ2Þ2 þ

27

m2
Ψ þ Λ2

�

þ 3

2π2
log

�
m2

Ψ þ Λ2

m2
Ψ þ E2

�
ð31Þ

the fermion-loop-corrected four-scalar vertex with zero
external momenta. Note we have suppressed the long-
wavelength subscript and ignore the renormalization of the
original theory parameters for simplicity. Moreover, note
that short-wavelength (k ≫ Λ) modes are not dynamic
as limk=Λ→∞Π2 ¼ 0.
Each of the renormalized parameters has some running

with energy, and so in order to precisely determine the
value of these parameters at some low-energy quasifixed
point, a beta function analysis must be performed. Here, for
simplicity as well as to capture the general scaling of
parameters, we assume the running of energy induces order
one corrections to the parameters; i.e. we take Π0 ≈
−Λ2=ð2π2Þ and Π2 ≈ 1=ð2π2Þ so that y ≈ −λΛ2=ð ffiffiffi

2
p

πÞ.
Restoring the ignored factors for a moment, we see that

at zero external momentum, Π0 simplifies to

Π0 ¼ −
1

2π2

�
ðΛ2 − E2Þ þm4

Ψ

�
1

m2
Ψ þ E2

−
1

m2
Ψ þ Λ2

�

− 2m2
Ψ log

�
m2

Ψ þ Λ2

m2
Ψ þ E2

��
: ð32Þ

Solving numerically, we find that Π0 at E ¼ 0 is always
negative and is also always negative at E ∼mΨ formΨ ≲ Λ.
We thus infer the mass ofΦ in Eq. (24) can go from positive
at E ∼ Λ to negative at E ≪ Λ. Since there is a positive
quartic term for Φ, Φ can then undergo spontaneous
symmetry breaking.
Typically, the symmetry-breaking scale F is related

to the complex scalar’s quadratic and quartic terms,
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jmΦj2=λΦ

p
, once m2

Φ becomes negative. However,
since the bare mass scale m̃Φ in this phase is undetermined,
we cannot solve for F using this expression. Therefore, in
order to determine the symmetry-breaking scale, or alter-
natively the mass mΨ ¼ m̃Ψ þ gF, we invoke the self-
consistency condition of the fermion propagator, i.e. the
gap equation, depicted below:

The solid (dashed) arrow line is the total (bare) fermion
propagator. The loop diagram is the result of the four-
fermion interaction that appears in Eq. (20), which we have
hidden in writing down the Lagrangian LΦ.
This condition amounts to a nonperturbative loop cor-

rection,ΔmΨ ¼ gF, to the fermion mass. In the case of zero
bare mass, m̃Ψ ¼ 0, this correction in fact generates the
entire mass of the fermion at low energies, as done in
Ref. [27]. More specifically, the gap equation relates the
cutoff scale and self-interaction coupling constant λ to this
correction and the mass mΨ,

ΔmΨ

mΨ

�
2π2

λΛ2

�
¼ 1 −

m2
Ψ

Λ2
log

�
1þ Λ2

m2
Ψ

�
; ð33Þ
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with a solution possible for sufficiently strong coupling,
λ ≥ ðΔmΨ=mΨÞð2π2=Λ2Þ. For large cutoffs Λ ≫ mΨ, this
bound is saturated,

λ ¼ ð2.25 MeVÞ−2
�
ΔmΨ

mΨ

��
107 eV

Λ

�
2

; ð34Þ

while for small cutoffs Λ ≪ mΨ,

λ ¼ ð1.59 MeVÞ−2
�
ΔmΨ

mΨ

��
m2

Ψ
Λ2

��
107 eV

Λ

�
2

: ð35Þ

Solving for F, and ignoring the lower-order terms in y, we
find that

F ≈mΨ
2

ffiffiffi
2

p

π

�
1 −

m2
Ψ

Λ2
log

�
1þ Λ2

m2
Ψ

��
: ð36Þ

Therefore, for large cutoffs, F ≈ 0.9mΨ, and for small
cutoffs, F ≈ 0.45Λ2=mΨ. Moreover, we point out that at
low cutoffs, the condition m̃Ψ ≲ cΛ, c ∼ 1 translates to
ðΔmΨ=mΨÞ≳ 1 − cðΛ=mΨÞ or ΔmΨ=mΨ ∼ 1.
Therefore, when the cutoff is large, Λ ≫ mΨ, we have

f ¼ 1.7 eV

�
ΔmΨ

mΨ

�
−1
�

mΨ

10−3 eV

�
; ð37Þ

and when it is small,

f ¼ 0.85 eV

�
ΔmΨ

mΨ

�
−1
�

Λ
mΨ

��
Λ

10−3 eV

�
: ð38Þ

Thus, if a fermion self-interacts strongly enough
[λ ≥ ðΔmΨ=mΨÞð2π2=Λ2Þ], Chern-Simons gravity is a
consequence.

VI. BOUND STATE PARAMETER SPACE

We now address the relevant parameter space for dCS
gravity from dynamical symmetry breaking. That is, we
identify when the fermion self-interactions are strong
enough to generate a bound state and calculate the resulting
fermion mass. For spontaneous symmetry breaking, all
parameters are independent and calculable in a simple
manner, rather than through the gap equation. We first
consider the most general parametrization to generate dCS
with a four-fermion interaction, and then we consider two
specific examples.

A. General

From the gap equation [Eq. (33)], the main parameters in
question are the mass of the fermion, mΨ, the cutoff scale
Λ, and the self-interaction coupling strength λ. We plot the
relation between these quantities to the dCS decay constant
f in Figs. 2 and 3.

B. Scalar mediator

One scenario to create a fermion self-interaction in the
form of Eq. (20) is through the interaction with a complex
scalar mediator χ of massmχ . The interaction has a Yukawa-
like form, L ⊃ gχχΨ̄LΨR þ H:c: At energies E ≪ mχ , a
four-fermion interaction is induced with λ ¼ ðgχ=mχÞ2,
indicating the cutoff of the theory is roughly Λ ∼mχ.
As a result, the gap equation now takes the form

ΔmΨ

mΨ

2π2

g2χ
¼ 1 −

m2
Ψ

m2
χ
log

�
1þ m2

χ

m2
Ψ

�
: ð39Þ

FIG. 2. The parameter space for dCS generated by a self-
interacting fermion Ψ of mass mΨ ¼ 10−3 eV using Eq. (33) and
Eq. (19). The black (orange) [blue] fgreeng solid line indicates
the parameters necessary to generate a mass correction
ΔmΨ=mΨ ¼ 1ð10−4Þ½10−8�f10−12g. Finally, we only plot param-
eters that are below the Planck scale and have ΔmΨ=mΨ ≤ 1.
Moreover, while in principle the cutoff can be made arbitrarily
small, we only plot Λ≳ 10−6mΨ for visualization purposes.

FIG. 3. Same as Fig. 2, except for mΨ ¼ 103 eV.
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Therefore, for mχ ≫ mΨ,

g2χ ¼ 2π2
ΔmΨ

mΨ
; ð40Þ

and for mχ ≪ mΨ,

g2χ ¼ 4π2
m2

Ψ
m2

χ

ΔmΨ

mΨ
: ð41Þ

Moreover, for both regimes,

f ¼ 34 eVg−2χ

�
mΨ

10−3 eV

�
: ð42Þ

C. Gravitational torsion

If thegravitational connectionhas nonzero torsion, a scalar
four-fermion interaction is typically induced at energies
below the Planck scale for all fermions [40]. In this case,
the self-interaction coupling constant is λ ¼ 3π=Λ2

T .

VII. FERMION CANDIDATES

A. Neutrinos

Since smaller fermion masses yield larger coupling
constants, we are most interested in fermions with small
masses that self-interact. The ideal candidate for such a
scenario is thus the neutrino. While the Standard Model
induces neutrino self-interactions, these are too small to
realize a condensate in nature [41]. However, beyond the
Standard Model interactions both are a viable option and
are well-motivated [42].
In regards to the parameter space, oscillation experi-

ments [43], along with Planck 2018 measurements [44],
imply that an active neutrino’s mass must be between 0≲
mν ≲ 0.05 eV in either the normal or inverted hierarchy
[45]. In addition, sterile neutrinos may have masses as
small as any given active neutrino, and as large as the
Planck mass [46–52]. Given the wide range of masses,
connecting our results to specific neutrino self-interaction
models (and therefore giving constraints on λ and Λ) is
beyond the scope of our work.

B. Fermionic self-interacting dark matter

It is also possible that the fermion in question is a dark
matter (DM) particle that self-interacts [53–57]. In this case,
if this particle compromises all of DM, it may have masses
between 0.1 GeV ≤ mΨ ≤ 107 GeV [58]. However, if
instead the fermion is one of a large number N ≲ 1062 of
particles, such as in ultralight fermionic dark matter [59], the
mass of the fermion could possibly be as small as
mΨ ∼ 10−14 eV. We note, however, that the ultralight case
with self-interactions has not been studied, and so it is not
definite that such a scenario is viable.

VIII. DISCUSSION

We clarify three assumptions and give four comments.
First, given that we are dealing with an EFT with a very
low-energy cutoff, one may worry that astrophysical or
cosmological systems, such as compact binary coalescen-
ces, are characterized by larger energies. As a rough
argument, the scale of the EFT breaking down at ringdown
occurs at energies smaller than the Schwarzschild radius,
which for ∼eV energies is far above the EFT limit. A much
more detailed analysis of such scales has been done in
Refs. [60,61], although they note that it is difficult to
analyze the parity-violating sector.
Second, for simplicity, we only considered the self-

interaction of a single neutrino. Our method of generating a
neutrino bound state can be extended to multiple gener-
ations of neutrinos in a straightforward fashion, whether
they are active or sterile, through promoting the self-
interacting coupling constant to a self-interacting coupling
matrix.
Third, we assume that renormalization will lead to order

one changes in the induced condensation parameters. We
base this assumption on both dimensional grounds and the
results presented in other dynamical symmetry-breaking
papers [38,62]. However, we note that as energies fall, the
Yukawa coupling y increases. Therefore, the dCS decay
constant will decrease, our results are then in fact upper
bounds on the actual decay constant, and the likelihood of
detecting dCS via this mechanism increases.
It may be the case that the complex scalar and fermion in

Sec. III are actually fundamental new particles, rather than
related to some bound state. In this case, the dCS
phenomenology is completely specified by the Yukawa
coupling and symmetry-breaking scale.
If the fermion in question is a neutrino, then the

pseudoscalar interaction in Eq. (13) can also be generated
through the breaking of a global lepton symmetry, so that
a ¼ J, with J the majoron [63–66]. Moreover, this asso-
ciation is also possible if the fermion is a dark-matter
candidate [67,68]; however, the masses of the fermion
typically are large mΨ ≫ GeV.
In order to create fermion self-interactions we considered

the case where a real scalar mediator generates the fermion
self-interactions; however, it can equally be a complex
scalar, vector, or tensor. For these mediators, we expect the
resulting low-energy self-interacting coupling constant to
be an Oð1Þ factor difference from the real scalar mediator.
Finally, we point out that sensitivity forecasts of 2G

detectors to the dCS decay constant in the inspiral of black
hole mergers yield f ≳ 10−50 eV (or ξ1=4 ≲ 10 km) [69–
71]. Hence, it will be difficult, but not implausible, that
inspiral signals will give rise to a detectable signal from our
mechanism. In particular, very light neutrinos of massmν ∼
10−53 eV yield dCS decay constants f ∼ 10−50 eV and
would be detectable in systems that obey the EFT con-
straints. Moreover, it may be the case that backreaction of
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the pseudoscalar onto the evolution of the binary could
imprint a more distinct signature on gravitational wave
observations (alternatively, through superradiance [72]). In
addition, it is unclear if merger and ringdown signals will
produce larger parity-violating signals, given that the scale
of the system is much smaller and the gravitational strength
much larger, especially in supermassive black hole systems.
Outside of individual gravitational wave events, dCS could
also lead to novel interactions with stochastic gravitational
wave backgrounds, such as those shown by Ref. [73]. We
leave the investigation of all these possibilities for future
work.

IX. CONCLUSION

In this paper, we presented two categories of UV
completions to dCS gravity with decay constants that reach
the sub-eV regime. The first example was a theory of a
fundamental complex scalar interacting with a Dirac
fermion through a Yukawa interaction, while the second
example took the complex scalar to be composite, arising
from the attractive chiral four-Fermi interaction of a Dirac
fermion. In the latter case, we further presented two UV
completions of the four-Fermi theory.
We thus see that dCS gravity can arise in the same

manner as axions, as the spontaneous breaking of a chiral
symmetry yields a pseudoscalar Yukawa coupling between
the angular part of the complex scalar field and a Dirac
fermion. The Yukawa interaction facilitates a triangle
diagram between the pseudoscalar and a pair of gravitons,
with the fermions going around the loop. By integrating out
these fermions, the dCS interaction term is created with a
decay constant that is proportional to the mass of the
fermion divided by the Yukawa coupling (i.e. the vacuum
expectation value of the complex scalar).
In order to explicitly show that the fermion with

attractive self-interactions will form a bound state, we
performed a renormalization-group analysis, integrating
out the short-wavelength fermion modes. This analysis

demonstrated that the bound state is in fact made up of such
modes. Moreover, in doing the integration, we showed that
these modes also generate quadratic and quartic potential
terms for the bound state, allowing for spontaneous
symmetry breaking to occur. In order to solve for the
symmetry-breaking scale, we invoked the gap equation, a
self-consistency condition for the fermion propagator that
also can generate the entire mass of the fermion. As a result,
we found that the symmetry-breaking scale at large cutoffs
is roughly the scale of the fermion mass, and at small
cutoffs it is roughly the square of the cutoff scale divided by
the fermion mass.
With these results, we identified neutrinos as particularly

optimistic candidates to generate dCS gravity within the
Standard Model, due to their small masses and ability to
self-interact. In particular, we found that for neutrinos of
mass mν ≲meV the dCS decay constant could be less than
an eV, f ∼ 103mν ≲ eV. Other possibilities, such as an
ultralight self-interacting fermion dark matter candidate, or
gravity with nonzero torsion, are also candidates for dCS
gravity, demonstrating a range of possible UV completions.
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