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We study the model of spherically symmetric and spatially homogeneous gravitational collapse of a
minimally coupled scalar field. Our study focuses on obtaining the scalar field potential that leads to a final
equilibrium state in the gravitational collapse. We demonstrate the existence of a class of scalar field
solutions that can indeed result in such an end equilibrium state.
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I. INTRODUCTION

As predicted by the well-known singularity theorems [1],
the gravitational collapse of a massive star, when it runs out
of its internal fuel, would result in a spacetime singularity
where physical quantities diverge and the spacetime breaks
down. Such singularities would be hidden within an event
horizon of gravity, forming a black hole [2,3]. Similar
results have also been produced numerically in [4–7].
They could also be cosmic singularities visible to faraway
observers in the Universe [8–19]. This is a major issue of
the contemporary debate in black hole physics and cos-
mology today.
All the same, gravitational collapse is a fundamental

process in nature. Cosmological structures such as galaxies,
galactic clusters, and various structures in the Universe
form due gravitational collapse of matter clouds at various
scales. In order to help the structure formation process,
the gravitational collapse of a massive matter cloud that
was initiated at various epochs and scales in the Universe
must equilibrate or slow down considerably. There are
different models of gravitational collapse where the stabi-
lization of cosmic structures is explained. One of the
frequently used models is the top-hat collapse model [20].
In the top-hat collapse model, the initial overdensities in
our Universe are considered to be isolated from the external
universe, and the dynamics of the overdense regions are
described by the closed Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime which is in this model seeded by
dustlike matter.
In that model, the pressureless matter first expands with

the background albeit at a slower rate, and at a certain time,

due to its own gravitational pull, the expansion halts and the
overdense region starts collapsing. Now, since the matter is
pressureless in the top-hat model, there is no way one can
show any sign of stabilization of matter using the general
relativistic Einstein equations. Therefore, in that model, the
Newtonian virialization technique is used to stabilize the
collapsing matter. Though in the top-hat collapse model,
the Newtonian virialization technique is used in an ad hoc
way, this model produces theoretical results which closely
resemble the observations. Since there exists no general
relativistic definition of the Newtonian virialization process
(at least as per our knowledge), this model is frequently
used to describe cosmic structures. However, there are
some gravitational collapse models where the collapsing
matter asymptotically reaches an equilibrium state due to
the effective nonzero pressure [21–27]. Recently, in [28], it
was shown that the equilibrium condition can be obtained
from the covariant counterpart of the virialization equation.
However, the authors in that paper do not claim that the
equilibrium condition is the general relativistic virialization
condition. More research in this direction is necessary. It
should be noted that, in [21–26,28], the entire dynamics of
the gravitational collapse leading to the end equilibrium
state are done within the framework of general relativity.
Moreover, in [28], the authors demonstrate how this
gravitational collapse model can be made cosmologically
relevant. They also illustrate that this model can yield
similar outcomes to those obtained from the top-hat
collapse model.
In the present paper, we consider the matter constituent

of the gravitational collapse model as a minimally coupled
spatially homogeneous scalar field. We restrict ourselves
to such fields because spatial inhomogeneity here would
result in a type-II matter field, not observed physically [29].
Our objective is to investigate the specific type of scalar
field potential that could possibly give rise to the final
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equilibrium state. There are different scalar field configu-
rations, with or without potentials, which cause unhindered
gravitational collapse as well. In such cases, the resultant
singularities can be hidden within horizons [30–32]. For
some scalar fields, the resultant singularities are visible
to local or asymptotic observers [14,17–19]. In [17], the
authors give classes of spatially homogeneous scalar fields
with potentials whose collapsewill end in naked singularities
and also similar classes which will give rise to black holes.
However, in this paper, we demonstrate that a specific class
of scalar field potentials enables the gravitational collapse of
the scalar field to attain the end equilibrium state. In the type
of collapsing dynamics described here, the nonzero negative
pressure plays an important role. Since dark matter is
generally considered to be pressureless, this type of equi-
librium configuration can exist in a certain cosmological
length scale where the effect of dark energy cannot be
ignored. In [33–39], the authors extensively examine cos-
mological scenarios where the presence of dark energy
influences the formation of dark matter structures. These
studies reveal that considering the nonzero effect of dark
energy can lead to variations in the virialization radius. In
those studies, the authors utilized the Newtonian virialization
technique. However, in Ref. [28], the authors investigated
similar scenarios by considering a gravitational collapse
model leading to a final equilibrium state. In this paper, as
mentioned above, we derive a class of scalar field potentials
that exhibit similar collapsing dynamics as shown in [28].
It is important to note that we do not propose the scalar
field as dark matter or dark energy. Our focus is solely on
obtaining the potential of the scalar field leading to an
equilibrium, where the scalar field serves as the constituent
of the collapsing matter. Therefore, the present work is
primarily motivated by mathematical considerations rather
than cosmological ones.
The structure of this paper is organized as follows. In

Sec. II, we discuss the conditions necessary for the
formation of a general relativistic equilibrium configura-
tion, which arises as the final outcome of gravitational
collapse. In Sec. III, we obtain a class of minimally coupled
scalar field potentials which can lead to an end equilibrium
state of gravitational collapse. In Sec. IV, we take one
example of such collapse dynamics which lead to an end
equilibrium state and show that the potential of the scalar
field belongs to the class of potentials discussed in Sec. III.
We draw this example from [28]. In Sec. V, we conclude
by discussing our results and their possible implications.
Throughout the paper, we use a system of units in which the
velocity of light and the universal gravitational constant
(multiplied by 8π) are both set equal to unity.

II. END EQUILIBRIUM STATE IN
GRAVITATIONAL COLLAPSE

The metric of a general spherically symmetric collapsing
system can be written as

ds2 ¼ −e2νðr;tÞdt2 þ R02

Gðr; tÞ dr
2 þ R2ðr; tÞdΩ2; ð1Þ

where νðr; tÞ, Rðr; tÞ, and Gðr; tÞ are functions of local
coordinates r and t. Since none of the functions depends
upon angular coordinates, the metric given above can be
used to describe a spherical gravitational collapse. Because
of the presence of the undetermined functions [i.e., νðr; tÞ,
Rðr; tÞ, andGðr; tÞ] of r and t, the above metric can describe
a large class of collapsing models of matter fields. Here, a
dot and a prime above any function are used to specify
a derivative of that function with respect to coordinate
time and radius, respectively. As we know, the singularity
theorems state that, under a certain physically reasonable
set of conditions such as retaining the causal regularity,
nonviolation of an energy condition on matter fields, and the
existence of trapped surfaces, a spacetime singularity would
be formed necessarily due to the catastrophic collapse of
a general matter distribution. Because of the formation of
trapped surfaces, the whole matter distribution ultimately
sinks into that singular point. However, there exist various
scenarios in gravitational collapse where trapped surfaces do
not form due to the violation of strong energy conditions or
due to different evolution of geometries, and, therefore, the
collapsing matter distribution may stop collapsing further
and ultimately reach an equilibrium state.
In the realm of general relativity, a self-gravitating

system can reach an equilibrium state [21–24]. The con-
ditions for the equilibrium state of a spherical overdense
region of physical radius R is

lim
t→∞

Ṙ ¼ lim
t→∞

R̈ ¼ 0; ð2Þ

which implies the collapsing system can reach the end
equilibrium state in the asymptotic comoving time. There
exists a scaling degree of freedom in the metric mentioned
above, and using that freedom one can write [21]

Rðr; tÞ ¼ raðr; tÞ; ð3Þ

which implies at the equilibrium state

ȧeðrÞ ¼ äeðrÞ ¼ 0; ð4Þ

where we use subscript e to denote the equilibrium value of
any quantity as

aeðrÞ≡ lim
t→∞

aðr; tÞ:

The above equilibrium condition can be redefined in a
coordinate-invariant way using Cartan scalars. In an invari-
ant frame, the frame derivatives DΨ2 and ΔΨ2 are Cartan
scalars, where the spin frame operators D≡ la∇a ≡
oAoA

0∇AA0 and Δ≡ na∇a ≡ iAiA
0∇AA0 , where ðoA; iAÞ
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and ðoA0
; iA

0 Þ are the spin frame and its conjugate spin frame
bases, respectively, and Ψ2 ¼ Cabcdlambm̄cnd ¼ C1342.
Here, Cabcd is the Weyl curvature tensor, and ðla; na; ma;
m̄aÞ are the corresponding null frame bases. The Cartan
scalars DΨ2 and ΔΨ2 can be combined to construct a new
scalar. It can be shown that one can redefine the above
equilibrium conditions by using a scalar ðD − ΔÞ2Ψ2 which
can be constructed from DΨ2 and ΔΨ2 [28]. The redefined
equilibrium condition is

lim
t→∞

ðD − ΔÞ2Ψ2 ¼ 0 ∀ r: ð5Þ

The above definition of the equilibrium condition is coor-
dinate independent.
Since for a given comoving radius r the scale factor

aðr; tÞ is a smooth monotonically decreasing function of
comoving time t, the condition ȧ ¼ ä ¼ 0 may be satisfied
in a finite comoving time in some collapsing scenarios,
however, that not as an equilibrium state. The condition
ȧ ¼ ä ¼ 0 at a finite comoving time (te), in general, does
not imply an equilibrium state. An equilibrium state at the
finite comoving time te requires

aðr; tÞ > aeðrÞ ∀ t∈ ½0; teÞ⇒ ȧ < 0 ∀ t∈ ½0; teÞ;
and aðr; tÞ ¼ aeðrÞ ∀ t ≥ te ⇒ ȧ¼ ä¼ a

… ¼ � � �
¼ aðnÞ ¼ 0 ∀ t ≥ te: ð6Þ

Therefore, if the collapsing system reaches the equilibrium
state at a finite comoving time (te), then the first derivative
of the scale factor aðr; tÞ at that time becomes discontinu-
ous (i.e., C0 function), which is not possible if we consider
gμνðt; rÞ is at least C2. Therefore, for all possible scenarios
of gravitational collapse, the equilibrium conditions can be
satisfied only at the asymptotic comoving time.

III. HOMOGENEOUS SCALAR FIELD
COLLAPSE

Here, we consider a homogeneous scalar field ϕðtÞ that
seeds a closed FLRW spacetime. An FLRW spacetime is
the appropriate choice as the metric given in Eq. (1) will
become such in a homogeneous case. The line element of
FLRW spacetime is

ds2 ¼ −dt2 þ a2ðtÞ
1 − kr2

dr2 þ r2a2ðtÞdΩ2: ð7Þ

Here, k ¼ 1 since we consider closed FLRW spacetime.
Using the Einstein equations, the energy density and
pressure can be written, respectively, as

ρ ¼ ϕ̇2

2
þ VðϕÞ ¼ 3

�
ȧ2

a2
þ k
a2

�
; ð8Þ

p ¼ ϕ̇2

2
− VðϕÞ ¼ −2

ä
a
−
ȧ2

a2
−

k
a2

; ð9Þ

where VðϕÞ is the potential of the scalar field. At the
equilibrium state, the energy density (ρeq) and pressure
(peq) become, respectively,

ρe ¼
3k
a2e

; ð10Þ

pe ¼ −
k
a2e

; ð11Þ

which implies that at the equilibrium state the equation of
state (ωϕ) of the scalar field should be ωϕ ¼ − 1

3
. One can

also verify that at the equilibrium state

ϕ̇2
e ¼ VeðϕÞ ¼

2k
a2e

; ð12Þ

which implies

ðTϕÞe ¼
1

2
ϕ̇2
e ¼

1

2
VeðϕÞ; ð13Þ

where Tϕ is the kinetic energy of the scalar field. The above
relation between the potential energy and the kinetic energy
of the scalar field at equilibrium is surprisingly similar to
the virialization condition in Newtonian mechanics. It can
be easily verified that the equilibrium conditions cannot be
achieved by the spatially flat FLRW spacetime, since for
that we get trivial solutions: ϕ̇e ¼ 0 and VeðϕÞ ¼ 0, which
is meaningless.

A. Scalar field potential responsible for the end
equilibrium state of the gravitational collapse

Along with the two field equations of the scalar field
[Eqs. (8) and (9)], one can also write down the following
conservation equation or Klein-Gordon for the scalar field:

ρ̇ϕ þ 3
ȧ
a
ðρϕ þ pϕÞ ¼ 0 ⇒ ϕ̈þ 3

ȧ
a
ϕ̇þ V;ϕ ¼ 0: ð14Þ

However, the above equation is not independent, since it
can be derived from Eqs. (8) and (9). Therefore, we have
two equations and three unknowns: ϕðaÞ, VðϕÞ, and ȧðaÞ.
Therefore, we have the freedom to choose one free
function. Here, we choose the function ȧðaÞ in such a
way that the equilibrium conditions are satisfied. We
consider the following functional form of ȧðaÞ:

ȧðaÞ ¼ βðfðaÞ − fðaeÞÞα ∀ a∈ ½ae; a0�; ð15Þ

where the constant parameters β < 0 and a0 is the initial
value of the scale factor where a0 > ae. Here, we consider
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another assumption that fðaÞ > fðaeÞ ∀ a > ae and fðaÞ
should be C∞ ∀ a∈ ½ae; a0�. We can relax the last
assumption by considering ȧðaÞ ¼ βjfðaÞ − fðaeÞjα.
Since it is a collapsing scenario, we consider β < 0. The
above expression of ȧðaÞ ensures ȧ → 0 as a → ae. Using
the above expression of ȧðaÞ, we get the following
expression of äðaÞ:

äðaÞ ¼ αβ2f0ðaÞðfðaÞ− fðaeÞÞ2α−1 ∀ a∈ ½ae; a0�; ð16Þ

which implies α > 1
2
, since we need äðaeÞ ¼ 0. As was

discussed previously, the condition ȧ ¼ ä ¼ 0 at a finite
comoving time does not imply the equilibrium state con-
sidering aðtÞ as a smooth monotonically decreasing function
of comoving time. When a collapsing system approaches the
equilibrium state asymptotically, not only ȧ and ä tend to
zero, but all the higher-order derivatives of a with respect to
the comoving time should show similar behavior. Therefore,
considering the smooth behavior of aðt; rÞ for a given value
of r, we can define the following modified version of the
general relativistic equilibrium state:

lim
t→∞

aðn;0Þðt; rÞ ¼ 0 ∀ n∈Zþ; ð17Þ

where aðn;0Þðt; rÞ implies nth-order partial derivative of
aðt; rÞ with respect to comoving time t and zeroth-order
partial derivative of the same with respect to comoving
radius r. Using the Cartan scalars, the above equation can be
written as

lim
t→∞

ðD − ΔÞnΨ2 ¼ 0 ∀ r; ∀ n∈Zþ: ð18Þ

Since here we express the time derivatives of the scale factor
as a function of the scale factor [i.e., aðnÞðaÞ], the above
definition [i.e., Eq. (17)] of the general relativistic equilib-
rium state is very much crucial to differentiate the scenario
where the ȧ and ä become zero in finite comoving time from
the scenario where the collapsing system asymptotically
reaches an equilibrium state. Now, we can write down the
following equilibrium condition for the above-mentioned
homogeneous collapse:

aðnÞðaeÞ ¼ 0 ∀ n∈Zþ: ð19Þ

Using the expression of ȧðaÞ, we can write

ȧ ¼ hðaÞ;
ä ¼ hðaÞ∂ahðaÞ;
⃛a ¼ h2ðaÞ∂2ahðaÞ þ hðaÞð∂ahðaÞÞ2;
⃜a ¼ h3ðaÞ∂3ahðaÞ þ 4h2ðaÞ∂ahðaÞ∂2ahðaÞ þ hðaÞð∂ahðaÞÞ3;
..
.

aðnþ1Þ ¼ ∂
n
t hðaÞ ¼

X n!
kn1!kn2!…knn!

∂
kn
a hðaÞ

�
∂ta
1!

�
kn1
�
∂
2
t a
2!

�
kn2
…

�
∂
m
t a
m!

�
knm

…

�
∂
n
t a
n!

�
knn
; ð20Þ

where kn1 þ kn2 þ � � � þ knm þ � � � þ knn ¼ kn, kn1 þ 2kn2þ
� � � þmknm þ � � � þ nknn ¼ n, and the summation is over
all the partitions of n. To get the above expression of
aðnþ1Þ, we use di Bruno’s rule for the derivatives of
composite functions. One can remove all the expressions
of ∂t in the above expression of aðnþ1Þ and can express
aðnþ1Þ as a function of hðaÞ and its derivatives only,

i.e., aðnþ1Þ ≡ aðnþ1ÞðhðaÞ; ∂ahðaÞ;…; ∂nahðaÞÞ. This can be
done by using the expression of ∂ita recursively until i ¼ 1

is reached. The expression of aðnþ1ÞðhðaÞ; ∂ahðaÞ;…;
∂
n
ahðaÞÞ is very important, since, in Eq. (15), ȧ is written
as a function of a. Now, since hðaÞ ¼ βðfðaÞ−
fðaeÞÞα ∀ a∈ ½ae; a0�, we can write

∂ahðaÞ ¼ βαðfðaÞ − fðaeÞÞα−1f0ðaÞ;
∂
2
ahðaÞ ¼ βαðα − 1ÞðfðaÞ − fðaeÞÞα−2ðf0ðaÞÞ2 þ βαðfðaÞ − fðaeÞÞα−1f00ðaÞ;

..

.

∂
p
ahðaÞ ¼ β

X p!
q1!q2!…qp!

α!

ðα − qÞ! ðfðaÞ − fðaeÞÞα−q
�
∂af
1!

�
q1
�
∂
2
af
2!

�
q2
…

�
∂
m
a f
m!

�
qm
…

�
∂
p
af
p!

�
qp
; ð21Þ
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where as previously done q1 þ q2 þ � � � þ qm þ � � � þ
qp ¼ q, q1 þ 2q2 þ � � � þmqm þ � � � þ pqp ¼ p, and the
summation is over all the partitions of p. Now, in order to
get the expression of aðiÞ as a function of fðaÞ and its
higher-order derivatives, we need to put the above ex-
pression of ∂

i
ahðaÞ in Eq. (20). Now, we are ready to

investigate the constraint on α required for an asymptotic
equilibrium state. In order to get the lower bound of α,
we need to find out the terms having the lowest power of
ðfðaÞ − fðaeÞÞ in the expression of aðnþ1Þ written in
Eq. (20). Following are the lowest power of ðfðaÞ −
fðaeÞÞ for a given value of n:

ȧ → ðfðaÞ − fðaeÞÞα;
ä → ðfðaÞ − fðaeÞÞ2α−1;
⃛a → ðfðaÞ − fðaeÞÞ3α−2;
⃜a → ðfðaÞ − fðaeÞÞ4α−3;
..
.

aðnþ1Þ → ðfðaÞ − fðaeÞÞðnþ1Þα−n; ð22Þ

where one can get the lowest power of ðfðaÞ − fðaeÞÞ for
aðnþ1Þ by using the expression of ∂

p
ahðaÞ in the above

expression of ∂
n
t hðaÞ. Therefore, at equilibrium state

(i.e., a ¼ ae),

lim
a→ae

aðnþ1Þ ¼ 0 iff α >
n

nþ 1

⇒ lim
a→ae
n→∞

aðnþ1Þ ¼ 0 iff α ≥ 1: ð23Þ

Therefore, α ≥ 1 ensures the null values of all the higher-
order derivatives of aðtÞ in the limit a → ae, where
ȧðaÞ ¼ βðfðaÞ − fðaeÞÞα ∀ a∈ ½ae; a0�. If α ¼ n

nþ1
(i.e.,

α < 1), then all the higher-order derivatives of aðtÞ become
zero except aðnþ1Þ, which implies that the collapsing
dynamics is not settling down a stable equilibrium state.
A positive or negative value of aðnþ1ÞðaeÞ implies that aðnÞ
is going to have positive or negative values, respectively, as
comoving time progresses. If n−1

n < α < n
nþ1

, all the deriv-

atives from ȧ to aðnÞ would become zero at a ¼ ae; how-
ever, all the remaining higher-order derivatives of aðtÞ
(i.e., aðnþ1Þ; aðnþ2Þ;…að∞Þ) would blow up at a ¼ ae,
which is obviously not the equilibrium scenario. Therefore,
α ≥ 1 isolates equilibrium scenarios from the various
other dynamics where ȧ and ä may become zero at a
certain comoving time but do not imply an equilibrium
state. Therefore, from now on, we are going to consider
only α ≥ 1.
Using the expression of ȧ and ä in Eqs. (15) and (16),

respectively, we get

ð∂aϕÞ2 ¼ −
2αf0ðaÞ

aðfðaÞ − fðaeÞÞ
þ 2

β2a2ðfðaÞ − fðaeÞÞ2α

þ 2

a2
∀ a∈ ½ae; a0�; ð24Þ

VðaÞ¼ αβ2f0ðaÞ
a

ðfðaÞ−fðaeÞÞ2α−1þ
2β2

a2
ðfðaÞ−fðaeÞÞ2α

þ 2

a2
∀ a∈ ½ae;a0�: ð25Þ

The above equations show the functional dependence of
∂aϕ and the scalar field potential V on a for the collapsing
dynamics where the collapsing system asymptotically
reaches the equilibrium state. Since α ≥ 1, asymptotically
VðaeÞ ¼ 2

a2e
and ∂aϕ → �∞. Close to the equilibrium state,

i.e., when a → ae, we can write

∂aϕ ≈
� ffiffiffi

2
p

βaðfðaÞ − fðaeÞÞα
; ð26Þ

VðaÞ ≈ 2

a2
: ð27Þ

Using the above approximate solutions of ∂aϕ and VðaÞ,
we can analytically show the expression of scalar field
potential as a function of ϕ, i.e., VðϕÞ, which would be
applicable near equilibrium state only. From the above
approximate solution of ∂aϕ, we can write

ϕðaÞ ≈�
ffiffiffi
2

p

β

Z
a0

a

da
aðfðaÞ − fðaeÞÞα

: ð28Þ

For the analytical expression of ϕðaÞ, let us consider
fðaÞ ¼ a. Now, for this simple form of fðaÞ, we get the
following solutions of VðϕÞ near the equilibrium states:

When α ¼ 1∶VðϕÞ≈ 2

a2e
ð1− 2ηe

βaeffiffi
2

p ϕÞ for ϕ > 0

≈
2

a2e
ð1− 2ηe−

βaeffiffi
2

p ϕÞ for ϕ < 0; ð29Þ

when α > 1∶VðϕÞ≈ 2

a2e

�
1−

2ζ

ϕ
1

α−1

�
for ϕ > 0

≈
2

a2e

�
1−

2ζ

ð−ϕÞ 1
α−1

�
for ϕ < 0; ð30Þ

where η is the integration constant, ζ ¼ ½− βðα−1Þffiffi
2

p
aαe
�− 1

α−1, and

since β < 0, and α > 1, ζ > 0. It can be verified that in
the limit a → ae, as ϕ → �∞, VðϕÞ approaches to 2

a2e
asymptotically. It should be noted that the above approxi-
mate expressions of VðϕÞ are valid only close to the
equilibrium state; however, the expression of VðaÞ given
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in Eq. (25) is valid throughout the gravitational collapse,
i.e., for a∈ ½ae; a0�.

IV. SCALAR FIELD POTENTIAL IN A BONA FIDE
MODEL OF GRAVITATIONAL COLLAPSE
LEADING TO AN EQUILIBRIUM STATE

In this section, we derive the scalar field potential that is
necessary for achieving an equilibrium state at the end of
the gravitational collapse of homogeneous matter in a bona
fide model. The model we refer to is extensively discussed
in [28]. Here, we employ the same dynamical model and
obtain the scalar field potential that is required, assuming
that the collapsing fluid is composed of the minimally
coupled scalar field. In [28], the gravitational collapse of
homogeneous matter is modeled by considering a closed
FLRW spacetime described by the following metric:

ds2 ¼ −dt2 þ a2ðtÞ
1 − r2

dr2 þ r2a2ðtÞdΩ2: ð31Þ

To capture a collapsing scenario leading to an equilibrium
state, the collapse model incorporates the following expres-
sion for ȧ:

ȧðtrÞ ¼ −
Aðtr − 1Þ

ð1þ Bðtr − 1Þ2Þ2 ; tr ¼
t

tmax
: ð32Þ

Here, A and B represent real positive constants, while tmax
denotes the time when the spherical homogeneous region
begins to collapse under its own gravitational force.
At t ¼ tmax, the function aðtÞ reaches its maximum value,
denoted as amax. In [28], the bona fide model is employed
to describe a cosmological scenario where spherically
symmetric overdense regions of dark matter and dark
energy can achieve an equilibrium configuration at a
specific cosmological length and timescale. In this dynam-
ics, the overdense region initially expands with the back-
ground, albeit at a slower rate. However, at a certain time
t ¼ tmax, the expansion comes to a halt, and the overdense
region starts collapsing. Consequently, at t ¼ tmax, the
value of ȧ becomes zero, which can be verified from
Eq. (32). Using the above expression of ȧ, we can get the
following expression of the scale factor aðtrÞ:

aðtrÞ ¼ ae þ
A

2Bð1þ Bðtr − 1Þ2Þ ; ð33Þ

where ae is the value of the scale factor at equilibrium
which has the following expression considering zero
pressure at time t ¼ tmax:

ae ¼
B − A2

2AB
; ð34Þ

where we need B > A2 to get a positive value of ae. From
Eqs. (32) and (33), one can see that the equilibrium

configuration can be achieved by the collapsing system
at asymptotic time. Using Eqs. (32) and (33), we can write
down the ȧ as a function of a:

ȧ ¼ −
4B2

A

�
A
2B2

1

ðaðtÞ − aðteÞÞ
−
1

B

�1
2ðaðtÞ − aðteÞÞ2; ð35Þ

which in the limit a → ae becomes

ȧðaÞ ≈ βða − aeÞ32; ð36Þ

where β ¼ − 2
ffiffi
2

pffiffiffi
A

p B. As discussed in the previous section,

in this case, α ¼ 3
2
, which is greater than one, and, therefore,

this collapsing system has an end equilibrium state.
It can be verified that, for this present scenario,
limt→∞ aðn;0Þðt; rÞ ¼ 0 ∀ n∈Zþ, which implies the exist-
ence of the end equilibrium state. Using Eqs. (26) and (27)
and the expression of VðϕÞ near the equilibrium in Eq. (30),
we get

ϕðaÞ ≈� 2
ffiffiffi
2

p

βae

1

ða − aeÞ12
; ð37Þ

VðϕÞ ≈ 2

a2e

�
1 −

2ζ

ϕ2

�
; ð38Þ

where ζ ¼ 8B
A2

1
ð B
A2
−1Þ3. Since B > A2, ζ > 0. In Fig. 1, we can

see that the approximate solution of the potential of the
scalar field (depicted by a dotted red curve) almost
coincides the exact solution (depicted by a black solid
line) near the equilibrium configuration. Here, we consider
A ¼ 16.57 and B ¼ 369.3, which are relevant to the cosmo-
logical scenario discussed in [28]. Therefore, the system
starts collapsing at amax ¼ 0.0302 and asymptotically
reaches the equilibrium state where ae ¼ 0.00774.

FIG. 1. The figure depicts the scalar field potential near the
equilibrium where the dotted red curve corresponds to the
approximate potential near the equilibrium and the black solid
line is for the exact solution of potential.

DIPANJAN DEY, KOUSHIKI, and PANKAJ S. JOSHI PHYS. REV. D 108, 104045 (2023)

104045-6



V. CONCLUSION

In this paper, we study the gravitational collapse of a
minimally coupled scalar field with nonzero potential, and
we obtain a class of scalar field potentials that lead to an
equilibrium end state of gravitational collapse. In order to
do that, we first express the equilibrium condition in the
following way:

aðnÞðaeÞ ¼ 0 ∀ n∈Zþ; ð39Þ

which is just a different form of the condition stated in
Eq. (2). While obtaining the potential of the scalar field, we
express every dynamical variable as a function of the scale
factor. Now at equilibrium, the scale factor becomes ae. A
scale factor can reach a specific value at a given comoving
time. However, it becomes challenging to ascertain whether
that particular value of the scale factor corresponds to the
equilibrium state, as all dynamical variables are expressed
in terms of the scale factor rather than the comoving time.
To address this, one can verify the higher-order derivatives
of the scale factor. The null values of all higher-order
derivatives along with the first and second at a certain scale
factor value ae ensure the existence of an end equilibrium
state of the collapsing system. The null values of the first-
and second-order derivatives of the scale factor at an
asymptotic comoving time do imply the existence of an
equilibrium state. However, when one expresses all the
dynamical variables in terms of a scale factor, null values of
the first two derivatives at a certain value of scale factor ae
do not imply an equilibrium state, since there is no
information of comoving time [e.g., a ¼ ae þ ðte − tÞn ∀
n > 2, the first two derivatives become zero at a ¼ ae, but
the collapsing system has no equilibrium state at a ¼ ae].
We have to show null values of all the higher-order
derivatives at a certain value of a. We show the lower
limit of a parameter α for which all the higher-order
derivatives of the scale factor become zero at a ¼ ae.
One can use the comoving time to express an equilibrium
dynamic. However, with that procedure, one cannot cover
the large class of collapsing dynamics that can reach the
equilibrium state. In [28], the authors show one example of
such a dynamics, where the scale factor has a particular

functional dependence on comoving time. By expressing
all variables as functions of the scale factor a, we eliminate
the need to determine the dependence of a on the comoving
time, except for one crucial constraint: All higher-order
derivatives of a must become zero at a ¼ ae. In this way,
we cover a large class of collapsing dynamics leading to an
end equilibrium state. Additionally, if one expresses every-
thing in terms of comoving time, then it may be very
difficult to get an analytical form of VðϕÞ, and then we
would have to show the potential by a numerical plot which
is not of our interest in this paper.
In Sec. IV, we derive the scalar field potential required

to achieve an equilibrium state at the conclusion of the
gravitational collapse of homogeneous matter in a bona fide
model discussed in [28]. We show that the scalar field
potential corresponding to the example belongs to the class
of potentials discussed in Sec. III. As stated before, in this
paper, we refrain from presenting the scalar field as a
candidate for dark matter or dark energy. Instead, our
primary objective lies in deriving the potential of the scalar
field, where it plays a crucial role as the constituent of the
collapsing matter. At a certain cosmological length and
timescale, if the gravitational collapse of a certain homo-
geneous matter distribution consisted of a scalar field
approach toward the general relativistic equilibrium state,
then, after a large comoving time, the potential of the scalar
field may have a similar functional form given in Eqs. (29)
and (30). Now, the next step would be to find out some
cosmological implications of the aforementioned scalar
field potential. Another interesting direction to extend this
work would be to see the critical behavior of the scalar
fields and associated potentials to produce singularities.
This might give an analytic counterpart of Choptuik’s
numerical study [5]. However, we have deferred these
aspects to future work, acknowledging the need for further
exploration and analysis in this direction.
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