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I. INTRODUCTION

Among the variety of so-called modified gravitational
theories, metric-affine gravity (MAG) is the most natural
extension of Einstein’s general relativity (GR) theory [1–5].
It admits a consistent gauge-theoretic formulation as a
gauge theory of the general affine groupGAð4; RÞ, which is
a semidirect product of the general linear group GLð4; RÞ,
and the group of local translations [6]. The gravitational
gauge potentials are identified with the metric, the coframe,
and the linear connection, whereas the corresponding
gravitational field strengths are the nonmetricity, the
torsion, and the curvature, respectively. MAG takes into
account microstructural properties of matter (such as spin,
dilation, and shear currents) as possible physical sources of
the gravitational field on an equal footing with macroscopic
properties (energy and momentum) of matter.
Leaving aside the construction of the dynamical scheme

for MAG, that encompasses the choice of the Lagrangian of
the gravitational field and the analysis of the corresponding
field equations, we focus here on the study of the physical
sources of metric-affine gravity. The microscopic matter can
be described in terms of manifields (world tensors or world
spinors) which realize irreducible representations of the
general linear group [6,7]; however, the fundamental wave
equation, analogous to the Dirac equation, is still not estab-
lished. On the other hand, the physical nature ofmacroscopic
matter is much better understood in the framework of the
continuous mechanics of media with microstructure [8–15].
The spin fluid (also known in the literature as “spinning

fluid”) represents a special case of continuous matter with
microstructure [16–21], the dynamics of which is satisfac-
torily described in the framework of the Cosserat
approach [22,23]. The elements of such media are charac-
terized by a rigid local material frame, representing the

degrees of freedom of an intrinsic rotation, or spin, of matter
elements. The hyperfluid model was developed in [24,25] as
a natural extension of the concept of an ideal spinning fluid to
the case of a deformable material frame, thus adding
the intrinsic dilation and shear degrees of freedom. The
hyperfluid model attracted considerable attention in the
analysis of the dynamics of micromorphic hyperelastic
continua [26–28], whereas in the gravity theory it wasmostly
used in the cosmological context [29–34].
A peculiar feature of the original model [24] was the

“built-in” generalized Frenkel-Pirani supplementary con-
dition which imposes quite strong restrictions on the
structure of the hypermomentum. Thereby, it essentially
reduces the space of possible gravitational field configura-
tions in the cosmological MAG models. In [25] an attempt
was made to avoid the Frenkel-Pirani-type condition.
However, the resulting unconstrained hyperfluid model is
characterized by a trivial dynamical law for the hyper-
momentum current that ultimately leads to a decoupling of
the hypermomentum from the energy-momentum current.
Here we construct a new variational framework for a

hyperfluid model in which the issue of the supplementary
condition is resolved. Technically, this is achieved by
allowing for an arbitrary four-dimensional intrinsic hyper-
momentum density without artificially restricting it to the
three-dimensional form.
Our basic notations and conventions follow [6,35]. In

particular, the indices from the middle of the Latin alphabet
i; j; k;… ¼ 0, 1, 2, 3 label the four-dimensional spacetime
components, the Greek alphabet is used for anholonomic
frame indices α; β;… ¼ 0, 1, 2, 3, whereas the capital Latin
indices from the beginning of the alphabet A;B; C;… ¼ 1,
2, 3 refer to the three-dimensional objects and operations.

II. ELEMENTARY LAGRANGE-NOETHER
MACHINERY OF MAG

The geometrical arena of metric-affine gravity theory is
the four-dimensional smooth manifold which is endowed
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with a metric gij, and a linear connection Γki
j. In general,

these fundamental geometrical objects are completely
independent, and the spacetime geometry is exhaustively
characterized by the tensors of the curvature, the torsion,
and the nonmetricity, respectively:

Rkli
j ≔ ∂kΓli

j − ∂lΓki
j þ Γkn

jΓli
n − Γln

jΓki
n; ð1Þ

Tkl
i ≔ Γkl

i − Γlk
i; ð2Þ

Qkij ≔ −∇kgij ¼ −∂kgij þ Γki
lglj þ Γkj

lgil: ð3Þ

Physically, one can view (gij;Γki
j) as the gauge gravita-

tional potentials, whereas (1)–(3) are treated as the corre-
sponding gravitational field strengths [6].
Denoting arbitrary matter field ΨA, where separate

matter variables are labeled by the collective index A
without specifying the tensor/spinor nature of these vari-
ables, we derive the dynamical field equations for the
matter from the action

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LmðΨA;∇iΨA; gijÞ: ð4Þ

This action describes thematterminimally coupled to gravity,
hence the connection Γki

j enters only through the covariant
derivative ∇i, whereas the matter Lagrangian Lm does not
depend on curvature, torsion, and nonmetricity (1)–(3).
The canonical energy-momentum tensor and the hyper-

momentum tensor are defined as

Σk
i ¼ ∂Lm

∂∇iΨA ∇kΨA − δikL
m; ð5Þ

Δi
j
k ¼ δLm

δΓki
j : ð6Þ

In addition, the metrical energy-momentum tensor is
determined from the variation of the action with respect
to the spacetime metric,

σij ≔ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgij

: ð7Þ

The standard Euler-Lagrange machinery [36] yields the
conservation laws, such as the hypermomentum and the
energy-momentum conservation laws, respectively [32],

∇� jΔi
k
j ¼ Σk

i − σk
i; ð8Þ

∇� iΣk
i ¼ Σl

iTki
l − Δm

n
lRklm

n −
1

2
σijQkij: ð9Þ

Here the modified covariant derivative is defined as ∇� i ≔
∇i − Tki

k − 1
2
Qik

k.

III. HYPERFLUID MODEL:
VARIATIONAL APPROACH

In general relativity, a simple macroscopic material
source of the gravitational field is usually modeled as an
ideal fluid, the elements of which are structureless particles
(i.e., they do not possess either spin nor other internal
degrees of freedom). Such a continuous medium (see,
e.g., [37–41] for the relevant earlier work, for the general
discussion of the relativistic ideal fluids, see [42,43]) is
characterized in the Eulerian approach by the fluid
4-velocity ui, the internal energy density ρ ¼ ρðν; sÞ, the
particle density ν, the entropy s, and the identity (Lin)
coordinate X [44]. In addition, one assumes that the
number of particles is constant and that the entropy and
the identity of the elements are conserved during the
motion of the fluid. Due to the conservation of the entropy,
only reversible processes are allowed. In other words, the
variables of the fluid satisfy

∇� iðνuiÞ ¼ 0; ui∇iX ¼ 0; ui∇is ¼ 0: ð10Þ

InMAG, the physical sources of the gravitational field are
extended to continuous media with microstructure [9–11]
which are characterized by additional variables describing
internal properties of the elements of the fluid. An important
example ofmatterwithmicrostructure is provided by the spin
fluid [16–21] and in particular by liquid 3He in the A-phase,
see [14,45,46].

A. Lagrangian for the hyperfluid

Following the Cosserat approach [22], we describe
matter with microstructure as a continuous medium the
elements of which are characterized by the 4-velocity ui

and the material triad biA, A ¼ 1, 2, 3. However, in MAG
the latter is not assumed to be rigid, which means that
arbitrary deformations of the triad are allowed during the
motion of the fluid. Still, we assume that the standard
orthogonality and normalization conditions are imposed on
the velocity and the triad legs,

gijuiuj ¼ c2; gijuib
j
A ¼ 0: ð11Þ

The latter condition means that the vectors of the material
triad are spacelike. Taken together, the 4-velocity ui and the
material triad biA comprise the material frame attached to
the elements of the fluid,

hiα ¼ fui; bi
1̂
; bi

2̂
; bi

3̂
g: ð12Þ

This frame is not orthonormal, and in particular, the scalar
products determine a nontrivial 3 × 3 material metric,

gijhiAh
j
B ¼ gijbiAb

j
B ¼ gABðxÞ; A; B ¼ 1; 2; 3: ð13Þ
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The metric gABðxÞ characterizes the properties of the
“internal geometry” of the microstructured material ele-
ments at each point xi of spacetime. The material frame hiα
is different from an arbitrary spacetime frame eiα which is
identified with the translational gauge potential of metric-
affine gravity. The inverse coframe hαi is introduced by

hαi h
i
β ¼ δαβ; ð14Þ

and from here, with the help of (11), we find explicitly

h0̂i ¼
1

c2
ui; hAi ¼ fh1̂i ; h2̂i ; h3̂i g: ð15Þ

Formally, we can write the cotriad as hAi ≔ gijgABb
j
B. Since

obviously uihAi ¼ 0, and hence

uihαi ¼ δα
0̂
; ð16Þ

we find from (14),

hiAh
B
i ¼ δBA; hiAh

A
j ¼ δij −

1

c2
uiuj: ð17Þ

The evolution of the material frame is encoded in the
generalized acceleration tensor,

Ωα
β ≔ hαi u

k∇khiβ ¼ hαi u
kð∂khiβ þ Γkj

ihjβÞ: ð18Þ

This is a natural relativistic extension of the angular
velocity, with the same dimension ½Ωα

β� ¼ 1=s. By con-
struction, the object (18) is a scalar under general coor-
dinate transformations. Its components encompass the
fluid’s acceleration

Ω0̂
A ¼ −

1

c2
hiA u

k∇kui; ΩA
0̂ ¼ hAi u

k∇kui ð19Þ

(please note that uk∇kui ≠ gijuk∇kuj), whereas the 3 × 3

matrix

ΩA
B ¼ hAi u

k∇kh
j
B ð20Þ

describes the rotation and deformation of the material triad,
measured by an observer comoving with the fluid.
We formulate the hyperfluid model as a natural gener-

alization of the spin fluid model by introducing a specific
hypermomentum density μαβ carried by the material ele-
ments. Being an extension of the specific spin density, it has
the same dimension ½μαβ� ¼ ½ℏ�. As compared to [24], the
crucial novelty is that μαβ is a four-dimensional object,
rather than a three-dimensional one. Together with this new
microstructural variable, the physical properties of matter
are then characterized by the internal energy density
ρðν; s; μαβÞ, the particle number density ν, the entropy s,

and the identity Lin coordinate X. As usual, we assume that
thermodynamics is encoded in the generalized Gibbs law

Tds ¼ d

�
ρ

ν

�
þ pd

�
1

ν

�
−
1

2
ωα

βdμβα; ð21Þ

where T is the temperature, p is the pressure, and ωα
β is a

conjugate to μαβ.
The dynamics of the hyperfluid is governed by the action

integral (4), where the Lagrangian reads

Lm ¼ −ρðν; s; μαβÞ þ Lkin þ Lc: ð22Þ

The first term generalizes the usual Lagrangian of an ideal
fluid, the second term describes the contribution of the
kinetic (hypermomentum-deformation) energy,

Lkin ¼ −
1

2
νμαβΩβ

α; ð23Þ

(check the dimension ½Lkin�¼m−3½ℏ�s−1¼½energydensity�),
whereas the last term collects all the constraints imposed on
the fluid’s variables by means of Lagrange multipliers,

Lc ¼ −νui∇iλ1 þ λ2ui∇iX þ λ3ui∇isþ λ0ðgijuiuj − c2Þ
þ λAgijuib

j
A þ λαβðhiαhβi − δβαÞ: ð24Þ

The last constraint conveniently allows to treat the
material frame hiα and the inverse coframe hαi as independent
variables. Therefore, the complete set of the physical
variables plus the Lagrange multipliers comprise the matter
field of the hyperfluid,

ΨA ¼ fui; biA; hαi ; ν; s; X; μαβ; λ0; λ1; λ2; λ3; λA; λαβg: ð25Þ

B. Euler-Lagrange equations

Variations with respect to the Lagrange multipliers
λ0; λ1; λ2; λ3; λA; λαβ yield (10), (11), and (14); in other
words, we recover the orthogonality and normalization
constraints, together with the conservation of the entropy,
the number and the identity of particles during the fluid’s
motion.
The total variation of the potential energy is easily found

by making use of (21)

δ½−ρ� ¼ −δν
∂ρ

∂ν
− δs

∂ρ

∂s
− δμαβ

∂ρ

∂μαβ

¼ −δν
�
ρþ p
ν

�
− δs½νT� − δμαβ

�
1

2
νωβ

α

�
: ð26Þ

Besides the dependence on material variables ν; μαβ; hiα; hαi ,
the kinetic Lagrangian (23) also depends on the gravita-
tional field variables gij and Γki

j. The direct computation
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(see Appendix) yields the total variation (A1) for the kinetic
Lagrangian, and (A2) for the constraint Lagrangian.
Combining (26), (A1), and (A2), one then finds for the

variations with respect to the fluid variables X, s, ν,
respectively,

δLm

δX
¼ −∇� iðλ2uiÞ ¼ 0; ð27Þ

δLm

δs
¼ −∇� iðλ3uiÞ − νT ¼ 0; ð28Þ

δLm

δν
¼ −ui∇iλ1 −

ρþ p
ν

−
1

2
μαβΩβ

α ¼ 0: ð29Þ

In addition, when varying the action with respect to the
fluid velocity ui, we need to take into account that hi

0̂
¼ ui

and hiA ¼ biA. Then we explicitly find

δLm

δui
¼ λAgijb

j
A þ 2λ0ui þ λ0̂αhαi − ν∇iλ1 þ λ2∇iXþ λ3∇is

−
1

2
νμβαhαk∇ihkβ þ

1

2
νμ0̂αuk∇khαi þ

1

2
νhαi u

k
∂kμ

0̂
α

¼ 0; ð30Þ

whereas the variation with respect to the fluid triad yields

δLm

δbiA
¼ 1

2
νhβi u

k
∂kμ

A
β þ

1

2
νμAβuk∇kh

β
i þ λAβh

β
i þ λAui

¼ 0: ð31Þ

Finally, variations with respect to the inverse material
coframe hαi and with respect to the fluid’s specific hyper-
momentum density μβα results in, respectively,

λαβ ¼
1

2
νμγβΩα

γ; ð32Þ

ωα
β þΩα

β ¼ 0: ð33Þ

Contracting the equations of motion (30) and (31) with
ui and making use of (10), (11), (16), (29), and (32), we
find the Lagrange multipliers,

2λ0c2 ¼ −ρ − p −
1

2
νðuk∂kμ0̂0̂ − μ0̂γΩγ

0̂ þ μγ 0̂Ω0̂
γÞ; ð34Þ

λAc2 ¼ −
1

2
νðuk∂kμA0̂ − μAγΩγ

0̂ þ μγ 0̂ΩA
γÞ: ð35Þ

Finally, by contracting (31) with the material triad biA, we
find the equation of motion of the hypermomentum density,

1

2
νðuk∂kμAB − μAγΩγ

B þ μγBΩA
γÞ ¼ 0: ð36Þ

This is similar to the treatment by Delphenich [47] of the
transport of material frame with the help of the generalized
acceleration (deformation) tensor (18).

C. Canonical Noether currents of hypermomentum
and energy-momentum

By definition, the canonical hypermomentum current (6)
arises from the variation of the action with respect to the
connection Γki

j. Since the latter enters only the kinetic part
of the Lagrangian, we can read off from (A1) the expression

Δi
j
k ¼ ukJ i

j; ð37Þ

J i
j ≔ −

1

2
νμαβhiαh

β
j : ð38Þ

Obviously, the dimension ½J i
j� ¼ ½ℏ�=m3 is the same as for

the spin density. We can invert (38) and find,

−
1

2
νμαβ ¼ hαi h

j
βJ

i
j: ð39Þ

Then, it is straightforward to demonstrate that

−
1

2
νðuk∂kμαβ − μαγΩγ

β þ μγβΩα
γÞ ¼ hαi h

j
βJ̇

i
j; ð40Þ

where the substantial derivative of an arbitrary quantity Φ
along the fluid’s flow is defined in the usual way as

Φ̇ ≔ ∇� iðuiΦÞ.
With the help of (40), the Lagrange multipliers sim-

plify to

2λ0c2 ¼ −ρ − pþ 1

c2
uiujJ̇

i
j; ð41Þ

λAc2 ¼ hAi u
jJ̇ i

j; ð42Þ

whereas the equation of motion (36) is recast into a nice
tensor form

J̇ i
j−

1

c2
uiukJ̇ k

j−
1

c2
ujukJ̇ i

kþ
1

c4
uiujulukJ̇ k

l¼ 0: ð43Þ

Substituting the Lagrange multipliers (41) and (42) into
(30), we can derive an important relation that underlies the
computation of the canonical energy momentum,

− ν∇iλ1 þ λ2∇iX þ λ3∇is −
1

2
νμβαhαk∇ihkβ

¼ ui
pþ ρ

c2
−

1

c2
ðgijuk − δki ujÞJ̇ j

k: ð44Þ

Let us come back to the constraint Lagrangian (24). On
shell (i.e., when the equations of motion are satisfied) it
reduces to
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Lc ¼ −νui∇iλ1 ¼ pþ ρþ 1

2
νμαβΩβ

α: ð45Þ

With the help of (29), we find for the fluid Lagrangian (22)
on-shell

Lm ¼ p: ð46Þ

Consider the canonical energy-momentum tensor (5)
and use of the crucial relation (44). Then the hyperfluid
Lagrangian (22) yields

Σk
i ¼ uiPk − p

�
δik −

ukui

c2

�
; ð47Þ

Pk ¼
ρ

c2
uk −

1

c2
ðgkjul − δlkujÞJ̇ j

l: ð48Þ

In contrast, the total variation (A1) leads to the metric
energy-momentum tensor (7),

σk
i ¼ ukui

c2

�
ρþ 1

c2
ulujJ̇ j

l

�
− p

�
δik −

ukui

c2

�

−
1

c2
ðgkjui þ δijukÞulJ̇ j

l: ð49Þ

We recognize here a generalization of the Belinfante-
Rosenfeld relation [48–50].
It is worthwhile to note that ukPk ¼ ρ. For the dust case

(when p ¼ 0), we find, from (9), the equation of motion for
the 4-momentum of matter,

Ṗk ¼ −J i
julRkli

j þ Σl
iTki

l −
1

2
σijQkij: ð50Þ

Equation (50), together with Eq. (43), represent a gener-
alization of the Mathisson-Papapetrou system for metric-
affine spacetime.
Finally, by making use (47), we can explicitly demon-

strate that (8) is a consequence of the equations of motion
for hypermomentum (43).

IV. CONCLUSION AND OUTLOOK

We have constructed a new formulation of the hyperfluid
model which is free of any supplementary conditions on
the hypermomentum current. Recall that in the original
model [24] the latter was subject to the Frenkel-Pirani-type
conditions

J i
juj ¼ 0; J i

jui ¼ 0; ð51Þ

which strongly constrained the possible gravitational
field configurations in MAG. One can see that the violation
of (51) is directly related to the fact that the intrinsic

hypermomentum μαβ is a four-dimensional object, and in

particular μ0̂A ≠ 0 and μA0̂ ≠ 0.
An important consequence of removing the condi-

tion (51) is the possibility to consider the hyperfluid model
of a purely dilatonic (sometimes called Weyl) type when
the hypermomentum density reduces to

J i
j ¼ J δij: ð52Þ

Substituting this into (43), we find the equation of motion
for the dilation charge density

J̇ ¼ ∇� iðJ uiÞ ¼ 0; ð53Þ

which resembles the electric charge conservation. As a
result, we can verify that the canonical (47) and the
metrical (49) energy-momentum tensors coincide,

Σk
i ¼ σk

i ¼ ρ

c2
ukui − p

�
δik −

ukui

c2

�
: ð54Þ

Remarkably, however, one can prove that for a wide class
of the physically viable MAG models [3,5,33,34,51–53]
the dynamics of the gravitational field with the dilatonic
hyperfluid is described by the Einstein equations of
standard general relativity theory with an effective matter
source

Σ
eff

k
i ¼ ρeff

c2
ukui − peff

�
δik −

ukui

c2

�
; ð55Þ

where the effective energy density and pressure read

ρeff ¼ ρ − κc2ζJ 2; peff ¼ p − κc2ζJ 2: ð56Þ

Here κ ¼ 8πG=c4 is Einstein’s gravitational constant,
whereas the dimensionless constant parameter ζ is deter-
mined by the structure of theMAGLagrangian. The dilation
charge density J affects the dynamics of the spacetime
metric in thevery peculiarway (56), and this potentiallymay
shed new light into an interesting discussion of the possible
role of the dilation charge in the context of the dark matter
issue [51–53], and in the early cosmology. In particular, on
the early stages of universe’s evolution the dilation charge
may avert the cosmological singularity in a similar way to
the spin of matter [54–57]. This qualitatively new feature
will be studied in greater detail elsewhere.
In addition, it is worthwhile to mention that the new

formulation avoids the deficiencies of the unconstrained
hyperfluid model [25] where the hypermomentum current is
conserved and it is decoupled from the energy-momentum
current. All this suggests that the new hyperfluid model
provides a physically more reasonable description of the
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classical matter source in the framework of metric-affine
gravity.
Looking from a broader perspective, possible applica-

tions of the hypermomentum concept and the hyperfluid
model range from the early cosmology to the heavy ion
physics. As soon as a quark-gluon plasma comes into
existence (for the relation between hypermomentum and
hadron physics, see [4]), the hyperfluid could be used as a
classical approximation at early stages of the Universe
evolution when, following the inflation at about 10 μs after
the big bang, the temperature would be about 1012 kelvin,
see [58]. The use of a spin fluid (see Beccatini [59]
and Biswas et al. [60]) appears to be too restrictive for a
quark-gluon plasma, in our opinion, since an account on the

Regge-trajectorieslike hadronic excitations is needed.
On the other hand, in an interesting study of Floerchinger
et al. [61] an attempt wasmade to clarify the relevance of the
hypermomentum current in the relativistic fluid dynamics
arising in the framework of the quantum effective action
formalism. These issues will be further discussed elsewhere.

APPENDIX: EXPLICIT VARIATIONS OF THE
FLUID LAGRANGIAN

Direct computation of the total variation of the kinetic
Lagrangian (23) with respect to the matter field variables
(25) yields

1ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi
−g

p
Lkin� ¼ δν

�
−
1

2
μαβΩβ

α

�
þ δμαβ

�
−
1

2
νΩβ

α

�
þ δui

�
−
1

2
νμαβh

β
k∇ihkα

�

þ δhαi

�
−
1

2
νμβαuk∇khiβ

�
þ δhiα

�
1

2
νμαβuk∇kh

β
i þ

1

2
νhβi u

k
∂kμ

α
β þ

1

2
μαβh

β
i∇
�
kðνukÞ

�

þ δgij

�
−
1

4
gijνμαβΩβ

α

�
þ δΓki

j

�
−
1

2
νμαβhiαh

β
ju

k

�
: ðA1Þ

Similarly, for the total variation of the constraint Lagrangian (24) we derive

1ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi
−g

p
Lc� ¼ δλ1½∇

�
iðνuiÞ� þ δλ2½ui∇iX� þ δλ3½ui∇is� þ δλ0½gijuiuj − c2� þ δλA½gijuibjA� þ δλαβ½hiαhβi − δβα�

þ δν½−ui∇iλ1� þ δX½−∇� iðλ2uiÞ� þ δs½−∇� iðλ3uiÞ� þ δui½−ν∇iλ1 þ λ2∇iX þ λ3∇isþ 2λ0ui þ λAgijb
j
A�

þ δbiA½λAui� þ δhiα½λαβhβi � þ δhαi ½λβαhiβ� þ δgij

�
1

2
gijLc þ λ0uiuj þ λAuibjA

�
: ðA2Þ

A technical comment is in order. The result above is obtained with the help of the geometric identity ∂ið ffiffiffiffiffiffi−gp
AuiÞ ¼ffiffiffiffiffiffi−gp ∇� iðAuiÞwhich holds for any scalar function A, [32]; also, see Schouten [62] for a more detailed discussion of covariant

derivatives for tensor densities.
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