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The Goroff-Sagnotti operator, corresponding to the contraction of three Weyl tensors, is the first
counterterm of general relativity (GR) nonvanishing on shell. We study the classical effects of including
this operator in the effective gravitational Lagrangian. The results obtained for the Goroff-Sagnotti operator
are proved to hold for some higher-curvature operators that generalize it. We find solutions to those
operators’ equations of motion (EM); in particular, we find the general condition for the spherically
symmetric case and provide several example solutions. Concerning the EM for GR supplemented with the
Goroff-Sagnotti operator, we study spherically symmetric perturbative corrections to the GR solution. In
less symmetric instances, we only study the subset of solutions that solve the EM separately for GR and the
Goroff-Sagnotti operator.
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I. INTRODUCTION

Within the context of effective field theories (EFTs)
applied to general relativity (GR), the Einstein-Hilbert
Lagrangian1 is only the lowest-energy approximation2 of
a Lagrangian involving higher powers of curvature (maybe
all of them). Increasing powers of the energy scale suppress
these higher-curvature terms Λeff , at which the perturbative
EFT description breaks down, and the input from all the
higher-curvature operators is required.
From this vantage point, a timely question is to what

extent a solution to GR’s equations of motion (EM) is
stable, in the sense of [1,2] under perturbations correspond-
ing to these higher-dimensional operators in the gravita-
tional Lagrangian.
Our main purpose is to examine the effect of changing

the EM due to the presence, in the gravitational Lagrangian,
of higher-curvature terms, specifically quadratic and cubic
in curvature. A general classification of such operators
was given in [3]. We present in Table I those operators
corresponding to quadratic and cubic operators.
One can start by considering the quadratic operators in

the first row of Table I. Since we will be concerned with the
structural stability of solutions to the EM, we can neglect
the□R operator, as this boundary term does not change the
EM, provided an adequate Gibbons-Hawking-York surface

counterterm is added to the action. Furthermore, since we
will only consider n ¼ 4-dimensional spacetimes, we can
further use the fact that the Euler characteristic for a four-
dimensional manifold corresponds to

X4 ¼
1

32π2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRμνρσRμνρσ − 4RμνRμν þ R2Þ; ð1Þ

where g≡ det gμν, to realize that only two out of the three
remaining operators are independent. Therefore, we can
choose as a basis for quadratic operators fR2; RμνRμνg.
The resulting action,

S ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − κ2ðαR2 þ βRμνRμνÞÞ; ð2Þ

has the following EM:

−
1

2
ffiffiffiffiffiffi−gp δS

δgμν
¼

�
Rμν −

1

2
Rgμν

�
− 2βR

�
Rμν −

1

4
Rgμν

�

− 2αRρσ

�
Rμρνσ −

1

4
Rρσgμν

�
− ðαþ 2βÞðgμν□ −∇μ∇νÞR

− α□

�
Rμν −

1

2
Rgμν

�
: ð3Þ

From inspection of Eq. (3), one can see that all the solutions
to GR in vacuum Rμν ¼ 0 are solutions to Eq. (3) as well.3

*enrique.alvarez@uam.es
†jesusanero@gmail.com
‡eduardo.velasco@uam.es
1That gives rise to the equations of motion of GR.
2If one ignores the elephant in the room that the cosmological

constant represents.

3Note this is not a symmetry-dependent statement, GR
solutions are structurally stable under the addition of quadratic
operators.
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The main goal of this work is to study operator
deformations that can make spacetimes potentially depart
from their GR solution status. However, Eq. (3) shows that
quadratic operators will not affect structural stability. Thus,
as discussed below, we will omit the presence of quadratic
operators in our stability analysis.4

On the other hand, dealing with the entire set of cubic
operators in Table I is generally complicated. There have
been attempts in specific simplifying scenarios, for exam-
ple, regarding perturbative solutions around a GR space-
time with a high degree of symmetry [4,5] or a particularly
well-behaved subset of operators, e.g., [6,7].
Our approach here is similar to that in [1,4], where only one

out of all such cubicoperators is considered;wewill generalize
the statements for nonspherically symmetric spacetimes and
obtain some further generalizations. In particular, we will
consider the Goroff-Sagnotti (GS) operator,

OGS ≡WμναβWαβρσWρσ
μν; ð4Þ

where Wαβγδ is the Weyl tensor,5

Wαβγδ ≡ Rαβγδ −
1

2
fgαγRβδ − gαδRβγ − gβγRδα þ gβδRγαg

þ 1

6
Rfgαγgδβ − gαδgγβg: ð5Þ

Themain property ofWeyl’s tensor is that it is inert6 under the
so-called Weyl rescalings (a gauge transformation) of the
spacetime metric

gμν → ΩðxÞ2gμν;
Wμ

νρσ → Wμ
νρσ: ð6Þ

Restricting to a single operator means that there are
potential effects that our analysis will not capture.7

However, since such corrections are unlikely8 to cancel
the effects of the operator considered, we believe that any
departure from the GR solutions here displayed would,
most likely, only be accentuated by the presence of more
general operators.
The reason for consideringOGS is twofold: First, it is the

first nonvanishing, on-shell counterterm that appears when
renormalizing gravity. The one-loop counterterm [8] to GR,

Lð1Þ
∞ ¼ 1

n − 4

1

ð4πÞ2
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

60
R2 þ 7

10
R2
μν

�
; ð7Þ

vanishes on shell.
It is then essential to consider also the first nonvanishing

on-shell counterterm, which appears at the two-loop order,
the Goroff-Sagnotti (GS) operator [9], and is proportional
to the trace of the cube of Weyl’s tensor,

Lð2Þ
∞ ¼ 1

n−4

209

2880

1

ð4πÞ4
Z

dnx
ffiffiffiffiffiffi
−g

p
WμναβWαβρσWρσ

μν: ð8Þ

Note that for n ≤ 5, see Table I, there is only one
independent such contraction [3]. It is interesting to remark
that, as first pointed out in [1,10], for the static and
spherically symmetric case, the EM corresponding to
OGS excludes the general relativity solutions. The main
goal of this work is to generalize the claims for spherically
symmetric spacetimes and study to which extent less
symmetric solutions are incompatible with the GR ones
under the GS counterterm perturbation.
In addition to this physical motivation, the simplicity

of the EM for OGS will allow us to extract certain
general properties of the deformation, see Sec. II A 2.
Ideally, we would want to get exact solutions to the EM.
However, those are few and far between. This can be
seen by observing the trace equations for the static and
spherically symmetric case in Appendix D. Even in this
simple case, they are nonlinear fourth-order differential
equations.
Nonetheless, given the structure of OGS, we provide a

necessary condition for a spacetime to be a solution to the
EM for the OGS operator. The full EM can be checked in

TABLE I. Quadratic and cubic curvature operators. The operator RαβRρσλαRρσλ
β is independent if the space

dimensionality is n ≥ 5. The operators RαβγδRαμγνRβ
μ
δ
ν; RαβγδRγδμνRμν

αβ are independent if the space dimension-
ality is n ≥ 6.

Curvature order Operators

Quadratic R2;□R;RμνRμν; RμνρσRμνρσ

□
2R;R□R;Rμν∇μ∇νR;Rμν□Rμν; Rμανβ∇α∇βRμν;∇μR∇μR;∇αRμν∇αRμν,

Cubic ∇αRμν∇μRνα;∇αRμνρσ∇αRμνρσ ; R3; RRμνRμν; RμνRμ
αRαν; RμνRρσRνσμρ,

RRαβμνRαβμν, RαβγδRαμγνRβ
μ
δ
ν; RαβγδRγδμνRμν

αβ, RαβRρσλαRρσλ
β

4We stress that they play a role when studying how solutions
depart from GR solutions, but leave that analysis for future work.

5In general spacetime dimension the form of the Well tensor
will change and the Weyl classification discussed in Appendix C
will not be valid.

6Bear in mind the position of the indices in Eq. (6).
7Unless some fine-tuning in the coefficients of all the other

third-order curvature operators would justify the choice here
made. We are not aware of any reason for this to be the case. 8Given the different nature of the cubic operators in Table I.
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Appendix A. This is independent of the symmetry of the
spacetime considered, but some symmetry assumptions
can strengthen the condition to a necessary and sufficient
condition. The main tool for obtaining these results
combines the trace of the EM and the Petrov classification,
see Appendix C.
In proving the results for the GS operator, we generalize

the results to the family of operators defined like

Op ≡ trWp ≡Wμ1ν1ρ1σ1…WμpνpρpσpI
μ⃗ ν⃗ ρ⃗ σ⃗; ð9Þ

where Iμ⃗ ν⃗ ρ⃗ σ⃗ is the product of 2p inverse metric tensors, for
example,

Iμ⃗ ν⃗ ρ⃗ σ⃗

≡ gμ1μ2…gμp−1μpgν1ν2…gνp−1νpgρ1ρ2…gρp−1ρpgσ1σ2…gσp−1σp :

ð10Þ

Although more complicated contractions are possible, they
are all similar in character.
After this, we discuss solutions to the whole system,

including the Einstein-Hilbert operator, providing details
regarding static and spherically symmetric perturbative
solutions in ω.
To summarize, the starting point would be the

Lagrangian

L¼ ffiffiffiffiffiffi
−g

p �
−

1

2κ2
RþaR2

μνþbR2þωκ2WμναβWαβρσWρσ
μν

�
;

ð11Þ

with dimensionless coupling constant a, b, ω, and
κ2 ≡ 8πG.
The coefficients of the quadratic operators R2 and R2

μν

in (11) can and will be put equal to zero (a ¼ b ¼ 0) to
study the structural stability of GR solutions.9 Hence, we
will study

L ¼ ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ ωκ2WμναβWαβρσWρσ

μν

�
: ð12Þ

The outline for this paper is the following. In Sec. II A,
we consider the solutions to the EM of OGS, starting in
Sec. II A 1 from the spherically symmetric scenario, where
the symmetry allows us to make stronger statements. After
this, in Sec. II A 2, we consider less symmetric spacetimes

and study how the results of the prior section are changed.
Both in Secs. II A 1 and II A 2, the results are obtained from
proofs for the family of operatorsOp in Eq. (9), from which
setting p ¼ 3 the results for OGS are obtained.10 This is
followed by some results concerning perturbative solutions
in ω of the EM in Sec. III. Finally, in Sec. IV, we close
with a summary of this work’s results, conclusions, and
implications.

II. ANALYTIC SOLUTIONS TO OGS

Given the difficulties that a direct approach to solving
the EM presents, we will start by considering the
possibility of solving the EM separately for OGS. In
Sec. II A, we discuss the solution to the EM for the OGS
operator by analyzing the family of Op operators defined
in Eq. (9). After this, in Sec. II B, we comment on the
solutions to the EM of Eq. (12).

A. The OGS EM

In this section, we only consider the EM for the OGS
operator. For this, we first study spherically symmetric
spacetimes in Sec. II A 1 and then turn to more general
spacetimes in Sec. II A 2.

1. Spherically symmetric spacetimes

Let us start with an observation that is the root of many
of the following results. Direct computation of the Weyl
tensor for spherically symmetric spacetimes with line
element

ds2 ¼ Bðr; tÞdt2 − Aðr; tÞdr2 − r2dΩ2
2 ð13Þ

yields

Wμν
ρσ ¼

G
12A2B2r2

Cμν
ρσ: ð14Þ

In Eq. (14), we have defined

GðA; A0; B; B0; � � �Þ≡ Aðr2ðB02 − Ȧ ḂÞ
þ 2rBðrÄþ B0 − rB00Þ − 4B2Þ
þ rBðA0ðrB0 − 2BÞ − rȦ2Þ þ 4A2B2;

ð15Þ

where ḟ ¼ ∂tfðr; tÞ, f0 ¼ ∂rfðr; tÞ, and Cμν
ρσ is a metric-

independent tensor,9Even if these operators do not render GR solutions unstable,
they would be important to determine how the spacetime is
deformed in the presence of the OGS operator. Thus, to illustrate
the nature of the deformation in Sec. III, we will only consider the
GS operator.

10The reason for presenting the more general proofs is the
completeness of the results, even if such operators are higher
order in curvature and, as such, Λeff suppressed.

VARIATIONS ON THE GOROFF-SAGNOTTI OPERATOR PHYS. REV. D 108, 104043 (2023)

104043-3



C01
αβ ¼ −C10

αβ ¼

0
BBB@

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; C02

αβ ¼ −C20
αβ ¼

0
BBB@

0 0 1
2

0

0 0 0 0

− 1
2

0 0 0

0 0 0 0

1
CCCA;

C03
αβ ¼ −C30

αβ ¼

0
BBB@

0 0 0 1
2

0 0 0 0

0 0 0 0

− 1
2

0 0 0

1
CCCA; C12

αβ ¼ −C21
αβ ¼

0
BBB@

0 0 0 0

0 0 1
2

0

0 − 1
2

0 0

0 0 0 0

1
CCCA;

C13
αβ ¼ −C31

αβ ¼

0
BBB@

0 0 0 0

0 0 0 1
2

0 0 0 0

0 − 1
2

0 0

1
CCCA; C23

αβ ¼ −C32
αβ ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 −1
0 0 1 0

1
CCCA: ð16Þ

This was first noted in [10], where it is written in terms of
projectors. Here, the result is showcased in detail. These
observation led, in [1], to a proof of the fact that all
spherically symmetric solutions to OGS have to be Weyl
flat; Wα

βγδ ¼ 0.
Here we provide an alternative proof valid for the family

of Op operators that will prove useful for the upcoming
results in Sec. II A 2.
Claim. For a spherically symmetric action consisting of

p contracted Weyl tensors,

SWeylp ≡
Z

d4x
ffiffiffiffiffiffi
−g

p
Op

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Wμ1ν1ρ1σ1…WμpνpρpσpI

μ⃗ ν⃗ ρ⃗ σ⃗; ð17Þ

the condition

G½A; A0; Ȧ; Ä; B; B0; Ḃ; B00; r� ¼ 0 ð18Þ
contains all nonsingular solutions to the EM. Equation (18)
is equivalent to Weyl flatness.
Proof. The general action in Eq. (17) is defined for n ¼ 4

dimensions. We have defined the tensor

Iμ⃗ ν⃗ ρ⃗ σ⃗ ≡ gμi1νj1…gρkpσlp ð2p metricsÞ; ð19Þ
where ði1…ipÞ, ðj1…jpÞ, ðk1…kpÞ, ðl1…lpÞ are permu-
tations of ð1…pÞ, such that it represents all possible scalars
containing p Weyl tensors.
For example, the GS operator corresponds to

Iμ⃗ ν⃗ ρ⃗ σ⃗ ¼ gμ1ρ3gν1σ3gρ1μ2gσ1ν2gρ2μ3gσ2ν3 : ð20Þ
The EM can be formally expressed as

1

2
gαβGpCp

μνρσ þ pGp−1 δG
δgαβ

Cp
μνρσ þ Gp δC

p
μνρσ

δgαβ
¼ 0; ð21Þ

where

Cp
μνρσ ¼ Cμ1ν1ρ1σ1…CμpνpρpσpI

μ⃗ ν⃗ ρ⃗ σ⃗: ð22Þ

This means that all solutions to G½A; A0; Ȧ; Ä; B; B0; Ḃ;
B00; r� ¼ 0 are also solutions of the EM (“sufficient con-
dition”). They depend on an arbitrary function since a
unique differential equation determines Aðr; tÞ and Bðr; tÞ.
Also, since the action is conformal in dimension n ¼ 2p,

the trace of the EM is proportional11 to

gαβ
δSWeylp

δgαβ
∝ ð2p − 4ÞWμ1ν1ρ1σ1…WμpνpρpσpI

μ⃗ ν⃗ ρ⃗ σ⃗: ð23Þ

We provide an alternative proof of this fact in Sec. II A 2.
Nonetheless, this is forced by conformal invariance and
dimensional arguments. Indeed, Deser-Schwimmer’s [11]
conjecture, proved by Alexakis [12], states that the most
general form of the integrand of a conformal (Weyl)
invariant is of the form

P≡W þ∇μjμ þ cPfðRμνρσÞ; ð24Þ

where c is a constant, W is a conformal invariant (i.e.,ffiffiffiffiffiffi−gp
W2 in n ¼ 4 dimensions), and the Pfaffian is propor-

tional to the integrand of Euler’s characteristic of a compact
manifold M through

Z
M
PfðRμνρσÞdðvolÞ ¼

2nπ
n
2ðn=2 − 1Þ!
2ðn − 1Þ! χðMÞ: ð25Þ

Combining Eq. (23) with the observation in Eq. (14),
we can see that, for the spherically symmetric case, the

11It turns out that it is not only proportional but equal. See
Sec. II A 2 below.
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condition G ¼ 0 is also a necessary condition for the
spherically symmetric solutions to the EM for Op. ▪
The fact that all Weyl flat solutions satisfy G ¼ 0

(barring divergences in the metric tensor) means that, for
all powers12 p ≠ 2, we capture all solutions (“necessary
condition”) of the EM by simply solving for this condition.
This is no longer true in the conformal dimension

(p ¼ 2); see Appendix B. This is why Schwarzschild
spacetime is a viable solution for four-dimensional con-
formal gravity [13].
Finally, we note that, taking into account the proof that

conformal gravity satisfies Birkhoff’s theorem [14], i.e.,
any spherically symmetric solution is static, and the fact
that the set of solutions to conformal gravity contains the
solutions for any action of the form (17) we conclude that
any spherically symmetric solution to an action made of by
p contractions of the Weyl tensor will be static. Therefore,
Birkhoff’s theorem, in the sense of spherically symmetric
solutions having to be spherical,13 holds for this larger set
of actions.
For illustrative purposes, we now apply the result we

have just proven to obtain some solutions to the complete
EM in (A2) for the static and spherically symmetric case.
Since Eq. (18) is a unique condition for the two functions
AðrÞ, BðrÞ, to find solutions, we make an ansatz for BðrÞ
(seed function) and integrate the first-order ordinary differ-
ential equation for AðrÞ.

(i) First, we would like to compare the classical result
[13]; for that, we further restrict the freedom of the
pair AðrÞ, BðrÞ14 and set

BðrÞ ¼ 1

AðrÞ : ð26Þ

Plugging this in (18), one can integrate the resulting
equation, obtaining

AðrÞ ¼ 1

c2r2 þ c1rþ 1
; ð27Þ

which corresponds to the solution first reported in
[10], without the 1

r term of the solution in [13]. This
further shows that there is no Schwarzschild solution,
as first pointed out by Deser and Tekin [10]. Compare
this with the conformal gravity solution (B5).

To obtain distinct solutions, we will consider independent
AðrÞ, BðrÞ.
(1) We can obtain asymptotically flat solutions with

Schwarzschild-like behavior at large r, using the
seed

BðrÞ ¼ 1 −
Mrn

rnþ1 þ λ
; with M; λ > 0: ð28Þ

These solutions satisfy that

for r ≫
ffiffiffi
λnþ1

p
; BðrÞ ≃ 1 −

M
r
: ð29Þ

Some particular choices of n and corresponding
AðrÞ are

(a) n ¼ 0,

BðrÞ ¼ 1 −
M
rþ λ

; ð30Þ

AðrÞ ¼ ð2r2 þ rð4λ − 3MÞ þ 2λðλ −MÞÞ2
ðλþ rÞ2ðλþ r −MÞðc1r2ðλþ rÞ þ 4ðλþ r −MÞÞ : ð31Þ

(b) n ¼ 1,

BðrÞ ¼ 1 −
Mr
r2 þ λ

; ð32Þ

AðrÞ ¼ ð2λ2 þ r3ð2r − 3MÞ þ λrð4r −MÞÞ2
ðλþ r2Þ2ðλþ r2 − rMÞðrðrðc1ðλþ r2Þ þ 4Þ − 4MÞ þ 4λÞ : ð33Þ

The unique condition (18) allows for a large number of solutions. The examples explored here are such that they recover
asymptotic flatness if c1 ¼ 0. These examples are obtained using Eq. (18) and later checked to satisfy the EM in
Appendix D.

12Note then this proof also contains the GS operator, OGS.
13They are clearly nonunique.
14This oversimplification works here even though the gauge only depends on one function instead of two [10].
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2. Nonspherically symmetric spacetime:
The trace equations

The proof in Sec. II A 1 is based on the variation of the
action corresponding to the integral of an arbitrary Op

operator. Spherical symmetry is only crucial to drawing the
conclusion that

Op ¼ 0⟹
sph symm

Wα
βγδ ¼ 0: ð34Þ

On the other hand, we stress that the need for Op to vanish
is not symmetry dependent.
Given the action

Sp ≡
Z

dnx
ffiffiffiffiffiffi
−g

p
Op; ð35Þ

we have set the dimensionality to n to keep track of where
the dimensionality plays a role in this derivation. We will
later set n ¼ 4 below. Upon a linearized Weyl rescaling in
an arbitrary dimension, say, n,

δWgμν ¼ ωðxÞgμν; ð36Þ

and because it is invariant precisely when n ¼ 2p the action
in Eq. (35) satisfies

δWSp ¼
Z

dnxδWð
ffiffiffiffiffiffi
−g

p
OpÞ

¼
Z

dnxðn − 2pÞωð ffiffiffiffiffiffi
−g

p
OpÞ ¼

Z
dnx

δSp
δgμν

ωgμν:

ð37Þ

It follows that

gμν
δSp
δgμν

¼ ðn − 2pÞð ffiffiffiffiffiffi
−g

p
OpÞ: ð38Þ

This is a rederivation of the relation in Eq. (23), accounting
for all the proportionality our previous discussion missed.
The result in Eq. (38) generally holds for Sp actions; we

now try to provide a way of assessing whether this identity
is satisfied for different spacetimes by studying the proper-
ties of the Weyl tensor. The natural way of doing so is
through Petrov’s classification, which we briefly introduce
in Appendix C for the reader’s convenience.
Let us represent, following [15–17],15 the ten indepen-

dent components of Weyl’s tensor as a six-dimensional
block matrix,

Wμν
ρσ ¼

�
E −B
B E

�
; ð39Þ

where B and E are three-dimensional, traceless, symmetric,
and real matrices. We refer the reader to Appendix C for
details on this. From Eq. (39),16

W2 ¼ N

�
E2 − B2 −ðEBþ BEÞ
BEþ EB E2 − B2

�
→ trW2

¼ NtrðE2 − B2Þ: ð40Þ

Similarly,

W3 ¼ N

�
E3 − EB2 − B2E − BEB B3 − BE2 − E2B − BE2 − EBE

BE2 − B3 þ EBEþ E2B E3 − EB2 − B2E − BEB

�
; ð41Þ

where now, using the cyclic property of the trace,

OGS ¼ trW3 ¼ NtrðE3 − 3EB2Þ: ð42Þ
Given the fact that Schwarzschild spacetime (as, in fact, all
static, spherically symmetric spacetimes) has purely elec-
tric Weyl tensors, it can be easily shown that, for them,

OGS ¼ 0⟹Wμνρσ ¼ 0: ð43Þ

For purely magnetic spacetimes, OGS ¼ 0 is given. Un-
fortunately, there are not many known purely magnetic

exact solutions. A theorem stated in [18] claims that there
are no purely magnetic type D vacuum solutions of
Einstein’s equations.
Starting with O4, the cyclic property of the trace is not

enough to get a simple result. To be more specific, we need
some explicit results [16,19] on Petrov’s classification of
spacetimes. They are frequently expressed in terms of the
properties of the matrix

Q≡ Eþ iB: ð44Þ

The algebraically general spacetime is dubbed Petrov type
I. For these spacetimes, the general criterion is

ðQ − λ1IdÞðQ − λ2IdÞðQ − λ3IdÞ ¼ 0 ð45Þ

15In fact, Matte’s work [15] precedes Petrov’s by one year,
although he did not achieve a full classification of Weyl’s tensor.

16Here, N takes care of index undercounting, and its exact
value is immaterial for our purposes.
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(where
P

λi ¼ 0 and λi ≡ ei þ ibi). The electric and
magnetic Weyl tensors obey

E¼

0
B@

e1 0 0

0 e2 0

0 0 e3

1
CA and B¼

0
B@

b1 0 0

0 b2 0

0 0 b3

1
CA; ð46Þ

with
P

ei ¼
P

bi ¼ 0. It is plain that, in this case,
½E;B� ¼ 0 so the trace is given by

OGS ¼ 2N
X
i

eiðe2i − 3b2i Þ: ð47Þ

Type D is a subtype corresponding to λ1 ¼ λ2 ¼ −2λ3 in
Eq. (45). This particular Petrov type is important for us
because all spherically symmetric solutions [19] are either
type D or type O (meaning that the spacetime is con-
formally flat).
The general result for the all-important types I and D is

obtained from the above discussion,

O2m ¼ 2
Xm
k¼0

ð−1Þk
�
2m

2k

�
trðE2ðm−kÞB2kÞ; ð48Þ

O2mþ1 ¼ 2
Xm
k¼0

ð−1Þk
�
2mþ 1

2k

�
trðE2ðm−kÞþ1B2kÞ: ð49Þ

This gives the conditions for the vanishing trace in terms of
products of the electric and magnetic eigenvalues fei; big.
Let us apply these results to a couple of example

spacetimes. These depart from spherical symmetry and
thus from the results in Sec. II A 1.
(a) First, we consider the spacetime of pp-waves with line

element [19]

ds2 ¼−2du2Hðx;y;uÞþ 2dudv− ðdx2þdy2Þ: ð50Þ

Given the fact that pp-waves belong to the class of
vanishing scalar invariant [20] spacetimes (included in
Kundt’s class), we only have to impose Einstein’s
equations in vacuum, which means that Hðx; y; uÞ has
to satisfy

Rμν ¼ 0 ⇔ ∂
2
xHðx; y; uÞ þ ∂

2
yHðx; y; uÞ ¼ 0: ð51Þ

The above-introduced analysis yields electric and mag-
netic components of the Weyl tensor corresponding to

E ¼ 1

2Hðx; y; uÞ þ 2

×

0
B@

0 0 0

0 ∂
2
xHðx; y; uÞ ∂x∂yHðx; y; uÞ

0 ∂x∂yHðx; y; uÞ −∂2xHðx; y; uÞ

1
CA ð52Þ

and

B ¼ 1

2Hðx; y; uÞ þ 2

×

0
B@

0 0 0

0 −∂x∂yHðx; y; uÞ ∂
2
xHðx; y; uÞ

0 ∂
2
xHðx; y; uÞ ∂x∂yHðx; y; uÞ

1
CA:

ð53Þ

In Eqs. (52) and (53), Eq. (51) has been used. The direct
calculation then gives

Q2 ¼ 0: ð54Þ

Therefore, we see that pp-waves are everywhere in
Petrov type N. One then has that the trace condition is
satisfied for them, i.e.,

OGS ∝ trQ3 ¼ 0: ð55Þ

Thus, pp-waves comprise an example of a spacetime
satisfying the necessary condition to be a solution to the
EM. Here, direct computation lets us see that this
spacetime satisfies the Goroff-Sagnotti EM, Eq. (A2).
In [1], it was proven that no spherically symmetric

spacetime could simultaneously solve Einstein’s and
Goroff-Sagnotti EM. It is interesting to remark that pp-
waves are the only example of a solution to both EMwe
have identified to this date.

(b) As a second nonspherically symmetric nor static
example, we consider Kerr-Newman spacetime,
whose line element in Boyer-Lindquist coordinates
[21] reads

ds2 ¼ Δ
ρ2

ðdt − asin2θdϕÞ2

−
sin2θ
ρ2

½ðr2 þ a2Þdϕ − adt�2 − ρ2

Δ
dr2 − ρ2dθ2;

ð56Þ

where

Δ≡ r2 − rrs þ a2 þ r2q and ρ≡ a2 cos2ðθÞ þ r2:

ð57Þ

As usual, a is related to the angular momentum, rs is
the Schwarzschild radius related to the mass, and rq is
related to the electric charge17 of the solution.
In this case, the electric and magnetic matrices are

17We set rq ¼ 0 such that the line element in Eq. (56) is a
solution to the vacuum Einstein’s EM.

VARIATIONS ON THE GOROFF-SAGNOTTI OPERATOR PHYS. REV. D 108, 104043 (2023)

104043-7



E ¼ eðr; θÞ

0
B@

1 0 0

0 − 1
2

0

0 0 − 1
2

1
CA; with eðr; θÞ ¼ 4rsrð3a2 − 2r2 þ 3a2 cosð2θÞÞ

ða2 þ 2r2 þ a2 cosð2θÞÞ3 ; ð58Þ

B ¼ bðr; θÞ

0
B@

1 0 0

0 − 1
2

0

0 0 − 1
2

1
CA; with bðr; θÞ ¼ 4rsa cosðθÞða2 − 6r2 þ a2 cosð2θÞÞ

ða2 þ 2r2 þ a2 cosð2θÞÞ3 : ð59Þ

This corresponds to a Petrov type D spacetime; following
the above discussion,

OGS ¼
3

4
eðr; θÞðeðr; θÞ2 − 3bðr; θÞ2Þ: ð60Þ

The trace in Eq. (60) is nonvanishing18 for arbitrary r values.
We conclude that an uncharged Kerr spacetime with mass
cannot solve the EM for the Goroff-Sagnotti counterterm.
We find this remarkable. Schwarzschild metric and its most
important stationary extension, namely, Kerr spacetime
(widely believed to be the general end point of gravitational
collapse) is incompatible with the Goroff-Sagnotti Lagran-
gian deformation.

B. General remarks on the complete EM

It is physically evident that the effect of all those
operators is suppressed by powers of the energy scale
Λeff (two powers for the Goroff-Sagnotti operator). This
means that the perturbative corrections to an exact solution
of the Einstein-Hilbert Lagrangian (like the simplest
Schwarzschild spacetime one) and even quantum correc-
tions are not expected to be relevant at low energies. The
nature of perturbations for spherically symmetric space-
times is considered in Sec. III.
Nevertheless, when an exact solution can be found in a

nonlinear theory like GR, one always learns new things,
some of them very important physically, like the presence
of a horizon, which is a global concept. It would then be
desirable to find exact solutions of the Einstein-Hilbert
Lagrangian coupled to those higher-dimensional operators.
Unfortunately, we have not been able to identify any
solution in which the two operators in the Lagrangian
interact in a nontrivial way. The already mentioned sol-
utions are in the class of “vanishing scalar invariants” like
pp-waves, in which (when Ricci flatness is imposed) the
EM of the two operators at play vanish separately.

III. SOME REMARKS ON PERTURBATIVE
SOLUTIONS

It is well known that, while the Einstein-Hilbert action
admits the Schwarzschild metric as a solution, this is not

true anymore when the GS operator is included, as first
shown by Deser and Tekin [10]. This section aims to
ascertain where an initial Schwarzschild spacetime is
driven in the presence of the GS counterterm.19

In this section, we are interested in analyzing the static
spherically symmetric perturbations to Schwarzschild
spacetime when the Einstein-Hilbert action is deformed
with the GS term, that is,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ ωκ2W3

�
: ð61Þ

In Sec. III A below, we analyze the case of a polar
perturbation of the type

ds2 ¼
h
1 −

rs
r
þ BðrÞ

i
dt2 −

1h
1 − rs

r þ AðrÞ
i dr2 − r2dΩ2:

ð62Þ

In this formalism, we will consider the first-order correc-
tions in ωκ4 to the EM for a spherically symmetric
spacetime, displayed in Appendix D, that determine the
small corrections to gtt given by BðrÞ and discuss the
changes this brings into the thermodynamic quantities of
the original spacetime.

A. Perturbations of the horizon

Since the perturbation in (62) does not change the static
and spherically symmetric nature of the spacetime, we will
have that every event horizon will correspond to the Killing
horizon for a certain timelike vector K [22]. For the
particular form of the metric we are considering,

K≡ ∂t ð63Þ

is a Killing vector. Then the Lie derivative of the metric
with respect to the vector field K satisfies

18Unless rs ¼ 0.

19It is important to acknowledge that the results under the OGS
deformation should, on a complete calculation, be computed
including the quadratic operators which, even if they do not affect
the structural stability, are important to see how the Schwarzs-
child solution would change.
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LKg ¼ ∇αKβ þ∇βKα ¼ 0: ð64Þ

The Killing horizon of K will correspond to a null hyper-
surface in which the norm of K vanishes, i.e.,

K2 ¼ 1 −
rs
r
þ BðrÞ ¼ 0: ð65Þ

To see how the perturbation BðrÞ introduced by the GS
counterterm can affect the horizon structure, we consider
the first-order EM for BðrÞ,

r8AðrÞ þ ðr − rsÞðr8B0ðrÞ þ 12κ2r2sð4rs − 3rÞÞ
− r7rsBðrÞ ¼ 0; ð66Þ

r8A0ðrÞ þ r7AðrÞ þ 12κ2r2sð16rs − 15rÞ ¼ 0: ð67Þ

Solving Eqs. (66) and (67) gives

AðrÞ ¼ c1
r
þ 32κ2r3s

r7
−
36κ2r2s
r6

; ð68Þ

BðrÞ ¼ −
c2rs
r

þ c1
r
þ c2 þ

8κ2r3s
r7

−
12κ2r2s
r6

: ð69Þ

Setting c2, c1 ¼ 0 to ensure asymptotic flatness and the
right spacetime when ω → 0, respectively, gives

BðrÞ ¼ 8κ2r3s
r7

−
12κ2r2s
r6

: ð70Þ

With Eq. (70), we will first consider small displacements
of the horizon and study how these are reflected in the
horizon temperature and the associated Bekenstein-
Hawking entropy. Here we will consider the Killing
horizon corresponding to the timelike Killing vector of
the metric. If we consider r ¼ r0 to be the value at which

gttðr0Þjω¼0 ¼ 0; ð71Þ

then r0 ¼ rs. If we consider that when ω ≠ 0 the new
Killing horizon is at

r� ¼ rs þ ωκ2ρþ � � � ; ð72Þ

we have that

ρ ¼ 4κ2

r3s
; ð73Þ

and then the position of the horizons is given by

r� ≡ rs þ κ4ω

�
4

r3s

�
: ð74Þ

In this particular case, we can check that this value of r�
makes the first order in grr vanish.

B. Thermodynamics

For arbitrarily small perturbations, the only effect of the
GS counterterm is to shift the location of the horizon.
Suppose we assume no further change occurs in the
spacetime’s causal structure. In that case, we can, in
principle, calculate the first-order changes that the temper-
ature and entropy associated with the event horizon suffer
under the GS counterterm. Changes in the thermodynam-
ical variables coming from interaction with classical matter
(dirty black holes) were studied in [23], while an analysis
for general third-order curvature perturbations was pre-
sented in [5]. Here we follow the latter to discuss the
changes to first order in the perturbative parameter ωκ2.
We note that there are some instances in higher-deriva-

tive theories of gravity in which the changes in the first
black hole thermodynamical law [24] can be exactly
calculated [6]. However, these results depend crucially
on the fact that AðrÞ ¼ 1=BðrÞ, which allows expressing
the series near the horizon in terms of the surface gravity.
We will restrain our analysis to a qualitative study of the
lowest order and leave the more technical details for
elsewhere.
In order to study the change in temperature, we expand

the near-horizon geometry. This leads to the known
Rindler-like behavior near the horizon. Now, we analyti-
cally continue the geometry to complex coordinates. Then,
we use the Euclidean time periodicity.
To avoid conical defects at r ¼ r⋆, the Euclidean time

variable has to have a period whose inverse is related to the
temperature. To first order, this corresponds to

TH ¼ ℏ
4πkBrs

�
1þ 4ωκ4

r4s

�
; ð75Þ

which is clearly different from the classical result for the
spherically symmetric gravitational collapse [25].
In order to study the change in the entropy, we note that

from the asymptotic expansion in Sec. III A, the behavior
for an observer at infinity has corrections of Oð1=rÞ6
or higher. Therefore, the Arnowitt-Deser-Misner mass
measured by an observer far from the horizon is
unchanged. Therefore, the first law in this approximation
reads

dS
dM

¼ 1

T
¼ 4πkBrs

ℏ

�
1 −

4ωκ4

r4s

�
: ð76Þ

This naive calculation shows the first-order change in the
thermodynamical quantities associated with the horizon. A
more careful consideration should incorporate quadratic
operators into the picture. However, we have left them out
of the question for simplicity.
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IV. SUMMARY AND CONCLUSION

The leitmotif of the present paper is that we believe that it
is physically important to take into account irrelevant (in
the renormalization group sense) operators in the gravita-
tional action, which are present in a naive calculation of the
radiative corrections to the Einstein-Hilbert action.
With that in mind, we have examined in some detail the

effect of the GS operator,

OGS ≡WμναβWαβρσWρσ
μν: ð77Þ

We found that many arguments could be extended to
Lagrangians built out of arbitrary powers of Weyl’s tensor.
We generalized, in particular, Deser and Ryzhov’s argu-
ments [10] to the nonstatic case and found the general
solution of the EM with spherical symmetry in the non-
conformal situation. Furthermore, we have studied how the
necessary and sufficient condition is changed when spheri-
cal symmetry is relaxed.
In detail, the operators we have studied are built of p

contractions of the Weyl tensor, symbolically,Z
dnx

ffiffiffiffiffiffi
−g

p
Op: ð78Þ

These are conformally invariant in dimension n ¼ 2p.
Using the so-called trace equation and the Petrov classi-
fication of Weyl’s tensor, we have found a necessary
condition for the solutions of the EM in the general case.
In the more simple instance of spherically symmetric

spacetimes,whichmotivated this study originally [1], we can
find the general solution of the EM. This is because, in this
case, the trace condition becomes a necessary and sufficient
condition for a spacetime to solve for the complete EM.
Examples for the less trivial pp-waves and Kerr-

spacetime are explicitly worked out. pp-waves are found
to be a solution to the EM of GR with the p ¼ 3 operator
included.
Concerning the physically relevant EM (including the

Einstein-Hilbert contribution), we were able to prove that
there are no spherically symmetric Ricci flat solutions.
Some computations regarding perturbative solutions are
provided for spherically symmetric and static space-
times, but these are not substitutes for analytic solutions.
Although no complete solution to the EM has been
identified for the spherically symmetric case, we have
shown that, when the Einstein-Hilbert Lagrangian is
deformed with the W3 operator, the resulting spacetime
is expected to change its asymptotic behavior. A perturba-
tive analysis indicates that the horizon gets modified and so
do the thermodynamic properties of spacetime.
The only spacetime we have found to solve the complete

EM are pp-waves. This could have potential implications
in gravitational waves within the context of effective field
theories, but more work is required to make any precise
statement.

The results regarding structural stability would not
change very much if we had included quadratic terms in
the action. The reason is that quadratic theories admit
Schwarzschild spacetime as a solution, so they do not upset
the stability of the initial solution. They become relevant
when studying where the solution is driven when operators
that hinder structural stability, such as OGS, are included
in the action. In the same spirit, the introduction of a
cosmological constant can be done easily, and it does not
affect the result in any essential way, provided the pertur-
bations are done to the corresponding de Sitter/anti–de
Sitter-Schwarzschild background.
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APPENDIX A: EQUATIONS OF MOTION
FOR OGS

Here we present, for completeness, the EM for the OGS
operator. Again, wewill denote the spacetime dimensions as
n to illustrate the dependence on dimensionality. However,
the readermust bear inmind that, for the Petrov classification
and the decomposition into electric andmagnetic parts of the
Weyl tensor to work, one must have n ¼ 4. Therefore, the n
in the expressions below should only be considered as a case
study of the general claims made in Sec. II A 2 regarding the
trace ofOp operators being conformally invariant in n ¼ 2p
dimensions.
The action for OGS is

SGS ≡
Z

d4x
ffiffiffiffiffiffi
−g

p
WμναβWαβρσWρσ

μν: ðA1Þ

Making explicit the dimensionality, n ¼ 4, they read
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Vμν ¼
1

2
gμνOGS þ

6

ðn − 2Þ
�

1

n − 1
ðRWμ

αβλWναβλ − RμνW2Þ − RαβWμαλτWλτ
νβ

− 2∇τ∇μðWν
αβλWταβλÞ þ gμν∇ρ∇σðWρ

αβλWσαβλÞ − ðn − 2Þ∇ρ∇σðWμραβWαβ
νσÞ

þ
�ð∇μ∇ν − gμν□Þ

n − 1
W2 þ□ðWμ

αβλWναβλÞ
�
þ Rμ

τWν
αβλWταβλ

�
− 3Wμ

αβλWναρσWρσ
βλ: ðA2Þ

The trace of Eq. (A2) corresponds to

Vμνgμν ¼
n − 6

2
WμναβWαβρσWρσ

μν: ðA3Þ

We see that in any dimension different from the conformal
one (n ¼ 6), a necessary condition for the EM to be
satisfied is that

OGS ¼ WμναβWαβρσWρσ
μν ¼ 0: ðA4Þ

APPENDIX B: CONFORMAL GRAVITY

In this appendix, we study conformal gravity (CG),
corresponding to the action

SCG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
WμναβWμναβ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
OCG: ðB1Þ

The purpose of this section is to shed some light on the
reasons why conformal invariance for the action in Eq. (B1)
implies that the results proven in Secs. II A 1 and II A 2 fail
to hold for this action.
The action (B1) defined by the trace of two Weyl tensors

is conformally (gauge) invariant in n ¼ 4 dimensions (and
it is the only operator on the family with this property). The
equations of motion correspond to the vanishing of the
traceless Bach tensor

Hαβ ≡ δS
δgαβ

≡ Bαβ ≡ KμνWμαβν þ∇λð∇λKαβ −∇aKβλÞ;

ðB2Þ

where Schouten’s tensor Kμν is defined as

Kαβ ≡ 1

n − 2

�
Rαβ −

1

2ðn − 1ÞRgαβ
�
: ðB3Þ

Physically, the most important property of Bach’s tensor is
that it corresponds to a primary operator of dimension 2;
that is, under a Weyl rescaling (6), it transforms as

Bμν → Ω−2Bμν: ðB4Þ

It was shown in [13] that conformal gravity admits a
solution,

ds2 ¼
	
c0 þ

c−1
r

þ c1rþ c2r2


dr2

−
dt2	

c0 þ c−1
r þ c1rþ c2r2


 − r2dΩ2
2; ðB5Þ

while Deser and Tekin show [10] that the GS counterterm
does not allow for the c−1 term. This is again because, for
the conformal dimension p ¼ 2, the trace identically
vanishes, and therefore G ¼ 0 will capture some, but not
all, spherically symmetric and static solutions to

Hαβ ¼ 0: ðB6Þ
This means that the set of all spherically symmetric
solutions corresponding to (18) belongs to the larger set
of solutions of conformal gravity.
As an example of the difference between OGS and the

family of operators Op, note that, for static, spherically
symmetric spacetimes,

O4 ≡Wαβ
γδWγδ

κζWκζ
λσWλσ

αβ; ðB7Þ
is proportional to the Lagrangian of CG in Eq. (B1). Using
the notation of Sec. II A 2, it so happens that

ffiffiffiffiffiffi
−g

p
O2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4AB sin2ðθÞ

p
12r4A4B4

G2 ðB8Þ

and

ffiffiffiffiffiffi
−g

p
O4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4AB sin2ðθÞ

p
576r8A8B8

G4: ðB9Þ

This simple relationship between both Lagrangians does
not carry over to the corresponding solutions. As shown
in [1], the solutions for CG contain those of O4 but not
conversely. Of course, for CG, the trace equation does not
yield any restriction on the conformal case n ¼ 4. On the
other hand, the trace condition applies for the EM corre-
sponding to the operator O4. Therefore, the only way in
which a metric can be a solution to both CG and quartic
gravity is to satisfy, in addition,

W2 ¼ Wαβ
γδWγδ

αβ ¼ 0 ⇒ G ¼ 0 ⇒ Wα
βγδ ¼ 0; ðB10Þ

i.e., it has to be conformally flat. In fact, for any p ≠ 2,
static, spherically symmetric solutions are determined
by Eq. (B10).

VARIATIONS ON THE GOROFF-SAGNOTTI OPERATOR PHYS. REV. D 108, 104043 (2023)

104043-11



APPENDIX C: PETROV’S CLASSIFICATION

Here we present the basic ingredients of Petrov’s
classification. We follow the very pedagogic explanations
of [19]. Equally good presentations of this topic are present,
for example, in [21,26]. However, any advanced book in
general relativity with a section on the topic should suffice.
The curvature tensor, expressed in an orthogonal tetrad

feμag, Rabcd, can be uniquely decomposed into parts trans-
forming under irreducible representations of the Lorentz
group,

Rabcd ¼ Wabcd þ Eabcd þ Gabcd; ðC1Þ
where

Eabcd ≡ 1

2
ðgacSbd þ gbdSac − gadSbc − gbcSadÞ;

Gabcd ≡ 1

12
Rðgacgbd − gadgbcÞ;

Sab ≡ Rab −
1

4
Rgab: ðC2Þ

Equation (C1) defines the Weyl tensor equivalent to Eq. (5).
Defining the dual vector,

eWabcd ¼
1

2
ϵcdefWab

ef;

where ϵabcd is the Levi-Civita symbol. From this, we can
define the complex Weyl tensor,

W�
abcd ¼ Wabcd þ i eWabcd:

By using a normalized timelike vector, we can express the
content ofWabcd in terms of a two-index complex tensorQ,

−Qac ≡W�
abcdubud ≡ Eac þ iBac; where ucuc ¼ 1:

ðC3Þ
This defines the electric Eab and magnetic parts Bab of the
Weyl tensor. Even though Eq. (C3) might seem to depend on
the choice of ua, this is not the case, as the tensorW�

abcd can
be retrieved from Qab by the expression

−
1

2
W�

abcd ¼ 4u½aQb�½duc� þ ga½cQd�b − gb½cQd�a

þ iϵabefueu½cQd�f þ iϵcdefueu½aQb�f; ðC4Þ

where the square brackets mean antisymmetrization in the
enclosed indices.
This means one can describe the Weyl tensor using the

matrix Qab or, alternatively, by its electric and magnetic
components. One can see that Qab satisfies

ðiÞ Qab ¼ Qba; ðiiÞ Qa
a ¼ 0; ðiiiÞ Qabub ¼ 0: ðC5Þ

Conditions (i)–ðiiiÞ in Eq. (C5) mean that Qab has five
independent, complex-valued entries, which correspond
to the ten independent components of the Weyl tensor in
n ¼ 4 dimensions.
The last piece necessary to discuss Petrov’s classification

is the eigenvalue equation,

QabXb ¼ λXa; ðC6Þ

which leads to the characteristic equation

det ðQ − λIdÞ ¼ 0; ðC7Þ

which determines the eigenvalues and their multiplicity.
Spacetimes can be classified according to these eigenvalues
and their multiplicity, see Table II. It is also common to
present a diagram in which the more general spacetimes are
related to the more restrictive ones; see Fig. 1.
These properties of the Weyl tensor and the Petrov

classification imply that we can, as in the original works,
see, e.g., [15–17], identify the Weyl tensor with two indices
raised, Wαβ

γδ, as

Wμν
ρσ ¼

�
E −B
B E

�
; ðC8Þ

TABLE II. Petrov classification.

Petrov type

I [1 1 1] ðQ − λ1IdÞðQ − λ2IdÞðQ − λ3IdÞ ¼ 0
D [(1 1) 1] ðQ − λ1IdÞðQþ λ2

2
IdÞðQ − λIdÞ ¼ 0

II [2 1] ðQ − λ1IdÞðQþ λ2
2
IdÞ2ðQ − λIdÞ ¼ 0

N [(2 1)] Q2 ¼ 0
III [3] Q3 ¼ 0
O Q ¼ 0

FIG. 1. Petrov classification diagram. Arrows point toward less
general spacetimes contained in the spacetimes from which
arrows start.

ÁLVAREZ, ANERO, and VELASCO-AJA PHYS. REV. D 108, 104043 (2023)

104043-12



which will be extensively used to discuss the properties of
the trace equation forOp operators in Sec. II A 2. Similarly,
the properties of the spacetimes in Table II are used in
Sec. II A 2 to study the spacetimes in terms of the eigenvalues
of the electric and magnetic tensors, i.e., fei; big.

APPENDIX D: SOME DETAILS OF THE
COMPUTATIONS

Let us write the full EM, omitting the explicit r
dependence,

Htt ¼
1

144r6A7B5

n
132r4ωB4A04ðrB0 − 2BÞ2 − 48A6B6ð3γr4 − 8ωÞ

− 8A7B6ð−18γr4 þ 4ωÞ þ 3r2A2B2FωðA;B; A0; B0; A00; B00; Að3Þ; Bð3ÞÞ
þ A4GωðA;B; A0; B0; A00; B00; Að3Þ; Bð3Þ; Bð4ÞÞ
− 3rA3BHωðA; B; A0; B0; A00; B00; Að3Þ; Bð3Þ; Bð4ÞÞ
þ r3ωAB3A02ð2B − rB0Þ

h
2rBð63rA00B0 þ A0ð213rB00 − 97B0ÞÞ − 265r2A0B02

þ 4B2ð149A0 − 63rA00Þ
i
þ 6A5B2KωðA;B; A0; B0; A00; B00; Að3Þ; Bð3Þ; Bð4ÞÞ

o
; ðD1Þ

with

FωðA; B; A0; B0; � � �Þ≡ 105r4ωA02B04 − 2r3ωBA0B02ð27rA00B0 þ A0ð130rB00 þ 23B0ÞÞ
þ 8rB3

h
14ωrA03B0 − 2r2ωA002B0 þ ωA02ðrð31B00 − 14rBð3ÞÞ − 14B0Þ

þ rωA0ðð32A00 − 2rAð3ÞÞB0 − 23rA00B00Þ
i
þ 4r2ωB2

h
r2A002B02

þ A02ð28r2B002 − 60B02 þ rB0ð14rBð3Þ þ 43B00ÞÞ
þ rA0B0ð23rA00B00 þ ðrAð3Þ þ 13A00ÞB0Þ

i
− 16B4ð−r2ωA002 þ 14ωrA03 − 20ωA02 þ rωA0ð18A00 − rAð3ÞÞÞ; ðD2Þ

KωðA;B; A0; B0; � � �Þ≡ 8B4ðA0ð3γr5 þ 2rωÞ − 14ωÞ
þ 49ωr4B04 − 16ωr4B3Bð4Þ − 4r3BB02ð29ωrB00 − 5ωB0Þ
þ 4r2B2

h
9ωr2B002 þ 3ωB02 þ 2rB0ð6ωrBð3Þ − 3ωB00Þ

i
; ðD3Þ

GωðA; B; A0; B0; � � �Þ≡ −4r3B3½ωB03ð40 − 87rA0Þ þ 26r3ωB003 þ 6r2ωB0B00ð14rBð3Þ þ B00Þ
þ 6rωB02ðrðrBð4Þ − 6Bð3ÞÞ − 36B00Þ�
þ 24r2B4½−rB0ðωB00ð27rA0 − 8Þ þ 2rωðrBð4Þ þ 8Bð3ÞÞÞ
− 2ωB02ð3r2A00 − 3rA0 þ 2Þ þ 2r2ωððrBð3ÞÞ2 − 5B002

þ rðrBð4Þ þ 2Bð3ÞÞB00Þ� þ 48r2B5½A0ðωB0 þ rð6ωrBð3Þ − ωB00ÞÞ
þ rð2ωrð2A00B00 þ Bð4ÞÞ þ B0ðωrAð3Þ − ωA00ÞÞ�
− 32B6½3αr5Að3Þ þ 18βr5Að3Þ þ 3r3ωAð3Þ − 9r2ωA00 þ 24rωA0 − 10ω�
þ 121r6ωB06 − 6r5ωBB04ð85rB00 − 29B0Þ
þ 84r4ωB2B02ð7r2B002 − 4B02 þ 2rB0ðrBð3Þ − 2B00ÞÞ; ðD4Þ

VARIATIONS ON THE GOROFF-SAGNOTTI OPERATOR PHYS. REV. D 108, 104043 (2023)

104043-13



and finally,

HωðA; B; A0; B0; � � �Þ≡ 28r4ωBB03ðrA00B0 − A0ðB0 − 10rB00ÞÞ − 85r5ωA0B05

− 4r3ωB2B0½A0ð55r2B002 − 46B02 þ 2rB0ð10rBð3Þ þ B00ÞÞ
þ rB0ð18rA00B00 þ ðrAð3Þ þ A00ÞB0Þ� þ 8rB4½ωrA02ð19rB00 − 5B0Þ − 2rωð2ðA00 − rAð3ÞÞB0

þ rðrAð3ÞB00 þ A00ð2rBð3Þ − 5B00ÞÞÞ þ A0ðB0ð13ωr2A00 þ 4ωÞ
− 2rωð2B00 þ rðrBð4Þ − 8Bð3ÞÞÞÞ� þ 2r2B3½−57ωrA02B02 þ 4ωA0ð13B02

þ 2r2B00ð6rBð3Þ þ 5B00Þ þ B0ðr3Bð4Þ − 46rB00ÞÞ þ 4rωð4r2A00B002 − 10A00B02 þ rB0ðrAð3ÞB00

þ A00ð2rBð3Þ þ 5B00ÞÞÞ� þ 8B5½29rωA02 − 4rωðrAð3Þ − 3A00Þ − 2ωA0ð13r2A00 þ 14Þ�: ðD5Þ

The component Hrr, in turn, reads

Hrr ¼
1

144r6A5B6
f8ð−18γr4 þ 4ωÞA6B6 þ 11ωðrA0ðrB0 − 2BÞBÞ3

þ 48ðABÞ5ðð3γr4 − 4ωÞBþ rð3γr4 þ 2ωÞB0Þ þ 3ðrBÞ2ωAA0ðrB0 − 2BÞ2½7r2A0B02

− 2rðrB0A00 þ A0ð6rB00 − 4B0ÞÞB − 4ð5A0 − rA00ÞB2� þ 6A4B6½48ωB2

− 16ωBðr3Bð3Þ þ 2rB0Þ − 4r2ðωB02 − 4ωrðB00 þ rBð3ÞÞB0 þ r2ωB002Þ
− 12ωr3B−2B02ðB0 þ rB00ÞBþ 7ωr4B−2B04� þ 3rA2B½8ωB5ð7rA02 − 8A0 þ 4rA00Þ
þ 2r2ð7ωrA02B02 þ 4ωA0B3ð3B02 þ rðB00 − 2rBð3ÞÞB0 − 2r2B002Þ
þ 8rωA00ðB0 − rB00ÞB0Þ − 8rB4½7ωrB0A02 − 2ωð4B0 þ rðrBð3Þ − 3B00ÞÞA0

− 2rωA00ðrB00 − 3B0Þ� þ 4r3ωB0B2ðA0ð2r2B002 − 5B02 þ rð11B00 þ rBð3ÞÞB0Þ
þ rB0A00ðB0 þ rB00ÞÞ − 2r4ωB03ðrB0A00 þ A0Bð7B0 þ 9rB00ÞÞBþ 7r5ωA0B05�
þ A3ð11ωB06r6 − 42ωBB04B00r6 þ 12ωB2B02ð−8B02 þ rð5B00 þ rBð3ÞÞB0 þ 3r2B002Þr4
þ 4ðrBÞ3ðωð16þ 9rA0ÞB03 þ 48rωB00B02 − 6r2ωB00ð5B00 þ rBð3ÞÞB0 þ 2r3ωB003Þ
þ 24B4ð2ωB00ðB00 þ rBð3ÞÞr2 − 2rB0ðωð5þ rA0ÞB00 þ 2rωBð3ÞÞ
− B02ðωA00r2 þ 2ωA0r − 2ωÞÞr2 þ 48rB5ð2ωA0B00 þ Bð3Þr2

þ B0ð−3rωA0 þ 2ωðA00r2 þ 1ÞÞÞ − 32ωB6ð3A00r2 − 6A0rþ 4ÞÞ; ðD6Þ

where AðnÞ corresponds to the nth partial derivative.
From spherical symmetry and the Bianchi identities, these are the two independent components of the vacuum EM.
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