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Understanding the light ring, one kind of fundamental orbit, shall provide us with novel insight into the
astronomical phenomena, such as the ringdown of binary mergers and shadows of black holes. Recently, a
topological approach has preliminarily demonstrated its potential advantages on the properties of the light
rings. However, extremal spinning black holes remain to be tested. In this paper, we aim to address this
issue. Because of the Newman-Unti-Tamburino (NUT) charge, the Kerr-Newman-Taub-NUT solution has
noZ2 symmetry. By constructing the corresponding topology for the nonextremal spinning black holes, we
find the topological number remains unchanged. This indicates that Z2 symmetry has no influence on the
topological number, while it indeed affects the locations of the light rings and deviates them off the
equatorial plane. For the extremal spinning black holes, we find its topology is critically dependent on
the leading term of the vector’s radial component at the zero point of its angular component on the black
hole horizon. The findings state that there exists a topological phase transition, where the topological
number changes, for the prograde light rings; while no phase transition occurs for the retrograde light rings.
Our study uncovers some universal topological properties for the extremal and nonextremal spinning black
holes with or withoutZ2 symmetry. It also has enlightening significance for understanding the light rings in
a more general black hole background.
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I. INTRODUCTION

The characteristic orbits around the ultracompact objects
and black holes are very important for understanding the
nature of gravity. Accompanied by the recent observations
of the gravitational waves [1–4] and black hole images
[5,6], such issue is further highlighted. In particular, the
light rings of axisymmetric black holes (or photon spheres
in spherically symmetric spacetime) are closely related
to the ringdown stage of the black hole mergers [7,8] and
shadows [9].
Similar to the event horizon, the light rings also seem to

be intrinsic circular orbits for the photons around the
ultracompact objects or black holes, which is because
the light rings are only dependent on the spacetime
parameters, while independent of the energy and angular
momentum of the photons. For the Schwarzschild black
hole with mass ofM, the radius of the photon sphere is 3M,
which leads to a shadow with size 3

ffiffiffi
3

p
M. The photon

sphere shall be broken into two light rings by the black hole
spin. If the direction of the orbit angular momentum and

black hole spin are the same, we refer to them as prograde
light rings, which have a smaller radius than that of the
radius of the Schwarzschild black hole. While if they are
opposite, we call them retrograde light rings that have a
larger radius. In particular, for different black holes, the
sizes of the light rings or photon spheres behave quite
differently, which shall imprint potential observed phenom-
ena in black hole mergers or shadows.
Recently, a novel study with a topology approach was

first introduced on exploring the ultracompact object light
rings by Cunha et al. [10]. Soon, this study was generalized
to the black hole backgrounds [11]. Instead, focusing on the
size of the light rings, they proposed a topological charge to
characterize them. The results imply that, for a four-
dimensional nonextremal axisymmetric, asymptotically flat
black hole, there exists at least one unstable light ring
outside the horizon for each rotation sense. Or, such black
holes always have one more unstable light ring than the
stable one. Other work on the light ring number can be
found in Refs. [12–18]. For the Schwarzschild or Kerr
black holes, this result is straightforward because there
exists only one photon sphere or light ring (for each sense).
Nevertheless, in Ref. [19], we showed that, when more than*Corresponding author: weishw@lzu.edu.cn
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one photon sphere is present, the topological number for
the dyonic black hole is −1, indicating that the unstable
light ring must exist and its number is one more than the
stable one. Taking a specific example, we exactly con-
firmed this result. Although, in the radial direction, the light
rings could be stable or unstable, they are all stable in the
angular direction [14]. For the Schwarzschild-Melvin
solution, it was found that there exists a topological phase
transition at a certain value of the dilatonic coupling due to
the modification of the asymptotic behavior at radial
infinity [16]. Other related work can also be found in
Refs. [15,20]. Such topological approach was also gener-
alized to the study of the timelike circular orbits [21,22],
black hole thermodynamics [23–28], and so on.
Among the study of the light rings, these black hole

solutions considered all possess a Z2 symmetry, i.e.,
θ → π − θ. This leads to the fact that all the light rings
are located on the equatorial plane. In the absence of Z2

symmetry, it was found that the circular orbit cannot exist
on the equatorial plane [29]. The black hole shadows were
also changed accordingly in Refs. [30–32]. Nevertheless, it
was indicated in Refs. [10,11] that the topological number
is independent of the Z2 symmetry. One may still wonder
whether these topological results hold for a specific black
hole without the Z2 symmetry. Another issues worth
exploring is for the extremal black holes. Although it is
extensively known that the topological number for the
retrograde light rings always holds, the results for the
prograde light rings remain to be tested. These two issues
are the main purpose of this paper.
Interestingly, the Taub-Newman-Unti-Tamburino (Taub-

NUT) black hole solutions without Z2 symmetry provide a
good test to our above concerns. The spinning Kerr-
Newman-Taub-NUT black holes are characterized by four
quantities: the mass m, electric charge q, spin a, and NUT
charge n [33,34]. For nonzero NUT charge, it was found
that the spacetime is not globally asymptotically flat for its
string singularity [35–40]; meanwhile, the Z2 symmetry is
also broken. In Refs. [41–46], the influences of NUT
charge on the motion of particles and the weak cosmic
censorship conjecture were investigated [47,48]. The size
and distortion of the shadows were also closely related to
the NUT charge [32]. Hence, the light rings as one kind of
characteristic orbit must be influenced. As a result, in this
paper, we wonder whether the topology of light rings
heavily rely on the NUT charge. Moreover, for the extremal
Kerr-Newman-Taub-NUT black holes, the topological
properties shall also be examined in detail.
The organization of this paper is as follows. In Sec. II, we

briefly introduce the solution of the Kerr-Newman-Taub-
NUT black hole. In Sec. III, we study the equation of
motion for a photon in a nonextremal black hole back-
ground, and then the total topological number defining the
sum of winding numbers for zero points is obtained. It was
shown that the location of the light rings is shifted off the

equatorial plane by the NUT charge. However, the topo-
logical number still remains unchanged. The location of
light rings in the r − θ plane is solved in Sec. IV for both
the prograde and retrograde cases. Moreover, for the
extremal Kerr-Newman-Taub-NUT black holes, we explore
their light rings in Sec. V. By expanding the constructed
vector near the degenerate horizon, we find that the
topological number closely depends on the dominate term
of the vector’s radial component at the zero point of the
angular component. For the retrograde case, there is at least
one unstable light ring; whereas for the prograde case, there
may be one or no light ring, indicating a topological phase
transition. Finally, we summarize and discuss our results
in Sec. VI.

II. KERR-NEWMAN-TAUB-NUT SPACETIME

Let us start with the black hole solution. In Boyer-
Lindquist coordinates, the line element of the Kerr-
Newman-Taub-NUT black hole can be written as [42,43,49]

ds2 ¼ −
Δ
Σ
ðdt− χdϕÞ2 þ sin2 θ

Σ
ððr2 þ n2 þ a2Þdϕ− adtÞ2

þ Σ
Δ
dr2 þΣdθ2; ð1Þ

where Σ, Δ, and χ are, respectively, defined by

Σ ¼ r2 þ ðnþ a cos θÞ2; ð2Þ

Δ ¼ r2 − 2mrþ a2 þ q2 − n2; ð3Þ

χ ¼ a sin2 θ − 2n cos θ: ð4Þ

Parameters m, a, q, and n are the black hole mass, spin,
electric charge, and NUT charge, respectively. The electro-
magnetic 2-form field is given by

Fab ¼
q
Σ2

ðr2 − ðnþ a cos θÞ2Þdr ∧ ðdt − χdϕÞ ð5Þ

þ 2qrðnþ a cos θÞ sin θ
Σ2

dθ ∧ ððr2 þ a2 þ n2Þdϕ − adtÞ:
ð6Þ

Importantly, metric (1) and electromagnetic field (6) are
solutions to the Einstein field equation, but the spacetime is
not globally asymptotically flat [35–40]. There are string
singularities at the north pole axis θ ¼ 0 and south pole axis
θ ¼ π. It is generally thought that they are enclosed by the
Misner string tubes acting as one kind of boundary of
spacetime. On the other hand, the introduction of the NUT
charge improves the curvature singularity [32,39,50,51]. As a
result, when n2 > a2, the spacetime is free of curvature
singularity and the black hole is regular; otherwise, the
spacetime curvature ring singularity is formed at r ¼ 0 and
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cos θ ¼ −n=a. In particular, due to the NUT charge, there
will be a closed timelike curve located at the region with
gϕϕ < 0 [39,52].
From Eqs. (2) and (4), the NUT charge breaks Z2

symmetry, which is defined by the transformation
θ → π − θ. This symmetry breaking may cause some physi-
cal quantities to no longer be mirror symmetric about the
equatorial plane. In addition, when r approaches infinity, the
component gtϕ of themetricwill be asymptotic to−2n cos θ,
which is also a little different from the case of the Kerr-
Newman black hole. However, on the other hand, similar to
Kerr-Newman black holes, Kerr-Newman-Taub-NUT black
holes can also have two horizons at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 − a2 − q2

q
; ð7Þ

for m2 þ n2 ≥ a2 þ q2. The equation is saturated for the
extreme black holes. In the following sections, we will
discuss both the nonextremal and extremal black holes. We
write rþ as rh to avoid symbol confusionwith other contents.

III. TOPOLOGY FOR NONEXTREMAL
BLACK HOLES

Topological numbers are discrete, which can be used to
distinguish different system structures. For a vector, its zero
points, often relating to physical sources, can be treated as
defects. Thus, we can endow each of them with a
topological charge, with which these zero points can be
classified. In Refs. [10,11], it was shown that the light rings
can be cast to the zero points of the constructing vector.
Following this idea, the winding number acting as topo-
logical charge of the light rings can uncover some under-
lying properties of the black hole solutions.
In this section, we will briefly review the equations of the

light rings and study the corresponding topological charges
for the black hole without Z2 symmetry.

A. Light rings

For a photon, its motion can be determined by the
Hamiltonian

H ¼ 1

2
gμνpμpν ¼ 0; ð8Þ

where pμ is 4-momentum of the photon. Considering the
black hole solution (1), there are two Killing vectors, ∂t and
∂ϕ. The corresponding conserved quantities are pt ¼ −E
and pϕ ¼ Φ. Combining these results, Eq. (8) can be
rewritten as

T þ V ¼ 0; ð9Þ

where

T ¼ grrp2
r þ gθθp2

θ; ð10Þ

V ¼ −
1

D
ðgϕϕE2 þ 2gtϕEΦþ gttΦ2Þ; ð11Þ

with D ¼ g2tϕ − gttgϕϕ. For a light ring, pr, pθ, and ṗμ

should vanish. Therefore, the photon will move around the
black hole and keep pa ¼ ð−E; 0; 0;ΦÞ unchanged. By
using Eqs. (9)–(11) and the Hamiltonian canonical equa-
tion, the light rings satisfy the following conditions:

V ¼ ∂rV ¼ ∂θV ¼ 0: ð12Þ

Moreover, the light ring is stable or unstable in xμ direction
(μ ¼ r, θ) if ∂2μV > 0 or ∂2μV < 0. Here, we only focus on
the light rings with Φ ≠ 0. Therefore, it is reasonable to
convert formula (11) into the following form:

V ¼ −
Φ2gϕϕ
D

ðE=Φ −HþÞðE=Φ −H−Þ; ð13Þ

where Hþ and H− correspond to the prograde and
retrograde orbits and are given by

H� ¼ −gtϕ �
ffiffiffiffi
D

p

gϕϕ
: ð14Þ

The direction of angular momentum for the prograde and
retrograde photons are the same and opposite with the black
hole spin. So if a ≥ 0, we shall haveΦ > 0 for the prograde
case and Φ < 0 for the retrograde case. Without loss of
generality, we are only concerned with a ≥ 0. Employing
formula (13), the original three conditions of light rings in
Eq. (12) can be transformed into the two following
conditions (for each rotating sense):

∂rH� ¼ ∂θH� ¼ 0: ð15Þ

Note that, for Hþ, the stable and unstable light rings
correspond to ∂2μHþ > 0 and ∂2μHþ < 0, respectively, while
it reverses forH−. It seems that Eq. (15) cannot be obtained
from Eqs. (12) and (13) if gϕϕ ¼ 0. However, this is not the
case, and we show it in Appendix A. Additionally, in the
above discussion, we assumeD > 0, so the conclusion here
may not apply to the case in which the light ring coincides
with or hides behind the event horizon.

B. Topological charge for light rings

For each rotating sense given in Eq. (15), these light
rings can be well described by constructing the correspond-
ing topological charge or winding number. For the first
step, we need to introduce a normalized field v,
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v�r ðr; θÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grrðr; θÞ
p ∂rH�ðr; θÞ;

v�θ ðr; θÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gθθðr; θÞ
p ∂θH�ðr; θÞ; ð16Þ

which can be treated as a map from the physical space X,

X ¼ fðr; θÞjrh < r < ∞; 0 < θ < πg; ð17Þ

to vector space V,

V ¼ fðvr; vθÞj −∞ < vr < ∞;−∞ < vθ < ∞g: ð18Þ

Space X represents the physical space outside the event
horizon, ensuring D > 0 and the validity of our discussion.
The corresponding parameters ðr; θÞ of light rings in space
X will be mapped to the points at ðvr; vθÞ ¼ 0. Thus, we
can use the winding number

w ¼ 1

2π

I
C̃
dΩ ð19Þ

to characterize each zero point. The angle Ω measures the
direction of the vector and satisfies

cosΩðr;θÞ¼vrðr;θÞ=vðr;θÞ;sinΩðr;θÞ¼vθðr;θÞ=vðr;θÞ;
ð20Þ

vðr; θÞ2 ¼ vrðr; θÞ2 þ vθðr; θÞ2: ð21Þ

The contour C̃ is in space V, and it is given by the image of
mapping from contour C in space X. The winding number

of different points can be calculated by constructing
contour C enclosing them:

(i) If curve C encloses a normal space point (not a light
ring), the winding number is trivial.

(ii) If curve C encloses zero points of vector (a light
ring), the winding number is �1. The “þ1”
and “−1” represent local extremal point and saddle
point, respectively.

When we consider a large contour that encloses N zero
points of the vector, the integral (19) shall give the total
topological number

W ¼
XN
i¼1

wi: ð22Þ

If this large contour covers the whole space of X, W will
contain the contributions of all zero points of the vector v.
As a result, it shall give the global topological property of
the concerned space. Therefore, we can study the topo-
logical properties of the light rings in Taub-NUT black
holes by both the winding number and topological number
from local and global perspectives.
Choosing the contour C as the boundary of region X, the

integral (19) can be decomposed as

W ¼ 1

2π

�Z
C0

dΩþ
Z
C∞

dΩþ
Z
Cπ

dΩþ
Z
Ch

dΩ
�
; ð23Þ

if the boundary is smooth. For clarity, we sketch the
contour in Fig. 1(a) with C ¼ C0 ∪ C∞ ∪ Cπ ∪ Ch.
Next, we aim to obtain ΔΩ by considering the asymp-

totic behavior of v at these four segments (C0;∞;π;h). After
some algebra calculations, we have following results:

(a) (b)

FIG. 1. Representation of the contour C that encloses X ¼ fðr; θÞjrh < r < ∞; 0 < θ < πg. The complete C contains four segments,
i.e., C ¼ C0 ∪ C∞ ∪ Cπ ∪ Ch. (a) The black arrows indicate the direction of the contourC. (b) The sketch of the direction of the vector v
along the contour C for prograde case. The black circular arrow indicates the direction of the contour with which we are concerned.
The red arrows represent the direction of the vector.
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(i) Near the event horizon boundary,

v�r jr→rh ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h þ ðnþ a cos θÞ2p

ðr2h þ a2 þ n2Þ2 sin θ ðrh −mÞ þOð ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p Þ; v�θ jr→rh
¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffi

r − rh
p Þ: ð24Þ

(ii) Near the infinity boundary,

v�r jr→∞ ¼∓ 1

r2 sin θ
þOð1=r3Þ; v�θ jr→∞ ¼∓ cos θ

r2 sin2 θ
þOð1=r3Þ: ð25Þ

(iii) Near the θ ¼ 0 boundary,

v�r jθ→0 ¼ OðθÞ; v�θ jθ→0 ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ nÞ2

p
4n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþ a2 þ q2 − n2

p þOðθÞ: ð26Þ

(iv) Near the θ ¼ π boundary,

v�r jθ→π ¼ Oðπ − θÞ; v�θ jθ→π ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ða − nÞ2

p
4n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mrþ a2 þ q2 − n2

p þOðπ − θÞ: ð27Þ

From above analysis, we can find the direction of the vector
on these four segments. For the prograde orbit case marked
with “þ,” v is downward, left, up, and right for C0;∞;π;h.
While for the retrograde case marked with “−,” the
direction of the vector reverses. Nevertheless, their topo-
logical number keeps the same,

W� ¼ −1; ð28Þ

which means that there is at least one unstable light ring
outside the black hole horizon. In order to show the specific
details, we take prograde light ring as an example. At first,
based on Eq. (24), we can find that vr is positive near the
horizon. Further combining with Eqs. (26) and (27), we
find Ω ¼ arcsinðvθ=vÞ ¼ π=2 and −π=2 along the curve
θ ¼ π and 0, which leads to the fact that the vector field is
upward and downward, respectively. Thus, we easily have
ΩH

θ¼0 −ΩH
θ¼π ¼ −π on the horizon. Meanwhile, along the

curves θ ¼ 0 and θ ¼ π, the direction of the vector field
does not change, which implies that Ω remains unchanged
along the integration path θ ¼ 0 or π. On the other hand, we
have Ω∞

θ¼π −Ω∞
θ¼0 ¼ −π by making use of Eq. (25).

Therefore, the topological number for the prograde light
ring shall be

W ¼ 1

2π
ðΩh

θ¼0 −Ωh
θ¼π þ Ω∞

θ¼π −Ω∞
θ¼0Þ ¼ −1: ð29Þ

As a supplement, the sketch of the boundary vector field for
prograde light rings is shown in Fig. 1(b).
It is worth noting that, when n → ∞, the values of (26)

and (27) seem to become imaginary. However, this is not
true because r must be greater than rh, which ensures that
the formula in the square root is positive. Further compar-
ing with the Kerr-Newman black hole, a direct conclusion
is that, although the NUT charge n affects the vector field v
on the boundary, the topological number corresponding to
the light rings does not change. We also must be careful that
the current discussion is only valid for nonextreme black
holes, which is because the leading term of v�r jr→rh will
change for the extremal black hole. A more specific
analysis will be shown in Sec. V.
Reviewing the line element (1), the Z2 symmetry of

θ → π − θ is breaking for the Kerr-Newman-Taub-NUT
black hole. However, it fails to affect the topological
number of the vector v, leading to the fact that Kerr-
Newman-Taub-NUT black holes and Kerr-Newman black
holes are in the same topological class for the light rings.
This is mainly because the topological number represents a
global property rather than a local one. In order to uncover
the influence of Z2 symmetry on the topological number,
we define the following two contour integrals:

Wu ¼
1

2π

Z
Cu

dΩ ¼ 1

2π

�Z
Cu
π=2

dΩþ
Z
Cu
∞

dΩþ
Z
Cu
π

dΩþ
Z
Cu
h

dΩ
�
; ð30Þ
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Wd ¼
1

2π

Z
Cd

dΩ ¼ 1

2π

�Z
Cd
0

dΩþ
Z
Cd
∞

dΩþ
Z
Cd
π=2

dΩþ
Z
Cd
h

dΩ
�
: ð31Þ

The contours Cu and Cd are shown in Fig. 2(a), which are for the upper half-plane and lower half-plane, respectively. The
corresponding topological numbers Wu and Wd are for the regions

Xu ¼ fðr; θÞjrh < r < ∞; π=2 ≤ θ < πg; ð32Þ

Xd ¼ fðr; θÞjrh < r < ∞; 0 < θ ≤ π=2g; ð33Þ

respectively. This further requires us to consider the behaviors of vector v on the equatorial plane with θ ¼ π=2, which are

v�r jθ→π=2 ¼ �ðr −mÞðr2 þ n2Þ − 2r
ffiffiffiffi
Δ

p ð�aþ ffiffiffiffi
Δ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p
ðr2 þ n2 þ a2 � a

ffiffiffiffi
Δ

p Þ2 þO
�
θ −

π

2

�
; ð34Þ

v�θ jθ→π=2 ¼ −
2n

ffiffiffiffi
Δ

p ð�aþ ffiffiffiffi
Δ

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p
ðr2 þ n2 þ a2 � a

ffiffiffiffi
Δ

p Þ2 þO
�
θ −

π

2

�
; ð35Þ

for n ≠ 0. When n vanishes, Eq. (35) reduces to

v�θ jθ→π=2 ¼ �
ffiffiffiffi
Δ

p ðr2 þ 2a2 � 2a
ffiffiffiffi
Δ

p Þ
2rðr2 þ a2 � a

ffiffiffiffi
Δ

p Þ2
�
θ −

π

2

�
þO

��
θ −

π

2

�
2
�
: ð36Þ

By using r > m and m2 > a2 þ q2, it is easy to find r2 þ 2a2 � 2a
ffiffiffiffi
Δ

p
> 0.

To clarify this issue, we take the prograde light ring and
NUT charge n > 0 as an example. Other cases would be
similar. Note that, in both prograde and retrograde cases, the
blackhole spina is set to bepositive in priority. In Fig. 2(b),we
show the direction of the vector vþ on the segments ofXu and

Xd, where the negative v
þ
θ has been considered. Accordingly,

we easily obtain Wu ¼ −1 and Wd ¼ 0. Additionally, since
C ¼ Cu ∪ Cd, one easily gets W ¼ Wu þWd.
In other cases, we summarize the results in Table I. Note

that, when n vanishes, it reduces to the Kerr-Newman case,

(a) (b)

FIG. 2. Representations of the contour Cu and Cd which encloses Xu ¼ fðr; θÞjrh < r < ∞; π=2 ≤ θ < πg and
Xd ¼ fðr; θÞjrh < r < ∞; 0 < θ ≤ π=2g, respectively. Four blue line segments (upper side of θ ¼ π=2) represent curve Cu ¼ Cu

π=2 ∪
Cu
∞ ∪ Cu

π ∪ Cu
h and four red line segments (under side of θ ¼ π=2) represent curveCd ¼ Cd

π=2 ∪ Cd
h ∪ Cd

0 ∪ Cd
∞. (a) The arrows indicate

the direction of contours Cu and Cd. (b) The sketch of vector direction along these line segments for prograde light rings in the case of
n > 0 and a > 0. The red and blue circular arrows indicate the directions of the contours Cu and Cd, respectively. The black arrows
indicate the direction of vector along the boundary.
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and our above analysis fails because its light ring is always
on the equatorial plane, while we list the total topological
numbers for a comparison. From the table, it is clear that
Wd and Wu take different values for each case. However
their sum is always −1, further confirming the relation
W ¼ Wd þWu. This result also indicates that the unstable
light ring is shifted off the equatorial plane by the NUT
charge, but the number of light rings remain unchanged.
Therefore, the NUT charge does not alter the topological
class of the light ring even when the Z2 symmetry is
broken.
To provide an even more intuitive understanding, we

give some examples on the behaviors of the vector v in X
space in Appendix B. The deflection angle ΔΩ is also

shown, from which one can easily obtain the value of the
topological number corresponding to the light rings.

IV. SOLUTIONS OF LIGHT RINGS

In the previous section, one can draw a conclusion that
the Kerr-Newman-Taub-NUT black hole has at least one
light ring. Because of the NUT charge, the light ring will
deviate from the equatorial plane. On the other hand, for the
topological number, there is a possibility that the contri-
bution of a saddle point and a extremal point may cancel, so
the specific number of the light ring could not be uniquely
determined by the topological number. In order to show the
detailed information of the light ring, we shall examine the
zero point of the vector v.

The equation of v ¼ 0 for the prograde light ring can be reduced to

∂rHþ ¼ fðr; θÞ∂rΔ sin θ

2
ffiffiffiffi
Δ

p ððr2 þ a2 þ n2Þ sin θ þ ða sin2 θ − 2n cos θÞ ffiffiffiffi
Δ

p Þ2 ¼ 0; ð37Þ

∂θHþ ¼ −gðr; θÞ ffiffiffiffi
Δ

p

ððr2 þ a2 þ n2Þ sin θ þ ða sin2 θ − 2n cos θÞ ffiffiffiffi
Δ

p Þ2 ¼ 0; ð38Þ

where

fðr; θÞ ¼ −4r
ða sin θ þ ffiffiffiffi

Δ
p Þ ffiffiffiffi

Δ
p

∂rΔ
þ r2 þ ðnþ a cos θÞ2; ð39Þ

gðr; θÞ ¼ −a2 cos3 θ þ ðr2 þ n2 þ 2a2Þ cos θ þ 2anþ 2ðnþ a cos θÞ sin θ
ffiffiffiffi
Δ

p
: ð40Þ

The retrograde case is not shown, which can be obtained by
some relations with the prograde case. For example,
changing both the sign of a and n in Eqs. (37) and (38),
one shall obtain these corresponding equations for the
retrograde case. So for simplicity, we only focus on the
prograde case marked with þ. In addition, the black
hole discussed in this section is nonextremal, and the
region we are concerned with is X ¼ fðr; θÞjrh < r < ∞;
0 < θ < πg. Note that Eqs. (37) and (38) are equivalent to

fðr; θÞ ¼ 0 and gðr; θÞ ¼ 0. Now let us turn to the
discussion about the number of roots for Eqs. (37) and
(38). First, Eq. (37) gives the equation fðr; θÞ ¼ 0. Here we
attempt to examine the partial derivative of fðr; θÞ,

∂rfðr; θÞ ¼ −
2ðrðr −mÞ2 −mΔÞða sin θ þ ffiffiffiffi

Δ
p Þ

ðr −mÞ2 ffiffiffiffi
Δ

p : ð41Þ

TABLE I. Topological numbers corresponding to different regions for prograde (þ) and retrograde (−) light rings.

þ Xd ¼ fðr; θÞjrh < r < ∞; 0 < θ ≤ π=2g Xu ¼ fðr; θÞjrh < r < ∞; π=2 ≤ θ < πg X ¼ fðr; θÞjrh < r < ∞; 0 < θ < πg
n > 0 Wd ¼ 0 Wu ¼ −1 W ¼ −1
n < 0 Wd ¼ −1 Wu ¼ 0 W ¼ −1
n ¼ 0 � � � � � � W ¼ −1

− Xd ¼ fðr; θÞjrh < r < ∞; 0 < θ ≤ π=2g Xu ¼ fðr; θÞjrh < r < ∞; π=2 ≤ θ < πg X ¼ fðr; θÞjrh < r < ∞; 0 < θ < πg
n > 0 Wd ¼ −1 Wu ¼ 0 W ¼ −1
n < 0 Wd ¼ 0 Wu ¼ −1 W ¼ −1
n ¼ 0 � � � � � � W ¼ −1
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For the case of a ≥ 0, we always have ∂rfðr; θÞ < 0, thus
fðr; θÞ is monotonically decreasing with r, whereas for
a < 0, there will be a root r ¼ r0 outside the event horizon
such that ∂rfðr; θÞjrh<r<r0 > 0 and ∂rfðr; θÞjr0<r<∞ < 0.
Thus, fðr; θÞ increases with r in interval ðrh; r0Þ and
decreases in interval ðr0;∞Þ. Combining with these boun-
dary behaviors,

fðrh; θÞ ¼ r2h þ ðnþ a cos θÞ2 > 0;

fð∞; θÞ ¼ lim
r→∞

− r2 < 0; ð42Þ

and the continuity of function, we arrive at an interesting
conclusion: for any 0 < θ < π, there is only one root
r̂∈ ðrh;∞Þ such that fðr̂; θÞ ¼ 0 and ∂rfðr; θÞjr¼r̂ < 0
hold. For the convenience of discussion, we denote r ¼
rðθÞ as the solution of fðr; θÞ ¼ 0. Then, we turn to the
remaining Eq. (38). Substituting r ¼ rðθÞ into it, we obtain

∂θHþðr; θÞjr¼rðθÞ ¼ 0; ð43Þ

which is an equation with only one variable θ. Solving it,
we shall obtain the light rings determined by Eqs. (37) and
(38). To explore the root of Eq. (43), we focus on

d
dθ

ð∂θHþðr; θÞjr¼rðθÞÞ ¼
dr
dθ

∂r∂θHþ

����
r¼rðθÞ

þ ∂
2
θHþ

����
r¼rðθÞ

ð44Þ

¼ 1

∂
2
rHþðr;θÞ

ð−ð∂r∂θHþÞ2þ∂
2
rHþðr;θÞ∂2θHþðr;θÞÞ

����
fðr;θÞ¼0

: ð45Þ

If one substitutes the form (14) of Hþ, this equation will become very complex and hard to analyze. However, we have

1

∂
2
rHþðr; θÞ

ð−ð∂r∂θHþÞ2 þ ∂
2
rHþðr; θÞ∂2θHþðr; θÞÞj

fðr;θÞ¼0;gðr;θÞ¼0

> 0; ð46Þ

for the light rings. This is mainly because, with the
conditions (37) and (38) or fðr; θÞ ¼ 0 and gðr; θÞ ¼ 0,
we have

∂
2
rHþ ∝ ∂rfðr;θÞ < 0; ∂

2
θHþ ∝ −∂θgðr;θÞ > 0; ð47Þ

where ∂θgðr; θÞ < 0 can be found in Appendix C. It must
be noted that, compared to formula (45), Eq. (46) has an
additional condition gðr; θÞ ¼ 0. That means that Eq. (46)

is the behavior of formula (45) at any zero points of
gðr; θÞ ¼ 0. Thus, based on the zero point theorem of
continuous functions and

∂θHþðr;θÞjr¼rðθ¼0Þ;θ¼0< 0; ∂θHþðr;θÞjr¼rðθ¼πÞ;θ¼π > 0;

ð48Þ

Equation (45) is positive at any zero point of Eq. (43),
implying that it has only one root. Therefore, we arrive at a

(a) (b)

FIG. 3. Numerical solutions for prograde light ring with m ¼ 3, q ¼ 1, a ¼ 1. The blue curves are for the light rings, and the red
dashed lines represent θ ¼ arccosð−1= ffiffiffi

3
p Þ and θ ¼ arccosð1= ffiffiffi

3
p Þ. (a) The angular location of the light rings as a function of the NUT

change n. (b) The location of the light rings in the r − θ plane with varying n. The arrows represent the increasing n from −∞ to ∞. In
addition, (7.50, π=2) denotes the light ring when n vanishes.
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conclusion: the Kerr-Newman-Taub-NUT black hole has
only one prograde light ring. Moreover, employing the
relation between the prograde and retrograde cases, this
conclusion is also valid for the retrograde light ring. In
addition, due to inequality (47), these light rings are stable
in θ direction and unstable in r direction. This means that
the light ring corresponds to the saddle point, which is
consistent with the result of the winding number.
Although we know from the above analysis that there is

only one light ring outside the black hole horizon, the
analytical solution is still hard to obtain. However, when we
consider the case of n → �∞, the analytical solution reads

r ¼
ffiffiffi
3

p
n; θ ¼ arccos

�
∓ 1ffiffiffi

3
p

�
: ð49Þ

Moreover, we also numerically solve the light rings and
exhibit them in Fig. 3 for the prograde light rings. From
Fig. 3(a), it is easy to see that there always exists one and
only one light ring for an arbitrary value of n. The deviation
angle is also bounded by ∓ arccosð1= ffiffiffi

3
p Þ. With the

increase of NUT charge n, we also display the light ring
in Fig. 3(b). The asymptotic behaviors of θ at large n are
also explicitly shown. Meanwhile, in the separated ranges
(0, π=2) and (π=2, π), θ is a monotonic function with the
radial radius of the light ring. This result is also consistent
with our above analysis. From the perspective of topology,
we always have a conserved topological number W ¼ −1
indicating the existence of an unstable light ring. This result

is also independent of the black hole parameters. So, one
can obtain some interesting properties of the light ring
without solving the corresponding equations.

V. TOPOLOGY FOR EXTREMAL BLACK HOLES

In the above sections, we have studied the topological
properties of the light rings for a nonextremal Kerr-
Newman-Taub-NUT black hole. However, for an extremal
black hole, the topological properties are hard to study due
to the fact that the behavior of vector v near the degenerate
event horizon is relatively dependent on the specific metric.
Therefore, exploring the corresponding topology has
potentially enlightening significance on understanding
the light rings for the extremal black holes. Recent studies
on this issue in spherically symmetric black hole back-
grounds can be found in Refs. [18,20,53].
Now, we attempt to examine the topology of light rings

for the extremal spinning Kerr-Newman-Taub-NUT black
hole. The metric function Δ reads

Δ ¼ ðr −mÞ2; ð50Þ

due to the constraint m2 þ n2 ¼ a2 þ q2. This means that
these two horizons of the black hole coincide exactly at
rh ¼ rþ ¼ r− ¼ m. Thus, the vector v (16) near the
horizon shall be significantly changed, whereas it will be
slightly modified on other boundaries. For clarity, we show
the vector behavior near the horizon,

v�r jr→rh ¼ � ðnþ a cos θÞ2 þm2 ∓ 2ma sin θ

sin θðm2 þ n2 þ a2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðnþ a cos θÞ2

p ðr − rhÞ þOððr − rhÞ2Þ; ð51Þ

v�θ jr→rh
¼ � a2 cos3 θ − ðm2 þ n2 þ 2a2Þ cos θ − 2an

sin2 θðm2 þ n2 þ a2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðnþ a cos θÞ2

p ðr − rhÞ þOððr − rhÞ2Þ: ð52Þ

Since the concerned region is outside the black hole horizon, we need to examine the leading terms of Eqs. (51) and (52)
near the event horizon. Although these equations are more complicated than that of the nonextremal black holes, we are
fortunate enough to solve v�θ ¼ 0 to the first order as θ ¼ θc given by

cos θc ¼ −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ n2 þ 2a2Þ

p
ffiffiffi
3

p
a

sin

�
π

6
−
1

3
arccos

�
3

ffiffiffi
3

p
a2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2 þ n2 þ 2a2Þ3
p

��
: ð53Þ

The simple result indicates that vþθ jr→rh
<0 and v−θ jr→rh

> 0

for 0 < θ < θc. If θc < θ < π, their values reverse. Further
combining with the fact that vþθ jθ→0 < 0, vþθ jθ→π > 0,
v−θ jθ→0 > 0, and v−θ jθ→π < 0, we find

V�
c ≡ the leading term of v�r jθ¼θc;r→rh ð54Þ

is critical to the topological number,

ΔΩh ¼
Z
Ch

dΩ ¼ Ωh
θ¼0 −Ωh

θ¼π ¼ ∓ πsgnðV�
c Þ: ð55Þ

Counting the contributions from other segments of the
boundary, we reach the following conclusions:
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(i) For the prograde case, the topological number is 0
for Vþ

c < 0 [shown in Fig. 4(a)] and −1 for Vþ
c > 0

[shown in Fig. 4(b)].
(ii) For the retrograde case, the topological number is

−1 and 0 for V−
c < 0 and V−

c > 0, respectively.
Therefore, quite different from the nonextremal black

holes, all the extremal black holes cannot be classified
simply into the same topological class. In particular, as
shown above, when V�

c changes its sign, a topological
phase transition must occur. Some examples will be given
in the following contents and some supplemental informa-
tion can also be found in Appendix D.
It is also worth noting that, outside the black hole

horizon, the leading term of V�
c does not vanish for a

spinning black hole, which can ensure that ΔΩh for the
horizon boundary is clear and formula (55) is correct. The
reason is given in the following. Let us focus on the
expansion,

v�r jθ¼θc;r→rh ¼V�ð1Þ
c ðr−rhÞþV�ð2Þ

c ðr−rhÞ2þOððr−rhÞ3Þ;
ð56Þ

where V�ð1Þ
c are

V�ð1Þ
c ¼ � ðnþ a cos θcÞ2 þm2 ∓ 2ma sin θc

sin θcðm2 þ n2 þ a2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðnþ a cos θcÞ2

p :

ð57Þ

When Vþð1Þ
c vanishes, one has a > 0 and Vþ

c ¼ Vþð2Þ
c ∝

−a < 0, which ensures that Vþ
c does not vanish. In the

same way, V−
c can also be analyzed. Thus, the topological

number can be obtained and expressed as

W� ¼
�− 1

2
ð1� sgnðV�ð1Þ

c ÞÞ; if V�ð1Þ
c ≠ 0:

0; if V�ð1Þ
c ¼ 0:

ð58Þ

If a > 0 is fixed, it can be found that V−ð1Þ
c is always less

than zero from Eq. (57), which means that the retrograde

light rings always exist; but for Vþð1Þ
c , it is not always

greater than zero, implying that the prograde light ring
might not exist.

A. Example 1: Extremal Kerr-Newman black holes

If we take n ¼ 0, the solution will reduce to the extremal
Kerr-Newman black hole withm2 ¼ a2 þ q2. Equation (53)
will be greatly simplified and it gives θc ¼ π=2. Therefore,

the functions V�ð1Þ
c are

V�ð1Þ
c ¼ � ðm ∓ 2aÞ

ðm2 þ a2Þ2 : ð59Þ

Employing this result, we can obtain the corresponding
topological number for different black hole spins. The results
are summarized in Table II. For the prograde light ring, we
see that there exists a topological phase transition at
a ¼ m=2, below or above which the topological number
W ¼ −1 or 0, respectively. This indicates that there exists at
least one unstable prograde light ring for the lowly spinning

(a) (b)

FIG. 4. The sketch of vector on the boundary for the prograde case. Four black line segments represent the contour C, which is the
boundary of X ¼ fðr; θÞjrh < r < ∞; 0 < θ < πg. The black circular arrows indicate the directions of contours. The red arrows
represent the direction of vector on the boundary. “θc” of (rh, θc) (in blue) corresponds to that given in formula (53). (a) Case for Vc < 0.
(b) Case for Vc > 0.

TABLE II. Topological number for prograde and retrograde
light rings outside the extreme Kerr-Newman black hole.

Range Vþ
c þ direction V−

c − direction

0 < a < m=2 Vþ
c > 0 W ¼ −1 V−

c < 0 W ¼ −1
a ≥ m=2 Vþ

c < 0 W ¼ 0 V−
c < 0 W ¼ −1
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extremalKerr-Newman black holes, while this is not the case
for the rapidly spinning black holes. Of particular interest is
that there always exists one retrograde light ring for the
extremal Kerr-Newman black holes. Sowe conclude that the
topological phase transition exists for the prograde light ring,
while it is absent for the retrograde light ring.
On the other hand, for the extreme Kerr-Newman black

hole, the location of prograde light rings is determined,

a4 cos2 θ − rð2a sin θ − 2mþ rÞ ¼ 0; ð60Þ

ðr2þa2þa2ð1−cosθÞþ2asinθðr−mÞÞcosθ¼0; ð61Þ

solving which gives

θþLR ¼ π=2; rþLR ¼ 2ðm − aÞ: ð62Þ

Since we require a light ring outside the black hole horizon
rþLR > m, this exactly gives our above result that the
prograde light ring only exists for a < m=2.
For the retrograde case, we only need to change a to −a

in Eqs. (60) and (61). Thus, the solution is

θ−LR ¼ π=2; r−LR ¼ 2ðmþ aÞ: ð63Þ

Obviously, the radius of the retrograde light rings is always
larger than the radius of the extremal black hole horizon. So
one is expected to get topological number W ¼ −1
regardless of the black hole spin.

B. Example 2: Extremal
Kerr-Newman-Taub-NUT black holes

Now, let us turn to the case with n ≠ 0. For the
extremal Kerr-Newman-Taub-NUT black hole, one
requires m2 þ n2 ¼ a2 þ q2 on these black hole parame-
ters. Without loss of generality, we take m ¼ 3 and n ¼ 1

as an example. Then we have 0 ≤ a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 − q2

p
≤

ffiffiffiffiffi
10

p
.

For simplicity, we plot the first-order term V�ð1Þ
c in Fig. 5

for both prograde and retrograde cases. It is clear that Vþð1Þ
c

changes its sign at a ≈ 1.57. So there exists a topological
phase transition for the prograde light ring. Below and
above that value, there exists one or no light ring, and the
topological numberW changes from −1 to 0. While for the

retrograde case, V−ð1Þ
c always takes negative values. So no

topological phase transition occurs, and W ¼ −1 for an
arbitrary black hole spin a. These results are also consistent
with that of Kerr-Newman black holes.
On the other hand, we focus on the location of light rings

for the extremal Kerr-Newman-Taub-NUT black holes. The
prograde light rings are determined by

a4cos2θ þ 2a2n cos θ þ 2ðm − a sin θÞr − r2 þ n2 ¼ 0;

ð64Þ

− a2cos3θ þ ðr2 þ n2 þ 2a2Þ cos θ þ 2ðr −mÞ
× ðnþ a cos θÞ sin θ þ 2an ¼ 0: ð65Þ

For the retrograde case, the equations can be obtained by
n → −n and a → −a,

a4 cos2 θ − 2a2n cos θ þ 2ðmþ a sin θÞr − r2 þ n2 ¼ 0;

ð66Þ

− a2 cos3 θ þ ðr2 þ n2 þ 2a2Þ cos θ þ 2ðr −mÞ
× ðn − a cos θÞ sin θ þ 2an ¼ 0: ð67Þ

Taking m ¼ 3 and n ¼ 1, we plot these curves determined
by Eqs. (64) and (65) in Fig. 6 near a ¼ 1.57. Then the
solutions or the locations of the light rings are at the
intersection points marked with black dots of these curves.
For the prograde case, the results are listed in Figs. 6(a)
and 6(b). With the increase of the black hole spin, these
intersection points are shifted toward small r. Of particular
interest is that at a ≈ 1.57, the interaction point exactly
coincides with the horizon. Further increasing a, the point
will possess smaller r, which indicates that the light rings
for these cases will hide behind the black hole horizon.
Since we are only concerned with these light rings outside
the black hole horizon, the pattern exhibits the tendency
that the light rings disappear with the increase of the black
hole spin. This also results in the topological phase
transition near a ≈ 1.57, where the number of light rings
change. A minor phenomenon is that the light rings
represented by these black dots slightly deviate from the
equatorial plane, which is mainly caused by the breaking of
the Z2 symmetry.
For the retrograde case, the results are also shown in

Figs. 6(c) and 6(d). It is obvious that these light rings
marked with black dots are all outside the black hole
horizon near a ¼ 1.57. This also holds for other allowed
black hole spin. Therefore, we always observe one unstable

FIG. 5. Quantities V�ð1Þ
c as a function of black hole spin a with

m ¼ 3 and n ¼ 1.
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light ring, indicating topological number W ¼ −1 and no
topological phase transition occurs.
Note that we here discuss the case for varying black hole

spin, while the case considered for varying the NUT charge
can be found in Appendix D.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we considered the topology of light rings in
the backgrounds of the Kerr-Newman-Taub-NUT black
holes. Our study extends previous work to the extremal and
nonextremal black holes without the Z2 symmetry. The
corresponding light rings are found to deviate from the
equatorial plane with nonvanished NUT charge n.

Our first concern focuses on the nonextremal Kerr-
Newman-Taub-NUT black holes. By considering the
direction of vector on the four segments, at r ¼ rh and
∞, θ ¼ 0 and π, of the boundary, we observed the
topological number W ¼ −1 for both the prograde and
retrograde light ring cases. This implies that at least one
unstable light ring exists. Such result is the same as that of
the nonextremal Kerr-like black hole with Z2 symmetry.
Therefore, the Z2 symmetry has no influence on the
number of the light rings, which confirms the results of
Refs. [10,11]. However, it indeed affects their locations.
Furthermore, we also confirmed that there is one and only
one light ring for the nonextremal Kerr-Newman-Taub-
NUT black holes.

(a) (b)

(c) (d)

FIG. 6. The schematic diagram for light ring solutions in (r, θ) space. The intersection points marked with black dots are for the light
rings. These curves are given via Eqs. (64)–(67). The black vertical lines denote the locations of the black hole horizons. (a),(b) For the
prograde case; (c),(d) for the retrograde case. (b),(d) The enlarged diagrams of (a),(c) near the light rings.
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In order to uncover the detailed influence of the Z2

symmetry on the light ring topology. We further divided the
considered whole parameter space X in θ − r plane into
the upper half-plane Xu and lower half-plane Xd, and the
corresponding boundary is separated to C ¼ Cu ∪ Cd.
Further considering the direction of the vector along these
segments of the boundary, we found that, for the prograde
light ring, Wd ¼ 0 and Wu ¼ −1 for positive NUT charge,
whileWd ¼ −1 andWu ¼ 0 for negative NUT charge. This
also uncovers that the positive or negative NUT charge
shifts the light ring above or below the equatorial plane. On
the other hand, for the retrograde light ring, the results
reverse. Nevertheless, the total topological number W ¼
Wd þWu remains unchanged.
Moreover, we also performed our topology study to the

extremal Kerr-Newman-Taub-NUT black holes. Although it
is known that there must exist one unstable light ring for the
retrograde case, whether it holds for the prograde case is still
unclear. Here we expanded the vector near the black hole
degenerate horizon. Further combining with the analysis, we
clearly showed that the topological pattern is critically
dependent on the leading term of v�r at the zero point of
v�θ on the black hole horizon. Different signs of the leading
termgive different topological numbers.Meanwhile, the zero
point of the first-order term (57) represents a topological
phase transition.
Based on these results, we took the extremal Kerr-

Newman black hole as an first example. For the prograde
case, the topological number W ¼ −1 or 0 for a slowly
spinning (0 < a < m=2) or rapidly spinning (a ≥ m=2)
extremal black hole, which indicates that the light ring at
least exists for the slowly spinning black holes, and a
topological phase transition occurs at a ¼ m=2. However,
for the retrograde case, the unstable light ring always exists.
When we applied this approach to the extremal Kerr-
Newman-Taub-NUT black holes, we observed similar
results. The retrograde light ring exists for an arbitrary
allowed spin, while the prograde light ring encounters a
topological phase transition at a certain black hole spin.
One significant difference is that the locations of these light
rings are off the equatorial plane.
It is also worth pointing out that the effective potential

defined in (13) is not well behaved at θ ¼ 0 and π. So this
treatment cannot apply to the light point located at the axis
of the spinning spacetime. On the other hand, from our
previous study, we find that the off equatorial plane light
rings are cased by the nonzero NUT charge, which spoils
the Z2 symmetry. However, even when n → ∞, θ tends to
about 3π=10 or 7π=10, far away from the axis. So we can
conclude that, except for extreme physical systems, such
topological approach can be well applied to most black hole
backgrounds.
As a brief summary, we found several characterized

topological properties of the light rings in this paper. First,
the Z2 symmetry affects the location of the light ring, while

it has no contribution to the topological number. Second,
the topological properties are similar for both the prograde
and retrograde light rings in nonextremal spinning black
hole backgrounds. Third, there is potential topological
phase transition for the prograde light ring in the extremal
spinning black hole backgrounds, while the retrograde light
ring always exists. Although we mainly dealt with the Kerr-
Newman-Taub-NUT black holes, our study still uncovers
some universal topological properties for the light rings
even without Z2 symmetry. These shall have enlightening
significance on understanding the light rings for other
spinning black holes.
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APPENDIX A: THE LIGHT RINGS WITH gϕϕ = 0

In this appendix, we would like to discuss the case of
gϕϕ ¼ 0 appearing in Eqs. (11) and (13). After a simple
calculation, we will show that gϕϕ ¼ 0 is contained in
Eq. (15). We begin with Eq. (13),

V ¼ −
Φ2

D
gϕϕðE=Φ −HþÞðE=Φ −H−Þ: ðA1Þ

Employing Kerr-Newman-Taub-NUT black hole metric
(1), we can easily get

gϕϕ ¼ Λþðr; θÞΛ−ðr; θÞ
r2 þ ðnþ a cos θÞ2 ; ðA2Þ

H� ¼ a sin θ � ffiffiffiffi
Δ

p

Λ�ðr; θÞ
; ðA3Þ

where

Λ�ðr;θÞ ¼ ðr2 þ n2 þ a2Þ sinθ� ða sin2 θ− 2n cosθÞ
ffiffiffiffi
Δ

p
:

ðA4Þ

It is easy to find that gϕϕ ¼ 0 corresponds to

Λþðr; θÞ ¼ 0 or Λ−ðr; θÞ ¼ 0: ðA5Þ

Their roots of (r, θ) are different if they exist. Assuming
ðr; θÞ ¼ ðr̂; θ̂Þ is a solution of Λþðr; θÞ ¼ 0, Eq. (A1) can
be simplified as

Vjr¼r̂;θ¼θ̂ ¼ 2
Φ2

D
ðr̂2 þ n2 þ a2Þ sin θ̂
r̂2 þ ðnþ a cos θ̂Þ2

× ða sin θ̂ þ
ffiffiffiffi
Δ

p
ÞðE=Φ −H−Þjr¼r̂;θ¼θ̂: ðA6Þ
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Moreover, due to Λþðr̂; θ̂Þ ¼ 0, we have

ffiffiffiffi
Δ

p
¼ ðr̂2 þ n2 þ a2Þ sin θ̂

2n cos θ̂ − a sin2 θ̂
: ðA7Þ

Thus we get

a sin θ̂ þ
ffiffiffiffi
Δ

p
¼ r̂2 þ ðnþ a cos θ̂Þ2

2n cos θ̂ − a sin2 θ̂
sin θ̂ > 0; ðA8Þ

which implies that the coefficient of Eq. (A6) is greater than
zero. Therefore, the conditions of the light ring V ¼ 0
and ∂μV ¼ 0 indicate that Λþðr; θÞ ¼ 0 corresponds to the
− light ring, i.e.,

E=Φ ¼ H− and ∂μH− ¼ 0; μ ¼ r; θ: ðA9Þ

Furthermore, ∂2μV > 0 (stable) and ∂
2
μV < 0 (unstable) for

light rings corresponding to ∂
2
μH− < 0 and ∂

2
μH− > 0,

respectively. These show that Λþðr; θÞ ¼ 0 can be deter-
mined by the retrograde case. Similarly, Λ−ðr; θÞ ¼ 0 can
also be determined by the prograde case. As a result, one can
conclude that the case gϕϕ ¼ 0 for light rings is contained
in Eq. (15).

APPENDIX B: VECTOR AND TOPOLOGICAL
NUMBER FOR n ≠ 0

We aim to show the pattern of the vector and the
corresponding topological number for certainNUT chargen.

FIG. 7. The red arrows represent v (normalized to unity) on a portion of the (r, θ) plane with m ¼ 3, q ¼ 1, a ¼ 1 for the prograde
case. Black dots denote the zero points of v, which correspond to the prograde light rings. (a) n ¼ 0, (b) n ¼ 1, (c) n ¼ 2, (d) n ¼ −1.
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The behaviors of the vector (normalized to unity) are
shown in Fig. 7 for the prograde light ring with fixing
m ¼ 3, a ¼ q ¼ 1, but varying n ¼ 0, 1, 2, and −1,
respectively. From the figures, we can clearly see that
the vector is outward at θ ¼ 0 and π. In particular, for the
NUT charge n ¼ 0, the zero points marked with black dots
are on the equatorial plane with θ ¼ π=2, see Fig. 7(a).
Moreover, the zero points are shifted upward for positive n
and downward for negative n.
For positive and negative n, we exhibit the vector

(normalized to unity) and the contours Cu and Cd in
Figs. 8(a) and 8(b) represented by the blue solid and red
dashed lines.We also calculate the deflection angleΔΩ as the
function of λ, and the results are shown in Figs. 8(c) and 8(d).
If λ varies from 0 to 1, one shall make one loop counter-
clockwise along the contour. Note that the point relating
λ ¼ 0 is at ðrh; π=2Þ. The topological number shall be
obtained via W ¼ ΔΩðλ ¼ 1Þ=2π. Therefore, it is clear
that Wu ¼ −1 and Wd ¼ 0 for positive n, and Wu ¼ 0

and Wd ¼ −1 for negative one. For the retrograde case, the
results will reverse. Interestingly, W ¼ Wu þWd is also
obvious. Therefore,we confirm the results given inTable I by
taking the specific examples.

APPENDIX C: PROOF FOR INEQUALITY
∂θgðr;θÞ < 0 AT gðr;θÞ= 0

For convenience, we introduce x ¼ cos θ. Then Eq. (40)
becomes

gðr; xÞ ¼ −a2x3 þ ðr2 þ n2 þ 2a2Þxþ 2an

þ 2ðnþ axÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffi
Δ

p
; ðC1Þ

where x∈ ð−1; 1Þ. To simplify the discussion, we denote
gðxÞ≡ gðr; xÞ. Then the inequality ∂θgðr;θÞ<0 at gðxÞ ¼ 0
turns to

FIG. 8. Vector v (normalized to unity) on a portion of the (r, θ) plane and the deflection angle ΔΩ along the boundary. We set m ¼ 3,
q ¼ 1, and a ¼ 2. (a) n ¼ 1, (b) n ¼ −1, (c) n ¼ 1, (d) n ¼ −1. Black dots denote the zero points of v, which correspond to the
prograde light rings. λ is a length parameter of the boundaries shown in (a) and (b). The winding number is given by w ¼ ΔΩ=2π. Note
that there exist no zero points for large r.
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∂xgðxÞ > 0: ðC2Þ
The case of n ¼ 0 corresponds to the Kerr-Newman black
holewhose uniqueness of the light ring (for both the prograde
and retrograde cases) solution is obvious. Therefore, we
mainly focus on the case of n ≠ 0, and for simplicity, we
consider the following two cases: a ¼ 0 and a > 0.

1. Case: a= 0

When a vanishes, gðxÞ will be simplified as

gðxÞ ¼ xðn2 þ r2Þ þ 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffi
Δ

p
: ðC3Þ

At the boundaries x ¼ −1 and x ¼ 1, we respectively have

gðx ¼ −1Þ ¼ −ðr2 þ n2Þ; ðC4Þ

gðx ¼ 1Þ ¼ r2 þ n2: ðC5Þ
Obviously, gðx ¼ −1Þ and gðx ¼ 1Þ are negative and
positive, respectively. The first and second derivatives of
gðxÞ are given by

∂xgðxÞ ¼ n2 þ r2 −
2nx

ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ðC6Þ

∂
2
xgðxÞ ¼ −

2n
ffiffiffiffi
Δ

p

ð1 − x2Þ3=2 : ðC7Þ

For further discussion, we divide the NUT charge into the
following two cases: n > 0 and n < 0.

(i) n > 0. In this case, ∂2xgðxÞ < 0 is obvious, which
indicates that ∂xgðxÞ ismonotonically decreasingwith
x.On theother hand,we can find ∂xgðxÞjx→−1 > 0 and
∂xgðxÞjx→1 < 0. Thus, gðxÞ increases at first and
then decreases with x. Further considering Eqs. (C4)
and (C5), gðxÞ ¼ 0 has only one root and ∂xgðxÞmust
be positive at the zero point of gðxÞ ¼ 0.

(ii) n < 0. In this case, ∂2xgðxÞ > 0 is obvious, which
indicates that ∂xgðxÞ is monotonically increasingwith
x.On theother hand,we can find ∂xgðxÞjx→−1 < 0 and
∂xgðxÞjx→1 > 0. Thus, gðxÞ decreases at first and then
increases with x. Further combining with Eqs. (C4)
and (C5), gðxÞ ¼ 0 has only one root and ∂xgðxÞmust
be positive at the zero point of gðxÞ ¼ 0.

Therefore, one can obtain the inequality (C2) for a ¼ 0.

2. Case: a > 0

For positive black hole spin, we can rescale the function
gðxÞ with a. In order to preserve its expression, we need to
set r=a → r, n=a → n, q=a → q, and m=a → m. Or,
equivalently, we can set a ¼ 1. Then the Eq. (C1) shall be

gðxÞ ¼ −x3 þ ðr2 þ n2 þ 2Þxþ 2nþ 2ðnþ xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− x2

p ffiffiffiffi
Δ

p
:

ðC8Þ

From this formula, we can obtain

gð−1Þ ¼ −ðr2 þ ðn − 1Þ2Þ; ðC9Þ

gð1Þ ¼ r2 þ ðnþ 1Þ2; ðC10Þ

gð0Þ ¼ 2nð1þ
ffiffiffiffi
Δ

p
Þ: ðC11Þ

The corresponding derivatives of gðxÞ are

∂xgðxÞ ¼ −3x2 þ r2 þ n2 þ 2 −
2ð2x2 þ nx − 1Þ ffiffiffiffi

Δ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ;

ðC12Þ

∂
2
xgðxÞ ¼ −6x −

2ð−2x3 þ 3xþ nÞ ffiffiffiffi
Δ

p

ð1 − x2Þ3=2 ; ðC13Þ

∂
3
xgðxÞ ¼ −6 −

6ðnxþ 1Þ ffiffiffiffi
Δ

p

ð1 − x2Þ5=2 : ðC14Þ

For further discussion, we divide the NUT charge into the
following three cases: n > 1, 0 < n ≤ 1, and n < 0. The
discussion is as follows.

(i) 0 < n ≤ 1. We have ∂
3
xgðxÞ < 0, ∂2xgðxÞjx→−1 > 0,

and ∂
2
xgðxÞjx→1 < 0, which implies that ∂

2
xgðxÞ

has one zero point and ∂xgðxÞ first increases
and then decreases. Furthermore, we also have
∂xgðxÞjx→0> 0, ∂xgðxÞjx→−1≤0, and ∂xgðxÞjx→1<0,
which indicates that gðxÞ decreases first,1 then in-
creases, and finally decreases as x varies from−1 to 1.
Finally, combining with gð−1Þ < 0 and gð1Þ > 0, we
get ∂xgðxÞ > 0 when gðxÞ ¼ 0.

(ii) n > 1. When − 1 < x ≤ 0, one has ∂xgðxÞ > 0,
while when 0 < x < 1, ∂2xgðxÞ < 0. We also have
∂xgðxÞjx→0 > 0 and ∂xgðxÞjx→1 < 0. These mean
that gðxÞ will increase first and then decrease as x
varies from −1 to 1. By making use of the conditions
gð−1Þ < 0 and gð1Þ > 0, we can obtain ∂xgðxÞ > 0
when gðxÞ ¼ 0.

(iii) n < 0. As shown above, we have confirmed
∂xgðxÞ > 0 at gðxÞ ¼ 0 for n > 0. The case with n <
0 is straightforward by using the relation
gðx; nÞ ¼ −gð−x;−nÞ. For example, for negative
n, we have ∂−xgð−x;−nÞ > 0 from the above result.
Further considering ∂−xgð−x;−nÞ ¼ −∂−xgðx; nÞ ¼
∂xgðx; nÞ, one easily has ∂xgðxÞ > 0 as expected.

In summary, we have checked ∂xgðxÞ > 0 at gðxÞ ¼ 0 for
the non-negative black hole spin. Furthermore, the case of
a < 0 can be proven similarly.

1If ∂xgðxÞjx→−1 ¼ 0 holds, the decreasing behavior will no
longer exist.
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APPENDIX D: TOPOLOGICAL PHASE
TRANSITION WITH VARYING n

Here, we would like to consider the topological number
and phase transition for extremal black holes with varying
NUT charge n. For simplicity, we set m ¼ 2, a ¼ 2, and
jqjmax ¼ 10. Because of the constraint m2 þ n2 ¼ a2 þ q2,
we need vary n from −10 to 10 as expected.
The quantity Vþð1Þ

c is plotted in Fig. 9, but V−ð1Þ
c is not

plotted for the reason that it is always less than zero and no
topological phase transition exists. From this figure, we can
find that there will be a topological phase transition when
jnj is around 3.96. A simple calculation shows that the

FIG. 9. Quantities Vþð1Þ
c (57) as a function of n with m ¼ 2 and

a ¼ 2.

(a) (b)

(c) (d)

FIG. 10. The schematic diagram of light ring solutions in (r, θ) plane for the prograde light ring. The intersection points of these curves
marked with black dots are for the prograde light rings. These curves are given by Eqs. (64) and (65). The black vertical lines represent
the locations of the black hole horizons. (a, b) For the case where n is near 3.96; (c, d) for the case where n is near −3.96. (b, d) The
enlarged diagrams of (a, c) near the light rings.
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topological number is −1 for jnj > 3.96 and zero for
jnj ≤ 3.96.
On the other hand, the prograde light ring can be

obtained by the intersections of these two kinds of curves
determined by Eqs. (64) and (65). Taking n ¼ 3.70, 3.96,
4.22, and n ¼ −3.70, −3.96, 4.22, we show these curves
in Fig. 10. The light rings are marked with the black dots.

It is clear that when jnj > 3.96, there are light rings
outside the black hole horizon. While, when jnj < 3.96,
the light rings are behind the event horizon, leading
to the disappearance of these light rings. This clearly
exhibits that there is a topological phase transition near
n ≈ 3.96 characterizing whether the light ring exists
or not.
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