
Moment of inertia for axisymmetric neutron stars
in the standard model extension

Yiming Dong ,1,2 Zexin Hu ,1,2 Rui Xu,3,2 and Lijing Shao 2,4,*

1Department of Astronomy, School of Physics, Peking University, Beijing 100871, China
2Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China

3Department of Astronomy, Tsinghua University, Beijing 100084, China
4National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

(Received 6 September 2023; accepted 24 October 2023; published 16 November 2023)

We develop a consistent approach to calculate the moment of inertia (MOI) for axisymmetric neutron
stars (NSs) in the Lorentz-violating Standard-Model Extension (SME) framework. To our knowledge, this
is the first relativistic MOI calculation for axisymmetric NSs in a Lorentz-violating gravity theory other
than deformed, rotating NSs in general relativity. Under Lorentz violation, there is a specific direction in the
spacetime, and NSs get stretched or compressed along that direction. When a NS is spinning stationarily
along this direction, a conserved angular momentum and the concept of MOI are well defined. In the SME
framework, we calculate the partial differential equation governing the rotation and solve it numerically
with the finite element method to get the MOI for axisymmetric NSs caused by Lorentz violation. Besides,
we study an approximate case where the correction to the MOI is regarded solely from the deformation of
the NS and compare it with its counterpart in the Newtonian gravity. Our formalism and the numerical
method can be extended to other theories of gravity for static axisymmetric NSs.
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I. INTRODUCTION

At the classical level, gravitational phenomena are well
described by general relativity (GR), which has withstood
various experimental tests over the past century with flying
colors [1,2]. At the quantum level, the Standard Model
(SM) of particle physics provides an accurate description
of interactions between microscopic particles. Together,
GR and SM form the foundation for our contemporary
understanding of the nature. However, there has been a
longstanding quest to a final theory, so-called quantum
gravity, that can consistently describe all phenomena.
Quantum gravity is expected to exhibit unique behaviors
different from GR at the Planck energy scale, but testing
theories at the Planck scale is challenging if possible [3,4].
Therefore, physicists have turned their attention to search-
ing for relic effects of quantum gravity at low energy scales,
and Lorentz violation is one possible relic effect [3–8].
A field-theoretic approach, the Standard-Model Extension
(SME), collects all possible operators of Lorentz violation
in a Lagrangian [8–11],

LSME ¼ LGR þ LSM þ LLV þ Lk; ð1Þ

where LGR represents the Einstein-Hilbert term for
GR, LSM is the Lagrangian of the SM, LLV is the

Lorentz-violating term, and Lk describes the dynamics
of the Lorentz-violating fields. For the term LLV, in this
study we consider the minimal gravitational Lorentz
violation with operators of mass dimension four [8],

Lð4Þ
LV ¼ 1

16π
ð−uRþ sμνRT

μν þ tαβγδCαβγδÞ; ð2Þ

where R is the Ricci scalar, RT
μν is the trace-free Ricci

tensor, Cαβγδ is the Weyl conformal tensor, and u, sμν, tαβγδ

are the Lorentz-violating fields. In the SME framework, we
can describe the Lorentz-violating fields by introducing
their vacuum expectation values, ū, s̄μν, and t̄αβγδ, which are
then called the Lorentz-violation coefficients [8]. Extensive
experiments have been conducted to constrain the Lorentz-
violation coefficients [12–21].
In this work we will consider neutron stars (NSs) in the

SME framework. NSs are ideal laboratories for testing
fundamental theories and principles, including the Lorentz
symmetry [22–29]. Pulsars, which are rotating NSs, pro-
vide us a superb opportunity to test theories of gravity
[22,23,27] including the Lorentz symmetry in circum-
stances of strong gravitational field [13,14,18,19]. In some
cases, the uncertain equation of state (EOS) for dense
nuclear matter of NSs could introduce degeneracy with
gravity tests [30–32]. Nevertheless, measurements of NS
properties, such as mass, radius, moment of inertia (MOI),
and tidal Love number offer us an avenue to study the*Corresponding author: lshao@pku.edu.cn
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EOS [33–40]. Through high-precision pulsar timing obser-
vations [27,37,39,41], gravitational-wave detections of
binary NS mergers [42–44], and multiwavelength obser-
vations of x-ray pulsars [45,46], we can obtain high-
precision measurements of the structure of NSs. These
constraints on the EOS of NSs help us gain insights into the
physics of dense nuclear matter, as well as gravity tests.
With Lorentz violation, NSs undergo nonspherical defor-

mations. Studying the structure of NSs under Lorentz
violation can help us test the SME framework and offer
the potential for identifying additional observable effects
[47–49]. Xu et al. [47] employed a method similar to the
post-Tolman-Oppenheimer-Volkoff (post-TOV) approach
[50] to deal with the effects from Lorentz violation, and
obtained the leading-order corrections to the structure of
NSs caused byLorentz violation. In this paper, we attempt to
extend the study of the structure of NSs under Lorentz
violation. In particular, we focus on the MOI of NSs.
MOI is one of the crucial structural parameters of NSs, as

it characterizes the rotational properties of NSs. MOI is
closely connected to the central issues in NS physics.
Firstly, observations and studies of MOI can help us
constrain the EOS of NSs [27,51,52]. The MOI of NSs
varies with different EOSs, and it can also be measured
directly from high-precision observations of binary pulsars
[27,41]. Owing to the high precision of pulsar timing, there
is the potential to detect orbital effects related to the MOI,
e.g. through the periastron advance caused by the spin-orbit
coupling. Currently, with a 16-year data span, an upper
limit of the MOI for PSR J0737-3039A in the Double
Pulsar system has been obtained [27]. With the advent of
the next generation radio telescopes, such as the Square
Kilometre Array, there is hope for direct measurements of
the MOI of NSs [41,53], offering us a means to study the
EOS of NSs. Secondly, glitch phenomena in pulsar timing
observations are also believed to be related to the MOI of
NSs. Glitches are one type of timing irregularities in pulsar
timing observations, which manifest as sudden changes in
rotation frequencies of pulsars, and are often followed by a
relaxation [54–56]. There are a lot of theoretical models
that aim to explain glitches, such as models involving
superfluid or crustquake [57–60]. Investigating the origins
of glitches contributes to our comprehension of the physics
within NSs. Considering that the angular momentum of a
NS is conserved or almost conserved, any changes in the
MOI will result in variations in the angular velocity, leading
to noticeable observational effects for pulsars. If we intend
to explain glitches through deformations of NSs, we need to
calculate the MOI and infer the variation in the MOI from
the change of angular velocity. Some studies have also
attempted to explain the unexplained issues in glitches,
such as the deficiency of MOI contributed by the NS crust
[61], e.g. with a modified gravity [62]. Additionally,
considering the precision of pulsar spin measurements,
other MOI-related physical processes affecting NS rotation

may also be measurable. In this context, calculating the
MOI corrections induced by these physical processes is
essential.
Research on the MOI of NSs in a relativistic setting can

be traced back to the 1960s when Hartle and Thorne
[63,64] calculated the structure of slowly rotating NSs in
GR and computed the MOI for spherically symmetric NSs.
Their results showed a significant difference between the
calculations in GR and those in the Newtonian gravity.
Another important theoretical work related to the MOI of
NSs is the discovery of the so-called I-Love-Q relation,
which is one of the most famous universal relations for NSs
[65,66]. Numerical calculations revealed that the relations
between any two of the dimensionless MOI, the dimen-
sionless tidal Love number, and the dimensionless quadru-
pole moment are insensitive to the EOS of NSs. The
I-Love-Q relation provides us a way to test gravity theories
independently of the EOS [32]. In addition, calculations
have also been performed on the MOI for NSs in alternative
gravity theories [67–69], but they are limited to the
assumption of the spherical background configuration.
It is worth noting that previous calculations of the MOI

of NSs have been based on the assumption of spherical
symmetry. To our knowledge, no calculations in the
relativistic setting have been performed yet regarding the
correction to the MOI caused by nonspherical deformations
other than rotation itself. Indeed, considering the MOI of
nonspherical NSs is meaningful. Firstly, there exist various
physical processes that can induce nonspherical deforma-
tions in NSs, such as crustal deformations, magnetic field
effects and so on [70,71]. Exploring the corrections to MOI
caused by nonspherical deformations can provide valuable
insights into the structure and dynamics of NSs, and
contribute to our understanding of complex behaviors of
NSs. Secondly, from the perspective of gravity theories,
there are some modified gravity theories breaking the
spherical symmetry, such as the bumblebee theory [8]
and the Einstein-Æther theory [72]. In these gravity
theories, there may exist axisymmetric solutions for NSs
which are more stable than the spherical ones. In that case,
studying the structure of nonspherical NSs helps us under-
stand these theories better.
In this context, we present a consistent calculation of the

MOI for axisymmetric NSs in the SME framework. The
organization of the paper is as follows. In Sec. II, we
introduce the calculation of MOI for spherical NSs in GR to
lay the groundwork. In Sec. III, we first review the deformed
NSs in the SME found in Ref. [47] in Sec. III A. Then in
Sec. III B, we obtain the partial differential equation (PDE)
that describes the rotational metric in the SME, retaining the
correction terms up to the first order in the Lorentz-violation
coefficients. In Sec. III C, we solve the PDE numerically
with the finite element method to get the MOI for NSs.
Finally, we summarize in Sec. IV. In this paper, we adopt the
units where G ¼ c ¼ 1.
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II. MOI OF SPHERICAL NSs IN GR

In GR, the definition of MOI is based on the definitions
of angular velocity and angular momentum. To obtain the
MOI of a NS, we need to calculate the gravitational field
equation to get the metric of the rotating spacetime [63,64].
We begin with the metric of a stationary, axially symmetric
system,

ds2 ¼ −H2dt2 þQ2dr2 þ r2K2½dθ2 þ sin2 θðdφ − LdtÞ2�;
ð3Þ

where H, Q, K, and L are functions of r and θ. The
corresponding four-velocity of the fluid reads as

uμ ¼ ðut; 0; 0;ΩutÞ: ð4Þ

We adopt the assumption of slow rotation, where the
effects on pressure, energy density, and gravitational field
caused by the rotation can be treated as perturbations. In
this case, we can expand L in orders of Ω,

Lðr; θÞ ¼ ωðr; θÞ þOðΩ3Þ: ð5Þ

Then, we can solve ω from the following field equation:

Gt
φ ¼ 8πTt

φ: ð6Þ

It is worth noting that the leading-order correction to L is of
order Ω but the leading-order corrections of H, Q, and K
are of order Ω2. If we want to calculate the leading-order
effect, we can consider all diagonal components of the
metric in Eq. (6) as the background solution of a spherical
NS, whose metric is commonly written as

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð7Þ

Finally, we can express the field equation (6) in the form
of [63,64]

1

r4
∂

∂r

�
r4j

∂ω̄

∂r

�
þ4

r
dj
dr

ω̄þeðλ−νÞ=2

r2
1

sin3 θ
∂

∂θ

�
sin3 θ

∂ω̄

∂θ

�
¼ 0;

ð8Þ

where

ω̄ðr; θÞ≡ Ω − ωðr; θÞ; ð9Þ

and jðrÞ≡ eðλþνÞ=2. The regular condition and boundary
condition are given by

ω̄jr¼0 ¼ constant; ð10Þ

r2ðΩ − ω̄Þjr→∞ ¼ 0: ð11Þ

The separation of variables method is the most straight-
forward approach to solve the PDE. Fortunately, Eq. (8) can
be separated using vector spherical harmonics,

ω̄ðr; θÞ ¼
X∞
l¼1

ω̄lðrÞ
�
−

1

sin θ
dPlðcos θÞ

dθ

�
; ð12Þ

where Plðcos θÞ is the Legendre function, and ω̄lðrÞ
satisfies

1

r4
d
dr

�
r4jðrÞ dω̄l

dr

�
þ
�
4

r
dj
dr

− eðλ−νÞ=2
lðlþ 1Þ − 2

r2

�
ω̄l ¼ 0:

ð13Þ

With the boundary condition and the regular condition, it is
proved that ω̄lðrÞ vanishes except for l ¼ 1 and thus ω̄ is
independent of θ [63,64]. Equation (8) reduces to an
ordinary differential equation (ODE),

1

r4
d
dr

�
r4j

dω̄
dr

�
þ 4

r
dj
dr

ω̄ ¼ 0: ð14Þ

The solution outside the star has the form

ω̄ðrÞ ¼ Ω −
2J
r3

; ð15Þ

where J is just the angular momentum of the NS. Finally,
the definition of MOI reads as I ≡ J=Ω.
We can get a more compact equation for the MOI with

some further definitions. First, we define an angular
momentum function of the variable r,

J ðrÞ≡ 1

6
r4
�
dω̄ðrÞ
dr

�
; ð16Þ

and a corresponding MOI function

IðrÞ≡ J ðrÞ
Ω

: ð17Þ

When r is larger than the radius of the NS, R, the angular
momentum function J and the MOI function I are equal to
J and I, respectively.
With the above definitions and Eq. (14), we can obtain

the ODE of IðrÞ [29],

dI
dr

¼ 8

3
πr4ρ

�
1þp

ρ

��
1−

5

2

I
r3

þ I2

r6

��
1−

2m
r

�
−1
; ð18Þ

where ρ and p are the energy density and the pressure of
NSs respectively, and m is the mass function defined in the
TOV equation. The form of Eq. (18) is similar to the TOV
equation for p where the right-hand side is the Newtonian
term times three dimensionless factors.
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We consider a NS of 1.4M⊙ with EOS AP4 as an
example, and calculate the MOI function I with respect to
r. The result is shown in Fig 1. Besides, we calculate the
MOI in the framework of Newtonian gravity according to

dINewton
dr

¼ 8

3
πr4ρ: ð19Þ

The difference in the MOI between GR and the Newtonian
gravity reaches ∼20%, which is consistent with the value of
the dimensionless factors. Furthermore, the calculation of
MOI in GR is no longer linear, because on the right-hand
side of Eq. (18), there exists a factor related to I breaking
the linearity. That is to say, if the MOI of a sphere is I1 and
the MOI of another concentric sphere is I2, then the total
MOI is not simply I1 þ I2 as in the case of Newtonian
gravity.

III. MOI OF AXISYMMETRIC NSs IN THE SME

In this section, we derive the modified PDE in the SME
to calculate the MOI for axisymmetric NSs. In the
axisymmetric case, the PDE becomes more complicated
in its dependence on θ, making it difficult to solve the PDE

through separation of variables. We analyze the asymptotic
behavior of the solution and solve it numerically with the
finite element method.

A. NSs in the SME

In the gravitational sector of the minimal SME, the
linearized field equations can be written as [8,73]

Gμν ¼ 8πTμν − s̄αβGμαβν; ð20Þ

where

Gαβγδ ¼ −Rαβγδ þ gαγRβδ þ gβδRαγ − gαδRβγ

− gβγRαδ −
1

2
ðgαγgβδ − gαδgβγÞR; ð21Þ

and s̄αβ are the Lorentz-violation coefficients. By applying
it to the strong-field regime, we acknowledge that higher-
order corrections at Oðs2 · hÞ and Oðs · h2Þ might exist,
where s is the typical value of s̄αβ components and h is the
typical metric deviation from the flat spacetime. For NSs,
h ∼ 0.1 while limits on s̄αβ are as low as 10−11 [13,21].
If we briefly assume s≲ h ∼ 0.1, then the relative error
caused by applying Eq. (20) to NSs is less than
Oðs · hÞ≲ 1%. As a starting study for testing Lorentz
symmetry using future precise measurements of NSs’
MOI, we can tolerate the error for now. Our formalism
to be presented can be directly applied to a more general
version of Eq. (20) where higher-order terms are included.
Using Eq. (20), the Lorentz-violating term s̄αβGμαβν

results in corrections to the metric of the NS. The modified
metric can be represented as

gμν ¼ gLIμν þ δgLVμν ; ð22Þ

where

gLIμν ¼ diagf−eν; eλ; r2; r2 sin θg ð23Þ

is the TOV solution for the NS in GR, and

δgLVμν ¼ diagf−δϕðr; θÞ; 0; 0; 0g ð24Þ

represents the correction caused by Lorentz violation. We
have [8]

δϕðr; θÞ ¼ −s̄jkUjk; ð25Þ

and

Ujk ¼
Z ðxj − x0jÞðxk − x0kÞ

jx⃗ − x⃗0j3 ρðx⃗0Þd3x0; ð26Þ

where ρ is the energy density distribution in the NS. Note
that the repeated indices in Eq. (25) are summed over.

FIG. 1. The MOI function of a 1.4M⊙ NS with EOS AP4. The
top panel represents the MOI function in GR, IGR, and the MOI
in Newtonian gravity, INewton. The middle panel represents the
relative difference between IGR and INewton. The bottom panel
represents the magnitude of the dimensionless correction factors
in Eq. (18). The “Total Factor” is the product of three correction
factors.
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Under the perturbation of Lorentz violation, the structure
of a NS is affected [47]. The energy density and the
pressure are given by

ρ ¼ ρð0Þ þ ρð1Þ; ð27Þ

p ¼ pð0Þ þ pð1Þ; ð28Þ

where ρð0ÞðrÞ and pð0ÞðrÞ are respectively the energy
density and pressure of undisturbed NSs, and ρð1Þðx⃗Þ
and pð1Þðx⃗Þ are corresponding corrections caused by
Lorentz violation, which are [47]

ρð1Þðx⃗Þ ¼ −αðθ;φÞr∂rρð0ÞðrÞ; ð29Þ

pð1Þðx⃗Þ ¼ −αðθ;φÞr∂rpð0ÞðrÞ: ð30Þ

In the above equations, αðθ;φÞ is

αðθ;φÞ ¼ 1

2

X2
m¼−2

sðsÞ2mY2mðθ;φÞ; ð31Þ

where Ylmðθ;φÞ are the spherical harmonics, and sðsÞ2m are

sðsÞ2;−2 ¼
ffiffiffiffiffiffi
2π

15

r
ðs̄xx − s̄yy þ 2is̄xyÞ;

sðsÞ2;−1 ¼ 2

ffiffiffiffiffiffi
2π

15

r
ðs̄xz þ is̄yzÞ;

sðsÞ2;0 ¼
2

3

ffiffiffi
π

5

r
ð−s̄xx − s̄yy þ 2s̄zzÞ;

sðsÞ2;1 ¼ 2

ffiffiffiffiffiffi
2π

15

r
ð−s̄xz þ is̄yzÞ;

sðsÞ2;2 ¼
ffiffiffiffiffiffi
2π

15

r
ðs̄xx − s̄yy − 2is̄xyÞ: ð32Þ

We study the specific case with axial symmetry, so we
choose s̄μν to vanish except for s̄zz where the z axis is the
NS’s spin direction. In other words, we assume that the
specific direction of the Lorentz-violating field is parallel to
the spinning axis of the NS.
In a brief summary, modifications from Lorentz violation

are categorized into two aspects. Firstly, Lorentz violation
modifies the gravitational field equations. Secondly, it
induces deformations in the NS structure.

B. The modified PDE for MOI

Similar to the calculation in GR, the perturbative rota-
tional properties in a stationary axisymmetric background
spacetime are governed by the tφ component of Eq. (20).
We can begin with the general form of an axisymmetric
metric as given in Eq. (3). We adopt the slow-rotation

assumption, so that at the linear order of the angular
velocity Ω, the functions for the diagonal metric compo-
nents take the background result while the function L takes
the form of Eq. (5), and the related function ω̄ can be
defined as in Eq. (9). Furthermore, we now would like to
consider the leading corrections due to the Lorentz-
violation coefficient s̄zz, so we can treat ω̄ as having an
expansion in terms of s̄zz,

ω̄ ¼ ω̄ð0Þ þ ω̄ð1Þ þOðjs̄zzj2Þ; ð33Þ

where ω̄ð0Þ corresponds to the GR result with vanishing s̄zz,
and ω̄ð1Þ gives the leading-order correction to the metric
component gtφ due to Lorentz violation.
To calculate ω̄ð1Þ, we write out the tφ component of

Eq. (20) and arrange it in orders of s̄zz. The zeroth-order
equation in s̄zz reads as

1

r4
∂

∂r

�
r4j

∂ω̄ð0Þ

∂r

�
þ 4

r
dj
dr

ω̄ð0Þ

þ eðλ−νÞ=2

r2
1

sin3 θ
∂

∂θ

�
sin3 θ

∂ω̄ð0Þ

∂θ

�
¼ 0; ð34Þ

which is identical to Eq. (8) as expected, and therefore ω̄ð0Þ
is just the GR solution. The first-order equation in s̄zz is

1

r4
∂

∂r

�
r4j

∂ω̄ð1Þ

∂r

�
þ 4

r
dj
dr

ω̄ð1Þ

þ eðλ−νÞ=2

r2
1

sin3 θ
∂

∂θ

�
sin3 θ

∂ω̄ð1Þ

∂θ

�

¼ S1ðr; θÞ þ S2ðr; θÞ; ð35Þ

where

S1ðr; θÞ ¼
4

r
dj
dr

ω̄ð0Þδϕe−ν þ 16πðρð1Þ þ pð1ÞÞeðλ−νÞ=2ω̄ð0Þ;

ð36Þ

S2ðr;θÞ¼ðδϕe−νþ s̄zzsin2θÞ 1
r4

∂

∂r

�
r4j

∂ω̄ð0Þ

∂r

�

þ1

2
j

�
δϕ;re−ν−δϕe−ν

dν
dr

þ s̄zz

r
ð8eλcos2θ−2sin2θÞ

�

×
∂ω̄ð0Þ

∂r
: ð37Þ

Note that S1ðr; θÞ arises from modifications in Ttφ due to
Lorentz violation while S2ðr; θÞ arises from Gtφ and the
Lorentz-violating term s̄zzGtzzφ in the field equation (20).
With the boundary conditions in Eqs. (10) and (11) for
ω̄ ≈ ω̄ð0Þ þ ω̄ð1Þ, ω̄ð1Þ can be solved from Eq. (35) once we
have the GR solution ω̄ð0Þ.
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Numerical method needs to be employed to solve
Eq. (35) as well as ω̄ð0Þ inside the NS. Instead of solving
ω̄ð0Þ and ω̄ð1Þ one by one, it is straightforward to solve the
combined PDE,

1

r4
∂

∂r

�
r4j

∂ω̄

∂r

�
þ 4

r
dj
dr

ω̄þ eðλ−νÞ=2

r2
1

sin3 θ
∂

∂θ

�
sin3 θ

∂ω̄

∂θ

�

¼ S01ðr; θÞ þ S02ðr; θÞ; ð38Þ

where

S01ðr; θÞ ¼
4

r
dj
dr

ω̄δϕe−ν þ 16πðρð1Þ þ pð1ÞÞeðλ−νÞ=2ω̄; ð39Þ

S02ðr;θÞ¼ðδϕe−νþ s̄zzsin2θÞ 1
r4

∂

∂r

�
r4j

∂ω̄

∂r

�

þ1

2
j

�
δϕ;re−ν−δϕe−ν

dν
dr

þ s̄zz

r
ð8eλcos2θ−2sin2θÞ

�

×
∂ω̄

∂r
: ð40Þ

Before we proceed to the numerical results, let us clarify
the asymptotic behavior of ω̄ so that the angular momentum
and hence the MOI can be defined.
We split the solution of Eq. (38) into two parts,

ω̄ ¼ ω̄1 þ ω̄2, where ω̄1 is the solution ignoring the source
S02, and it contains the zeroth-order solution in s̄zz, which
represents the contribution from the matter, and ω̄2 is the
solution ignoring the source S01, and it does not contain the
zeroth-order solution in s̄zz, which represents the contri-
bution from the modification of the gravity theory. We
discuss the asymptotic behaviors of ω̄1 and ω̄2 separately.
Outside the star, S01 is zero, and hence ω̄1 has the exterior

solution [63]

ω̄1 ¼
X∞
l¼1

ω̄1l

�
−

1

sin θ
dPl

dθ

�
; ð41Þ

where Pl are the Legendre polynomials and ω̄1l consists
of the r−l−2 terms and the rl−1 terms. Because of the
asymptotic flatness boundary condition, the rl−1 terms with
l ≠ 1 must have vanishing coefficients. Now very different
from GR, the PDE for ω̄1 does not admit separation of
variables inside theNSs due to the source termS01, so for each
l in ω̄1l, the coefficient for r−l−2 is no longer forced to be
proportional to the coefficient for rl−1, meaning that the r−l−2

terms can exist in spite of the absence of the rl−1 terms.
As axisymmetric NSs exhibit reflection symmetry about

the equatorial plane, we have ω̄ðr; θÞ ¼ ω̄ðr; π − θÞ, which
implies that odd-power terms of cos θ should not appear in
ω̄ and hence ω̄1, and it excludes the even l terms in Eq. (41).
In conclusion, the expansion of ω̄1 outside the star takes the
form

ω̄1 ¼ A1 þ
B1

r3
þ C1

r5

�
−

1

sin θ
dP3

dθ

�
þO

�
1

r7

�
; ð42Þ

where A1, B1, C1 are constants.
For ω̄2, its PDE admits separation of variables neither

outside the star nor inside the star. Then we have to assume
its asymptotic expansion in terms of 1=r to be the general
form,

ω̄2 ¼ A2 þ
B2ðθÞ
r3

þ C2ðθÞ
r4

þ… ð43Þ

Note that there is no 1=r term nor 1=r2 term because of the
boundary condition of asymptotic flatness. For the very
same boundary condition, the coefficient A2 has to be
independent of θ and satisfies Ω ¼ A1 þA2, where A1 is
the constant in Eq. (42).
Combining the asymptotic expansions in Eqs. (42) and

(43), substituting into Eq. (38), and arranging the equation
in orders of 1=r, we find at the leading order an equation for
the coefficient B2ðθÞ,

1

sin3 θ
d
dθ

�
sin3 θ

dB2

dθ

�
¼ 3s̄zzB1ðsin2 θ − 4 cos2 θÞ; ð44Þ

and equations for the coefficient C2ðθÞ are at higher orders.
Note that we have used ω̄2=ω̄1 ∼Oðs̄zzÞ and substituted ω̄
with ω̄1 in S02. For ω̄2 to be smooth, we impose

dB2ðθÞ
dθ

����
θ¼0

¼ dB2ðθÞ
dθ

����
θ¼π

¼ 0; ð45Þ

and get

B2ðθÞ ¼ −
3

2
s̄zzB1 sin2 θ þ constant: ð46Þ

Therefore, gathering Eqs. (42) and (43) we find the
asymptotic behavior of ω̄ to be

ω̄ ¼ Ω
�
1 −

2

r3
ðp sin2 θ þ qÞ þO

�
1

r4

��
; ð47Þ

where Ω, p, and q are constants.
With the asymptotic expression for ω̄ in Eq. (47), the

angular momentum of the spacetime is found to be [74]

J ¼ Ω
�
4

5
pþ q

�
: ð48Þ

Then the MOI of the star is

I ¼ J
Ω

¼
�
4

5
pþ q

�
: ð49Þ
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Now we are ready to calculate the constants p, q and
therefore the MOI for NSs by numerically solving Eq. (38).

C. Numerical calculation

To numerically solve the PDE for ω̄, we first perform a
change of variables which is inspired by Cook et al. [75],

ðr; θÞ →
�
x≡ r cos θ

rþ R
; y≡ r sin θ

rþ R

�
; ð50Þ

where R is the radius of an unperturbed NS. Equation (38)
then changes to

f1ðx; yÞðxω̄;x þ yω̄;yÞ þ f2ðx; yÞðx2ω̄;xx þ 2xyω̄;xy þ y2ω̄;yyÞ þ f3ðx; yÞω̄þ f4ðx; yÞðxω̄;y − yω̄;xÞ
þ f5ðx; yÞðy2ω̄;xx − 2xyω̄;xy þ x2ω̄;yy − xω̄;x − yω̄;yÞ ¼ 0; ð51Þ

where

f1ðx; yÞ ¼
�
4jð1 − r̄Þ3 þ r̄ð1 − r̄Þ2R dj

dr
− 2jr̄ð1 − r̄Þ3

�
ðr̄2 − r̄2δϕe−ν − s̄zzy2Þ

−
�
1

2
δϕ;re−νjRr̄3ð1 − r̄Þ2 − 1

2
δϕe−νjR

dν
dr

r̄3ð1 − r̄Þ2 − 1

2
s̄zzjð1 − r̄Þ3ð−8eλx2 þ 2y2Þ

�
; ð52Þ

f2ðx; yÞ ¼ jð1 − r̄Þ4ðr̄2 − r̄2δϕe−ν − s̄zzy2Þ; ð53Þ

f3ðx; yÞ ¼ 4r̄3ð1 − r̄ÞR dj
dr

ð1 − δϕe−νÞ − 16πðρð1Þ þ pð1ÞÞeðλ−νÞ=2r̄4R2; ð54Þ

f4ðx; yÞ ¼ eðλ−νÞ=2r̄2ð1 − r̄Þ2 3x
y
; ð55Þ

f5ðx; yÞ ¼ eðλ−νÞ=2r̄2ð1 − r̄Þ2; ð56Þ

with r̄ ¼ r=ðrþ RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
being a dimensionless

variable. Axisymmetric NSs exhibit reflection symmetry
about the equatorial plane, so the parameter space of ðx; yÞ
can be reduced to a quarter sector, satisfying x >¼ 0 and
y >¼ 0. The boundary conditions become

∂ω̄

∂x

����
x¼0

¼ ∂ω̄

∂y

����
y¼0

¼ 0; ð57Þ

ω̄jr̄→1 ¼ Ω: ð58Þ

The advantage of the ðx; yÞ variables is in two aspects.
First, r∈ ð0;þ∞Þ corresponds to r̄∈ ð0; 1Þ. We can use a
finite sector of unit radius on the xy plane to represent the
infinite ðr; θÞ plane, which is convenient for us to input
boundary conditions at infinity in numerics. Additionally,
r ¼ R corresponds to r̄ ¼ 1=2. As we use the finite element
method with uniform grids in the xy plane, the interior of
the NS will be solved more meticulously compared to using
the ðr; θÞ variables. This is beneficial for increasing the
accuracy. Second, we choose ðx; yÞ instead of ðr̄; θÞ to
avoid inputting the regular condition similar to Eq. (10)
when r̄ tends to zero.

Using the variables ðx; yÞ, we find that the finite
element method suffices to solve the PDE for ω̄ in
Eq. (51). After each numerical solution is obtained, we
fit it at large r according to Eq. (47) to extract the constants
Ω, p, and q. Afterward the MOI for the star is calculated
using Eq. (49).
We use the EOS AP4 as an example and calculate MOIs

for NSs with different masses. The results are shown in
Fig. 2. For illustration purposes, we have taken s̄zz ¼ 10−2

in our numerical calculation. From Fig. 2, we can see that
the ratio δI=IGR follows a relatively good linear relation.
It may help us to quickly estimate δI.
We have completed the calculation of MOIs for

axisymmetric NSs due to Lorentz violation. We find that
it is also interesting to calculate the MOI solely from ω̄1.
By doing this we ignore the source term S02 in Eq. (38),
so the Lorentz-violating effect comes into play only
through the energy-momentum tensor of the NS matter.
The result can be compared with the estimation made
by Xu et al. [47], where the correction in the MOI
caused by Lorentz violation is calculated in the
Newtonian way by only considering the change in matter
distribution, via
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δINewton ¼
Z

ρð1Þðr; θÞr2 sin2 θd3x ¼ −
1

3
s̄zzINewton; ð59Þ

where INewton is the Newtonian MOI with the mass density
ρð0Þ in the absence of Lorentz violation.
The numerical approach to calculate ω̄1 differs slightly

from what we have done for calculating ω̄. We only need to
remove the terms corresponding to S02 in Eqs. (51)–(56).
After obtaining numerical solutions and fitting them
according to Eq. (42), the MOI is then calculated by
I1 ¼ −B1=2A1. For NSs with different masses, results of I1
are shown in Fig. 3 in terms of δI1 ¼ I1 − IGR. Figure 3
also shows the change of a factor k defined in

δI1 ¼ −ks̄zzIGR: ð60Þ

As the mass of the NS decreases, we expect IGR → INewton
and δI1 → δINewton so that k → 1=3. This is exactly what
we see in Fig. 3.

IV. SUMMARY

In this paper, we develop the method to calculate
axisymmetric NSs’ MOI in the presence of Lorentz
violation in a relativistic setting. Solutions are worked
out for the first time in the effective-field-theoretic frame-
work of SME. We treat the effect of Lorentz violation as a
perturbation and derive the modified PDE for the MOI from
the gravitational field equations. Then, we discuss the
asymptotic behavior of the solution analytically. After that,
we perform a change of variables, solve the PDE with the
finite element method and fit the numerical solutions with
polynomials to get the MOI.
After obtaining the numerical results, we calculate

corrections to the MOI of NSs caused by Lorentz violation.
Besides that, we separately calculate corrections to the MOI
caused by the deformation of the NS. We compare the ratio
δI1=IGR with its counterpart in Newtonian gravity and
show the difference. For a 1.4M⊙ NS with EOS AP4, the
difference is at the level of ∼8%.
In the future, we can extend this method to study the

structure of axisymmetric NSs in other modified gravity
theories, e.g. the bumblebee theory [8,76] and the Einstein-
Æther theory [72]. If stable axisymmetric NS solutions
exist in these modified gravity theories, the calculation
procedure outlined in this paper may serve as an important
reference for calculating the MOI of axisymmetric NSs in
these modified gravity theories. This assists us in studying

FIG. 3. Corrections to MOIs caused by deformations of NSs
with EOS AP4, as functions of the NS mass. The top panel shows
the correction to MOI caused by deformations of NSs with
s̄zz ¼ 10−2. The bottom panel shows the value of k defined in
Eq. (60). The gray dashed line represents k ¼ 1=3, which is the
Newtonian limit for k.

FIG. 2. Corrections to the MOIs of NSs caused by Lorentz
violation with EOS AP4, as functions of the mass of the NS. The
top panel shows the MOI of spherical NSs in GR, IGR. The
middle panel shows the absolute correction to the MOI caused by
Lorentz violation with s̄zz ¼ 10−2. The bottom panel shows the
ratio δI=IGR.
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the properties of NSs in the modified gravity theories.
As a byproduct, we have also presented a consistent
method for calculating the MOI corrections caused by
axisymmetric deformations in NSs within the framework
of GR, which may offer a more precise method for
computing MOI corrections in some theoretical models
as well. We are looking forward to calculating corrections
to the MOI caused by general deformations of NSs in
the framework of GR, to help us understand the physics of
NSs better.
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