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In some modified theories of gravity, gravitational waves can contain up to six different polarizations,
which can travel at speeds different from that of light. Searches for these different polarizations in
gravitational wave data are important because any detection would be clear evidence of new physics, while
clear nondetections could constrain some modified theories. The first step toward searching the data for
such gravitational wave content is the calculation of the amplitudes of these different polarizations. Here we
present a model-independent method to obtain the different polarizations of gravitational waves directly
from the metric perturbation in theories where these polarizations are allowed to travel at different speeds.
We develop our calculations so that the same procedure works with either the metric perturbation itself or
its trace-reversed form. Our results are in agreement with previous work in the limit that all polarization
speeds are the speed of light. We demonstrate how our model-independent method can be used with two
specific modified theories of gravity, suggesting its wide applicability to other theories that allow for
different gravitational wave propagation speeds. We further extend the parametrized post-Einsteinian
formalism to apply to such theories that travel with different speeds. Finally, we discuss how the different
speeds of different polarizations may affect null stream tests of general relativity with gravitational wave
observations by multiple interferometers. Differences in propagation speeds may make null streams
ineffective or lead to the detection of what seem to be isolated scalar or vector modes.
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I. INTRODUCTION

Over the course of the last decade, advancements in
gravitational wave (GW) detection have made it possible to
test gravity in unprecedented ways. These new studies are
essential because, although Einstein’s theory of general
relativity (GR) has so far passed every possible test, hints
exist that suggest it might need to be extended [1,2]. Tests
of GR with GW data [3–10] have made use of over 90 GW
events from compact binary coalescences so far detected by
the LIGO/Virgo Collaboration [11]. This number of detec-
tions is expected to increase dramatically in the future [12],
for instance, during the fourth observing run that began
recently. The abundance of new data promises to make it
possible to learn even more about fundamental physics
from the structure of GWs.
In GR, GWs contain only two polarizations, commonly

known as the plus and cross modes. However, in some
alternative theories of gravity, GWs may contain up to six
modes and these modes may propagate at different speeds.
Thus, any observation of additional modes would be
indisputable evidence for new physics. To search for or
try to constrain these additional polarizations with GW
data, we need to be able to compute each polarization mode
explicitly. From there, one can construct the response
function in a GW detector and build a theory-specific

waveform template to search for signals of these modified
theories in GW data.
One concrete example of a theory with additional GW

polarizations that travel at different speeds is Einstein-æther
gravity. This theory is the most general Lorentz-violating
model that can be constructed with a single additional unit
vector field and that still leads to second-order field
equations [13]. Lorentz violation is well motivated by
attempts to quantize gravity [14], and there are large
regions of the possible parameter space in Einstein-æther
theory that have not yet been stringently constrained
[15–17]. Attempts to constrain this theory with GW data
are an active area of research [17].
To constrain modified theories of gravity with GW data,

we need to compute each of the possible GW polarizations.
In this work, we develop a simple method to do so,
following the example of [18] and extending it to theories
where the polarizations are allowed to travel at speeds
different from that of light.1 We first compute the different
GW polarizations from the linearized Riemann tensor [20],

1While the tensor polarizations of GWs have been well
constrained to propagate at the speed of light by the
GW170817 event [19], other polarizations have neither been
detected nor constrained to travel at a particular speed.
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keeping the speeds of the different polarizations free rather
than fixing them to the speed of light. Next, we develop an
alternative approach that uses effective field theory ideas,
following the example of [18], but extending the latter to the
more general case of polarizations with different speeds.
We then validate our results by deriving the GW polar-

izations in specific modified theories of gravity. We begin
with Einstein-æther theory, comparing the results obtained
here with those computed previously [17,21]. Next, we
compute the different polarizations of GWs in khronometric
gravity, a limiting case of Einstein-æther theory that is
consistent with the low-energy limit of Hořava gravity
[22]. Hořava gravity is a potential candidate for an ultraviolet
completion of Einstein’s GR [22]. In both cases, we find that
our method results in the correct GW polarizations in these
modified theories, showing the robustness of the method.
We next consider the well-established parametrized post-

Einsteinian (ppE) framework of [23], which can be used to
characterize deviations from GR in waveform templates.
This framework was extended to theories with up to six
polarizations by [18]. Here, we further extend it to theories
where those polarizations can travel at different speeds.
This generalization includes two new ppE parameters that
correspond to the speeds of the scalar and vector polar-
izations. Finally, we examine how different speeds may
affect the construction of null stream tests of general
relativity with GWs detected by multiple interferometers.
First considered by [24,25], null streams are directions
orthogonal to the plus and cross polarizations of GR. If GR
is the correct description of nature, these streams would not
contain any GW signal for a particular sky location.
Reference [18] described a process by which one can
use these null streams to constrain the existence of other
polarizations with multiple detectors. Here we discuss how
the speed of the different polarizations affects the arrival
time of a GW signal in these null streams and consider how
that may affect future constraints. For instance, if the
speeds of the polarizations are different by even a small
amount [Oð10−13Þ], any beyond GR polarizations would be
outside the standard detection window, so null streams
could not conclusively rule them out. Conversely, different
propagation speeds could lead to the detection of scalar or
vector modes alone, because they may arrive much earlier
than the corresponding tensor modes.
The main result of this work is a generalization of the

method introduced in [18], the latter of which has already
been used to successfully compute GW polarizations in
several modified theories of gravity (such as Brans-Dicke
theory, Rosen’s theory, and Lightman-Lee theory [18]).
This generalization renders the method applicable to a
wider class of theories, instead of only those in which all
GW polarizations travel at the same speed. Tests of
polarization content depend on having multiple detectors
with multiple different orientations so that each detector
observes different linear combinations of the polarization

modes [26–28]. As more detectors come on-line and more
events are observed, the potential for detection or con-
straints on any additional polarizations in the GW
increases. Detection of additional polarizations would be
clear evidence of physics beyond GR. Thus, our generali-
zation will become increasingly important in the coming
years, as more GW detectors are added to the global
network and as we are able to probe the existence of
additional polarizations and their propagation speeds.
The remainder of this paper is organized as follows. In

Sec. II, we derive each polarization mode with different
speeds directly from the metric perturbation. This is first
done by computing the linearized Riemann tensor and then
with an effective field theory approach. The result is
compared to previous work. Then, in Sec. III, we use
our method to compute the different GW polarizations in
two different modified theories of gravity, Einstein-æther
theory and khronometric gravity. Section IV extends the
ppE formalism to account for polarizations which travel at
different speeds, while Sec. V discusses the impact of
different speeds on null stream constraints. Section VI
summarizes our results and discusses potential applica-
tions. In Appendix A, the process is repeated for the trace-
reversed metric perturbation. We compare this result to
previous work, and to the result of Sec. II in the case where
all of the polarizations travel at the same speed, the speed of
light. In Appendix B, we provide further detail about the
difference in arrival times for modes that travel at different
speeds. Throughout this work, we use the following
conventions: Greek letters in index lists specify spacetime
coordinates, while latin letters specify spatial coordinates
only; parentheses in index lists stand for symmetrization,
the Einstein summation convention is used, the metric
signature is ð−;þ;þ;þÞ, and G ¼ 1 units are assumed;
factors of c are explicitly kept because of the different
polarization speeds involved in this calculation.

II. POLARIZATION MODES WITH DIFFERENT
SPEEDS FROM THE METRIC PERTURBATION

In this section, we derive the GW polarizations when
they are allowed to travel at speeds different from that of
light. This derivation is first done by computing the
linearized Riemann tensor with the metric perturbation.
Then a more concise approach is developed, so that these
polarizations can be calculated directly from the metric
perturbation.

A. Linearized Riemann tensor approach

The GW polarizations can be read from their interaction
with a detector. Such an interaction is determined by the
geodesic deviation equation,

d2ξj
dt2

¼ −c2R0j0kξ
k; ð2:1Þ
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where ξα is the spacetime vector separating the two test
masses in the detector and c is the speed of light [20]. The
Riemann tensor linearized about a flat Minkowski back-
ground is given by

R0j0k ¼ −
1

2
ð∂00hjk þ ∂jkh00 − ∂0jh0k − ∂0kh0jÞ; ð2:2Þ

where hαβ ≔ gαβ − ηαβ is the metric perturbation, which
can be broken up into the components

h00 ¼
C

c4R
; ð2:3aÞ

h0j ¼
Dj

c4R
; ð2:3bÞ

hjk ¼
Ajk

c4R
; ð2:3cÞ

with R the distance between the source and the detector and
C, Dj, and Ajk scalar (purely spatial) vector and (purely
spatial, rank-2) tensor fields. In light of this decomposition,
h ≔ ηαβhαβ ¼ −h00 þ hkk ¼ ð−C þAjkδ

jkÞ=ðc4RÞ, with
indices on the perturbations raised or lowered with the
Minkowski metric. For ease of notation, the factor of
1=ðc4RÞ will be absorbed into the functions C;Dj, and Ajk

henceforth.
Following for example [20], these expressions can be

rewritten into their irreducible decompositions. More spe-
cifically, we use the tensorial nature of Dj and Ajk to
uniquely decompose them into

Dj ¼ ∂jDþDT
j ;

Ajk ¼
1

3
δjkAþ

�
∂jk −

1

3
δjk∇2

�
B þ 2∂ðjAT

kÞ þATT
jk ;

ð2:4Þ

where DT
j and AT

j are transverse vector fields, i.e.,
∂
jDT

j ¼ 0 ¼ ∂
jAT

j , D and A are scalar fields, ATT
jk is a

transverse and traceless tensor field, i.e., ∂jATT
jk ¼ 0 and

δjkATT
jk ¼ 0, and δij is the spatial part of the Minkowski

metric.
Each of the functions in the fields that we have decom-

posed hαβ into depends on N, a unit three-vector aimed
from the source to the detector, and on retarded time
τ ≔ t − R=v, where v is the velocity that the given field
propagates at. This retarded time will now be given a
subscript S;V, or TT to denote whether it is associated with a
scalar, a vector, or a tensor field, respectively. This
distinction is necessary since scalar, vector, and tensor
polarizations in modified theories of gravity can, in
principle, be allowed to travel with different speeds
(cS; cV; cT). Retarded time then depends on this propagation

speed through

τS;V;T ≔ t − R=cS;V;T: ð2:5Þ

For what follows, it will be useful to simplify the spatial
derivatives of hαβ. This is possible because hαβ depends on
spatial coordinates through τ, N, and R−1. Thus, taking
spatial derivatives of these, one finds

∂jτS;V;T ¼ −c−1S;V;TNj; ð2:6aÞ

∂jNk ¼ OðR−1Þ; ð2:6bÞ

∂jR−1 ¼ OðR−2Þ: ð2:6cÞ

Ignoring terms of higher order in 1=R, the only dependence
that matters for the spatial derivative is that on τS;V;T.
Thus, every spatial derivative of hαβ can be rewritten as
a time derivative because ∂t ¼ ∂τ. For example,
∂jDðτS;NÞ ¼ −c−1S Nj∂tDþOðR−1Þ. We will also intro-
duce the notation x0 ¼ ct, so that ∂0 ¼ c−1∂t to simplify
notation.
Using the derivative relation, the vector and tensor

decompositions (with some renaming so that the negative
signs and ∂t are not shown for simplicity) of hαβ can be
rewritten as

h00 ¼ CðτS;NÞ; ð2:7aÞ

h0j ¼
1

cS

NjDðτS;NÞ þDT
jðτV;NÞ; ð2:7bÞ

hjk ¼
δjk
3
AðτS;NÞ þ

1

c2S

�
NjNk −

δjk
3

�
BðτS;NÞ

þ 1

cV

NjAT
kðτV;NÞ þ

1

cV

NkAT
jðτV; NÞ

þATT
jk ðτT;NÞ; ð2:7cÞ

where we have explicitly included the dependence of these
fields on τ and N.
Inserting this decomposition into the linearized Riemann

tensor [Eq. (2.2)] and simplifying with the derivative rules
developed above yields

R0j0k ¼ −
1

2c2
∂tt

�
δjk
3
Aþ 1

c2S

�
NjNk −

δjk
3

�
B

þ 1

cV

NjAT
k þ 1

cV

NkAT
j þATT

jk

þ c2

c2S
NjNkC þ 2c

c2S
NjNkD

þ c
cV

NjDT
k þ c

cV

NkDT
j

�
: ð2:8Þ
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This expression can be rearranged into the form

R0j0k ¼ −
1

2c2
∂tt½ðδjk − NjNkÞAb þ NjNkAL

þ2NðjAV
kÞ þ ATT

jk �; ð2:9Þ

where

Ab ≔
1

3

�
A −

1

c2S
B
�
; ð2:10aÞ

AL ≔
1

3
Aþ 2

3c2S
B þ c2

c2S
C þ 2

c
c2S

D; ð2:10bÞ

AV
k ≔

1

cV

½AT
k þ cDT

k�: ð2:10cÞ

These are the scalar breathing mode Ab and the scalar
longitudinal mode AL. The quantity AV

k contains two vector
modes (because the transverse condition eliminates 1 degree
of freedom). These polarization modes, together with ATT

jk ,
which contains two tensor modes (because the transverse-
traceless condition eliminates 3 degrees of freedom), make
up the six possible GW polarization modes in modified
gravity theories. The results presented above can be recast
in terms of the irreducible decomposition of the trace-
reversed metric perturbation (instead of using the standard
metric perturbation itself), aswe do inAppendixA, Eq. (A8).

B. An effective field theory approach

Alternatively, we can construct operators that act on the
metric perturbation directly to obtain the polarization
modes. For instance, to derive the scalar modes, consider
the four ways to produce a scalar from the gravitational
potentials: h00, Njh0j, NjNkhjk, and δjkhjk. The scalar
breathing mode Ab will be some linear combination of
these,

Ab ¼ a1h00 þ a2Njh0j þ a3NjNkhjk þ a4δjkhjk; ð2:11Þ

with constants a1, a2, a3, and a4, such that the linear
combination matches the Ab found previously in
Eq. (2.10a). Inserting Eq. (2.7) into this linear combination
and simplifying leads to

Ab ¼ a1C þ a2
cS

Dþ a3

�
1

3
Aþ 2

3c2S
B
�
þ a4A: ð2:12Þ

Comparing with Eq. (2.10a) and matching coefficients
gives

a1 ¼ 0; a2 ¼ 0; a3 ¼ −
1

2
; a4 ¼

1

2
: ð2:13Þ

Therefore,

Ab ¼ 1

2
ðδjkhjk − NjNkhjkÞ: ð2:14Þ

Following the same procedure for the scalar longitudinal
mode, we arrive at

AL ¼ c2

c2S
h00 þ 2

c
cS

Njh0j þ NjNkhjk: ð2:15Þ

In order to derive similar expressions for the vector
modes, we consider the two ways to construct a vector from
the gravitational potentials: h0j; Nihij. Since this vector
should be transverse (because the vector polarizations are
transverse), the transverse projector Pj

k ¼ δjk − NjNk [20]
should also be used to remove longitudinal components.
Thus, we study the linear combination

AV
k ¼ Pj

kða5h0j þ a6NihijÞ; ð2:16Þ

with some constants a5 and a6, such that this linear
combination matches the AV

k found previously in
Eq. (2.10c). Inserting Eq. (2.7) into this linear combination
and simplifying yields

AV
k ¼ a5DT

k þ a6
1

cV

AT
k: ð2:17Þ

Matching coefficients with Eq. (2.10c) gives

a5 ¼
c
cV

; a6 ¼ 1: ð2:18Þ

Thus,

AV
k ¼ Pj

k

�
Nihij þ

c
cV

h0j

�
: ð2:19Þ

In summary, the polarization modes can be extracted
directly from the metric perturbation through

Ab ¼ 1

2
ðδjkhjk − NjNkhjkÞ; ð2:20aÞ

AL ¼ c2

c2S
h00 þ 2

c
cS

Njh0j þ NjNkhjk; ð2:20bÞ

AV
k ¼ Pj

k

�
Nihij þ

c
cV

h0j

�
; ð2:20cÞ

ATT
jk ¼ TTlm

jkhlm; ð2:20dÞ

where we have included the transverse-traceless mode
through the transverse-traceless operator TTlm

jk ¼
Pl

jPm
k − 1

2
PlmPjk [20]. These expressions calculated

directly from the metric perturbation are consistent with
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what was found from the linearized Riemann tensor
calculation [Eq. (2.10)]. That is, if we insert Eq. (2.7) into
the above expressions, we recover Eq. (2.10) exactly.
Observe that these expressions depend explicitly on
c; cS, and cV, but are independent of cT. The above results
can again be recast in terms of the irreducible decom-
position of the trace-reversed metric perturbation, as we do
in Appendix A.

C. Comparison to previous results

Let us take the limit where all modes travel at the same
speed, namely, the speed of light. If cS;V;T → c, then the
expressions of Eq. (2.20) reduce to

Ab ¼ 1

2
ðδjkhjk − NjNkhjkÞ; ð2:21aÞ

AL ¼ h00 þ 2Njh0j þ NjNkhjk; ð2:21bÞ

AV
k ¼ Pj

kðNihij þ h0jÞ: ð2:21cÞ

We convert these expressions to ones that act on the trace-
reversed metric perturbation so that they can be directly
compared with results from Eqs. (9a)–(9c) in Chatziioannou
et al. [18]. Using the definition for the trace-reversed metric
perturbation h̄αβ,

hαβ ¼ h̄αβ −
1

2
ηαβh̄; ð2:22Þ

where h̄ ¼ ηαβh̄αβ ¼ −h̄00 þ h̄kk ¼ −h ¼ ηαβhαβ, the
expressions in Eq. (2.21) become

Ab ¼ 1

2
ðh̄00 − NjNkh̄jkÞ;

AL ¼ h̄00 þ 2Njh̄0j þ NjNkh̄jk;

AV
k ¼ Pj

jðNih̄ij þ h̄0jÞ:

This expression matches identically that in Eqs. (9a)–(9c) of
Chatziiouannou et al. [18], after recognizing that h̄00 ¼ h̄00,
h̄jk ¼ h̄jk, h̄0i ¼ −h̄0i, and finding an overall minus sign
typo in the Ab expression of [18].

III. APPLICATION TO DIFFERENT THEORIES

In this section, we use our generic results to compute the
different GW polarizations in two specific modified the-
ories of gravity. First, we perform this calculation in
Einstein-æther theory, and we compare the result to
previous work [21]. Then, we repeat the procedure with
khronometric gravity, comparing these polarizations to the
limiting case of Einstein-æther theory and updating the
work of [29]. Note that for this section and this section only,
we set c ¼ 1 to be consistent with the notation of references

that provide the metric perturbation and equations of
motion for these theories.

A. Einstein-æther theory

In order to validate the result of Eq. (2.20) further, we can
use it to compute the GW polarizations in a particular
theory of gravity and then compare the result to GW
polarizations calculated independently in other existing
works. For instance, according to [21], the metric pertur-
bation of Einstein-æther theory can be decomposed into

hEA00 ¼ 2w0; ð3:1aÞ

hEA0i ¼ γi þ ∂iγ; ð3:1bÞ

hEAij ¼ ∂ijϕ
EAþ1

2
ðδijΔ−∂ijÞfEAþ∂jϕ

EA
i þ∂iϕ

EA
j þϕEA

ij ;

ð3:1cÞ

where Δ≡ δij∂i∂j, w0 ¼ u0 − 1, and wi ¼ ui where uα is
the four-velocity of the æther field, and

∂
iγi ¼ ∂

iϕEA
i ¼ 0;

∂
jϕEA

ij ¼ 0; δijϕEA
ij ¼ 0:

Inserting this metric perturbation [Eq. (3.1)] into the results
of Sec. II B [Eq. (2.20)] and using the previously developed
derivative rule (∂j ¼ −cS;V;T

−1Nj∂t) yields

Ab ¼ 1

2
ΔfEA; ð3:2aÞ

AL ¼ 1

2
ΔfEA −

1

2c2S
f̈EA −

1

c2S
2γ̇ þ 1

c2S
ð2w0Þ þ 1

c2S
ϕ̈EA;

ð3:2bÞ

AV
i ¼ −

1

cV

ϕ̇EA
i þ 1

cV

γi: ð3:2cÞ

These are the GW polarizations that our general procedure
predicts in Einstein-æther theory. The fields fEA, γ, w0, γi,
ϕEA
i , and ϕEA satisfy the linearized field equations in that

theory, which must be solved for a given physical system to
obtain explicit functions of time that can then be compared
to GW data. The dot notation here represents time
derivatives, and ðc2SÞ−1f̈EA is equivalent to ΔfEA by the
definition of Δ and the derivative rule.
More work needs to be done to show that these polar-

izations match the results of [21]. From [30], we know that
the Einstein-æther linearized field equations require that
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c13ðνi þ ϕ̇EA
i Þ þ γi − ϕ̇EA

i ¼ 0;

FEA − c14ð2w0Þ þ 2c14ðγ̇ þ ν̇Þ þ 0;

ð1þ c2ÞḟEA þ c123ðϕ̇EA þ 2νÞ ¼ 0;

where wi ¼ νi þ ∂iν, FEA ≡ ΔfEA, fc1; c2; c3; c4g are
coupling constants, and cij ¼ ci þ cj while cijk ¼ ci þ
cj þ ck [30]. These expressions directly imply

γi ¼ ð1 − c13Þϕ̇EA
i − c13νi; ð3:3aÞ

2w0 ¼ 1

c14
FEA þ 2γ̇ þ 2ν̇; ð3:3bÞ

ϕ̇EA ¼ −
ð1þ c2Þ
c123

ḟEA − 2ν: ð3:3cÞ

Furthermore, the Einstein-æther field equations also require
that the scalarmodes in this theory travel at a speed [13,14,21]

c2S ¼
ð2 − c14Þc123

ð2þ 3c2 þ c13Þð1 − c13Þc14
: ð3:4Þ

Using these relations [Eqs. (3.3) and (3.4)], we can simplify
the expression for AL given in Eq. (3.2):

AL ¼ 1

2
ΔfEA −

1

2c2S
f̈EA −

1

c2S
2γ̇ þ 1

c2S
ð2w0Þ þ 1

c2S
ϕ̈EA

¼ 1

2
FEA þ 1

c2Sc14
FEA −

1

2
FEA −

ð1þ c2Þ
c123

FEA

¼
�
1

2
þ c14 − 2c13
2c2Sc14ð1 − c13Þ

�
FEA

¼ ð1þ 2β2ÞAb; ð3:5Þ

where, as pointed out in [17],

β2 ≡ c14 − 2c13
2c14ð1 − c13Þc2S

: ð3:6Þ

Simplifying the expression for AV
i from Eq. (3.2) with the

conditions in Eq. (3.3) yields

AV
i ¼ −

c13
cV

ðνi þ ϕ̇EA
i Þ ¼ 1

2
β1ðνi þ ϕ̇EA

i Þ;

where

β1 ≡ −
2c13
cV

: ð3:7Þ

Thus, to summarize, we have arrived at

Ab ¼ 1

2
FEA; ð3:8aÞ

AL ¼ ð1þ 2β2ÞAb; ð3:8bÞ

AV
i ¼ 1

2
β1ðνi þ ϕ̇EA

i Þ: ð3:8cÞ

Using the following relations from [18],

hb ¼ Ab; hL ¼ AL;

hX ¼ eiXAV
i ; hY ¼ eiYAV

i ;

where hX;Y are the two vector polarization modes, we can
convert the scalar breathing mode, scalar longitudinal
mode, and vector mode into

hb ¼
1

2
FEA; ð3:9aÞ

hL ¼ ð1þ 2β2Þhb; ð3:9bÞ

hX ¼ 1

2
β1ðνi þ ϕ̇EA

i ÞeiX; ð3:9cÞ

hY ¼ 1

2
β1ðνi þ ϕ̇EA

i ÞeiY: ð3:9dÞ

Following the convention of [21], we choose a gauge,
which sets ϕi ¼ 0 and ν ¼ γ ¼ 0. Now upon comparison
with Eq. (3.28) of [21], which listed

hb ¼
1

2
FEA; hL ¼ ð1þ 2β2Þhb;

hX ¼ 1

2
β1ν

ieiX; hY ¼ 1

2
β1ν

ieiY;

we find that our expressions match exactly. Therefore, our
generic procedure to extract the GW polarizations from the
metric perturbation has been used to correctly recover the
specific GW polarizations of Einstein-æther theory com-
puted independently elsewhere.

B. Khronometric gravity

In harmonic coordinates and in an appropriate gauge,2

the metric perturbation for khronometric gravity is given
by [29]3

hKG00 ¼ 1

αKG
ΔfKG; ð3:10aÞ

hKG0j ¼ 0; ð3:10bÞ

2Following the convention of Foster, a gauge is chosen such
that ν ¼ γ ¼ ϕi ¼ 0 [31].

3That work was missing the Δ in h00 and did not define the
projection operator explicitly, so both have been fixed here.
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hKGjk ¼ ∂jkϕ
KG þ 1

2
ðδjkΔ − ∂j∂kÞfKG þ ϕKG

jk ; ð3:10cÞ

where Δ≡ δjk∂j∂k, ϕKG
jk obeys the conditions

∂
kϕKG

jk ¼ 0; δjkϕKG
jk ¼ 0; ð3:11Þ

and αKG, βKG, and λKG are parameters in the theory, which
appear in the action. Inserting this metric perturbation
[Eq. (3.10)] into the results from Sec. II B [Eq. (2.20)] and
using the previously developed derivative rule ð∂j ¼
−c−1S;V;TNj∂tÞ, we find

Ab ¼ 1

2
ΔfKG; ð3:12aÞ

AL ¼ ΔϕKG þ 1

c2SαKG
ΔfKG; ð3:12bÞ

AV
k ¼ 0: ð3:12cÞ

These are the GW polarizations that our general procedure
predicts in khronometric gravity. The fields fKG and ϕKG

satisfy the linearized field equations in that theory, which
must be solved for a given physical system to obtain
explicit functions of time that can then be compared to
GW data.
As a check on this result, we can use the fact that

khronometric gravity is a limiting case of Einstein-æther
theory to derive the GW polarizations in a different way
using previous independent work. This limit is when
c− ¼ c1 − c3 → ∞, while the other parameters of
Einstein-æther theory are kept fixed. According to [32],
this means that cþ¼ c1 þ c3; c14, and c2 remain fixed,
while c1, c3, and c4 diverge. In this limiting case, we can
map the parameters of Einstein-æther theory to those of
khronometric gravity. Specifically,

αKG ¼ c14 ¼ c1 þ c4; ð3:13aÞ

βKG ¼ cþ ¼ c1 þ c3; ð3:13bÞ

λKG ¼ c2: ð3:13cÞ

In this limit and in the gauge we are working in
(ν ¼ γ ¼ ϕi ¼ 0), the equations of motion for Einstein-
æther theory [Eq. (3.3)] become the khronometric equations

c13νi ¼ 0; ð3:14aÞ

hKG00 ¼ 1

αKG
ΔfKG; ð3:14bÞ

ϕ̇KG ¼ −
1þ λKG

λKG þ βKG
ḟKG: ð3:14cÞ

Let us now recall that the polarizations in the Einstein-
æther case are given in Eq. (3.8) and apply the limit above
to derive the GW polarizations in khronometric gravity,
starting with Ab first. Since this GW polarization
[Eq. (3.8a)] does not contain any divergent quantity, taking
the limit of this expression leaves it unchanged. Therefore,
the breathing GW polarization in khronometric gravity is
simply that of Eq. (3.8a) with the replacement fEA → fKG.
We observe then immediately that this is the same as what
our general method predicted in Eq. (3.12a).
Let us now consider AL [Eq. (3.8b)]. Recalling the

Einstein-æther definition of β2 from Eq. (3.6), with cS

given in Eq. (3.4), we realize that only the fixed quantities
(c2, c13, and c14) appear in these expressions, and thus, it
remains unchanged in the khronometric limit. We can
therefore rewrite these expressions in terms of the khrono-
metric parameters as

β2 ¼
αKG − 2βKG

2αKGð1 − βKGÞc2S
; ð3:15aÞ

c2S ¼
ð2 − αKGÞðλKG þ βKGÞ

ð2þ 3λKG þ βKGÞð1 − βKGÞαKG
: ð3:15bÞ

With this in hand, the Einstein-æther polarizations of
Eq. (3.8b) become

AL ¼ 1

2
ΔfKG þ αKG − 2βKG

2αKGð1 − βKGÞc2S
ΔfKG

¼ 1

2
ΔfKG þ

�
1

c2SαKG
ΔfKG −

1

2
ΔfKG

−
ð1þ λKGÞ

ðλKG þ βKGÞ
ΔfKG

�

¼ 1

c2SαKG
ΔfKG þ ΔϕKG; ð3:16Þ

where Eq. (3.14c) was used to get to the last line. Thus, the
longitudinal mode of Einstein-æther theory [Eq. (3.8b)] in
the khronometric limit yields the same polarizations as
our general procedure applied to khronometric gravity
[Eq. (3.12b)].
Finally, the Einstein-æther theory AV

k [Eq. (3.8c)] van-
ishes in the khronometric limit because ϕk ¼ 0 in this
gauge and νk ¼ 0 by Eq. (3.14a). Alternatively, we could
arrive at the same result by realizing that [21]

c2V ¼ 2c1 − c13c−
2ð1 − c13Þc14

ð3:17Þ

diverges in the khronometric limit (because c− → ∞ and
c1 → ∞), which then implies that β1, as defined in Eq. (3.7)
must vanish. Once again, the Einstein-æther result
[Eq. (3.8c)] in the appropriate limit agrees with the vectorial
mode of khronometric gravity derived with our generic
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method [Eq. (3.12c)]. To reiterate, we find that the scalar
breathing mode, the scalar longitudinal mode, and the
vectorial mode derived in khronometric gravity with our
general procedure agree with those of Einstein-æther in the
khronometric limit.

IV. GENERALIZED ppE FORMALISM

The ppE framework can be used to characterize mod-
ifications or extensions to GR without specifying a par-
ticular theory. As such, it has been used extensively since
its introduction [1,23,26,33,34]. The parameters of this
framework describe how the amplitude and phase of the
response function may change due to generic deviations
from GR. The original formalism considered modifications
to the two tensor polarizations of GR in a single detector for
the l ¼ 2 orbital harmonic [23]. This was extended by [18]
to theories that have up to six polarizations. Here we briefly
review the extensions made in [18] and then introduce
further modifications to account for modes that travel at
different speeds.
As shown by [23], the Fourier transform of the response

function can be written as

h̃ppEðfÞ ¼ AGRu
−7=2
2 ð1þ αua2Þe−iΨ

ð2Þ
GReiβu

b
2 : ð4:1Þ

In this expression, the variables fα; a; β; bg are the ppE
parameters that generically modify the waveform, u2 is a
convenient combination of the mass and frequency, and

Ψð2Þ
GR and AGR are the phase and frequency-independent

amplitude in GR respectively. Explicitly,

ul ¼
�
2πMf

l

�
1=3

; ð4:2Þ

ΨðlÞ
GR ¼ −2πftc þ lΦc þ

π

4

−
3l

256u5l

X7
n¼0

un=3l ðcPNn þ lPNn ln uÞ; ð4:3Þ

AGR ¼
�
5π

96

�
1=2M2

R
½F2þð1þ cos2ιÞ2 þ 4F2

×cos2ι�1=2;

ð4:4Þ

where only the l ¼ 2 harmonic appears in Eq. (4.1), cPNn
and lPNn are known post-Newtonian (PN) coefficients given
in [35],4 and Fþ and F× are angle pattern functions as
defined in [20].
Equation (4.1) was first extended to include the l ¼ 1

harmonic since this harmonic is excited by theories which

contain additional polarizations in the GWs. According to
[18], assuming all polarizations travel at the speed of light,
the new version for a single detector is

h̃SDppEðfÞ¼AGRu
−7=2
2 ð1þαua2Þe−iΨ

ð2Þ
GReiβu

b
2 þ γuc1e

−iΨð1Þ
GReiδu

d
1 ;

ð4:5Þ

where fγ; c; δ; dg are the new ppE parameters necessary to
describe modifications to the l ¼ 1 harmonic. To further
generalize this to all six polarizations, the number of
parameters was increased so that there is one for each
possible polarization mode for each harmonic [18]5:

h̃ðfÞ¼ h̃GReiβu
b
2 þ½αþFþþα×F×þαbFbþαLFLþαXFX

þαYFY �ua2e−iΨ
ð2Þ
GReiβu

b
2 þ½γþFþþ γ×F×þ γbFb

þγLFLþ γXFXþ γYFY �uc1e−iΨ
ð1Þ
GReiδu

d
1 ; ð4:6Þ

where h̃GR ¼ AGRu
−7=2
2 e−iΨ

ð2Þ
GR and fFb; FL; FX; FYg are

the rest of the angular pattern functions as defined in [20].
Comparing this expression to Eq. (4.5), we can see that
fa; β; b; c; δ; dg are the same ppE parameters from before,
but α → fαþ; α×; αb;αL; αX; αYg and γ → fγþ; γ×; γb; γL;
γX; γYg. Any possible inclination angle dependence has
been absorbed within the α and γ parameters. It is
convenient to further condense the notation to

h̃ðfÞ ¼ h̃GReiβu
b
2 þ

�X
N

αNFN

�
ua2e

−iΨð2Þ
GReiβu

b
2

þ
�X

N

γNFN

�
uc1e

−iΨð1Þ
GReiδu

d
1 ð4:7Þ

for N ∈ fþ;×; b; L; X; Yg.
In theories with different propagation speeds, the GW

will pick up a phase factor that depends on this propagation
speed. Since the propagation speeds of different polar-
izations can be different in the theories considered here, we
need to include a phase factor for each polarization.6 Thus,
if we are to generalize Eq. (4.7) to theories with multiple
polarizations that propagate at different speeds, we have

4Recently, the phase was computed up to 4.5PN order in GR
and contains terms that are proportional to ðln uÞ2 [36]. One could
easily generalize Eq. (4.3) to include these terms in ΨGR.

5This is Eq. (145) of that work and not Eq. (146) because the
latter specifies to modified theories without preferred frames, and
theories with GW polarizations that travel at different speeds (e.g.,
Einstein-æther theory) can have preferred frames.

6Note that this is different from Eq. (153) of [18], because that
expression applied the same phase change to all polarizations
simultaneously, and that would not work for polarizations that
have different speeds.
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h̃ðfÞ ¼ h̃GReiβu
b
2

þ
�X

N

αNFNe−2πifRð1−c
−1
N Þ
�
ua2e

−iΨð2Þ
GReiβu

b
2

þ
�X

N

γNFNe−2πifRð1−c
−1
N Þ
�
uc1e

−iΨð1Þ
GReiδu

d
1 ; ð4:8Þ

where cN is the speed of each polarization fcþ; c×; cb; cL;
cX; cYg. Note that not all of the speeds are distinct. For
instance, when all scalar fields travel at cS, cB ¼ cL ¼ cS.
Likewise, when vector fields travel at cV , cX ¼ cY ¼ cV .
As previously discussed, cT has been well constrained to be
equal to the speed of light by the GW170817 event, so we
could also set cþ ¼ c× ¼ c. Thus, if we set cT ¼ c, there
are only two additional parameters introduced with this
extension of the ppE framework cS and cV . The waveforms
in Einstein-æther theory derived in Eq. (6.1) of [21] can be
mapped to Eq. (4.8) above if we keep only the leading
amplitude corrections for each polarization mode and
absorb the inclination angle dependence into αN and γN .

7

V. NULL STREAMS

As proposed in [18], one can construct null streams
(which are “null” within GR) through suitable projections.
These can be used to search for statistically significant
deviations from noise, and any detection would immedi-
ately signal a deviation from GR. Null streams can be used
to search for additional polarizations and place constraints
on those polarizations. Given D detectors [18],

2
6666664

d̃1
d̃2

..

.

d̃D

3
7777775
¼

2
6666664

Fþ
1 F×

1 FX
1 FY

1 Fb
1 FL

1

Fþ
2 F×

2 FX
2 FY

2 Fb
2 FL

2

..

. ..
. ..

. ..
. ..

. ..
.

Fþ
D F×

D FX
D FY

D Fb
D FL

D

3
7777775

2
6666664

h̃þ
h̃×

..

.

h̃L

3
7777775

þ

2
6666664

ñ1
ñ2

..

.

ñD

3
7777775
; ð5:1Þ

where d̃a; F·
a, and ña are the noise-weighted signal, the

angular pattern functions, and the noise of the ath detector,
respectively, each normalized with respect to the power
spectral densityr

d̃a ¼ Fa
jh̃

j þ ña; ð5:2Þ

where a runs over the number of detectors and j over the
polarizations. In the above expressions, the h̃N polariza-
tions must be generalized to include the αN and γN
parameters of Eq. (4.6). To create a dataset with no
component of a particular polarization, one must project
the dataset in a direction orthogonal to the angular pattern
function for that particular polarization. Reference [18]
does this for three detectors and for the stream that contains
no tensor modes (the GR null stream):

d̃GR;null ¼
ϵcabFþ

a F×
b

jδabFþ
a F×

b j
d̃c: ð5:3Þ

All of the above equations are still applicable for theories
in which the GW polarizations can travel at different
speeds. The construction of the null stream is unaffected
because the geometry of these polarizations is unchanged.
However, in this case, there is an additional (implicit)
dependence on the speed of propagation hidden in the h̃N
terms. Clearly, different propagation speeds will result in
different arrival times at the detector. Furthermore, the
farther away the source is, the more propagation effects
build up. Thus, even a small difference in propagation
speeds could result in a large difference in arrival time if the
signal had to travel a great distance to reach the detector.
This potential for different arrival times poses challenges
for placing constraints on additional polarizations via null
streams.
GW data analysis often considers a 32 or 4096 s window

around the time of an event (�16 or �2048 s from the
trigger).8 Depending on the speed of propagation, addi-
tional polarizations could arrive either before or after this
window and be missed entirely. Fortunately, observations
of high-energy cosmic rays rule out the possibility of
gravitational Cherenkov radiation [37,38]. This forces
the propagation speeds of GWs to be cN ≥ c, because if
cN < c it would be possible for massive particles to travel
faster than the GW, thereby producing Cherenkov radia-
tion, which is not observed. As a result, any additional
polarizations would have to arrive before or simultaneously
with the tensor polarizations given that the propagation
speed of the tensor mode has been constrained very
stringently from GW170817.
As an example, let us consider a source of GWs

that is 100 Mpc away. It would take GWs traveling at
the speed of light ≈1016 s to reach a detector from this
distance. Meanwhile, polarizations traveling at speeds

7These expressions agree up to the sign of the phase change
due to propagation speeds. However, the sign in Eq. (6.1) of [21]
is inconsistent with the other expressions in that work, so it is
likely a typo.

8Though one can work with the full data from the GW Open
Science Center (https://gwosc.org/), it is common to consider
only the data surrounding a particular event and within one of
these two time windows.
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cN ¼ cð1þOð10−13ÞÞ9 will arrive 2048 s before the tensor
polarizations, just outside the detector window (see
Appendix B for details). Hence, even a very small differ-
ence in the speeds of the different polarizations could cause
a null stream search to miss them entirely. Therefore, we
caution that any null stream constraints on additional
polarizations would only apply to polarizations that travel
with speed cN ¼ 1.
Considering different arrival times, it is also possible that

one could observe pure scalar or vector modes in gravi-
tational wave data. Such polarizations cannot exist without
the tensor polarizations of GR, yet they might arrive so far
removed from the tensor polarizations as to be hard to
associate with each other. For a source at 100 Mpc and a
speed of cN ¼ cð1þOð10−8ÞÞ, the different polarizations
could arrive ten years apart, which is longer than we have
so far been observing GW events. This is important to
account for when considering searches for additional
polarizations in GW data.

VI. CONCLUSIONS

In this work, we developed a straightforward method to
compute the different GW polarizations directly from the
metric perturbation, while allowing for the polarizations to
travel with speeds cS; cV, and cT that are different from the
speed of light. This result generalizes the method of [18] to
modified theories of gravity that excite vector or scalar
degrees of freedom that propagate with different speeds.
We presented an expression that can be used with the metric
perturbation Eq. (2.20) and equivalent expressions that can
be used with the trace-reversed metric perturbation
[Eqs. (A15), (A16), and (A20)], both of which are con-
sistent with each other through the use of Eq. (2.22). We
also showed that both of these expressions are consistent
with previous work, [18], in the limit that all of the speeds
are equal to the speed of light: cS;V;T → c. We used this
generic method to compute the GW polarizations in two
specific modified theories of gravity: Einstein-æther theory
and khronometric gravity. Our Einstein-æther result
matches that of previous work and serves as further
confirmation of the validity of our method. The result
we obtained for khronometric gravity corrects the result of
[29], which used a method that is only valid when all
degrees of freedom travel at the speed of light [18]. We
further extended the work of [18], generalizing the ppE
formalism to account for propagation effects and discussing
the impact these propagation effects may have on null
channel tests. We emphasize that even very small
differences in speed could result in large differences in
arrival times between modes, which would make it
very challenging to conclusively rule out additional modes.

This result may also motivate searches for pure scalar or
vector modes.
Our results allow for the direct and simple evaluation of

polarization modes using post-Newtonian and post-
Minkowskian solutions to modified field equations in
complex modified theories. For instance, one might employ
our formalism to construct polarization modes in f(R)
gravity and Horndeski theory [39], or in linear massive
gravity and generic curvature gravity [40], since these
theories contain massive modes with propagation speeds
different from the speed of light. Once the polarizations are
obtained, further work to compute the detector response
function and develop theory-specific waveform templates
and tests is possible. Alternatively, the ppE formalism that
we have updated to include the effects of polarizations
traveling at different speeds could be used in place of
theory-specific templates. As more detectors come online
and more data become available, the polarization content of
GWs will become increasingly important as a potential
signature for new physics. The absence of such polarization
content may greatly constrain a large class of modified
theories of gravity, though only for certain propagation
speeds.
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APPENDIX A: POLARIZATION MODES WITH
DIFFERENT SPEEDS FROM THE

TRACE-REVERSED METRIC
PERTURBATION

Here we rederive the GW polarizations from the trace-
reversed metric perturbation directly. Because of the differ-
ent form of the linearized Riemann tensor when expressed
in terms of the trace-reversed metric perturbation, we repeat
elements of the calculation here to ensure the correctness of
the derivation. After this is calculated, a more direct
approach is again developed, using effective field theory
techniques. We also establish a mapping between the
scalar, vector, and tensor functions of the trace-reversed
metric perturbation to those of the regular metric perturba-
tion so that we can compare this result to those of Sec. II.
From this calculation, it is clear that the trace-reversed
version of Eq. (2.20) could also be computed by applying
the trace-reverse transformation of Eq. (2.22).

9This argument assumes that cN > 1 is allowed, as in Lorentz-
violating theories that can have different propagation speeds,
cN > 1 does not violate causality.
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1. Linearized Riemann tensor approach

Let us begin by parametrizing the trace-reversed metric
perturbation as

h̄00 ¼ C
c4R

; h̄0j ¼ Dj

c4R
; h̄jk ¼ Ajk

c4R
: ðA1Þ

Once again, the factor of 1=c4R will be absorbed into the
functions C;Dj, and Ajk from now on. We once again use
the fact that vectors and tensors can be irreducibly
decomposed, so that

Dj ¼ ∂
jDþDj

T; ðA2Þ

Ajk ¼ 1

3
δjkAþ

�
∂
jk−

1

3
δjk∇2

�
Bþ2∂ðjAkÞ

T þAjk
TT ðA3Þ

with ∂jA
j
T ¼ 0, ∂jA

jk
TT ¼ 0, δjkA

jk
TT ¼ 0, and ∂jD

j
T ¼ 0. As

before, each of the fields above depends on N and retarded
time τ. Following the same steps as before, the irreducible
decomposition of the trace-reversed metric perturbation can
be rewritten as

h̄00 ¼ CðτS;NÞ; ðA4aÞ

h̄0j ¼ 1

cS

NjDðτS;NÞ þDj
TðτV;NÞ; ðA4bÞ

h̄jk ¼ δjk

3
AðτS;NÞ þ

1

c2S

�
NjNk −

δjk

3

�
BðτS;NÞ

þ 1

cV

NjAk
TðτV;NÞ þ

1

cV

NkAj
TðτV; NÞ

þ Ajk
TTðτT;NÞ: ðA4cÞ

Let us now consider the linearized Riemann tensor,
which was already presented in Eq. (2.2). Converting from
the metric perturbation to the trace-reversed metric pertur-
bation with Eq. (2.22), and following the index convention
of [20], we have

R0j0k ¼ −
1

2

�
∂00h̄jk −

1

2
∂00h̄δjk þ ∂jkh̄00

þ 1

2
∂jkh̄þ ∂0jh̄0k þ ∂0kh̄0j

�
: ðA5Þ

Now, inserting the irreducible decomposition of the trace-
reversed metric perturbation into the linearized Riemann
tensor and simplifying yields

R0j0k ¼ −
1

2c2
∂

�
δjk

3
Aþ 1

c2S

�
NjNk −

δjk

3

�
B

þ Nj

cV

Ak
T þ

Nk

cV

Aj
T þ Ajk

TT þ
δjk

2
C

þ NjNk

2

c2

c2S
C −

δjk

2
Aþ NjNk

2

c2

c2S
A

−2NjNk c
c2S

D − Nj c
cV

Dk
T − Nk c

cV

Dj
T

�
: ðA6Þ

This expression can be rearranged into the form

R0j0k ¼ −
1

2c2
∂tt½ðδjk − NjNkÞAb þ NjNkAL

þ2NðjAkÞ
V þ Ajk

TT�; ðA7Þ

where

Ab ≔ −
1

6

�
Aþ 2

c2S
B − 3C

�
; ðA8aÞ

AL ≔
1

3

��
3

2

c2

c2S
−
1

2

�
Aþ 2

c2S
B

þ
�
3

2

c2

c2S
þ 3

2

�
C − 6

c
c2S

D

�
; ðA8bÞ

Ak
V ≔

1

cV

½Ak
T − cDk

T�: ðA8cÞ

As before, these are the scalar breathing mode Ab, the scalar
longitudinal mode AL, and the two vector modes Ak

V

expressed in terms of the decomposition of the trace-
reversed metric perturbation.

2. Comparison with previous result

The result in Eq. (A8) derived from the trace-reversed
metric perturbation can be compared with that previously
found in Eq. (2.10), which was derived from the metric
perturbation. To do this, we need to map from the scalar,
vector, and tensor functions C;Dj; Ajk of the trace-reversed
metric perturbation to the scalar, vector, and tensor func-
tions C;Dj;Ajk of the regular metric perturbation. Using
the inverse of Eq. (2.22), we note that

h̄00 ¼ 1

2
ðh00 þ hkkÞ; ðA9aÞ

h̄0j ¼ −h0j; ðA9bÞ

h̄jk ¼ hjk þ
1

2
δjkðh00 − hkkÞ; ðA9cÞ

and then, by Eqs. (2.3) and (A1), we have that
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C ¼ 1

2
ðC þAÞ; ðA10aÞ

Dj ¼ −Dj; ðA10bÞ

Ajk ¼ 1

3
δjk

�
3

2
C −

1

2
A
�
þ
�
∂jk −

1

3
δjk∇2

�
B

þ ∂jAT
k þ ∂kAT

j þATT
jk : ðA10cÞ

Recalling the decompositions we have already established
for Dj and Ajk and comparing like terms, we arrive at

C ¼ 1

2
ðC þAÞ; D ¼ −D; Dj

T ¼ −DT
j ;

A ¼ 1

2
ð3C −AÞ; B ¼ B; Aj

T ¼ AT
j ;

Ajk
TT ¼ ATT

jk : ðA11Þ

Inserting these expressions into Eq. (A8) returns
exactly Eq. (2.10).

3. An effective field theory approach

Let us now repeat the calculation we previously carried
out using effective field theory, but this time apply it to the
trace-reversed metric perturbation. We thus postulate the
ansatz

Ab ¼ ā1h̄00 þ ā2Njh̄0j þ ā3NjNkh̄jk þ ā4δjkh̄jk; ðA12Þ

which we then insert in Eq. (A4) and simplify to obtain

Ab ¼ ā1Cþ ā2
cS

Dþ ā3

�
1

3
Aþ 2

3c2S
B

�
þ ā4A: ðA13Þ

Comparing with Eq. (2.10a) and matching coefficients,
we find

ā1 ¼
1

2
; ā2 ¼ 0; ā3 ¼ −

1

2
; ā4 ¼ 0; ðA14Þ

and therefore,

Ab ¼
1

2
ðh̄00 − NjNkh̄jkÞ: ðA15Þ

Following the same procedure for the scalar longitudinal
mode, we find

AL ¼
1

2

�
c2

c2S
þ 1

�
h̄00 − 2

c
cS

Njh̄0j

þ
�
NjNk þ

1

2

�
c2

c2S
− 1

�
δjk

�
h̄jk: ðA16Þ

Similarly, to derive the vector modes, we consider the
ansatz

Ak
V ¼ Pk

jðā5h̄0j þ ā6Nih̄ijÞ; ðA17Þ
with some constants ā5 and ā6. Inserting in Eq. (2.7) and
simplifying, we find

Ak
V ¼ ā5Dk

T þ ā6
1

cV

Ak
T; ðA18Þ

and matching coefficients with Eq. (2.10c) gives

ā5 ¼ −
c
cV

; ā6 ¼ 1; ðA19Þ

so that then

Ak
V ¼ Pk

j

�
Nih̄ij −

c
cV

h̄0j
�
: ðA20Þ

These expressions calculated directly from the trace-
reversed metric perturbation are consistent with what
was found from the linearized Riemann tensor calculation
[Eq. (A8)]. Although these expression may look different
from Eq. (2.20), a quick calculation with Eq. (2.22) reveals
that the two expressions are indeed, consistent.

4. Comparison to previous results

As a test of our expressions in the previous section, we
can take the limit where all modes travel at the speed of
light, and compare to Chatziioannou et al. [18]. If
cS;V;T → c, then the previous expressions [Eqs. (A15),
(A16), and (A20)] reduce to

Ab ¼
1

2
ðh̄00 − NjNkh̄jkÞ; ðA21aÞ

AL ¼ h̄00 − 2Njh̄0j þ NjNkh̄jk; ðA21bÞ

Ak
V ¼ Pk

jðNih̄ij − h̄0jÞ: ðA21cÞ

This corresponds to Eqs. (3.1a), and hence, it matches what
was found by Chatziioannou et al. in Eqs. (9a)–(9c) of [18]
(up to the overall minus sign on Ab).

APPENDIX B: POLARIZATION SPEEDS
AND DETECTOR ARRIVAL TIMES

For a given polarization of the GW,

tN ¼ R
cN

; ðB1Þ

where tN is the arrival time of the Nth mode, R is the
distance to the source, and cN is the speed of that
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polarization. For two different polarizations A and B, the
difference in arrival times is

ΔtA;B ¼ tA − tB ¼ R
cA

−
R
cB

: ðB2Þ

From this, it is a simple matter to compute what speed of
GWwould be necessary for a particular difference in arrival
times:

cB ¼
�
1

cA
−
ΔtA;B
R

�
−1
: ðB3Þ

Consider a source with R ¼ 100 Mpc ≈ 1024 m. The
tensor polarizations travel at the speed of light
c ≈ 3 × 108 m=s. For a difference in arrival times between
one of the tensor modes and a different polarization, of
at least Δtþ;N ¼ 2048 s, we would need cN≳
cð1þOð10−13ÞÞ. This would be a great enough difference
for the additional polarizations to not appear in the standard
detector window. For a difference in arrival times of ten
years (≈3 × 108 s), which is longer than we have been
observingGWevents,wewould needcN ≈ cð1þOð10−8ÞÞ.
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