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The Friedmann equation, augmented with an additional term that effectively takes on the role of dark
energy, is demonstrated to be an exact solution to the recently proposed gravitational theory named
“conformal Killing gravity.” This theory does not explicitly incorporate dark energy. This finding suggests
that there is no necessity to postulate the existence of dark energy as an independent physical entity. The
dark energy derived from this theory is characterized by a specific equation of state parameter, denoted as
ω, which is uniquely determined to be −5=3. If this effective dark energy is present, typically around 5% of
the total energy density at the present time, and under the assumption of density parameters for matter and
the cosmological constant, Ωm ∼ 0.25 and ΩΛ ∼ 0.7, respectively, the expansion of the universe at low
redshifts (z < 1.5) can exceed expectations, while the expansion at z > 1.5 remains unchanged. This offers
a potential solution to the Hubble tension problem. Alternatively, effective dark energy could be a dominant
component in the present-day universe. In this scenario, there is also the potential to address the Hubble
tension, and furthermore, it resolves the coincidence problem associated with the cosmological constant.

DOI: 10.1103/PhysRevD.108.104037

I. INTRODUCTION

Recently, in the gravitational theory proposed by [1],
which is referred to as “conformal Killing gravity” [2], the
Friedmann equation has been generalized as follows:
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Here, aðtÞ represents the scale factor, the dots denote the
time derivative, ρðtÞ and pðtÞ stand for the energy density
and pressure, respectively, and k is a constant representing
the curvature of three-dimensional space. The cosmo-
logical constant Λ in Eq. (1) is derived as an integration
constant [1,2]. Equation (1) has been independently
derived through two distinct methods [1,2]. Very recently,
Barnes [3] discovered the most general static spherically
symmetric solution in that gravitational theory.
The Eq. (1) demonstrates an intriguing property [1,2]:

Despite the absence of negative pressure or the cosmo-
logical constant, the universe described by Eq. (1)
undergoes a transition from decelerating to accelerating
expansion. To illustrate this cosmological transition, a
solution for the scale factor aðtÞ was derived within a
matter-dominated universe [1]. The same solution was
obtained through a different approach [2]. This solution
explicitly describes the transition from deceleration to
acceleration. Remarkably, this was achieved without the

need for negative pressure or a positive cosmological
constant Λ.
In contrast to the previous study [1], which focused

solely on a matter-dominated universe, this work removes
such constraints. Instead, we consider various components
of the universe, including matter (m), radiation (r), curva-
ture (k), and the cosmological constant (Λ). Throughout
this study, we do not explicitly assume the existence of dark
energy as a distinct physical entity. We demonstrate that
Eq. (1), even without the inclusion of any dark energy, is
equivalent to the standard Friedmann equation that incor-
porates a specific form of dark energy. In our theory, dark
energy is merely an effective concept, and it does not
represent a distinct physical entity. This perspective differs
from that of general relativity, where dark energy is
typically regarded as a real physical entity.
The dark energy derived from this approach possesses an

equation of state parameter, ω ¼ p=ρ, which is uniquely
determined to be −5=3. Just a few days ago, Mantica and
Molinari reported the same result [2]. If this effective
dark energy constitutes approximately 5% of the total energy
density at the present time, and given the density parameters
for matter and the cosmological constant, Ωm ∼ 0.25 and
ΩΛ ∼ 0.7 respectively, the expansion of the universe at low
redshifts (z < 1.5) can exceed expectations, while the
expansion at z > 1.5 remains unaffected. As a result, this has
a potential to address the Hubble tension problem [4–12].
There is an even more intriguing possibility to consider:

the current universe could be matter-dominated with a
vanishing cosmological constant. We show that even in a*jharada@hoku-iryo-u.ac.jp
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matter-dominated universe with Λ ¼ 0, the Hubble tension
can potentially be resolved. In this scenario, the coinci-
dence problem associated with the cosmological constant is
eliminated because the cosmological constant is zero. This
is theoretically an advantage compared to models with a
nonzero Λ.
This paper is organized as follows: In Sec. II, we

demonstrate that Eq. (1), even when not incorporating
any dark energy, is equivalent to the Friedmann equation
that includes a specific type of dark energy. Section III
presents another derivation for ω ¼ −5=3. In Sec. IV, we
investigate the potential of effective dark energy to resolve
the Hubble tension problem. Finally, in Sec. V, we provide
a summary and conclusions.

II. EFFECTIVE DARK ENERGY

We assume that the universe is composed of matter (m)
and radiation (r), and we do not postulate the existence of
dark energy. Therefore, the energy density ρ and pressure p
in Eq. (1) are given by ρ ¼ ρm þ ρr and p ¼ ρr=3,
respectively. In this case, Eq. (1) takes the form of
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Here, the energy density ρm and ρr as functions of a can be
derived from the conservation law ∇μTμ

ν ¼ 0,

0 ¼ −∇μTμ
0 ¼ ρ̇þ 3

ȧ
a
ðρþ pÞ: ð3Þ

Assuming p ¼ ωρ with ω time-independent, Eq. (3) gives
ρ ∝ a−3ð1þωÞ. This provides expressions for matter (ω ¼ 0)
and radiation ðω ¼ 1=3Þ as follows:

ρmðtÞ ¼ ρm;0

�
aðtÞ
a0

�
−3
; ð4aÞ

ρrðtÞ ¼ ρr;0

�
aðtÞ
a0

�
−4
; ð4bÞ

where ρm;0 and ρr;0 represent the density for matter (m) and
radiation (r) at the present time, respectively. The a0
denotes the scale factor at the present time.
Using the Hubble parameter and its time derivative,

H ≡ ȧ
a
; Ḣ ¼ ä

a
−H2; ð5Þ

the left-hand side of Eq. (2) can be expressed as
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Substituting Eq. (6) into Eq. (2) and dividing by H2
0, we

find that Eq. (2) can be expressed as
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Here, the density parameters Ω’s are defined as follows:

Ωm≡ρm;0

ρc
; Ωr≡ρr;0

ρc
; Ωk≡−

k
a20H

2
0

; ΩΛ≡ Λ
3H2

0

; ð8Þ

and the critical density is defined as ρc ≡ 3H2
0=8πG.

Equation (7) does not contain dark energy, since we do
not assume the presence of dark energy. Thus, Eq. (7)
includes only four components: Ωm, Ωr, Ωk, and ΩΛ.
These four density parameters do not necessarily satisfy

the relation, Ωm þ Ωr þΩk þ ΩΛ ¼ 1, which represents
the Friedmann equation at the present time. Instead, they
satisfy the following relation:

2þ q0 ¼
5

2
Ωm þ 3Ωr þ 2Ωk þ ΩΛ: ð9Þ

Here, the deceleration parameter q is defined by

q≡ −
äa
ȧ2

¼ −
ä

aH2
¼ −

Ḣ
H2

− 1; ð10Þ

and q0 represents its present value. Equation (9) can be
derived as follows. Using Eq. (10), the left-hand side of
Eq. (7) can be expressed as

H2 − Ḣ
H2

0

¼ ð2þ qÞ
�
H
H0

�
2

: ð11Þ

Substituting Eq. (11) into Eq. (7) and then taking the
present value, we obtain Eq. (9).
In general relativity, four density parameters satisfy the

relation Ωm þΩr þ Ωk þ ΩΛ ¼ 1. In this case, Eq. (9)
reads

q0 ¼
1

2
Ωm þ Ωr −ΩΛ: ð12Þ

Equation (12) indicates that q0 can take a negative value
only when ΩΛ > Ωm=2þΩr. When ΩΛ ¼ 0, q0 is neces-
sarily positive, which implies the decelerating expansion of
the current universe.
In our theory, the result differs from general relativity.

The sum of the four density parameters, Ωm þΩr þ
Ωk þΩΛ, does not necessarily equal one. Instead,
Eq. (9) should be satisfied. Equation (9) indicates that
q0 can have a negative value if the following relation is
satisfied:

5

2
Ωm þ 3Ωr þ 2Ωk þ ΩΛ < 2: ð13Þ
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In particular, q0 can become negative even when ΩΛ ¼ 0.
For instance, in the case of a matter-dominated universe
where Ωr ¼ Ωk ¼ ΩΛ ¼ 0, q0 is negative if Ωm < 0.8
(This outcome is consistent with a previous study [1]).
Consequently, within the cosmological framework described
by Eq. (7), the present-day expansion of the universe can be
accelerating (q0 < 0), all without the necessity of negative
pressure or a cosmological constant.
An explicit solution for the scale factor aðtÞ was

obtained [1] by assuming a matter-dominated universe
with Ωr ¼ Ωk ¼ ΩΛ ¼ 0. Recently, the same solution was
independently derived in another study [2]. This solution
describes the transition from decelerated to accelerated
expansion. In the subsequent discussion, we will clearly
explain the mechanisms that facilitate this acceleration.
Equation (7) includes a time derivative term, Ḣ, makes it

into a differential equation for the Hubble parameter. When
we solve Eq. (7) for H, we obtain

�
H
H0

�
2

¼Ωm

�
a
a0
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þΩr

�
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−4

þΩk

�
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a0

�
−2

þΩΛ þ ð1−Ωm −Ωr −Ωk −ΩΛÞ
�
a
a0

�
2

: ð14Þ

For convenience, we define the coefficient in Eq. (14) as

Ωeff ≡ 1 −Ωm −Ωr −Ωk − ΩΛ: ð15Þ

Here, the “eff” subscript stands for “effective,” and its
significance will become clear shortly.
Remarkably, Eq. (14) is an exact solution to Eq. (7). This

can be readily confirmed as follows: By differentiating
Eq. (14) with respect to t and subsequently dividing the
result by −2H, we obtain

−
Ḣ
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0

¼ 3

2
Ωm

�
a
a0

�
−3

þ 2Ωr

�
a
a0

�
−4

þΩk

�
a
a0

�
−2

− Ωeff

�
a
a0

�
2

: ð16Þ

We find that the sum of Eqs. (14) and (16) is equal to
Eq. (7). Thus, Eq. (14) is an exact solution to Eq. (7).
Equation (14) is a generalization of the Friedmann

equation, augmented by an additional term, Ωeffða=a0Þ2.
This term is characterized by the exponent 2, a value
uniquely determined as a consequence of Eq. (7). Referring
to Eq. (3), we can deduce that 2 ¼ −3ð1þ ωÞ, which leads
to the conclusion that ω equals −5=3. Consequently, the
term Ωeffða=a0Þ2 effectively takes on the role of dark
energy with ω ¼ −5=3. Its density parameter is given
by Ωeff ≡ 1 −Ωm −Ωr −Ωk − ΩΛ.
Let us provide some clarifications here. First, the energy

density ρ is composed of matter (m) and radiation (r), as
explicitly shown in Eq. (2). The extra term Ωeffða=a0Þ2 in

Eq. (14) effectively serves the role of dark energy, despite
the absence of dark energy as an independent physical
entity. Instead, it behaves analogously to dark energy. This
perspective differs notably from the one in general rela-
tivity, where dark energy is conventionally regarded as an
actual physical entity. Second, the parameter ω for the
effective component is uniquely determined as −5=3. This
value is not arbitrary. We will provide another straight-
forward derivation for ω ¼ −5=3 in Sec. III.

III. ANOTHER DERIVATION FOR ω= − 5=3
As pointed out in Ref. [2], our gravitational field

equation proposed in Ref. [1] can be expressed as

∇ρKμν þ∇μKνρ þ∇νKρμ

−
1

6
ðgμν∂ρ þ gνρ∂μ þ gρμ∂νÞK ¼ 0; ð17Þ

where K ≡ Kμ
μ and the tensor Kμν is defined by

8πGKμν ≡ Rμν −
1

2
Rgμν þ Λgμν − 8πGTμν: ð18Þ

Without loss of generality, we can absorb the cosmo-
logical term Λgμν in Eq. (18) into the definition ofKμν. This
is because the cosmological terms vanish in Eq. (17). This
implies that Λ in Eq. (18) is an integration constant. For the
sake of convenience, we will employ the definition of
Eq. (18). Equation (17) represents that the tensor Kμν is a
divergence-free gradient conformal Killing tensor [2].
Indeed, Eq. (17) guarantees ∇μKμ

ν ¼ 0. One can easily
check it by contracting arbitrary two indices of Eq. (17).
From Eq. (18), using ∇μKμ

ν ¼ 0 and the Bianchi identity,
we obtain the conservation law ∇μTμ

ν ¼ 0.
The tensor Kμν defines the right-hand side of Eq. (18). In

the present case where the universe is assumed to be
isotropic and spatially homogeneous, the components of
the tensor Kμν can be expressed as

Kμ
ν ¼ diagð−ρeffðtÞ; peffðtÞ; peffðtÞ; peffðtÞÞ ð19Þ

and its trace is

K ≡ Kμ
μ ¼ −ρeffðtÞ þ 3peffðtÞ: ð20Þ

The conservation law ∇μKμ
ν ¼ 0 gives

0 ¼ −∇μKμ
0 ¼ ρ̇eff þ 3

ȧ
a
ðρeff þ peffÞ: ð21Þ

General relativity corresponds to the special case
where ρeff ¼ peff ¼ 0.
Equation (18) is the same form of the Einstein equation

with the substitution Tμν → Tμν þ Kμν. Consequently,
Eq. (18) can be formulated as the Friedmann equations:
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¼ 8πG
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ðρm þ ρr þ ρeffÞ −
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þ Λ
3
; ð22Þ

ä
a
¼ −

4πG
3

ðρm þ 2ρr þ ð1þ 3ωÞρeffÞ þ
Λ
3
; ð23Þ

where we have used pm ¼ 0, pr ¼ ρr=3, and peff ≡ ωρeff .
Substituting Eqs. (22) and (23) into Eq. (2), we obtain

ð5þ 3ωÞρeffðtÞ ¼ 0: ð24Þ

This gives ω ¼ −5=3. Thus, the parameter ω≡ peff=ρeff is
not arbitrary and is uniquely determined to be −5=3. Using
Eq. (21), we obtain the relation:

ρeffðtÞ ¼ ρeff;0

�
a
a0

�
2

; ð25Þ

where ρeff;0 represents the value at the present time. Thus,
ρeff and peff can be regarded as the energy density and
pressure for effective dark energy, respectively. Dividing
Eq. (25) by H2

0, we find that it represents the last term in
Eq. (14) with Ωeff ≡ ρeff;0=H2

0. Once Eq. (25) is compre-
hended, we can employ Eqs. (22) and (23) as gravitational
field equations.
What we have shown above is that Eq. (2), where dark

energy is absent, is equivalent to Eqs. (22)–(25), where
dark energy with ω ¼ −5=3 is included. This implies that
we have two equivalent descriptions as follows.
The first description corresponds to the case in which we

use only Eq. (2) and do not utilize the Friedmann
equations (22)–(25). In this case, the energy density ρ
consists of matter and radiation, ρ ¼ ρm þ ρr. The energy
density for the effective component ρeff does not appear.
Consequently, in this description, the concept of dark
energy is absent and unnecessary. Using this first descrip-
tion, an expanding solution for the scale factor was
discovered in a matter-dominated universe in Ref. [1].
The second description is the case in which we use the

Friedmann equations (22)–(25). In this case, the effective
dark energy emerges. For practical applications, this second

description is convenient because the Friedmann equations
are widely recognized. However, the dark energy derived
here should not be interpreted as an independent physical
entity; it only emerges in the second description. In the first
description, where Eq. (2) is the sole equation in use, dark
energy is absent.
These two descriptions are physically equivalent. While

the second description (where dark energy appears) is
practically convenient, at least in principle, we can choose
only the first description (where dark energy is absent).
Therefore, dark energy derived here is an effective concept
in the sense that it depends on the chosen descriptions. In
contrast, for example, matter and radiation represent real
physical entities, and they necessarily appear in both the
first and second description.
For practical cosmological applications, we can choose

the second description and begin with Eq. (14) as follows.
The additional term Ωeffða=a0Þ2 vanishes as Ωeff
approaches zero. Consequently, when Ωeff gets very close
to zero, Eq. (14) simplifies to the standard Friedmann
equation with no dark energy. However, if Ωeff assumes a
small but nonzero value, it leads to deviations from
standard cosmology. Furthermore, there is an even more
intriguing possibility that Ωeff could assume a significant
value with vanishing cosmological constant.
In Sec. IV, we will investigate the cosmological impli-

cations of both small and large values of Ωeff .

IV. COSMOLOGICAL IMPLICATIONS

For cosmological applications, we begin with Eq. (14). It
is convenient to express Eq. (14) in terms of redshift:

�
HðzÞ
H0

�
2

¼ Ωmð1þ zÞ3 þΩrð1þ zÞ4 þΩkð1þ zÞ2

þΩΛ þ Ωeffð1þ zÞ−2; ð26Þ

where aðtÞ=a0 ¼ 1=ð1þ zÞ. The five density parameters
satisfy Eq. (15). It is also convenient to consider the
quantity, HðzÞ=ð1þ zÞ ¼ ȧðtÞ=a0, and its derivative.
From Eq. (26), we obtain

HðzÞ
1þ z

¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ þΩrð1þ zÞ2 þ Ωk þ ΩΛð1þ zÞ−2 þ Ωeffð1þ zÞ−4

q
; ð27Þ

and its derivative with respect to z as

d
dz

�
HðzÞ
1þ z

�
¼ H0

1
2
Ωm þ Ωrð1þ zÞ − ΩΛð1þ zÞ−3 − 2Ωeffð1þ zÞ−5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ þ Ωrð1þ zÞ2 þ Ωk þΩΛð1þ zÞ−2 þΩeffð1þ zÞ−4
p : ð28Þ

Here, the left-hand side of Eq. (28) is calculated as

d
dz

�
HðzÞ
1þ z

�
¼ Ḣð1þ zÞ=ż −H

ð1þ zÞ2 ; ð29Þ
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where dot denotes the time derivative. Substituting
ż ¼ −ð1þ zÞH into Eq. (29) and using Eq. (10), we obtain
a useful formula:

d
dz

�
HðzÞ
1þ z

�
¼ HðzÞqðzÞ

ð1þ zÞ2 : ð30Þ

Here, q represents a deceleration parameter defined by
Eq. (10). From Eq. (30), we can see that the derivative,
dðHðzÞ=ð1þ zÞÞ=dz, approaches H0q0 as z → 0.

Equation (30) indicates that when we plot HðzÞ=ð1þ zÞ
as a function of z, the slope is positive for decelerating
expansion ðH > 0; q > 0Þ, and negative for accelerating
expansion ðH > 0; q < 0Þ. The point where the transition
from decelerating to accelerating expansion occurs corre-
sponds to Eq. (30) becoming zero. Although this can be
easily deduced from the relation HðzÞ=ð1þ zÞ ¼ ȧ=a0,
Eqs. (27)–(30) are convenient because they are expressed in
terms of Ω’s and z.
SubstitutingEqs. (27) and (28) intoEq. (30),we can express

the deceleration parameter qðzÞ in terms of Ω’s as follows:

qðzÞ ¼
1
2
Ωmð1þ zÞ3 þ Ωrð1þ zÞ4 −ΩΛ − 2Ωeffð1þ zÞ−2

Ωmð1þ zÞ3 þ Ωrð1þ zÞ4 þ Ωkð1þ zÞ2 þ ΩΛ þ Ωeffð1þ zÞ−2 : ð31Þ

The present deceleration parameter, denoted as q0, can
be obtained by substituting z ¼ 0 into Eq. (31):

q0 ¼
1

2
Ωm þΩr − ΩΛ − 2Ωeff : ð32Þ

In general relativity where Ωeff ¼ 0, Eq. (32) simplifies
to q0 ¼ Ωm=2þΩr − ΩΛ. In our theory, substituting
Ωeff ¼ 1 − Ωm −Ωr − Ωk −ΩΛ into Eq. (32), we obtain
the relation:

q0 ¼
5

2
Ωm þ 3Ωr þ 2Ωk þΩΛ − 2: ð33Þ

This is consistent with Eq. (9).
The transition redshift, denoted by zq, is defined as the

redshift at which the universe undergoes a transition from
decelerating to accelerating expansion. It is determined by
the condition qðz ¼ zqÞ ¼ 0, or equivalently, by the van-
ishing of Eq. (28). Substituting z ¼ zq into Eq. (31), we
obtain the condition that determines zq as

0 ¼ 1

2
Ωmð1þ zqÞ3 þ Ωrð1þ zqÞ4 −ΩΛ

− 2Ωeffð1þ zqÞ−2: ð34Þ

Figure 1 illustrates HðzÞ=ð1þ zÞ as a function of red-
shift. We explore two distinct cosmological models: panel
(a) in Fig. 1 represents the model with ΩΛ ¼ 0.7, while
panel (b) in Fig. 1 illustrates the model with ΩΛ ¼ 0.
The model presented in panel (a) of Fig. 1 assumes a

small value for Ωeff and a large value for ΩΛ ¼ 0.7.
Consequently, this model exhibits relatively minor devia-
tions from the standard ΛCDM model, and the current
accelerating expansion is attributed to the cosmological
constant. Panel (a) in Fig. 1 demonstrates that this model
has the potential to address the Hubble tension problem. In
this model, as described in Fig. 1’s caption, the transition
redshift zq has a larger value than the ΛCDM value of

zq ≃ 0.68. Additionally, the current deceleration parameter
jq0j exceeds the ΛCDM value of jq0j ≃ 0.55.
This model appears to address the Hubble tension.

However, it does not resolve the coincidence problem
associated with the cosmological constant. While the
energy density of matter follows ρm ∝ a−3, Λ remains
constant. These two components, matter and Λ, represent
distinct physical entities that are independent of each other.
Nevertheless, Λmust be adjusted to beΩΛ ∼Ωm ∼Oð1Þ as
an initial condition. The necessity for such tuning is
theoretically unsatisfactory, leading us to consider the
second model.
The model presented in panel (b) of Fig. 1 assumes

ΩΛ ¼ 0. In this model, only matter exists as an independent
physical entity. The effective component Ωeff is given by
Ωeff ¼ 1 − Ωm in the present case, and hence it is not
independent of Ωm. Indeed, if we choose the first descrip-
tion mentioned in Sec. III in which only Eq. (2) is used,
Ωeff does not appear. Only Ωm is a unique independent
component. Consequently, the coincidence problem is
resolved in this model; there is no need for any tuning.
Theoretically, this presents an advantage compared to
model shown in panel (a).
Panel (b) in Fig. 1 indicates that this model also has the

potential to address the Hubble tension problem. While the
transition redshift zq has a similar value to that of ΛCDM,
the value of HðzÞ=ð1þ zÞ might appear small at z ∼ 0.6,
resulting in large values of jq0j. At present, however, there
still remains a large uncertainty in the observational values.
Figure 2 illustrates the deceleration parameter qðzÞ as a

function of redshift. This figure demonstrates that the
behavior of qðzÞ for model (b) with ΩΛ ¼ 0 differs from
that of ΛCDM. Once the values q0 and zq will be precisely
determined by future observations, it could potentially help
in distinguishing between model (b) and ΛCDM.
Finally, using Eq. (26) and following Ref. [15], we can

derive the expression for the luminosity distance dLðzÞ of
an observed source:
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dLðzÞ ¼
1þ z
H0

ffiffiffiffiffiffi
Ωk

p sinh

� ffiffiffiffiffiffi
Ωk

p Z
1

1
1þz

dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
�
; ð35Þ

FIG. 1. The HðzÞ=ð1þ zÞ (in km s−1 Mpc−1) is plotted as a function of redshift. In all cases, Ωk ¼ Ωr ¼ 0 is assumed. In both panels
(a) and (b), two solid curves represent the ΛCDMmodel with Ωm ¼ 0.3,ΩΛ ¼ 0.7. The Hubble constant,H0 ¼ 100h km s−1 Mpc−1, is
assumed to be h ¼ 0.67 for the lower solid curve (blue), and h ¼ 0.73 for the upper solid curve (orange), respectively. The four dashed
curves in both panels represent the cases including the effective dark energy defined by Ωeff ≡ 1 − Ωm − ΩΛ: panel (a) represents the
case with ΩΛ ¼ 0.7, and panel (b) represents the case with ΩΛ ¼ 0. The blue point with bar at z ¼ 0 represents H0 ¼ 73.0�
1.0 km s−1 Mpc−1 obtained from the local distance measurements [13], while the red point with bar at z ¼ 0 represents
H0 ¼ 67.4� 0.5 km s−1 Mpc−1 obtained from the Planck CMB data [14]. The slope of the curves at z ¼ 0 represents H0q0. The
points on the curves at z ∼ 0.6 represent the cosmological transition point from decelerating to accelerating expansion. Using Eqs. (33)
and (34), we obtain q0 ¼ −0.55 and zq ≃ 0.67 for the two solid curves in both panels. In panel (a), for the four dashed
curves with Ωm ¼ ð0.23; 0.25; 0.27; 0.29Þ, we obtain q0 ¼ ð−0.725;−0.675;−0.625;−0.575Þ and zq ¼ ð0.86; 0.80; 0.75; 0.70Þ. In
panel (b), for the four dashed curves with Ωm ¼ ð0.23; 0.25; 0.27; 0.29Þ, we obtain q0 ¼ ð−1.425;−1.375;−1.325;−1.275Þ and
zq ¼ ð0.68; 0.64; 0.61; 0.58Þ.
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which can be used for any Ωk. For Ωk ¼ Ωr ¼ 0, the
expression is given by

dLðzÞ ¼
1þ z
H0

Z
1

1
1þz

dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmx−3 þΩΛ þ ð1 − Ωm −ΩΛÞx2

p ;

ð36Þ

where the Ω’s satisfy the relation, 5Ωm=2þΩΛ ¼ 2þ q0.
Figure 3 illustrates the Hubble constant-free luminosity

distance, log10ðH0dLðzÞÞ, as a function of redshift. This

figure demonstrates that even if ΩΛ ¼ 0, our model for
Ωm ≤ 0.5 can be distinguished from the decelerating
Einstein–de Sitter model. This suggests that a model with
Λ ¼ 0 can be a viable cosmological model to describe the
present-day universe.

V. SUMMARY AND CONCLUSIONS

We have demonstrated that the recently derived evolu-
tion equation for the scale factor, Eq. (2), with no dark
energy, is equivalent to the standard Friedmann equation

FIG. 2. The deceleration parameter qðzÞ is shown as a function of redshift. In all cases,Ωk ¼ Ωr ¼ 0 is assumed. The dotted curve and
the four dashed curves represent our models including effective dark energy defined byΩeff ≡ 1 − Ωm − ΩΛ: the dotted curve represents
the model (a) with ΩΛ ¼ 0.7, and the four dashed curves represent the model (b) with ΩΛ ¼ 0. The solid curve (blue) represents the
ΛCDM with Ωm ¼ 0.3 and ΩΛ ¼ 0.7. The solid line (orange) represents the Einstein–de Sitter model. The points where each curve
crosses the horizontal z axis represent the transition redshift zq from decelerating to accelerating expansion. The points at z ¼ 0

represent the present-time value of the deceleration parameter q0.

FIG. 3. The Hubble constant-free luminosity distance, log10ðH0dLÞ, is plotted as a function of redshift. In all cases, Ωk ¼ Ωr ¼ 0 is
assumed. All curves correspond to those shown in Fig. 2. The dotted curve and the dashed curves for Ωm ≤ 0.5 can be distinguished
from the Einstein–de Sitter model.
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which includes a specific type of dark energy.
Consequently, there is no need to assume the existence
of dark energy as a separate physical entity. The effective
dark energy derived in this work is characterized by an
equation of state parameter, ω ¼ −5=3, which is solely
determined by the gravitational field equation (2).
As depicted in Fig. 1, our findings demonstrate that

when the effective dark energy (Ωeff ≡ 1 − Ωm −ΩΛ) is
present in a moderate amount, typically around 5% of the
total energy density, it holds the potential to resolve the
Hubble tension issue. Furthermore, even if the effective
dark energy is dominant, typically around 70% of the total
energy density with Λ ¼ 0, it still holds the potential to
address the Hubble tension. The latter case resolves the
coincidence problem related to the cosmological constant,
because only Ωm is a unique independent component. This

is theoretically an advantage than the models with nonzero
Λ. As shown in Fig. 2, the effective dark energy influences
the deceleration parameter qðzÞ and the transition redshift
zq. Precisely determining these parameters could help in
distinguishing whether the energy density of effective dark
energy is zero or nonzero.

Note added. While completing this paper, the author
received a paper by C. A. Mantica and L. G. Molinari [2]
which also reports that an equation of state parameter for
the additional component is determined to be −5=3.
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