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The theory of entropic gravity conjectures that gravity emerges thermodynamically rather than being a
fundamental force. One of the main criticisms of entropic gravity is that it would lead to quantum massive
particles losing coherence in free fall, which is not observed experimentally. This criticism was refuted in
Schimmoller et al. [Phys. Rev. Res. 3, 033065 (2021)], where a nonrelativistic master equation modeling
gravity as an open quantum system interaction demonstrated that in the strong coupling limit, coherence
could be maintained and reproduce conventional free-fall dynamics. Moreover, the nonrelativistic master
equation was shown to be fully compatible with the qBounce experiment for ultracold neutrons. Motivated
by this, we extend these results to gravitationally accelerating Dirac fermions. We achieve this by using the
Dirac equation in Rindler space and modeling entropic gravity as a thermal bath thus adopting the open
quantum systems approach as well. We demonstrate that in the strong coupling limit, our entropic gravity
model maintains quantum coherence for Dirac fermions. In addition, we demonstrate that spin is not
affected by entropic gravity. We use the Foldy-Wouthysen transformation to demonstrate that it reduces to
the nonrelativistic master equation, supporting the entropic gravity hypothesis for Dirac fermions. Also, we
demonstrate how antigravity seemingly arises from the Dirac equation for free-falling antiparticles but use
numerical simulations to show that this phenomenon originates from zitterbewegung thus not violating the
equivalence principle.
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I. INTRODUCTION

One of the greatest challenges in modern physics is
arguably the unification of gravity and quantum mechanics.
Due to the enormous theoretical and experimental success
of quantizing three of the four fundamental forces, it is
widely assumed that gravity can be quantized as well.
However, current hypothetical theories of quantum gravity
are plagued with a multitude of problems. This motivates
the development of alternative theories of gravity, with
entropic gravity being one of them.
Verlinde’s theory of entropic gravity [1] proposes that

gravity is an entropic force that arises as a consequence of
a system moving toward the direction of maximal entropy,
essentially making gravity a thermodynamically emergent,
rather than a fundamental, force. If true, this theory would
topple the long-standing cherished assumption that gravity
has a quantum origin. However, this theory has been
criticized for various reasons [2–5], with one of the most

prominent criticisms being that entropic gravity would
couple too strongly and thus destroy quantum coherence
[5]. This argument, however, was refuted in [6], where a
nonrelativistic decoherence-free entropic gravity (DFEG)
Lindblad master equation was proposed that modeled
entropic gravity as an external reservoir coupled to a
massive particle with a free dimensionless coupling con-
stant σ [[6], Eq. (5)]. The DFEG model predicts that in the
strong coupling limit σ → ∞, quantum coherence was still
maintained while also recovering Newtonian gravity. This
was further supported with an entropic gravity interpreta-
tion of the qBounce experiment [[6], Eq. (18)], and dem-
onstrating that the DFEG model reproduced the results of
the qBounce experiment [7] for ultracold neutrons as long as
the coupling constant σ ≳ 250.
In this paper, emboldened by the success of the non-

relativistic theory, we extend the DFEG to Dirac fermions.
Our motivation is based on the simple fact that neutrons, a
primary subject for experimental gravitational studies, are
spin half fermions which are best described by the Dirac
equation. Simultaneous description of gravity and Dirac
fermions is currently best captured in the ad hoc formalism
of quantum physics in curved spacetime; thus, a Dirac
DFEG model employing this formalism would provide a
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deeper insight into entropic gravity. We find that spin is not
changed in our Dirac DFEGmodel; thus our model does not
conflict with the weak equivalence principle.
As explained in [5] and demonstrated in [6], the theory

of entropic gravity allows for gravity to be modeled as an
external thermal reservoir and its interaction with massive
particles can be modeled as an open quantum system. To
this end, we model entropic gravity by utilizing the theory
of open quantum systems via the Lindblad master equation
approach. The sheer versatility and success of the Lindblad
master equation in nonrelativistic open quantum systems
is exemplified by the breadth of applications such as in
quantum information [8–10], condensed matter physics
[11–13], quantum to classical transition [14–19], and even
the study of quark-gluon plasmas [20,21]. The theory of
open quantum systems also provides a natural framework
for studying quantum decoherence, particularly gravita-
tional decoherence [22–27] (see Ref. [19] for a thorough
review); thus this framework is ideal for our work in
studying decoherence in Dirac fermions.
The obtained Dirac DFEG model is physically validated

by the fact that in the nonrelativistic limit, it reduces to the
aforementioned nonrelativistic DFEG model [6]. Since
the latter is compatible with the qBounce experiment, so is
the Dirac model.
The rest of the paper is organized as follows: In Sec. II, for

completeness and self-consistency, we rederive the geometry
of physics in accelerated frames, which we use to derive the
Dirac equation in Rindler space. In Sec. III, we derive the
Ehrenfest theorems for the Dirac equation in the Rindler
space and discuss antigravity which automatically follows
for antiparticles. We use numerical simulations to show that
this anti-gravity phenomenon originates from zitterbewe-
gung and that the equivalence principle is not violated. Then
in Sec. IV, we use the Dirac equation in Rindler space (2.43)
from Sec. II and the Ehrenfest theorems from Sec. III to
formulate the DFEG master equation for Dirac fermions
(4.19), which is the main result of this work.We demonstrate
that by increasing the coupling constant σ, the master
equation (4.19) can achieve arbitrarily low decoherence
and reduces to the Dirac equation in a linear gravitational
potential in the σ → ∞ limit. In addition, we show that the
spin is preserved by entropic gravity. In Sec. V, we choose
and rederive the boundary conditions from Ref. [28] which
will be used to model the qBounce experiment and give some
insight into the difficulty of formulating boundary conditions
for the Dirac equation. In Sec. VI, we relativistically model
the qBounce experiment using the Ehrenfest theorems of the
Dirac equation in Rindler space and the adopted boundary
condition. We then use the results of Sec. IV to construct the
relativistic DFEG master equation for the qBounce experi-
ment. In Sec. VII, we demonstrate that in the nonrelativistic
limit, our relativistic results correctly reduce to their non-
relativistic counterparts in [6]. In Appendix A, we prove that
our entropic gravity model is decoherence-free. In

Appendix B, we solve the Dirac equation in Rindler space
to find its spin-dependent energy levels and eigenspinors.
Then in Appendix C, we calculate the normalization
constant. We also provide a brief discussion of the nature
of spin-gravity coupling and recent experiments on it.
Throughout this paper, we adopt the usual Einstein

summation convention with Greek indices running from
the temporal and spatial indices 0–3 and Latin indices
running only the spatial indices 1–3, unless stated other-
wise. The binary operations ½·; ·� and f·; ·g denote the
commutator and anticommutator, respectively. We use
the “mostly negative” metric signature ðþ;−;−;−Þ and
denote the Minkowski and curved metrics as ημν and
gμν ≡ gμνðxÞ, respectively. We let 1n and σi denote the n ×
n identity and 2 × 2 Pauli matrices, respectively. Unless
stated otherwise, we use the 4 × 4 gamma matrices γμ in the
Dirac representation

γ0 ¼
�
12 0

0 −12

�
; γi ¼

�
0 σi

−σi 0

�
; ð1:1Þ

which obeys the Clifford algebra in Minkowski space

fγμ; γνg ¼ 2ημν: ð1:2Þ

Then we have γ5 ¼ iγ0γ1γ2γ3, αi ¼ γ0γi, and β ¼ γ0. We
choose the z-direction for our linear equations.

II. QUANTUM PHYSICS
IN ACCELERATED FRAMES

We begin with a rederivation of the geometry of physics
in an accelerated frame that will be used to derive the spin
connection in an accelerated frame. Then we proceed to
derive the Dirac equation in an accelerated frame. We shall
show that by various coordinate transformations, the metric
and coordinates we derive are equivalent to previous
formulations. The results developed in this section provide
the necessary background for formulating the entropic
gravity model for Dirac fermions.

A. Rindler space

The qBounce experiment [7] measured the effect of Earth’s
gravity on ultracold neutrons by using gravity resonance
spectroscopy to induce transitions between the quantum
states of the bouncing ball via a vibrating mirror. In the
nonrelativistic regime, this is physically modeled as a
neutron bouncing in the z-direction on a fixed surface
due to the influence of a linear gravitational potential mgẑ,
where g is the gravitational acceleration near Earth’s
surface. To get the particle to “bounce,” one imposes the
Dirichlet boundary condition and finds that the energy
levels of the bouncing particle are proportional to the Airy
function zeros [29].
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In our relativistic interpretation of the qBounce experi-
ment, we imagine a relativistic massive Dirac fermion
moving with uniform acceleration in the z-direction under
the influence of the Earth’s gravity, hitting a vibrating
mirror, and achieving a similar “bouncing ball” state
[30,31]. This means that we are working with accelerated
frames, and thus we cannot simply use the usual Dirac
equation in Minkowski space since this equation is only
valid for inertial frames. Hence, following Refs. [32,33],
we return to the geometric foundations and rederive
the appropriate metric tensor gμν to describe physics in
accelerated frames.
Suppose that in an inertial frame with Minkowski

coordinates xμ
0 ¼ ðx00 ; x10 ; x20 ; x30 Þ, an observer moves with

an arbitrary, finite proper three-acceleration aðτÞ para-
metrized by their proper time τ. Additionally, let uμ

0
be

the four-velocity of the observer relative to the inertial
frame. In this inertial frame, the accelerated observer carries
a tetrad frame eαðτÞ such that

e0 ¼ c−1uμ
0
; ð2:1Þ

eμ · eν ¼ ημν; ð2:2Þ

namely, the observer’s basis vectors form a rest frame at
each instant, and the tetrads are orthonormal, respectively.
We also demand that the tetrads be nonrotating in the sense
that only the timelike plane of the four-velocity and four-
acceleration is rotated while all other planes are excluded
from rotation [32]. Then the orthonormal tetrad frame eα is
Fermi-Walker transported according to

deα
dτ

¼ Ω · eα; ð2:3Þ

where

Ωμν ¼ ðaμuν − aνuμÞ
c2

ð2:4Þ

is the antisymmetric rotation tensor with aμ being the
observer’s four-acceleration. Now let zμ

0 ðτÞ be the displace-
ment vector from the inertial frame to the observer’s
position PðτÞ. At each point PðτÞ on the observer’s
worldline, let the observer have the spacelike basis vectors
ei0 , and then these spacelike basis vectors define a spacelike
hyperplane with the spatial components of the tetrad being
ei0 ¼ ei [32]. We then use the spatial tetrads ei to construct
the observer’s “local coordinates” xμ ¼ ðx0; x1; x2; x3Þ at
the origin where xi ≡ x are the Cartesian coordinates in the
hyperplane and x0 ≡ ct≡ cτ [32,33]. Then each event on
the hyperplane has coordinates

xμ
0 ðτÞ ¼ xiðeiðτÞÞμ0 þ zμ

0 ðτÞ: ð2:5Þ

Suppose now the observer moves in the x3-direction with
uniform acceleration a ¼ ð0; 0; gÞ and x1

0 ¼ x2
0 ¼ 0 in the

inertial frame. Then the observer’s four-velocity and four-
acceleration, relative to the inertial frame, satisfy

uμ
0
uμ0 ¼ c2; aμ

0
aμ0 ¼ −g2; uμ

0
aμ0 ¼ 0: ð2:6Þ

The third equation in Eq. (2.6) implies that a0
0 ¼ 0 in the

observer’s rest frame, i.e., e0 ¼ c−1uμ
0
at that instant.

Solving Eq. (2.6) for x0
0
and x3

0
yields

x0
0 ¼ c2

g
sinh ðgτ=cÞ; x3

0 ¼ c2

g
cosh ðgτ=cÞ; ð2:7Þ

and then the displacement vector is

zμ
0 ðτÞ ¼

�
c2

g
sinhðgτ=cÞ; 0; 0; c

2

g
coshðgτ=cÞ

�
: ð2:8Þ

To find the tetrad basis carried by the observer, we note that
since e1 and e2 are invariant under Lorentz transformations
in the x3-direction, e1 ¼ e10 and e2 ¼ e20 must be the unit
basis vectors. Since e0 ¼ c−1uμ

0
, we use the orthonormality

(2.2) and nonrotating conditions to find that e3 ¼ g−1aμ
0
;

namely, e3 is parallel to the acceleration. Thus the tetrad
basis carried by the observer is [32]

ðe0Þμ0 ¼ ðcosh ðgτ=cÞ; 0; 0; sinh ðgτ=cÞÞ;
ðe1Þμ0 ¼ ð0; 1; 0; 0Þ;
ðe2Þμ0 ¼ ð0; 0; 1; 0Þ;
ðe3Þμ0 ¼ ðsinh ðgτ=cÞ; 0; 0; cosh ðgτ=cÞÞ: ð2:9Þ

It can be shown that tetrads (2.9) are nonrotating and
obey conditions (2.1) and (2.2). By using Eq. (2.5) with
vector (2.8) and tetrads (2.9), we get the components of xμ

0
,

x0
0 ¼

�
x3 þ c2

g

�
sinhðgτ=cÞ;

x1
0 ¼ x1;

x2
0 ¼ x2;

x3
0 ¼

�
x3 þ c2

g

�
coshðgτ=cÞ; ð2:10Þ

with the Minkowski line element
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ds2 ¼ ημ0ν0dxμ
0
dxν

0

¼
�
1þ gx3

c2

�
2

ðdx0Þ2 − ðdx1Þ2 − ðdx2Þ2 − ðdx3Þ2:

ð2:11Þ

If we now define the new timelike and spacelike comoving
coordinates

v ¼ gτ
c
; u ¼ x3 þ c2

g
; ð2:12Þ

respectively, we get

x0
0 ¼ u sinhðvÞ;

x1
0 ¼ x1;

x2
0 ¼ x2;

x3
0 ¼ u coshðvÞ; ð2:13Þ

where v ¼ artanhðx00=x30 Þ with u∈ ½0;∞Þ and v ∈
ð−∞;∞Þ. These new comoving coordinates xμ ¼
ðv; x1; x2; uÞ are the famous Rindler coordinates and due
to the bounds on u and v, we are specifically working with
the right Rindler wedge in Minkowski space [31,34]. The
trajectory of the uniformly accelerated observer is then

ðx30 Þ2 − ðx00 Þ2 ¼ u2 ¼
�
x3 þ c2

g

�
2

: ð2:14Þ

Thus the observer’s worldline is a hyperbola in Minkowski
space [31,32]. The Minkowski line element in the Rindler
coordinates is

ds2 ¼ gμνdxμdxν

¼ u2dv2 − ðdx1Þ2 − ðdx2Þ2 − du2; ð2:15Þ

which gives the Rindler space metric tensor

gμν ¼ diagðu2;−1;−1;−1Þ: ð2:16Þ

To aid our work in the next subsection, we find the tetrads eα
in terms of the Rindler coordinates (2.13). Using the Rindler
metric (2.16) and the orthonormality relation

eμ · eν ¼ gμν; ð2:17Þ

we find that

ðe0Þμ ¼ u−1δμ0; ðeiÞμ ¼ δμi ; ð2:18Þ

where δμν is the Kronecker delta function.
It should be noted that coordinates (2.13) are the original

Rindler coordinates [35] while the coordinates (2.10) that

we used to derive the actual Rindler coordinates are called
the Kottler-Møller coordinates [32,36,37]. There exist
many other equivalent coordinate systems for describing
uniform acceleration in Minkowski space that, of course,
also lead to hyperbolic trajectories. Another popular choice
of coordinates describing the dynamics of a uniformly
accelerated observer can be shown by a coordinate trans-
formation on the Rindler position variable u to

u ¼ c2

g
egξ=c

2

; ð2:19Þ

where ξ is a spatial variable, which turns coordinates
(2.13) into

x0
0 ¼ c2

g
egξ=c

2

sinhðgτ=cÞ;

x1
0 ¼ x1;

x2
0 ¼ x2;

x3
0 ¼ c2

g
egξ=c

2

coshðgτ=cÞ; ð2:20Þ

where we have opted to use the explicit form of the Rindler
temporal variable v. This choice (2.20) is called the Radar
or Lass coordinates [38], and it gives the Radar or Lass line
element and metric

ds2¼e2gξ=c
2ðdx0Þ2−ðdx1Þ2−ðdx2Þ2−e2gξ=c

2

dξ2; ð2:21Þ

gμν ¼ diagðe2gξ=c2 ;−1;−1;−e2gξ=c2Þ; ð2:22Þ

respectively (and ultimately the Dirac equation), used in
other literature (see Refs. [30,34,39]). Conversely, one
could start with the spatial Radar coordinate (2.19) and
in the weak gravitational limit, namely, gξ=c2 ≪ 1, expand
the coordinate up to first order egξ=c

2 ¼ 1þ gξ=c2 þ � � � to
get the Kottler-Møller coordinates (2.10) and ultimately the
Rindler coordinates (2.13). At the end of the following
subsection, we explain our rationale for choosing coordi-
nates (2.12) as the preferred Rindler coordinates.

B. Dirac equation in Rindler space

With the geometric preliminaries firmly established, we
now turn our attention to the Dirac equation. Recall that the
(inertial) Dirac equation in Minkowski space is

ðiℏγμ∂μ −mcÞΨ ¼ 0: ð2:23Þ

To incorporate the geometric information encoded in the
Rindler space metric tensor (2.16), we use the minimal
coupling and Einstein equivalence principles [40] on
Eq. (2.23) to get the Dirac equation in curved spacetime [41]
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ðiℏγμR∇μ −mcÞΨ ¼ 0; ð2:24Þ

with the covariant derivative

∇μ ¼ ∂μ þ Γμ; ð2:25Þ

∂μ ≡ ð∂0; ∂1; ∂2; ∂3Þ≡ ð∂v; ∂1; ∂2; ∂uÞ; ð2:26Þ

and spin connection [42,43]

Γμ ¼
1

4
γRν

�
∂γνR
∂xμ

þ Γν
λμγ

λ
R

�
¼ 1

4
γRνDμγ

ν
R; ð2:27Þ

where

γμR ≡ γμRðxÞ ¼ ðeνÞμγν; ð2:28Þ

are the “curved” gamma matrices which obey the curved
Clifford algebra

fγμRðxÞ; γνRðxÞg ¼ 2gμνðxÞ: ð2:29Þ

To express the curved gamma matrices γμR in terms of
the “flat” gamma matrices γμ, we use Eq. (2.28) with
the Rindler tetrads (2.18) and the curved Clifford algebra
(2.29) to get

γ0R ¼ 1

u
γ0; γR0 ¼ uγ0; ð2:30Þ

γiR ¼ γi; γRi ¼ γi: ð2:31Þ

Then the spin connection in Rindler space is

Γμ ¼
�
1

2
γ0γ3; 0; 0; 0

�
; ð2:32Þ

and the Dirac equation in Rindler space is�
iℏγ0∂v þ iℏuγi∂i þ

iℏ
2
γ3 −mcu

�
Ψ ¼ 0: ð2:33Þ

Multiplying by γ0 on the left of Eq. (2.33) and rearranging
terms yields the full Rindler space Dirac equation

iℏ∂vΨ ¼
�
−iℏuαi∂i −

iℏ
2
α3 þ βmcu

�
Ψ≡ ĤRΨ: ð2:34Þ

From the Rindler coordinates (2.12), we deduce that the
Rindler position and momentum operators are

x̂ ¼ ðx̂1; x̂2; ûÞ → x ¼ ðx1; x2; uÞ;
p̂ ¼ ðp̂1; p̂2; p̂uÞ → −iℏ∂i
¼ ð−iℏ∂1;−iℏ∂2;−iℏ∂uÞ; ð2:35Þ

respectively, which obey the canonical commutation
relations

½x̂a; p̂b� ¼ iℏδa;b; ½û; p̂u� ¼ iℏ; a;b¼ 1;2; ð2:36Þ

so the full Rindler Hamiltonian in operator form is

ĤR ¼ αaûp̂a þ α3ûp̂u −
iℏ
2
α3 þ βmcû: ð2:37Þ

Since we are considering linear gravity in the z-direction, we
drop the other directional terms in Eqs. (2.33) and (2.37) to
get the linear Rindler Dirac equation and Hamiltonian

iℏ∂vΨ ¼
�
−iℏuα3∂u −

iℏ
2
α3 þ βmcu

�
Ψ≡ ĤRΨ; ð2:38Þ

ĤR ¼ α3ûp̂u −
iℏ
2
α3 þ βmcû; ð2:39Þ

respectively.
To express the full Rindler Hamiltonian (2.37) in the

observer’s coordinates, we first use the Rindler coordinates
(2.12) to get the inverse operator transformations

x̂a ¼ x̂a; û ¼ x̂3 þ c2

g
;

p̂a ¼ p̂a; p̂u → −iℏ∂u ¼ −iℏ∂3 → p̂3;

Êv → iℏ∂v ¼
iℏc
g

∂t →
c
g
Êt; ð2:40Þ

and then use the inverse transformations (2.40) on
Hamiltonian (2.37) to get our desired result

ĤG ¼ cα · p̂þ βmc2 þ βmða · x̂Þ þ 1

2c
fða · x̂Þ; ðα · p̂Þg;

ð2:41Þ

where a ¼ ð0; 0; gÞ. Note that Hamiltonian (2.41) is the
nonrotational version of the Hamiltonian in Hehl and Ni
[[33], Eq. (16)]. The linear version of Hamiltonian (2.41) is

ĤG ¼ cα3p̂3 þ βmc2 þ βmgẑþ g
2c

α3fẑ; p̂3g: ð2:42Þ

Since our work is concerned with low energy effects, we
disregard the negligible fourth redshift term in Eq. (2.42),
which leaves us with the low energy gravitational Dirac
Hamiltonian

Ĥg ¼ cα3p̂3 þ βmc2 þ βmgẑ: ð2:43Þ

With the Rindler metric (2.16), the Rindler space Dirac
inner product is
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hΨΩ;s;k⊥ jΨΩ0;s0;k0⊥i ¼
Z
Σ
dΣμ Ψ̄Ω;s;k⊥γ

μ
RΨΩ0;s0;k0⊥

¼ δðΩ −Ω0Þδs;s0δðk⊥ − k0⊥Þ; ð2:44Þ

where dΣμ ¼ dΣnμ is the spatial volume element on the
v ¼ const Cauchy hypersurface Σ, nμ is the unit vector
normal to Σ, s ¼ � is the spin orientation, Ω ¼ ωc=g is the
dimensionless frequency, k⊥ ≡ ka ¼ ðk1; k2; 0Þ is the wave
vector perpendicular to the direction of acceleration, and
Ψ̄Ω;s;k⊥ ¼ Ψ†

Ω;s;k⊥γ
0 is the adjoint spinor [34,39,41].

It is worth mentioning that had we derived Hamiltonian
(2.41) in the context of a rotating frame with rotation
frequency ωðτÞ, we would introduce the rotation-angular
momentum coupling term −ω · Ĵ in Hamiltonian (2.41)
which represents the coupling of the frame’s rotation ωðτÞ
to the observer’s total angular momentum Ĵ ¼ L̂þ S [33].
The rotation-orbital momentum coupling ω · L̂ creates an
effect very reminiscent of the Sagnac effect and induces a
phase shift. This Sagnac-like effect has been experimen-
tally verified for neutrons [44]. The rotation-spin angular
momentum coupling ω · S induces a phase shift smaller
than the Sagnac-like effectω · L̂ and was recently observed
in neutron interferometry experiments [45].
As mentioned previously, the choice of the Rindler

coordinates will lead to slightly different forms of the
Rindler Dirac Hamiltonian, and this is most pronounced
when the Rindler Hamiltonian is brought to its nonrelativ-
istic limit (see, e.g., Refs. [30,34,39,46]). Our choice of
Rindler coordinates (2.12) is desirable due to the fact that
the observer’s local coordinate system (2.10) is what is
actually used in the laboratory [33]. Most importantly, such
a choice of Rindler coordinates leads to Hamiltonian (2.41)
whose terms (along with the rotation-angular momentum
coupling terms) have been experimentally verified for
neutrons. This gives Hamiltonian (2.41), and the method-
ology used in its derivation, both theoretical and exper-
imental validity in accurately modeling the behavior of a
Dirac fermion in noninertial frames. Since our relativistic
interpretation of the qBounce experiment uses Dirac fermions,
we believe that Hamiltonian (2.41), and its linear version
(2.42), is the physically most appropriate choice.

III. ZITTERBEWEGUNG ANTIGRAVITY
AND EHRENFEST THEOREMS

In this section, we derive the Ehrenfest theorems from
the low energy Rindler Hamiltonian (2.43) which will be
used to construct the dissipator that models entropic gravity
in Sec. IV. We provide numerical simulations of the
dynamics of a Dirac fermion with Hamiltonian (2.43)
and its physical interpretation. In addition, we elaborate
on the effect of a zitterbewegung induced antigravity from
our simulations.

To describe the dynamics of a Dirac fermion in a
gravitational potential, it is natural to utilize the Ehrenfest
theorems of the low energy Rindler Hamiltonian (2.43),
which are calculated as [47]

d
dt

hẑi ¼
�
∂Ĥg

∂p̂3

�
¼ chα3i; ð3:1Þ

d
dt

hp̂3i ¼ −
�
∂Ĥg

∂ẑ

�
¼ −mghβi: ð3:2Þ

Unlike the nonrelativistic Ehrenfest theorems for a linear
gravitational potential, Eqs. (3.1) and (3.2) depend on the α3
and β matrices, highlighting the incorporation of antimatter
free-fall dynamics. To see a Dirac fermion’s spin dynamics
under Eq. (2.43), we also calculate its Ehrenfest theorem.
Recall that the 4 × 4 spin observables are

S ¼ ℏ
2
Σ ¼ ℏ

2

�
σ 0

0 σ

�
; ð3:3Þ

which have the commutation relations

½αi; Sj� ¼ iℏεijkαk; ½β; Sj� ¼ 0; ð3:4Þ

where εijk is the Levi-Civita tensor. The first commutation
relation in Eq. (3.4) can be deduced using

½σi; σj� ¼ 2iεijkσk: ð3:5Þ

Then the Ehrenfest theorem is

d
dt

hS3i ¼
1

iℏ
h½S3; Ĥg�i ¼ 0; ð3:6Þ

and thus the spin is conserved. We note that the full Rindler
Hamiltonian (2.42) conserves spin as well.
Using the propagator [48], we numerically solve the

Dirac equation (2.43) to understand fermion’s free-fall
dynamics. We considered three different initial conditions
of the Dirac fermion: positive energy, negative energy, and
mixed energy wave packets. To get the positive energy
initial state, we first take the Gaussian wave packet [see,
e.g., Fig. 2(a) in [47]] centered at zero momentum and
position zinit ¼ 2 (natural units ℏ ¼ c ¼ m ¼ 1 and g ¼ 0.5
are employed) and apply the projector [[47], Eq. (37)] to
eliminate negative energy components (i.e., antiparticles).
The negative energy initial state, entirely made of anti-
matter, is obtained similarly by projecting out the positive
energy components (i.e., matter). The mixed energy state,
centered at the position of z ¼ 2.38, is made in equal
proportions of matter and antimatter. Numerically obtained
time evolution of hβi, hẑi, hp̂3i, and hâ3i ¼ d2hẑi=dt2 are
shown in Figs. 1–3, respectively.
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In the momentum Ehrenfest theorem (3.2), the depend-
ence on hβi superficially seems to suggest that the
equivalence principle is violated. This conundrum is com-
pounded when considering that the sign of hβi for matter
and antimatter is positive and negative, respectively.
However, our numerical simulations reveal that this is
not the case. In Fig. 1, we see that hβi rapidly vanishes for
both matter and antimatter; thus the dependence on hβi in
Eq. (3.2) is effectively negligible especially given the short
timescales. Additionally, in Figs. 2(a) and 3, we see that

both matter and antimatter follow the same dynamics under
the influence of gravity, thus obeying the equivalence
principle.
To fully demystify the results of the mixed energy states

in our simulations, we delve into the internal dynamics of
the Dirac spinor itself. It is known that during time
evolution, the internal degrees of freedom, i.e., matter
and antimatter components, of a Dirac spinor can lead to
nontrivial physical consequences [49–51]. The quantity
that encodes this form of internal dynamics is the Yvon-
Takabayashi angle θ [52,53] which is defined using the
pseudoscalar Θ and scalar Φ bilinear covariant quantities

Θ¼ iΨ̄γ5Ψ¼ 2φ2 sinθ; Φ¼ Ψ̄Ψ¼ 2φ2 cosθ; ð3:7Þ

θ ¼ tan−1
�
Θ
Φ

�
; ð3:8Þ

where the module φ measures the density of the material
distribution [54–56]. Rather than an explicit calculation, we
can infer the value of the Yvon-Takabayashi angle for free-
falling Dirac fermions via the Ehrenfest theorem of γ5
which is

d
dt

hγ5i ¼
1

iℏ
h½γ5; Ĥg�i

¼ 2m
iℏ

ðhc2γ5βi þ hγ5βgẑiÞ; ð3:9Þ

where we used

½γ5; β� ¼ 2γ5β; ½γ5; αi� ¼ 0: ð3:10Þ

Since hγ5i is not conserved, the Yvon-Takabayashi angle is
nonzero and thus the spinor will undergo jittering motion
or zitterbewegung, the interference of the positive and
negative energy states, even in the rest frame [56]. The

(a)

(b)

FIG. 2. Time evolution of the (a) average position and
(b) momentum for matter, antimatter, and a mixture of both.
We see in (a) that the matter and antimatter follow the same
trajectory, as prescribed by the equivalence principle.

FIG. 3. Time evolution of the average acceleration for matter,
antimatter, and a mixture of both. We see that the acceleration for
antimatter aligns with matter, thus demonstrating that antimatter
obeys the equivalence principle.

FIG. 1. Time evolution of hβi for matter, antimatter, and a
mixture of both. We see that hβi rapidly goes to zero for both the
matter and antimatter states.

DECOHERENCE-FREE ENTROPIC GRAVITY FOR A DIRAC … PHYS. REV. D 108, 104036 (2023)

104036-7



zitterbewegung timescale is tzitt ∼ ℏ=ð2mc2Þ, which in the
adopted natural units tzitt ∼ 1=2. We note that tzitt is the
shortest time interval for which the single-particle inter-
pretation of the Diract equation is valid since the corre-
sponding uncertainty in energy ℏ=tzitt ∼ 2mc2 is sufficient
to create an electron-positron pair, thereby entering into the
realm of quantum electrodynamics.
Figures 2(a) and 3 show that the position and acceleration

rapidly fluctuates at the onset of free fall. These oscillations
look as if the gravity and anti-gravity are interchanging.
Such transient effects are due to zitterbewegung because of
the timescale and the fact that the oscillations have the
largest magnitude for the mixed energy state for which the
particle-antiparticle interference is the strongest. We would
like to name this observation as zitterbewegung-induced
antigravity. However, Figs. 2(a) and 3 confirm that for
longer nontransient times both matter and antimatter obey
the equivalence principle.

IV. ENTROPIC GRAVITY FOR DIRAC FERMIONS

In this section, we formulate the DFEG Lindblad master
equation for Dirac fermions. We use the formalism of open
quantum systems and reservoir engineering [57] to con-
struct a reservoir that simulates entropic gravity. We
demonstrate that our DFEG model for Dirac fermions is
decoherence-free and provide a physical analysis of our
results. In addition, we find that entropic gravity does not
affect spin. The results of this section will be crucial in
developing the results in Sec. VI.
Let ρ̂ be the density matrix that represents the state of a

mixture of Dirac fermions. A free-falling Dirac fermion in a
linear gravitational potential

VðẑÞ ¼ βmgẑ ð4:1Þ

is then described by the Liouville equation

dρ̂
dt

¼ −
i
ℏ
½ĤS þ βmgẑ; ρ̂�; ð4:2Þ

ĤS ¼ cα3p̂3 þ βmc2; ð4:3Þ

and its dynamics follow the free-fall Ehrenfest theorems
(3.1) and (3.2) which can be shown using Eq. (4.2) and the
density matrix expectation value

hÔi ¼ Tr½Ô ρ̂�; ð4:4Þ

where Ô≡Oðẑ; p̂3Þ is an arbitrary observable. Equation
(4.2) is the conservative gravity master equation for Dirac
fermions. Quantum coherence is encapsulated by the purity
Tr½ρ̂2�, which is being conserved by Eq. (4.2).
There exists an infinite number of master equations that

satisfy Eqs. (3.1) and (3.2). This means that we can find a
master equation that mimics conservative gravity by

utilizing a dissipator instead of using a potential. By
carefully engineering an environment, a quantum system
can obey the dynamics governed by the Ehrenfest-like
equations [6]

d
dt

hẑi ¼ hAðp̂3Þi;
d
dt

hp̂3i ¼ hBðẑÞi: ð4:5Þ

For our purpose of modeling entropic gravity, we wish to
engineer an environment that simulates the linear gravita-
tional potential (4.1) and follows the dynamics according to
Eqs. (3.1) and (3.2). To achieve that, the paradigm of
operational dynamical modeling (ODM) [58] for spin-1=2
relativistic particles [47] is to be employed.
We use the simplest scenario of a single dissipator

coupled to the closed system of a free Dirac fermion. In
the formalism of open quantum systems theory, the Dirac
fermion’s density matrix ρ̂ evolves according to the
Lindblad master equation [59]

dρ̂
dt

¼ −
i
ℏ
½ĤS; ρ̂� þD½ρ̂�; ð4:6Þ

D½ρ̂� ¼ σ

ℏ

�
Â ρ̂ Â† −

1

2
fÂ†Â; ρ̂g

�
; ð4:7Þ

where the free parameter σ ≥ 0 is the dimensionless
coupling constant that quantifies the coupling strength
and Â≡ Aðẑ; p̂3Þ is the unknown jump operator [57,60,61].
To find the correct choice of Â such that master equation (4.6)
simulates an entropic gravity environment, we insert ẑ and
p̂3 into the Ehrenfest equation

d
dt

hÔi ¼ i
ℏ
h½ĤS; Ô�i þ hD†½Ô�i;

hD†½Ô�i ¼ σ

ℏ
Tr

��
Â†Ô Â−

1

2
fÂ†Â; Ôg

�
ρ̂

�
; ð4:8Þ

and set them equal to Eqs. (3.1) and (3.2), respectively,
which yields

Tr

��
Â† ∂Â

∂p̂3

−
∂Â†

∂p̂3

Â

�
ρ̂

�
¼ 0; ð4:9Þ

Tr

��
Â† ∂Â

∂ẑ
−
∂Â†

∂ẑ
Â

�
ρ̂

�
¼ −

2img
σ

Tr½βρ̂�; ð4:10Þ

where we have used the cyclic invariance property of the
trace operation and

½Aðẑ; p̂3Þ; ẑ� ¼−iℏ
∂Â
∂p̂3

; ½Aðẑ; p̂3Þ; p̂3� ¼ iℏ
∂Â
∂ẑ

: ð4:11Þ

We demand that identities Eqs. (4.9) and (4.10) hold for any
arbitrary initial state, and thus we drop the averaging and get
the following constraint equations for Â:
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Â† ∂Â
∂p̂3

−
∂Â†

∂p̂3

Â ¼ 0; ð4:12Þ

Â† ∂Â
∂ẑ

−
∂Â†

∂ẑ
Â ¼ −

2img
σ

β: ð4:13Þ

Any jump operator Â that satisfies Eqs. (4.12) and (4.13) will
yield Eqs. (3.1) and (3.2) when using Eq. (4.6), thus creating
an entropic gravity environment that simulates the free-fall
dynamics of conservative gravity.
Our choice of Â is narrowed by the fact that Â is not

unique. Other than satisfying Eqs. (4.12) and (4.13), the
choice of jump operator Âmust yield a master equation that
is translationally invariant. This would make the master
equation obey the strong equivalence principle [40] since
the dynamics induced by the homogeneous gravitational
field are independent of the choice of origin. According to
Refs. [62–67], the following form is guaranteed to be
translationary invariant:

Aðẑ; p̂3Þ ¼ e−iCẑhðp̂3Þ; C† ¼ C; ð4:14Þ

where C is a Hermitian matrix. Inserting the ansatz (4.14)
into Eqs. (4.12) and (4.13) yields

ĥ†
dĥ
dp̂3

−
dĥ†

dp̂3

ĥ ¼ 0; ð4:15Þ

ĥ†Cĥ ¼ mg
σ

β: ð4:16Þ

There are many ways to satisfy Eqs. (4.15) and (4.16), but
for our work we choose hðp̂3Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

mgx0
p

14 such that ĥ is a
constant matrix. The value of the characteristic length x0
will be determined in Sec. VII. Then the Hermitian matrix
(4.16) is

C ¼ 1

x0σ
β; ð4:17Þ

and the jump operator is

Aðẑ; p̂3Þ≡ AðẑÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
mgx0

p
e−iβẑ=ðx0σÞ: ð4:18Þ

Finally, the DFEG equation for Dirac fermions is

dρ̂
dt

¼ −
i
ℏ
½cα3p̂3 þ βmc2; ρ̂� þD½ρ̂�; ð4:19Þ

D½ρ̂� ¼ mgx0σ
ℏ

ðe−iβẑ=ðx0σÞρ̂eþiβẑ=ðx0σÞ − ρ̂Þ: ð4:20Þ

We shall refer to master equation (4.19) as the Dirac
DFEG master equation or model. As mentioned before,
the Dirac DFEG model (4.19) is translationally invariant;
hence it obeys the strong equivalence principle.

To verify that our Dirac DFEG model (4.19) reproduces
the conservative gravity model (4.2) in the strong coupling
limit σ → ∞, we expand the exponential in dissipator
(4.20) using the Baker-Campbell-Hausdorff (BCH) for-
mula in the limit σ → ∞ to get

dρ̂
dt

¼ −
i
ℏ
½cα3p̂3 þ βmc2 þ βmgẑ; ρ̂�

þ mg
x0ℏσ

�
ẑβρ̂βẑ −

1

2
fẑ2; ρ̂g

�
þOðσ−2Þ: ð4:21Þ

The Oðσ−2Þ term in Eq. (4.21) quickly vanishes; thus our
Dirac DFEG model (4.19) reproduces the dynamics of a
Dirac fermion subject to a linear gravitational potential,
namely, master equation (4.2).
As proved in Appendix A, the purity equation for the

Dirac DFEG model in the strong coupling limit (4.21) is

d
dt

Tr½ρ̂2� ¼ −
2mg
x0ℏσ

Tr½ρ̂2ẑ2 − ðρ̂βẑÞ2� þOðσ−2Þ; ð4:22Þ

with Tr½ρ̂2ẑ2 − ðρ̂βẑÞ2� ≥ 0. Thus Eq. (4.22) monotonically
decreases as σ → ∞ and larger σ values, i.e., stronger
coupling, can be chosen to preserve more purity, leading to
quantum coherence being maintained. Therefore, our Dirac
DFEG model lives up to its namesake and is decoherence-
free, and thus the argument that entropic gravity destroys
quantum coherence is refuted for Dirac fermions.
If we insert the low energy Hamiltonian (2.43) into the

Dirac DFEG equation in the strong coupling limit (4.21),
we get

d
dt

hĤgi ¼ −
2mgc
x0ℏσ

hα3ẑp̂3ẑi þOðσ−2Þ: ð4:23Þ

We see that the expected energy rate is dependent on the
state due to the position and momentum operators present
in (4.23). This is in stark contrast to the nonrelativistic
DFEG model’s constant expected rate of energy change
gℏ=ð2x0σÞ [[6], Eq. (24)].
To see the spin dynamics in our entropic gravity model

(4.19), we calculate its Ehrenfest theorem. We see that
inserting the spin (3.3) into dissipator (4.20) yields

D½Sj� ¼ D†½Sj� ¼ 0; ð4:24Þ

where we have used Eq. (3.4), so the spin Ehrenfest
theorems are

d
dt

hSji ¼
i
ℏ
h½cα3p̂3 þ βmc2; Sj�i þ hD†½Sj�i

¼ −hε3jkcαkp̂3i; ð4:25Þ

or explicitly,
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d
dt

hS1i ¼ −hcα2p̂3i;
d
dt

hS2i ¼ hcα1p̂3i; ð4:26Þ

d
dt

hS3i ¼ 0: ð4:27Þ

We see from Eqs. (4.24) and (4.27) that the dissipator (4.20)
preserves the spin along the direction of the acceleration.
Thus our entropic gravity model implies that the free-fall
dynamics of spin-1=2 Dirac fermions are the same as
spinless particles; therefore, our model does not conflict
with the equivalence principle. This is in agreement with
recent experiments of the equivalence principle on spin-1=2
atoms which have demonstrated that an atom’s spin [68]
and its orientation [69] does not affect its free-fall dynam-
ics, based on current sensitivity levels.
We end this section by pointing out that while relativistic

dissipative phenomena exist, there currently does not exist
an accepted relativistic Lindblad master equation. Diósi
[70] argued that it might be impossible to construct a
relativistic Lindblad master equation. Nevertheless, there
have been several proposals, such as covariant density
matrix formulations [48,71], which have seen varying
degrees of success in formulating relativistic open quantum
systems. Since we are working in the low energy regime by
using Hamiltonian (2.43), our Dirac DFEG model (4.19) is
a low energy model and is within the range of applicability
of nonrelativistic open quantum systems. Therefore, our
model avoids the ambiguity of relativistic open quantum
systems. We will see later in Sec. VII that our model (4.19)
successfully reduces to the nonrelativistic DFEG model
which makes our master equation (4.19) a satisfactory,
ad hoc model for Dirac fermions.

V. BOUNDARY CONDITION OF BOUNCING
DIRAC FERMION

In this section, we choose the boundary condition from
Ref. [28] and present its rederivation, which will be crucial
in modeling the relativistic qBounce experiment in Sec. VI.
We give the rationale for such a choice along with some
brief insight into the difficulty of imposing boundary
conditions on the Dirac equation.
The boundary condition, modeling the vibrating mirror

in the qBounce experiment, must satisfy two criteria if we are
to relativistically generalize the qBounce Hamiltonian in [6]:
(1) the (relativistic) boundary condition should reduce to
J3ju¼u0 ¼ 0, i.e., a vanishing probability current at the
mirror’s location u0 ensuring that the Dirac fermions are
reflected after hitting the mirror; and (2) the (relativistic)
boundary condition should reduce to the Dirichlet con-
dition in the nonrelativistic limit.
Choosing appropriate boundary conditions that satisfy

the criteria is rather complicated. The most logical choice is
to utilize the Dirichlet condition, as is done for the non-
relativistic linear gravitational potential [29] and the Rindler

space Klein-Gordon equation [72], but imposing the
Dirichlet condition on the Rindler Hamiltonian’s (2.39)
eigenspinors [Eq. (B22) in Appendix B] leads to the trivial
solution when calculating the energy levels [28,30], which
is clearly undesirable. Treading around this problem and
directly using the vanishing probability current condition
J3ju¼u0 ¼ 0 on the eigenspinors leads to the trivial solution
as well [28,30]. The commonly used MIT boundary
condition [73] satisfies our first criterion and also leads
to energy quantization for the Rindler Hamiltonian (2.39)
(see Ref. [30] and Appendix B for the energy levels) but
does not reduce to the Dirichlet condition in the non-
relativistic limit [74]. Thus we rule out the MIT condition.
To avoid these issues and satisfy our criteria, we elect to

utilize the boundary condition in [28] where we model the
mirror as a scalar potential

ϕðzÞ ¼
	
0; z > 0;

V0 ≫ mc2; z ≤ 0;
ð5:1Þ

or in Rindler coordinates,

ϕðuÞ ¼
	
0; u > u0;

V0 ≫ mc2; u ≤ u0;
ð5:2Þ

where u0 ¼ c2=g is the mirror’s location. Incorporating
potential (5.1) essentially amounts to the replacement

mc2 → m̄c2 ¼ mc2 þ V0; ð5:3Þ

at the level of the Lagrangian [28] leading to the Rindler
Hamiltonian (2.37) to instead use the mass term (5.3). We
now closely follow Ref. [28] and rederive the boundary
condition that we will impose on the spinors of the Rindler
Hamiltonian (2.37).
We begin with the derivation of a modified form of the

Rindler Hamiltonian (2.37) from which we find the differ-
ential equation for the spinor. For any positive frequency,
spin-dependent spinor Ψs that satisfies Hamiltonian (2.37),
we use the modified plane wave ansatz [28]

ΨsðxÞ ¼ e−iΩveikxu−1=2ψ sðuÞ; Ω > 0;

x≡ xμ ¼ ðv; x1; x2; uÞ;
x≡ xa ¼ ðx1; x2; uÞ; a ¼ 1; 2;

kx≡ k⊥ · x ¼ −kaxa ¼ k1x1 þ k2x2;

k ¼ jk⊥j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2

q
; ð5:4Þ

where Ω ¼ ωc=g is the dimensionless frequency. Note that
ansatz (5.4) differs from the usual plane wave ansatz (B3) in
Appendix B. Inserting ansatz (5.4) into Eq. (2.33) yields

½Ωγ0 þ =kuþ iuγ3∂u − lu�ψ s ¼ 0; ð5:5Þ
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where =k ¼ kaγa ¼ −ðk1γ1 þ k2γ2Þ and l ¼ m̄c=ℏ. Then
we use another ansatz that decomposes the spatial spinor
ψ s as

ψ sðuÞ ¼ FðuÞUs þGðuÞγ3Us; ð5:6Þ

where the spin-dependent spinor Us obeys

U†
sUs0 ¼ δs;s0 ; γ0Us ¼ Us; =̂kγ3Us ¼ isUs; ð5:7Þ

and =̂k ¼ =k=k [28]. Note that Eq. (5.7) also imply that

U†
sγ3Us ¼ 0: ð5:8Þ

Using the ansatz decomposition (5.6) on Eq. (5.5) then
decouples Eq. (5.5) into

	
D−F − iksG − ið∂uGÞ ¼ 0;

−DþG − iksF þ ið∂uFÞ ¼ 0;
ð5:9Þ

where we have used the linear independence of Us and
γ3Us to decouple F and G and

D� ¼ Ω
u
� l: ð5:10Þ

We can use the first and second equations from Eq. (5.9)
to get

F ¼ i
D−

ð∂u þ ksÞG; ð5:11Þ

G ¼ i
Dþ

ð∂u − ksÞF; ð5:12Þ

respectively, and thus we can findG from F and vice versa.
We choose to focus on F and use identity (5.12) on the first
equation in Eq. (5.9) to get�
∂
2
u −

ð∂uDþÞ
Dþ

ð∂u − ksÞ þDþD− − k2s2
�
F ¼ 0; ð5:13Þ

which we simplify further using

FðuÞ ¼ D1=2
þ fðuÞ; ð5:14Þ

which leads to our desired differential equation

�
∂
2
u þDþD− − k2s2 þ ð∂uDþÞ

Dþ
ksþ ð∂2uDþÞ

2Dþ

−
3ð∂uDþÞ2

4D2þ

�
f ¼ 0: ð5:15Þ

With Eq. (5.15), we can now find the boundary condition
for spinor (5.6) by analyzing the asymptotic behavior of the

function fðuÞ based on the mirror potential (5.2). In the
region u > u0, ϕðuÞ ¼ 0 so m̄ ¼ m and we are left with the
Rindler Hamiltonian (2.37). Thus, there are no continuity
rules to impose on spinor (5.6). In the region u < u0,
ϕðuÞ ¼ V0 ≫ mc2 so if we take the limit V0 → ∞,
we have

D� ≈�V0

ℏc
; ð5:16Þ

which leads to Eq. (5.15) asymptotically reducing to

ð∂2ufÞ ≈
�
V0

ℏc

�
2

f: ð5:17Þ

Solving Eq. (5.17) yields

fðuÞ ≈ NeV0u=ℏc; ð5:18Þ

whereN is a normalization constant. Then we use identities
(5.14) and (5.12) to find that

FðuÞ ≈ NeV0u=ℏc; GðuÞ ≈ iNeV0u=ℏc; ð5:19Þ

respectively, in the u < u0 region. The wave function must
be continuous at the mirror’s location u ¼ u0 which we can
impose by assuming from Eq. (5.19) the Robin boundary
condition

Fju¼u0 ¼ −iGju¼u0 : ð5:20Þ

Thus we finally have our boundary condition for the wave
function. To explicitly see why condition (5.20) is a Robin
condition, we use identities (5.11) and (5.12) to rewrite
condition (5.20) for F and G as

ðDþ þ ksÞFju¼u0 ¼ ð∂uFÞju¼u0 ; ð5:21Þ

−ðD− þ ksÞGju¼u0 ¼ ð∂uGÞju¼u0 ; ð5:22Þ

respectively.
For subsequent sections, it would prove far more fruitful

to have boundary condition (5.20) in spinor form Ψs. To
achieve this, we simply impose condition (5.20) on the
decomposition ansatz (5.6) and use Eq. (5.7) to get

iγ3Ψsju¼u0 ¼ Ψsju¼u0 ; ð5:23Þ

which is the MIT boundary condition for chiral angle
θM ¼ 0 [73,75]. The difference between the MIT condition
and condition (5.23) is that the MIT condition focuses only
on the spinor Ψs, making no explicit assumption as to the
form of the spinor, while our condition (5.23) focuses on the
functions F and G that the spinor Ψs is composed of.
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We now verify that boundary condition (5.23) satisfies
our criteria. To test the first criterion, we calculate the
probability current which is

J3ju¼u0 ¼ Ψ̄sγ
3Ψsju¼u0

¼ i
Dþ

ðFð∂uFÞ� − F�ð∂uFÞÞju¼u0 : ð5:24Þ

Now F and ð∂uFÞ are determined up to an arbitrary
complex coefficient; thus, we choose them to be real
functions which make the probability current (5.24) vanish
at the boundary [28]

J3ju¼u0 ¼ Ψ̄sγ
3Ψsju¼u0 ¼ 0: ð5:25Þ

We can also prove Eq. (5.25) by using condition (5.23), and
its adjoint form

−iΨ̄sγ
3ju¼u0 ¼ Ψ̄sju¼u0 ; ð5:26Þ

to get [30]

J3ju¼u0 ¼ Ψ̄sγ
3Ψsju¼u0

¼ Ψ̄sΨsju¼u0 ¼ −Ψ̄sΨsju¼u0 ¼ 0: ð5:27Þ

Thus our first criterion is satisfied. In the nonrelativistic
limit, we can expand the exponentials in Eq. (5.19) up to
Oðc−1Þ and then impose condition (5.20) to get

Fju¼u0 ≈ N ¼ −iN ≈ Gju¼u0 ; ð5:28Þ

which implies that [28]

Fju¼u0 ≈ 0; Gju¼u0 ≈ 0: ð5:29Þ

In spinor form, conditions (5.29) trivially lead to

Ψsju¼u0 ≈ 0; ð5:30Þ

and thus boundary condition (5.20) nonrelativistically
reduces to the Dirichlet condition, satisfying our second
criterion.
We now derive a crucial identity that will be used in the

next section. We take the first derivative of ansatz (5.6) and
impose the boundary condition (5.20) to get

ð∂uψ sÞju¼u0 ¼ ð∂uFÞUs þ ð∂uGÞγ3Usju¼u0

¼ ΩuðFUs −Gγ3UsÞ þ lψ sju¼u0

¼ ΩuðFγ0Us − Gγ3ðγ0Þ2UsÞ þ lψ sju¼u0

¼ ðΩuγ
0 þ lÞψ sju¼u0 ; ð5:31Þ

Ωu ¼ ðΩu−1 þ ksÞ; ð5:32Þ

where we used identities (5.11) and (5.12), ðγ0Þ2 ¼ 1,
and (5.7) in the second, third, and fourth equalities,
respectively. Then we have

ψ̄ sð∂uψ sÞju¼u0 ¼ ψ̄ sðΩuγ
0 þ lÞψ sju¼u0

¼ ð∂uψ̄ sÞψ sju¼u0 ; ð5:33Þ

therefore,

ð∂uΨ̄sÞΨsju¼u0 ¼ Ψ̄sð∂uΨsÞju¼u0 ; ð5:34Þ

or equivalently in the observer’s coordinates

ð∂3Ψ̄sÞΨsjz¼0 ¼ Ψ̄sð∂3ΨsÞjz¼0: ð5:35Þ

VI. RELATIVISTIC qBounce HAMILTONIAN

In this section, we relativistically model the qBounce

experiment by using the boundary condition from Sec. V
to find the surface term that arises from the Rindler
Hamiltonian’s Ehrenfest theorems. Although we will ulti-
mately use the low energy Hamiltonian (2.43), we first use
the linear high energy Rindler Hamiltonian (2.39) to not
miss any low-order terms. We will remove the high-order
terms and modify the low energy Hamiltonian (2.43) with
the surface term. Then, we will apply the results of Sec. IV
to formulate the relativistic master equations that reproduce
the qBounce experiment.
We follow the methodology in [6] and modify the

Ehrenfest theorems of the high energy, linear Rindler
Hamiltonian (2.39). We require a temporal variable which
we easily identify from Eq. (2.12) as v, so the Ehrenfest
theorems for the Rindler position and momentum operators
(2.35) are

d
dv

hûi ¼ hα3ûi;
d
dv

hp̂ui ¼ −hα3p̂ui −mchβi; ð6:1Þ

respectively. However, the above equations do not incor-
porate the contribution of boundary condition (5.20), i.e.,
the vibrating mirror, so we integrate by parts with the Dirac
inner product (2.44) to find the surface term generated by
condition (5.20). Following this prescription for the Rindler
momentum operator p̂u yields

d
dv

hp̂ui ¼ −hα3p̂ui −mchβi − iℏc2

g
Ψ̄γ3ð∂uΨÞju¼u0

¼ −hα3p̂ui −mchβi þ ℏc2

g
Ψ̄ð∂uΨÞju¼u0

¼ −hα3p̂ui −mchβi þ hfRðûÞi; ð6:2Þ

where we used condition (5.23) in the second equality and
have identified the Rindler statistical force
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hfRðûÞi ¼
ℏc2

2g
hβδ0ðû − u0Þi; ð6:3Þ

where u0 ¼ c2=g, as the surface term that arises from
boundary condition (5.20). The 1=2 factor comes from
identity (5.34) and the Dirac delta function δðxÞ is defined asZ

∞

−∞
dx δðnÞðx − x0ÞfðxÞ ¼ ð−1ÞnfðnÞðx0Þ: ð6:4Þ

Note that we have suppressed the spin subscript s. Similar
calculations for the Rindler position operator û yields

d
dv

hûi ¼ hα3ûi þ
�
c4

g2
J3
�





u¼u0

¼ hα3ûi; ð6:5Þ

where we used the vanishing probability current condition
(5.25). Thus the Ehrenfest theorems for the Rindler
position and momentum operators with boundary con-
dition (5.20) are

d
dv

hûi ¼ hα3ûi; ð6:6Þ

d
dv

hp̂ui ¼ −hα3p̂ui −mchβi þ hfRðûÞi; ð6:7Þ

respectively. Using Eqs. (2.12) on Eqs. (6.6) and (6.7)
yields the Ehrenfest theorems in the observer’s local
coordinates ðt; zÞ

d
dt

hẑi ¼ g
c
hα3ẑi þ chα3i; ð6:8Þ

d
dt

hp̂3i ¼ −
g
c
hα3p̂3i −mghβi þ hfSðẑÞi; ð6:9Þ

which, in the low energy regime, reduces to

d
dt

hẑi ¼ chα3i; ð6:10Þ

d
dt

hp̂3i ¼ −mghβi þ hfSðẑÞi; ð6:11Þ

where

hfSðẑÞi ¼
ℏc
2
hβδ0ðẑÞi ð6:12Þ

is the surface term (6.3) in the observer’s coordinates.
We add the surface term (6.12) to the system

Hamiltonian (4.3) to get the relativistic qBounce Hamiltonian

Ĥq ¼ cα3p̂3 þ βmc2 þ VqðẑÞ −
ℏc
2
βδðẑÞ; ð6:13Þ

where

VqðẑÞ ¼
	
βmgẑ; conservative gravity;

0; entropic gravity:
ð6:14Þ

To make the boundary oscillate, we add a sinusoidal term in
the argument of the delta function as follows:

Ĥq ¼ cα3p̂3 þ βmc2 þ VqðẑÞ −
ℏc
2
βδðẑ − am sinωmtÞ;

ð6:15Þ

where am and ωm are the vibrating mirror’s oscillation
strength and frequency, respectively. We can now apply
the Dirac DFEG model (4.19) to Hamiltonian (6.15) to get
the relativistic qBounce experiment’s master equations for
conservative and entropic gravity

dρ̂
dt

¼ −
i
ℏ

�
cα3p̂3 þ βmc2 þ βmgẑ

−
ℏc
2
βδðẑ − am sinωmtÞ; ρ̂

�
; ð6:16Þ

dρ̂
dt

¼ −
i
ℏ

�
cα3p̂3 þ βmc2 −

ℏc
2
βδðẑ − am sinωmtÞ; ρ̂

�
þD½ρ̂�; ð6:17Þ

respectively.
Compared to the qBounce Hamiltonian’s boundary term

in [[6], Eq. (16)] which was proportional to the first
derivative of the Dirac delta function, the relativistic
Hamiltonian’s (6.15) boundary term is ∝ the Dirac delta
function. In addition, the appearance of the β matrix
captures the effect of the mirror on both matter and
antimatter as well.

VII. NONRELATIVISTIC LIMIT

With our master equations fully developed, we now
present the nonrelativistic limit of our results. We use the
Foldy-Wouthysen (FW) transformation [76] to find the
nonrelativistic approximation of our Hamiltonians and then
use the FW Hamiltonians to construct their corresponding
nonrelativistic master equations.

A. Hamiltonian

We begin with a brief overview of the FW transforma-
tion. Let Ψðx; tÞ be an arbitrary Dirac spinor that satisfies
the general Dirac equation

iℏ∂tΨ ¼ ĤDΨ; ð7:1Þ

ĤD ¼ cα · p̂þ βmc2 þ VDðx̂Þ þ Kðp̂Þ; ð7:2Þ
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where VDðx̂Þ and Kðp̂Þ are matrix-valued functions of
operators x̂ and p̂, respectively. Following the standard
convention, we define the even and odd components of
Hamiltonian (7.2) as [76,77]

Ê ¼ 1

2
ðĤD þ βĤDβÞ; Ô ¼ 1

2
ðĤD − βĤDβÞ; ð7:3Þ

respectively, where

½β; Ê� ¼ fβ; Ôg ¼ 0: ð7:4Þ

We also define the following operators:

Ŝ1 ¼ −
iβÔ
2mc2

; Û1 ¼ eiŜ1 ; ð7:5Þ

which are Hermitian and unitary, respectively, where the
subscript denotes the number of FW transformations
applied. Then Hamiltonian (7.2) can be written as

ĤD ¼ Ôþ Ê; ð7:6Þ

and applying the first FW transformation on Hamiltonian
(7.6) yields [76]

Ĥ1 ¼ Û1ĤDÛ
†
1; ð7:7Þ

Ψ1 ¼ Û1Ψ; ð7:8Þ

which turns Eq. (7.1) into

iℏ∂tΨ1 ¼ Ĥ1Ψ1: ð7:9Þ

We can then evaluate Eq. (7.7) up to a desired order via the
BCH expansion, and subsequent FW transformations can
be performed using

Ŝn ¼ −
iβÔn−1

2mc2
; Ûn ¼ eiŜn ; ð7:10Þ

which yields

iℏ∂tΨFW ¼ ĤFWΨFW; ð7:11Þ

ĤFW ≡ Ĥn ¼ ÛnĤn−1Û
†
n; ð7:12Þ

ΨFW ≡Ψn ¼ ÛnΨn−1; ð7:13Þ

where n ¼ 1; 2;…. For most of our Hamiltonians, we
require three FW transformations, thus applying the FW
transformation three times to remove all odd operators
yields [33]

ĤFW ≡ Ĥ3 ¼ β

�
mc2 þ Ô2

2mc2
−

Ô4

8m3c6

�
þ Ê

−
1

8m2c4
½Ô; ½Ô; Ê��; ð7:14Þ

which turns Eq. (7.1) into

iℏ∂tΨFW ¼ ĤFWΨFW; ð7:15Þ

ΨFW ¼ Ψ3 ≡ Û3Ψ2; ð7:16Þ

where we have replaced the subscripts with FW for clarity.
For the system Hamiltonian (4.3), a single FW trans-

formation is sufficient and yields [76]

ĤFW;S≡Ĥ1;S¼β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p̂2

3þm2c4
q

≈β

�
mc2þ p̂2

3

2m

�
; ð7:17Þ

where we have dropped terms of order Oðc−2Þ and higher.
By using Eq. (7.14), the low energy Hamiltonian’s FW
version is

ĤFW;g ¼ β

�
mc2 þ p̂2

2m
−

p̂4

8m3c2
þmða · x̂Þ

þ ℏ
2mc2

Σ · ða × p̂Þ
�
; ð7:18Þ

a ¼ ð0; 0; gÞ: ð7:19Þ

Note that we have used the three spatial dimensional
version of the low energy Hamiltonian (2.43) to incorporate
the spin contribution. The linear case with no high energy
corrections is

ĤFW;g ¼ β

�
mc2 þ p̂2

3

2m
þmgẑ

�
: ð7:20Þ

Reducing the relativistic qBounce Hamiltonian (6.13) to its
nonrelativistic limit requires a rather different approach due
to the nature of the surface term (6.3). Recall that the
surface term is dependent on the choice of the boundary
condition, and since our surface term (6.3) was derived
using the relativistic boundary condition (5.20) and the
Rindler Hamiltonian (2.39), our term (6.3) is inherently
relativistic. Naively applying the FW transformation on the
three spatial dimensional version of Hamiltonian (6.13)
would yield [for VqðẑÞ ¼ βmða · x̂Þ]

ĤFW;q ¼ β

�
mc2 þ p̂2

2m
−

p̂4

8m3c2
þmða · x̂Þ − ℏc

2
δðx̂Þ

þ ℏ
2mc2

Σ · ða × p̂Þ
�
; ð7:21Þ
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but we have only transformed the Hamiltonian while the
boundary term

−
ℏc
2
βδðx̂Þ ð7:22Þ

is still relativistic since we have not changed the boundary
condition. Also, we should be able to reproduce the
boundary term (7.22) from the momentum Ehrenfest
theorem of Hamiltonian (7.18) using the nonrelativistic
limit of boundary condition (5.20), i.e., the Dirichlet
condition (5.30), but a quick calculation will show that
this is not the case. Thus, these issues force us to rule out
FW Hamiltonian (7.21) as the correct nonrelativistic
version of Hamiltonian (6.13).
To resolve these problems and find the FW form of

Hamiltonian (6.13), we follow the same procedure in
deriving surface term (6.3) except we must use the FW
Hamiltonian (7.20) and the nonrelativistic Dirichlet con-
dition (5.30). Thus we take inspiration from the Heisenberg
and Schrödinger pictures from nonrelativistic quantum
mechanics and use the FW unitary operator (7.10) to
define the FW picture. We will first derive the surface
term with conservative gravity and then generalize to
include the entropic case. Let jΨðtÞi and Q̂ be a general
Dirac four-component state and observable, respectively,
then the expectation value can be expressed as

hQ̂i ¼ hΨjÛ†
nÛnQ̂Û†

nÛnjΨi
¼ hΨFWjQ̂FWjΨFWi
¼ hQ̂FWiFW; ð7:23Þ

where the averaging is now taken with respect to the FW
Dirac state jΨFWi ¼ ÛnjΨi. Then an operator in the FW
picture is [76,78]

Q̂FW ¼ Û†
nQ̂Ûn; ð7:24Þ

and its equation of motion is

dQ̂FW

dt
¼ i

ℏ
½ĤFW; Q̂FW�: ð7:25Þ

The FW operator Q̂FW can be evaluated using the BCH
expansion in a similar fashion to an FW Hamiltonian, but
such an expansion will often have a complicated expres-
sion due to the form of Ŝn and the number of times an FW
transformation has been applied. However, if Q̂ is of order
Oðc0Þ or less, we can use the BCH expansion up to the
first order

Q̂FW ¼ eiŜnQ̂e−iŜn

¼ Q̂þ i½Ŝn; Q̂� þ i2

2!
½Ŝn; ½Ŝn; Q̂�� þ � � �

≈ Q̂ ð7:26Þ

as a sufficient approximation since the lowest order term
in Ŝn isOðc−1Þ. Analogously, we must use the same cutoff
order Oðc0Þ for the FW Hamiltonian if we are to maintain
symmetry in calculating the Ehrenfest theorems.
For our work, we use Û3 so the approximated FW

position and momentum operators are

ẑFW ≈ ẑ; p̂3;FW ≈ p̂3; ð7:27Þ

respectively, with their FW Ehrenfest theorems being

d
dt

hẑFWiFW ≈
d
dt

hẑiFW

¼ 1

m
hβp̂3iFW −

iℏ
2m

Ψ̄FWΨFWjz¼0; ð7:28Þ

d
dt

hp̂3;FWiFW ≈
d
dt

hp̂3iFW

¼ −mghβiFW −
ℏ2

2m
Ψ̄FWð∂23ΨFWÞjz¼0

þ ℏ2

2m
ð∂3Ψ̄FWÞð∂3ΨFWÞjz¼0; ð7:29Þ

where we used Eq. (7.15) and FW Hamiltonian (7.20). To
evaluate the surface terms in Eqs. (7.28) and (7.29), recall
that the boundary condition (5.20) nonrelativistically
reduced to the Dirichlet condition (5.30) so the boundary
condition for the FW spinor is simply

ΨFWju¼u0 ≈ 0; ð7:30Þ

and so we get

d
dt

hẑiFW ¼ 1

m
hβp̂3iFW; ð7:31Þ

d
dt

hp̂3iFW ¼ −mghβiFW þ ℏ2

4m
hβδ00ðẑÞiFW: ð7:32Þ

Then the FW qBounce Hamiltonian with conservative gravity
is

ĤFW;q ¼ β

�
mc2 þ p̂2

3

2m
þmgẑ −

ℏ2

4m
δ0ðẑÞ

�
; ð7:33Þ

and more generally,

ĤFW;q ¼ β

�
mc2 þ p̂2

3

2m
þ VFW;qðẑÞ −

ℏ2

4m
δ0ðẑÞ

�
; ð7:34Þ
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where we have included the entropic case by using

VFW;qðẑÞ ¼
	
mgẑ; conservative gravity;

0; entropic gravity:
ð7:35Þ

Without the rest energy, Hamiltonian (7.34) is

ĤFW;q ¼ β

�
p̂2
3

2m
þ VFW;qðẑÞ −

ℏ2

4m
δ0ðẑÞ

�
; ð7:36Þ

which is the qBounce Hamiltonian in [[6], Eq. (15)]. Since
the boundary term in (7.33) was derived using the non-
relativistic condition (5.30) and (7.20), Hamiltonian (7.33)
is mathematically and physically symmetric. Thus we can
definitively interpret FW Hamiltonian (7.33) as the non-
relativistic approximation of (6.13).

B. Master equation

To find the nonrelativistic limit of master equa-
tions (4.19), (6.16), and (6.17), we first find the non-
relativistic limit of the jump operator Â. Since the β matrix
is diagonal, the jump operator Â can be analytically
evaluated to get

Â ¼ ffiffiffiffiffiffiffiffiffiffiffi
mgx0

p
e−iβẑ=ðx0σÞ

¼ ffiffiffiffiffiffiffiffiffiffiffi
mgx0

p �
e−iẑ=ðx0σÞ12 0

0 eþiẑ=ðx0σÞ12

�
; ð7:37Þ

and then dissipator (4.20) in the nonrelativistic limit
is simply

DNR½ρ̂� ¼
mgx0σ

ℏ
ðe−iβẑ=ðx0σÞρ̂eþiβẑ=ðx0σÞ − ρ̂Þ

¼ mgx0σ
ℏ

ðR1e−iẑ=ðx0σÞρ̂eþiẑ=ðx0σÞ

þR2eþiẑ=ðx0σÞρ̂e−iẑ=ðx0σÞ − 14ρ̂Þ; ð7:38Þ

where

R1 ¼
�
12 0

0 0

�
; R2 ¼

�
0 0

0 12

�
: ð7:39Þ

In a more compact form, dissipator (7.38) in component
form is

D�½ρ̂�� ¼
mgx0σ

ℏ
ðe∓iẑ=ðx0σÞρ̂�e�iẑ=ðx0σÞ − ρ̂�Þ; ð7:40Þ

where the sign subscript denotes the positive and negative
frequency components of the density matrix. Then master
equations (4.19), (6.16), and (6.17) in the nonrelativistic
limit are

dρ̂
dt

¼ −
i
ℏ

�
β

�
mc2 þ p̂2

2m

�
; ρ̂

�
þDNR½ρ̂�; ð7:41Þ

dρ̂
dt

¼ −
i
ℏ

�
ĤFW;g − β

ℏ2

4m
δ0ðx̂ − am sinωmtÞ; ρ̂

�
; ð7:42Þ

dρ̂
dt

¼ −
i
ℏ

�
β

�
mc2 þ p̂2

2m
−

ℏ2

4m
δ0ðx̂ − am sinωmtÞ

�
; ρ̂

�
þDNR½ρ̂�; ð7:43Þ

respectively, where we have used the three spatial dimen-
sional Hamiltonians to incorporate the spin. For the positive
frequency linear case with no rest energies and Oðc−2Þ
terms, we get

dρ̂þ
dt

¼ −
i
ℏ

�
p̂2
3

2m
; ρ̂þ

�
þDþ½ρ̂þ�; ð7:44Þ

dρ̂þ
dt

¼−
i
ℏ

�
p̂2
3

2m
þmgẑ−

ℏ2

4m
δ0ðẑ−am sinωmtÞ; ρ̂þ

�
; ð7:45Þ

dρ̂þ
dt

¼ −
i
ℏ

�
p̂2
3

2m
−

ℏ2

4m
δ0ðẑ − am sinωmtÞ; ρ̂þ

�
þDþ½ρ̂þ�;

ð7:46Þ

which are the DFEG, conservative gravity, and entropic
master equations [[6], Eqs. (5), (17), and (18)], respectively.
Thus we conclude that the Dirac DFEG model (4.19) is the
appropriate relativistic generalization, for Dirac fermions,
of the nonrelativistic DFEG model. We are then able to
identify the characteristic length x0 as the same character-
istic length value used in [[6], Eq. (7)], namely,

x0 ¼
�

ℏ2

2m2g

�
1=3

: ð7:47Þ

Therefore, our Dirac DFEG model (4.19) is physical.

VIII. DISCUSSION AND OUTLOOK

We have presented a generalized version of the DFEG
model for Dirac fermions via the open quantum systems
approach. In addition, we have presented a relativistic
model of the qBounce experiment with conservative and
entropic gravity. In the nonrelativistic limit, our Dirac
DFEG (4.19) and qBounce models (6.16) and (6.17) correctly
reduced to their nonrelativistic counterparts in [6].
We have shown that the derived Dirac DFEG model

(4.19) maintains the quantum purity of a Dirac fermion in
the strong coupling limit σ → ∞. In the same limit, we have
shown that conservative gravity (4.2) for Dirac fermions is
reproduced as well. Our model predicts that a Dirac
fermion’s spin does not affect its free-fall dynamics nor
couple with gravity; therefore, our model does not conflict
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with the equivalence principle. Thus, we have refuted
entropic gravity’s decoherence argument for Dirac fer-
mions and demonstrated that entropic gravity is compatible
with conservative gravity.
From numerical simulations of Hamiltonian (2.43) and

its Ehrenfest theorems (3.1) and (3.2), we demonstrated
that antimatter obeys the equivalence principle. In addition,
we numerically found that the nonzero Yvon-Takabayashi
angle led to a transient zitterbewegung-induced antigravity
effect during the early stages of a mixed energy state’s time
evolution. The already ephemeral zitterbewegung-induced
antigravity effect quickly diminishes for larger g values,
and thus we concluded that mixed energy states obeyed the
equivalence principle as well.
We aim to conduct numerical simulations of the Dirac

DFEG model to see how it compares with its nonrelativistic
counterpart. Although the nonrelativistic qBounce experiment
[7] is the best for measuring neutron free fall, our relativistic
qBounce model (6.17) may potentially provide further refine-
ments to the value of σ. Recent proposals [79–81] and
developments [82–84] in next-generation, space-based
quantum experiments will potentially provide experimental
data to test our work in the near future (see Ref. [85] for a
thorough review). We hope that our work, backed by new
data, will shed further light on whether gravity is truly
quantum or not and spark further research into alternative
theories of gravity such as entropic gravity.

Note added in proof.—When the current paper was
accepted, an experimental study was published ruling
out antigravity [86]. This verifies the conclusion of
Sec. III that both matter and antimatter obey the equiv-
alence principle. We further note that the results of Ref. [86]
say nothing against the transient phenomenon of zitterbe-
wegung antigravity predicted in Sec. III.
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APPENDIX A: DECOHERENCE-FREE
PROPERTY OF DIRAC DFEG MODEL

In this section, we closely follow Ref. [57] and show that
the Dirac DFEG model (4.19) is decoherence-free in the
strong coupling limit σ → ∞ by proving that

Tr½ρ̂2ẑ2 − ðρ̂βẑÞ2� ≥ 0; ðA1Þ

in the purity equation (4.22).
We first expand the exponential term in jump operator

(4.18) in the limit σ → ∞ to get

e�iβẑ=ðx0σÞ ¼ 1� iβẑ
x0σ

þ 1

2!

��iβẑ
x0σ

�
2

þOðσ−3Þ

¼ � iβẑ
x0σ

−
ẑ2

2x20σ
2
þOðσ−3Þ; ðA2Þ

where we used both positive and negative signs for
generality. Then in the limit σ → ∞, master equation
(4.19) is

dρ̂
dt

¼ −
i
ℏ
½cα3p̂3 þ βmc2 þ βmgẑ; ρ̂�

þ mg
x0ℏσ

�
βẑ ρ̂ ẑ β −

1

2
fẑ2; ρ̂g

�
þOðσ−2Þ; ðA3Þ

and the purity equation is

d
dt

Tr½ρ̂2� ¼ −
2mg
x0ℏσ

Tr½ρ̂2ẑ2 − ðρ̂βẑÞ2� þOðσ−2Þ: ðA4Þ

Now for any two arbitrary operators Ĉ1 and Ĉ2, we have by
the Cauchy-Schwartz inequality

Tr½Ĉ†
1Ĉ1�Tr½Ĉ†

2Ĉ2� ≥ jTr½Ĉ†
1Ĉ2�j2; ðA5Þ

so if we let Ĉ1 ¼ βẑ ρ̂ and Ĉ2 ¼ ρ̂βẑ, we get

Tr½ρ̂2ẑ2� ≥ jTr½ðρ̂βẑÞ2�j; ðA6Þ

where we have used the cyclic property of the trace. Since
Tr½ðρ̂βẑÞ2�� ¼ Tr½ðρ̂βẑÞ2�, we have that Tr½ðρ̂βẑÞ2�∈R, and
thus we get our desired result

Tr½ρ̂2ẑ2 − ðρ̂βẑÞ2� ≥ 0: ðA7Þ

APPENDIX B: RINDLER DIRAC EQUATION:
EIGENFUNCTIONS AND EIGENENERGIES

In this section, we solve the full Rindler
Hamiltonian (2.37) by following Refs. [30,31] (see also
Refs. [28,39,46,87] and Ref. [34] for a thorough review on
solving the Rindler Dirac equation in all wedges of
Minkowski space). Although we ultimately use the low
energy Rindler Dirac Hamiltonian (2.43), the exact sol-
ution and eigenenergies of the full Rindler Hamiltonian
(2.37) will prove fruitful to our later discussion. Note that
solving the full Rindler Hamiltonian (2.37) is equivalent
to solving the full observer’s Hamiltonian (2.41).
A general Dirac wave packet in Rindler space is

composed of positive and negative frequency states
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ΨðxÞ ¼
Z

∞

0

dΩ
Z

∞

−∞

d2k⊥
2π

X
s¼�

½bðΩ; s; k⊥ÞΨþ
Ω;s;k⊥ðxÞ

þ d�ðΩ; s; k⊥ÞðΨþ
Ω;s;k⊥ðxÞÞC�

¼
Z

∞

0

dΩ
Z

∞

−∞

d2k⊥
2π

X
s¼�

½bðΩ; s; k⊥ÞΨþ
Ω;s;k⊥ðxÞ

þ d�ðΩ; s; k⊥ÞΨ−
Ω;−s;k⊥ðxÞ�;

d2k⊥ ≡ dk1dk2; ðB1Þ

where bðΩ; s; k⊥Þ and d�ðΩ; s; k⊥Þ are the positive and
negative energy wave amplitudes, respectively, and

x≡ xμ ¼ ðv; x1; x2; uÞ; x≡ xa ¼ ðx1; x2; uÞ;
k⊥ ≡ ka ¼ ðk1; k2; 0Þ; a ¼ 1; 2:

The negative energy states are computed using the charge
conjugation operator

ðΨþ
Ω;s;k⊥ðxÞÞC ¼ iγ2ðΨþ

Ω;s;k⊥ðxÞÞ� ¼ Ψ−
Ω;−s;k⊥ðxÞ: ðB2Þ

We solve for the positive energy stationary states by using
the plane wave ansatz to separate the temporal and spatial
components of the positive energy Dirac spinor

Ψþ
Ω;s;k⊥ðxÞ ¼ e−iΩvfþΩ;s;k⊥ðxÞ; Ω > 0; ðB3Þ

fþΩ;s;k⊥ðxÞ ¼ eikxψþ
Ω;s;k⊥ðuÞ;

kx≡ k⊥ · x ¼ −kaxa ¼ k1x1 þ k2x2;

k ¼ jk⊥j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2

q
; ðB4Þ

where Ω ¼ ωc=g is the dimensionless frequency. Note that
we have separated the spatial components as well. Inserting
ansatz (B3) into Eq. (2.34) gives

ℏΩψþ
Ω;s;k⊥ ¼

�
ℏuðα1k1 þ α2k2 − iα3∂uÞ −

iℏ
2
α3

þ βmcu

�
ψþ
Ω;s;k⊥ ; ðB5Þ

which after rearranging terms yields

�
uðα1k1 þ α2k2Þ − iα3u∂u −

i
2
α3 þ βlu −Ω

�
ψþ
Ω;s;k⊥ ¼ 0;

ðB6Þ

where l ¼ 1=ƛ ¼ mc=ℏ is the inverse reduced Compton
wavelength. Next, we define the operator

D1 ≡ uðα1k1 þ α2k2Þ − iα3u∂u −
i
2
α3 þ βlu −Ω; ðB7Þ

and then Eq. (B6) can be written as

D1ψ
þ
Ω;s;k⊥ ¼ 0: ðB8Þ

We then define a similar operator

D2 ≡ uðα1k1 þ α2k2Þ − iα3u∂u þ
i
2
α3 þ βluþ Ω ðB9Þ

and multiply D2 on the left of Eq. (B8) to get

0 ¼ D2D1ψ
þ
Ω;s;k⊥

¼
�
−u∂uu∂u þ κ2u2 þ 1

4
−Ω2 − iΩα3

�
ψþ
Ω;s;k⊥ ;

which yields after rearrangement

u∂uu∂uψ
þ
Ω;s;k⊥ ¼

�
κ2u2 þ 1

4
− Ω2 − iΩα3

�
ψþ
Ω;s;k⊥ ; ðB10Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
. Now let χ1ðuÞ and χ2ðuÞ be the two-

component spinors such that

ψþ
Ω;s;k⊥ðuÞ ¼

�
χ1ðuÞ
χ2ðuÞ

�
; ðB11Þ

and inserting spinor (B11) into Eq. (B10) yields the system
of equations

u∂uu∂uχ1 ¼
�
κ2u2 þ 1

4
−Ω2

�
χ1 − iΩσ3χ2; ðB12Þ

u∂uu∂uχ2 ¼
�
κ2u2 þ 1

4
−Ω2

�
χ2 − iΩσ3χ1: ðB13Þ

Subtracting and adding Eqs. (B12) and (B13) yields

u∂uu∂uðχ1 − χ2Þ ¼
�
κ2u2 þ 1

4
−Ω2

�
ðχ1 − χ2Þ

þ iΩσ3ðχ1 − χ2Þ; ðB14Þ

u∂uu∂uðχ1 þ χ2Þ ¼
�
κ2u2 þ 1

4
−Ω2

�
ðχ1 þ χ2Þ

− iΩσ3ðχ1 þ χ2Þ; ðB15Þ

which can be expressed in a more compact form as

u∂uu∂uðχ1 ∓ χ2Þ ¼
�
κ2u2 þ 1

4
−Ω2

�
ðχ1 ∓ χ2Þ

� iΩσ3ðχ1 ∓ χ2Þ: ðB16Þ

To fully decouple Eqs. (B12) and (B13), we let
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χ1ðuÞ ∓ χ2ðuÞ ¼
�
ξ�ðuÞ
ζ�ðuÞ

�
; ðB17Þ

which leads to

u∂uu∂uξ� ¼
�
κ2u2 þ

�
iΩ ∓ 1

2

�
2
�
ξ�; ðB18Þ

u∂uu∂uζ� ¼
�
κ2u2 þ

�
iΩ� 1

2

�
2
�
ζ�: ðB19Þ

These are Bessel’s differential equations, and thus the spin
state solutions are [31,46,87]

Ψþ
Ω;s;k⊥ðxÞ ¼ e−iΩvfþΩ;s;k⊥ðxÞ; ðB20Þ

fþΩ;s;k⊥ðxÞ ¼ N Ω;k⊥e
ikxψþ

Ω;s;k⊥ðuÞ; ðB21Þ

ψþ
Ω;s;k⊥ðuÞ ¼ Hþ

ΩWs þ
1

κ
ð=kþ lÞγ0H−

ΩWs;

=k ¼ kaγa ¼ −ðk1γ1 þ k2γ2Þ; ðB22Þ

where N Ω;k⊥ is the spin-independent normalization con-
stant [34,87] and

Wþ ¼

0
BBB@

1

0

−1
0

1
CCCA; W− ¼

0
BBB@

0

1

0

1

1
CCCA; ðB23Þ

and

H�
ΩðuÞ ¼ Hð1Þ

iΩ�1=2ðiκuÞ ðB24Þ

are the Hankel functions of the first kindHð1Þ
ν ðzÞ [88]. With

the Rindler space Dirac inner product (2.44), the normali-
zation constant is (see Appendix C)

N Ω;k⊥ ¼ N Ω;þ;k⊥ ¼ N Ω;−;k⊥ ¼ 1

2π

�
κ cosh ðπΩÞ

8eπΩ

�
1=2

;

ðB25Þ

and eigenspinor (B20) obeys

iℏ∂vΨþ
Ω;s;k⊥ ¼ ℏΩΨþ

Ω;s;k⊥ : ðB26Þ

Note that due to the form of the order ν and argument z of
our Hankel function (B24), we have

ðH�
ΩÞ� ¼ −H∓

Ω : ðB27Þ

Also, if we let k⊥ ¼ ð0; 0; 0Þ and N Ω;k⊥ → 2πN Ω;k⊥¼0 in
eigenspinor (B20), the result is the solution for the linear

Rindler Hamiltonian (2.39) [34]. It should be noted that the
modified Bessel functions of the second kind KiΩ�1=2ðκuÞ
(with its respective normalization constant) can also be
used as solutions (see Refs. [30,34,39,87]).
To find the energy levels using boundary condition

(5.20), we use eigenspinor (B22) to identify F and G in
the spinor decomposition (5.6) which are [28]

F ∝ H−
Ω þ sHþ

Ω; G ∝ H−
Ω − sHþ

Ω: ðB28Þ
Then we use boundary condition (5.20) along with identity
(B27) to get the spin-dependent quantization condition

Re½Hð1Þ
iΩþ1=2ðiμÞ� þ sIm½Hð1Þ

iΩþ1=2ðiμÞ� ¼ 0; ðB29Þ

where μ ¼ κu0 is fixed. Note that the quantization con-
dition (B29) can be derived using the MIT boundary
conditions with chiral angles θM ¼ 0 and θM ¼ π for s ¼
þ and s ¼ −, respectively [30]. Since μ ≫ 1, we see that
the Ω-zeros of the Hankel function for a large, fixed
argument μ will satisfy the boundary condition. For the
case k ¼ 0 and s ¼ þ, the zeros are given in [30] which
uses the numerical approximation scheme in [89] to get an
asymptotic expansion in μ0 ¼ lu0,

Ωn ¼
ωnc
g

≈ μ0 −
1

2
þ anþ12

−1=3μ1=30 þ a2nþ1

60
21=3μ−1=30

þ anþ1

6
2−1=3μ−2=30 þ

�
1

70
−
a3nþ1

700
−

1

12

�
μ−10

þOðμ−4=30 Þ; ðB30Þ

or

En ¼
ℏgΩn

c
≈mc2 þmgx0anþ1 −

ℏg
2c

þmg2x20
30c2

a2nþ1

þ ℏg2x0
6c3

anþ1 þ
2mg3x30

c4

�
1

70
−
a3nþ1

700
−

1

12

�
þOðc−5Þ; ðB31Þ

for small anþ1 where anþ1 are the (nþ 1)th zeros of the
Airy function for n ¼ 0; 1; 2;…. For a neutron, we have
μ0 ∼ 1031 ≫ 1 so eigenenergies (B30) are an accurate
approximation for the zeros of the Hankel function [89,90].
Following Ref. [30], we use the kinetic energy ED

n ¼
En −mc2 of Eq. (B31) up to Oðc−3Þ to find the physically
measurable energy level difference ED

n0;n between the nth
and n0th eigenstates

ED
n0;n ¼ ED

n0 − ED
n ≈mgx0ðan0þ1 − anþ1Þ

þmg2x20
30c2

ða2n0þ1
− a2nþ1Þ þ

ℏg2x0
6c3

ðan0þ1 − anþ1Þ;
ðB32Þ
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and then the transition frequency is

ωD
n0;n ¼

ED
n0;n

ℏ
≈
mgx0
ℏ

ðan0þ1 − anþ1Þ

þmg2x20
30ℏc2

ða2n0þ1
− a2nþ1Þ þ

g2x0
6c3

ðan0þ1 − anþ1Þ:
ðB33Þ

To see the relativistic contributions to the nonrelativistic
bouncing ball energies

ENR
n ¼ mgx0anþ1; ðB34Þ

we use the nonrelativistic transition frequency

ωNR
nþ1;n ¼

ENR
nþ1;n

ℏ
¼ mgx0

ℏ
ðanþ2 − anþ1Þ

to define the transition frequency difference Δωnþ1;n

between ωD
nþ1;n and ωNR

nþ1;n [30],

Δωnþ1;n ¼ ωD
nþ1;n − ωNR

nþ1;n

≈
mg2x20
30ℏc2

ða2nþ2 − a2nþ1Þ þ
g2x0
6c3

ðanþ2 − anþ1Þ:
ðB35Þ

Now the neutron mass and gravitational acceleration on
Earth’s surface are, respectively, mn ≈ 0.94 GeV=c2 and
g ≈ 9.81 m=s2, so we find that

ωD
nþ1;n; Δωnþ1;n ∼ 10−20 Hz; ðB36Þ

which is far too small to be detected using current
technology given the sensitivity level of Δω ∼ 10−1 Hz
measured in the qBounce experiment [7].
In Eq. (B31), the third term is interpreted to be the energy

contribution from spin-gravity coupling

1

c
S · g; ðB37Þ

which does not appear in our FWHamiltonian (7.18). While
we demonstrated in Sec. IV that our Dirac DFEG model
does not affect spin, it is worth noting that previous literature

has proven inconclusive as to the physical nature and
relevance of the spin-gravity term. Initially, Peres [91]
proposed a simple ad hoc model that modified the Dirac
Lagrangian to include a spin-gravity coupling term with a
dimensionless coupling constant k. Obukhov [92] later
identified that k ¼ 1=2 by using an “exact” FW trans-
formation that reproduced the spin-gravity coupling term
(B37). However, subsequent work by Silenko and Teryaev
[93] demonstrated that one could choose unitary trans-
formations that could remove the term (B37) through
repeated FW transformations. This mathematical technical-
ity has brought into question whether the FW transformation
accurately provides physically relevant results since different
unitary operators yield different results. Recent experiments
on the equivalence principle using different spin orientations
of spin-1=2 fermions [69] yielded null results for spin-
gravity coupling while another experiment [68] provided an
upper limit of 10−7 Hz for spin-1=2 fermions. Since the
coupling term (B37) is g=ð2cÞ ∼ 10−8 Hz, experiments do
not yet definitively prove nor disprove the existence of spin-
gravity coupling. Coupled with the mathematical and
physical ambiguity of the FW transformation, the question
of spin-gravity coupling remains open, but we note that the
appearance of the spin-gravity coupling energy in the energy
levels (B31) of the full Rindler Hamiltonian (2.37) [and
equivalently the full observer’s Hamiltonian (2.41)] lends
some theoretical credence to its existence. Our work avoids
this ambiguity with the spin-gravity term since this term only
arises from the full Rindler Hamiltonian (2.37) while our
work uses the low energy gravitational Hamiltonian (2.43).

APPENDIX C: NORMALIZATION
OF THE RINDLER WAVE FUNCTION

In this section, we calculate the normalization constant
N Ω;k⊥ of the eigenspinors (B22). We will focus on the spin-
up s ¼ þ const N Ω;þ;k⊥ and then show that the constant
is spin-independent, i.e., N Ω;k⊥ ¼ N Ω;þ;k⊥ ¼ N Ω;−;k⊥ . We
suppress the superscript þ, and later on, we will also
suppress the subscripts s and k⊥ such that ψΩ ≡ ψþ

Ω;þ;k⊥ðuÞ
and N Ω;s;k⊥ ≡N Ω.
If we use the spatial eigenspinor (B21) with the Dirac

inner product (2.44), we get

hfΩ;s;k⊥ jfΩ0;s0;k0⊥i ¼
Z

∞

0

du
Z

∞

−∞
d2x f†Ω;s;k⊥fΩ0;s0;k0⊥

¼ N Ω;k⊥N Ω0;k⊥δðk⊥ − k0⊥Þ
Z

∞

0

duψ†
Ω;s;k⊥ψΩ0;s0;k⊥

¼ N Ω;k⊥N Ω0;k⊥δðk⊥ − k0⊥Þδs;s0 hψΩ;s;k⊥ jψΩ0;s;k⊥i;
d2x ¼ dx1dx2;

N Ω;k⊥ ¼ 2πN Ω;k⊥ ; ðC1Þ
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where we used

Z
∞

−∞
d2x eiðk0−kÞx ≡

Z
∞

−∞
d2x eiðk0⊥−k⊥Þ·x

¼ ð2πÞ2δðk⊥ − k0⊥Þ; ðC2Þ

N Ω0;k0⊥ψ
†
Ω0;s0;k0⊥

δðk⊥ − k0⊥Þδs;s0
¼ N Ω0;k⊥ψ

†
Ω0;s;k⊥δðk⊥ − k0⊥Þδs;s0 : ðC3Þ

Thus we only have to compute

hψΩ;s;k⊥ jψΩ0;s;k⊥i ¼
Z

∞

0

duψ†
Ω;s;k⊥ψΩ0;s;k⊥ : ðC4Þ

As mentioned earlier, we will compute the spin-up
s ¼ þconst and suppress the subscripts s and k⊥ such
that ψΩ ≡ ψΩ;s;k⊥ðuÞ and N Ω ≡N Ω;k⊥ . Additionally, note
that ψΩ now satisfies the eigenvalue equation

ĤR;uψΩ ¼ ℏΩψΩ; ðC5Þ

ĤR;u ¼ ℏuðα1k1 þ α2k2 − iα3∂uÞ −
iℏ
2
α3 þ βmcu: ðC6Þ

We first derive the Lagrange-Green identity [94] which
will be crucial in calculating the normalization constant.
For any arbitrary four-component spinors Ψ1 ≡ Ψ1ðuÞ and
Ψ2 ≡Ψ2ðuÞ, consider the expression

ðĤR;uΨ1Þ†Ψ2: ðC7Þ

We expand the expression (C7) using Eq. (C6) to get

ðĤR;uΨ1Þ†Ψ2 ¼ ðℏuðα1k1 þ α2k2ÞΨ1Þ†Ψ2

þ ð−iℏuα3∂uΨ1Þ†Ψ2 þ
�
−
iℏ
2
α3Ψ1

�†
Ψ2

þ ðβmcuΨ1Þ†Ψ2

¼ ð−iℏuα3∂uΨ1Þ†Ψ2 þΨ†
1

�
ℏuðα1k1 þ α2k2Þ

þ iℏ
2
α3 þ βmcu

�
Ψ2: ðC8Þ

If we use the identity

∂uðiℏΨ†
1α3uΨ2Þ ¼ ð∂uΨ†

1Þðiℏα3uΨ2Þ þΨ†
1ðiℏα3∂uðuΨ2ÞÞ;

ðC9Þ

the first term in the second equality of Eq. (C8) is

ð−iℏuα3∂uΨ1Þ†Ψ2 ¼ ∂uðiℏΨ†
1α3uΨ2Þ −Ψ†

1ðiℏα3∂uðuΨ2ÞÞ;
¼ ∂uðiℏΨ†

1α3uΨ2Þ
þ Ψ†

1½−iℏα3u∂u − iℏα3�Ψ2: ðC10Þ

Combining our results then yields the differential
Lagrange-Green identity

ðĤR;uΨ1Þ†Ψ2 ¼ ∂uðiℏΨ†
1α3uΨ2Þ þ Ψ†

1ðĤR;uΨ2Þ; ðC11Þ

which leads to the integral Lagrange-Green identity [94]Z
∞

0

du ðĤR;uΨ1Þ†Ψ2 ¼ iℏΨ†
1α3uΨ2j∞0

þ
Z

∞

0

duΨ†
1ðĤR;uΨ2Þ; ðC12Þ

when integrated according to the inner product (C4).
Now let Ψ1 ¼ ψΩ and Ψ2 ¼ ψΩ0 , and then we haveZ
∞

0

du ðĤR;uψΩÞ†ψΩ0 ¼ iℏψ†
Ωα3uψΩ0 j∞0

þ
Z

∞

0

duψ†
ΩðĤR;uψΩ0 Þ: ðC13Þ

Since ψΩ is an eigenfunction of ĤR;u, it obeys the
eigenvalue equation (C5) so Eq. (C13) becomes

ℏΩ
Z

∞

0

duψ†
ΩψΩ0 ¼ iℏψ†

Ωα3uψΩ0 j∞0

þ ℏΩ0
Z

∞

0

duψ†
ΩψΩ0 ; ðC14Þ

which yields after rearrangement [31,46]

hψΩjψΩ0 i ¼
Z

∞

0

duψ†
ΩψΩ0

¼ iu
Ω −Ω0 ψ

†
Ωα3ψΩ0 j∞0 : ðC15Þ

To evaluate the right-hand side of (C15), we first expand
the expression using the Hankel functions in spinor (B22)
to get

iu
Ω−Ω0ψ

†
Ωα3ψ

†
Ω0 j∞0 ¼ 2iu

Ω−Ω0 ððH−
ΩÞ�H−

Ω0 − ðHþ
ΩÞ�Hþ

Ω0 Þj∞0

¼ 2iu
Ω−Ω0 ðHð2Þ

−iΩ−1=2ð−iκuÞHð1Þ
iΩ0−1=2ðiκuÞ

−Hð2Þ
−iΩþ1=2ð−iκuÞHð1Þ

iΩ0þ1=2ðiκuÞÞj∞0 ;
ðC16Þ

where instead of using identity (B27), we have elected to
use [88]
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ðHð1Þ
ν ðzÞÞ� ¼ Hð2Þ

ν� ðz�Þ; ðC17Þ

withHð2Þ
ν ðzÞ being the Hankel functions of the second kind.

For large arguments z, the Hankel functions of the first and
second kinds have the asymptotic expansion [88]

Hð1Þ
ν ðzÞ ∼

ffiffiffiffiffi
2

πz

r
eþiðz−1

2
νπ−1

4
πÞ; ðC18Þ

Hð2Þ
ν ðzÞ ∼

ffiffiffiffiffi
2

πz

r
e−iðz−1

2
νπ−1

4
πÞ; ðC19Þ

respectively, for z; ν∈C, which vanishes as z → ∞ so the
right-hand side of Eq. (C15) vanishes as u → ∞. Thus the
only nontrivial limit to consider is u → 0. Due to the Hankel
function’s singularity at u ¼ 0, we utilize the modified
Bessel functions of the second kind KνðzÞ which is related
to the Hankel functions by [88]

KνðzÞ¼
(

iπ
2
eþiνπ=2Hð1Þ

ν ðzeþiπ=2Þ; −π≤ phz≤ π
2
;

− iπ
2
e−iνπ=2Hð2Þ

ν ðze−iπ=2Þ; −π
2
≤ phz≤π:

ðC20Þ

Then as z → 0, the modified Bessel functions of the second
kind KνðzÞ have the asymptotic form [88]

KνðzÞ ∼
ΓðνÞ
2

�
z
2

�
−ν

¼ 2ν−1

zν
ΓðνÞ; ðC21Þ

where ΓðzÞ is the gamma function. We will first evaluate the
second term in Eq. (C16). Using Eqs. (C20) and (C21) in the
limit u → 0, we have

2iu
Ω −Ω0 H

ð2Þ
−iΩþ1=2ð−iκuÞHð1Þ

iΩ0þ1=2ðiκuÞ

⟶
u→0

�
4i

κπ2ΔΩ

��
2

κ

�
−iΔΩ

�
1

u

�
−iΔΩ

eπðΩþΩ0Þ=2

Γð−iΩþ 1=2ÞΓðiΩ0 þ 1=2Þ

¼
�

4i
κπ2

��
2

κ

�
−iΔΩ

eπðΩþΩ0Þ=2Γð−iΩþ 1=2Þ

ΓðiΩ0 þ 1=2Þ
�
cos ½ðΔΩÞx� − i sin ½ðΔΩÞx�

ΔΩ

�
; ðC22Þ

where ΔΩ ¼ Ω −Ω0, x ¼ ln ð1=uÞ, and we have used the
identities �

1

u

�
−iΔΩ

¼ e−iðΔΩÞ lnð1=uÞ ¼ e−iðΔΩÞx; ðC23Þ

eiz ¼ cosðzÞ þ i sinðzÞ: ðC24Þ

Since x ¼ ln ð1=uÞ diverges rapidly as u → ∞, we can use
the following identities:

lim
x→∞

sin ½ðΔΩÞx�
ΔΩ

¼ πδðΩ − Ω0Þ; ðC25Þ

lim
x→∞

cos ½ðΔΩÞx�
ΔΩ

¼ 0; ðC26Þ

in Eq. (C22) to finally get

lim
u→0

�
2iu

Ω −Ω0H
ð2Þ
−iΩþ1=2ð−iκuÞHð1Þ

iΩ0þ1=2ðiκuÞ
�

¼ −
�
4

κπ

��
2

κ

�
−iΔΩ

eπðΩþΩ0Þ=2Γð−iΩþ 1=2Þ;

ΓðiΩ0 þ 1=2ÞδðΩ −Ω0Þ

¼ −
4eπΩ

κπ
jΓðiΩþ 1=2Þj2δðΩ − Ω0Þ

¼ −
4eπΩ

κ cosh ðπΩÞ δðΩ − Ω0Þ; ðC27Þ

where we used the identities

jΓð1=2þ itÞj2 ¼ π

cosh ðπtÞ ; ðC28Þ

fðyÞδðy − tÞ ¼ fðtÞ; y; t∈R; ðC29Þ

in the last equality. Repeating the same procedure for the
first term in Eq. (C16) yields

lim
u→0

�
2iu

Ω −Ω0 H
ð2Þ
−iΩ−1=2ð−iκuÞHð1Þ

iΩ0−1=2ðiκuÞ
�

¼ 4eπΩ

κ cosh ðπΩÞ δðΩ −Ω0Þ: ðC30Þ

Then the delta-normalized inner product is

hψΩjψΩ0 i ¼
Z

∞

0

duψ†
ΩψΩ0

¼ 8eπΩ

κ cosh ðπΩÞ δðΩ −Ω0Þ; ðC31Þ

so

jN Ωj2 ¼ ð2πÞ2jN Ωj2 ¼
κ cosh ðπΩÞ

8eπΩ
; ðC32Þ

and thus the spin-up s ¼ þ normalization constant is

N Ω ¼ 1

2π

�
κ cosh ðπΩÞ

8eπΩ

�
1=2

: ðC33Þ

Repeating the same procedure for the spin-down s ¼ −
spinor yields the same constant N Ω;−;k⊥ ¼ N Ω;þ;k⊥ , and
thus the spin-independent normalization constant is
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N Ω;k⊥ ¼ N Ω;þ;k⊥ ¼ N Ω;−;k⊥ ¼ 1

2π

�
κ cosh ðπΩÞ

8eπΩ

�
1=2

:

ðC34Þ

To calculate the normalization constantN K
Ω;k⊥ if one had

used the modified Bessel functions of the second kind

KiΩ�1=2ðκuÞ in solution (B22), we use identity (C20) in
solution (B22) and absorb the introduced constant terms
into the normalization constant (C34) to get

N K
Ω;k⊥ ¼ N K

Ω;þ;k⊥ ¼ N K
Ω;−;k⊥ ¼ 1

2π

�
κ cosh ðπΩÞ

2π2

�
1=2

:

ðC35Þ
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