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We investigate the conserved quantities associated to Killing isometries for asymptotically AdS
spacetimes within the framework of quadratic-curvature gravity. By constructing a rank-4 tensor possessing
the same index symmetries as the ones of the Riemann tensor, we propose a 2-form potential resembling the
Noether one for quadratic-curvature gravity. Such a potential is compared with the results via other methods
existing in the literature to establish the equivalence. Then this potential is adopted to define conserved
quantities of asymptotically AdS spacetimes. As applications, we explicitly compute the mass of static
spherically symmetric spacetimes, as well as the mass and the angular momentum for rotating spacetimes,
such as the four(higher)-dimensional Kerr-AdS black holes and black strings embedded in quadratic-
curvature gravities. Particularly, we emphasize the conserved charges of Einstein-Gauss-Bonnet, Weyl, and
critical gravities, together with the ones for the asymptotically AdS solutions satisfying vacuum Einstein
field equations.

DOI: 10.1103/PhysRevD.108.104035

I. INTRODUCTION

The theories of quadratic(-curvature) gravity (it is some-
times referred to as higher derivative gravity or R2-gravity),
such as Einstein-Gauss-Bonnet gravity [1,2], Weyl gravity
and critical gravity [3–5], can be regarded as the higher-
order derivative generalizations of the well-known Einstein
gravity theory. They are generally described by the Einstein-
Hilbert Lagrangian with or without cosmological constant
plus at least one of the square of the Riemann tensor, the
square of the Ricci tensor, and the quadratic Ricci curvature
scalar, or by the Lagrangian merely made up of no less than
one of the three aforementioned quadratic curvature terms.
From a mathematical perspective, such a Lagrangian can be
viewed as a functional for the tensors of the Riemann and
the metric. Since it was discovered in [6] that the inclusion
of quadratic curvature terms renders the gravity theory
perturbatively renormalizable in the quantization process,
quadratic-curvature gravity has been treated as a viable
candidate for a theory of quantum gravity, and it has
attracted significant attention [7–12].
Conventionally, to understand fully the physical and

geometric properties for a given gravity theory, a promi-
nent task is to search for solutions of this theory. For

quadratic-curvature gravities, in contrast with Einstein
gravity, the involvement of the quadratic curvature terms
renders it more difficult to handle the field equations.
However, if some symmetries are allowed to enter into the
metrics so that they are static and diagonal in form, it
becomes much more practicable to analytically solve the
field equations. As a consequence, a lot of static solutions
with various asymptotic structures have been found in the
past few decades. Among them, here we mention the ones
presented by the works [13–45]. On the other hand,
although it is of great difficulty to construct exact rotating
solutions in quadratic-curvature gravities without system-
atical methods generating solutions. One feasible way to
achieve this is to embed the rotating solutions obeying the
vacuum Einstein field equations into such theories. For
example, the four-dimensional stationary and axially
symmetric Kerr-AdS black hole solution [46] is likewise
the one for Einstein-Gauss-Bonnet, Weyl and critical
gravities. Besides, it will be demonstrated below that some
quadratic-curvature gravities are able to embrace the higher-
dimensional generalizations of the four-dimensional Kerr-
AdS solution [47,48]. With those solutions in hand, as
usual, a necessary procedure is to give their conserved
charges for the sake of understanding thermodynamic
properties, which are of considerable interest at the present
stage. As a matter of fact, there exist a number of approaches
for conserved charges in the literature, such as the covariant
phase space method [49–51] and its development [52],
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the Abbott-Deser-Tekin (ADT) formalism [53–57], the
Ashtekar-Magnon-Das (AMD) method [58,59] and the
field-theoretic approach [60–62]. In the last few years, in
the spirit of these methods or other ones, many efforts
have been given from diverse perspectives to explore the
conserved quantities of various spacetimes in quadratic-
curvature gravities, particularly the asymptotically AdS
ones [63–81].
Within this paper, in spite of the fact that a lot of

methods have been devoted to the definition for the
conserved quantities of quadratic-curvature gravities, we
attempt to propose a simple and convenient formulation of
conserved quantities for asymptotically AdS spacetimes
within the framework of these theories and then make use
of the formulation to explicitly illustrate how the quadratic
curvature terms correct the mass and the angular momen-
tum of black holes in the context of Einstein gravity. For
this purpose, we shall follow the work [65] to construct a
rank-4 tensor that exhibits the same index symmetries with
those of the Riemann tensor. The linear combination of
such a tensor with another rank-4 one that is defined by the
derivative of the Lagrangian with respect to the Riemann
tensor further gives rise to a 2-form potential associated to
an arbitrary Killing vector field, which takes a similar
structure as the Noether one. Of particular interest will be
the applications of this potential in Einstein-Gauss-Bonnet,
Weyl and critical gravities. By virtue of the comparison of
the potential with the results via other methods, it will be
demonstrated that its integral on a codimension-2 surface
can bring about an appropriate formula for conserved
charges of asymptotically AdS spacetimes according to
Stokes’ theorem. Furthermore, by utilizing this formula,
we shall calculate the mass for static and spherically
symmetric spacetimes, as well as the mass and the angular
momentum of four(higher)-dimensional Kerr-AdS black
holes corrected by terms in quadratic curvatures.
The rest of the present paper is organized as follows. In

Sec. II, starting with the general form for the Lagrangian of
quadratic-curvature gravities, we shall introduce a rank-4
tensor to construct the potentials associated to conserved
quantities of these theories. Such potentials will be com-
pared with the ones via other methods in the literature, and
their applications in some typical quadratic-curvature
gravities will be strengthened. In Sec. III, we will apply
the formula for conserved charges to compute the mass of
static spherically symmetric spacetimes with the asymp-
totically AdS structure, including the ones in general
relativity and Einstein-Gauss-Bonnet gravity in arbitrary
dimensions, as well as the ones in four-dimensional Weyl
and critical gravities. In Sec. IV, we shall compute the mass
and angular momenta of four(higher)-dimensional rotating
Kerr-AdS black holes and black strings embedded into the
theories of quadratic-curvature gravity. The last section is
devoted to our conclusions.

II. THE GENERAL FORMALISM

In this section, we shall investigate potentials defined in
terms of a rank-4 tensor with the same index symmetries as
those of the Riemann tensor within the framework of the
theories of quadratic-curvature gravity. It will be demon-
strated that such potentials are equivalent to the ones via
other methods, such as the (off-shell) ADT formalism, the
covariant phase space approach, the generalized Komar
integral and the field-theoretic method. As a consequence,
it is allowed to apply them to define conserved quantities of
asymptotically AdS spacetiems in these gravity theories. In
particular, we are going to analyze the applications of the
potentials in general relativity, Einstein-Gauss-Bonnet
gravity, Weyl gravity and critical gravity.
In the present work, the integer D stands for the

dimensions of spacetimes. We adopt the notations in [82]
to define the Riemann curvature tensor Rμνρσ through
ð∇μ∇ν −∇ν∇μÞVρ ¼ RμνρσVσ (here Vρ denotes an arbi-
trary vector field), while Rμν ¼ gρσRρμσν and R ¼ gρσRρσ

represent the Ricci tensor and its scalar curvature respec-
tively. For generality, we take into consideration of the usual
Einstein-Hilbert Lagrangian in the presence of a negative
cosmological constant Λ plus the linear combination for all
the quadratic curvature terms R2, RαβRαβ and RμνρσRμνρσ,
written as the following form

ffiffiffiffiffiffi
−g

p
L¼ ffiffiffiffiffiffi

−g
p ðR−2Λþc1R2þc2RαβRαβþc3RμνρσRμνρσÞ:

ð2:1Þ

Here ðc1; c2; c3Þ represent coupling constants. With differ-
ent choices of these constants, Eq. (2.1) admits the
Lagrangians for some typical quadratic-curvature gravities.
For example, it includes Weyl gravity as a special case,
which is regarded as a compelling alternative to Einstein
gravity. Specifically, the Weyl tensor in D-dimensional
spacetime is given by [82]

Cμν
ρσ ¼ R

ðD − 1ÞðD − 2Þ δ
μν
ρσ −

4

D − 2
R½μ
½ρδ

ν�
σ� þ Rμν

ρσ: ð2:2Þ

Here and in what follows, we follow the convention whereby
the square brackets enclosing indices denote antisymmetri-

zation of them, such that R½μ
½ρδ

ν�
σ� ¼ ðR½μ

ρ δ
ν�
σ − R½μ

σ δ
ν�
ρ Þ=2,

and the generalized Kronecker delta symbol δμ1���μmν1���νm ¼
m!δ½μ1½ν1 � � � δ

μm�
νm� . An arbitrary rank-4 tensor Xμν

ρσ ¼
gμαgνβXαβρσ. It is easy to check that the Weyl tensor Cμν

ρσ

is traceless, namely, Cμρ
νρ ¼ Cρμ

ρν ¼ 0. The contraction
between two Weyl tensors is read off as

Cμν
ρσC

ρσ
μν ¼ 1

4
δγλμναβρσC

αβ
γλC

ρσ
μν ¼ Cμν

ρσR
ρσ
μν

¼ 2

ðD−1ÞðD−2ÞR
2−

4

D−2
Rρ
σRσ

ρþRμν
ρσR

ρσ
μν: ð2:3Þ
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For the purpose to obtaining the first equality in Eq. (2.3),
we have made use of the expansion for the generalized
Kronecker delta symbol δγλμναβρσ, that is,

δγλμναβρσ ¼ δγλαβδ
μν
ρσ − δγμαβδ

λν
ρσ − δγναβδ

μλ
ρσ

− δμλαβδ
γν
ρσ − δνλαβδ

μγ
ρσ þ δμναβδ

γλ
ρσ: ð2:4Þ

In the absence of the R − 2Λ term, together with all the
three coupling constants satisfying c2 ¼ −2ðD − 1Þc1 and
c3 ¼ ðD − 1ÞðD − 2Þc1=2, the Lagrangian (2.1) becomes
the one for D-dimensional Weyl gravity, namely,

ffiffiffiffiffiffi
−g

p
LW ¼ c1ðD − 1ÞðD − 2Þ

2

ffiffiffiffiffiffi
−g

p
CμνρσCμνρσ; ð2:5Þ

where Eq. (2.3) has been used. Besides, when c2 ¼ −4c1
and c3 ¼ c1, Eq. (2.1) transforms into the Lagrangian for
Einstein-Gauss-Bonnet gravity [1,2], taking the form

ffiffiffiffiffiffi
−g

p
LEGB ¼ ffiffiffiffiffiffi

−g
p ðR − 2Λþ c1LGBÞ; ð2:6Þ

in which the Gauss-Bonnet invariant LGB is read off as

LGB¼R2−4RαβRαβþRμνρσRμνρσ ¼
1

4
δγλμναβρσR

αβ
γλR

ρσ
μν: ð2:7Þ

In order to arrive at the last equality in Eq. (2.7), we have
utilized Eq. (2.4). As a consequence of the Gauss-Bonnet-
Chern theorem (see Refs. [83–85] for this theorem in the
context of pseudo-Riemannmanifolds and its implications in
gravity theories), the integration of the Gauss-Bonnet
invariant onD ¼ 4 compact manifold gives rise to a constant
with a value relying on the four-dimensional Euler character-
istic of the manifold. When D ¼ 4, the Gauss-Bonnet term
is often referred to as a topological invariant, the addition of
which to the Lagrangian makes no contribution to the
modification of the bulk dynamics. However, this term is
of great importance in the renormalization of the Einstein
gravity theory. Besides, it can be adopted to define the
conserved charges in asymptotically (locally) AdS spaces
within the context of the four-dimensional Einstein gravity
or quadratic gravity [73,86]. What is more, due to the
vanishing of the generalized Kronecker delta symbol δγλμναβρσ in
three dimensions, Eq. (2.7) leads to the identity R2 −
4RαβRαβ þ RμνρσRμνρσ ¼ 0 or Cμν

ρσC
ρσ
μν ¼ 0 in three dimen-

sions, which can be reproduced by means of using the
equation Cμν

ρσðD ¼ 3Þ ¼ 0 derived from the expansion of
the identity δγλμναβρσR

αβ
γλ ¼ 0 (D ¼ 3) in terms of Eq. (2.4).

The substitution of the three-dimensional vacuum Einstein
field equations Rμν ¼ 2Λgμν into Cμν

ρσðD ¼ 3Þ ¼ 0 yields
Rμν
ρσ ¼ −Λδμνρσ . This implies that all the vacuum solutions in

three-dimensional Einstein gravity with the cosmological
constant are locally equivalent to the ones with maximal

symmetries, whose Riemann curvature tensor obeys the
relation Rμν

ρσ ∝ δμνρσ.
To connect more straightforwardly the Lagrangian (2.1)

with some typical quadratic gravities, when the dimension
D ≥ 4, with Eqs. (2.3) and (2.7), the Lagrangian (2.1) can
be reexpressed as the form consisting of the usual Einstein-
Hilbert part, the square of the Weyl tensor, the Gauss-
Bonnet invariant and the quadratic Ricci curvature scalar
term, namely,

L¼R− 2ΛþðD− 2Þðc2þ 4c3Þ
4ðD− 3Þ Cμν

ρσC
ρσ
μν

−
ðD− 2Þc2þ 4c3

4ðD− 3Þ LGBþ
�
c1þ

Dc2þ 4c3
4D− 4

�
R2: ð2:8Þ

One can take advantage of Eq. (2.8) in the description for
some specifical quadratic-curvature gravities. For example,
within the case where D ¼ 4, c2 ¼ −3c1, and c3 ¼ 0,

Eq. (2.8) gives rise to the Lagrangian Lð4DÞ
CG for four-

dimensional critical gravity [3], having the form

Lð4DÞ
CG ¼ ffiffiffiffiffiffi

−g
p �

R − 2Λþ 3

2
c1ðLGB − Cμν

ρσC
ρσ
μνÞ
�
: ð2:9Þ

Here the constant parameter c1 is imposed to take the
specifical value c1 ¼ −1=ð2ΛÞ. It should be pointed out that
the expression (2.9) differs from the original one for the
Lagrangian given by [3]. Such an expression renders it
convenient to reveal the relationships among critical gravity,
Weyl gravity, and Einstein-Gauss-Bonnet gravity, as well as
to achieve the higher-dimensional generalization according
to Eq. (B7) in Appendix B. Apart from the theory of critical
gravity characterized by the Lagrangian (2.9), neglecting the
R − 2Λ part and letting c1 ¼ 3α, c2 ¼ −12α and c3 ¼ 6α in
Eq. (2.8), where α represents an arbitrary constant param-
eter, one acquires another type of four-dimensional critical
gravity proposed in terms of the four-dimensional scale
invariant gravity in [5], whose Lagrangian is the linear
combination of the one for Weyl gravity with a quadratic
Ricci curvature scalar R2 term, namely,

L̃ð4DÞ
CG ¼ α

ffiffiffiffiffiffi
−g

p ðR2 þ 6Cμν
ρσC

ρσ
μνÞ

¼ −3α
ffiffiffiffiffiffi
−g

p ðR2 − 4RρσRρσÞ þ 6α
ffiffiffiffiffiffi
−g

p
LGB: ð2:10Þ

It will be demonstrated in Appendix A that the Lagrangian
(2.10) allows for the existence of asymptotically AdS
solutions, and its higher-dimensional generalization will
be given by Eq. (B10) in Appendix B. In addition,
when c1 ¼ −D2=½8ΛðD − 2Þ2�, c2 ¼ −4ðD − 1Þc1=D,
and c3 ¼ 0, the Lagrangian (2.1) or (2.8) becomes the
one in Eq. (B7), which can be thought of as the higher-
dimensional generalization of the Lagrangian (2.9) for
four-dimensional critical gravity [4].
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Next, we take into account the variation of the
Lagrangian (2.1) with respect to the metric tensor gμν.
We write down

δð ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p

Eμνδgμν þ
ffiffiffiffiffiffi
−g

p ∇μΘμ: ð2:11Þ

In the above equation, the expression for field equations
Eμν is presented by [87]

Eμν ¼
�

∂L
∂gμν

�
R••••

−
1

2
Lgμν −RðμλρσPνÞλρσ − 2∇ρ∇σPρðμνÞσ

¼ RðμλρσPνÞλρσ − 2∇ρ∇σPρðμνÞσ −
1

2
Lgμν

¼ Rμ
λρσPνλρσ − 2∇ρ∇σPρμνσ −

1

2
Lgμν: ð2:12Þ

Here R•••• stands for the covariant rank-4 Riemann curva-
ture tensor. The expression ð∂L=∂gμνÞR••••

¼ 2RðμλρσPνÞλρσ
[87–89] and Eq. (A8) have been used to gain the second
and the last equalities, respectively. The surface term Θμ in
Eq. (2.11) is written as

Θμ ¼ 2Pμνρσ∇σδgρν − 2δgνρ∇σPμνρσ: ð2:13Þ

In Eqs. (2.12) and (2.13), the tensor Pμνρσ is defined in
terms of the derivative with respect to the Riemann tensor,
that is, Pμν

ρσ ¼ ð∂L=∂Rρσ
μνÞgαβ ;gγλ , which is referred to as

entropy tensor in [87], attributed to the fact that its integral
on the Killing horizon can give rise to the entropy of some
higher-order derivative modified gravity theories [50]. By
virtue of Eqs. (A1) and (A2) in Appendix A, the tensor Pμν

ρσ

takes the following form

Pμν
ρσ ¼

�
∂L
∂Rρσ

μν

�
gαβ ;gγλ

¼ 1

2
δμνρσ þ c1Rδ

μν
ρσ þ 2c2R

½μ
½ρδ

ν�
σ� þ 2c3R

μν
ρσ: ð2:14Þ

Particularly, within the context of Weyl and Einstein-
Gauss-Bonnet gravities, the tensor Pμν

ρσ is represented by
Pμν
Wρσ and Pμν

EGBρσ, respectively, which are expressed as

Pμν
Wρσ ¼

∂LW

∂Rρσ
μν

¼ c1ðD − 1ÞðD − 2ÞCμν
ρσ;

Pμν
EGBρσ ¼

∂LEGB

∂Rρσ
μν

¼ 1

2
δμνρσ þ c1

2
δγλμναβρσR

αβ
γλ : ð2:15Þ

Substituting Eqs. (2.14) and (A14) into Eq. (2.12), we
further write down the expression for the field equations
Eμν, being of the form

Eμν ¼ Rμν þ 2c1RRμν þ 2ðc2 þ 2c3ÞRμρνσRρσ

− 4c3RμλRλ
ν þ 2c3Rμ

λρσRνλρσ −
1

2
Lgμν

þ 1

2
ð4c1 þ c2Þgμν□Rþ ðc2 þ 4c3Þ□Rμν

− ð2c1 þ c2 þ 2c3Þ∇μ∇νR: ð2:16Þ

Here Eμν can be also found in the works [11,80,90,91] and
Eq. (A22) demonstrates that Eμν is divergence-free. It should
be pointed out that Eμν might shed light on the under-
standing for the field equations of higher-order gravities as it
has been demonstrated in [11] that the linearized expressions
for the equations of motion in any higher-order gravity
characterized by the Lagrangian made up of the Riemann
tensor can be always mapped to those in the quadratic-
curvature gravity theory.
With the expression Eμν for the field equations in hand,

let us explore its AdS space solutions before proceeding
any further. To do so, it is assumed that the Lagrangian (2.1)
admits D-dimensional maximally symmetric AdS space-
times with the line element

ds̄2 ¼ −ð1 − Λ̂r2Þdt2 þ dr2

1 − Λ̂r2
þ r2dΩ2

D−2: ð2:17Þ

Here and in what follows, quantities with an overline refer to
the AdS background metric (2.17). In the above expression,
t and r represent the time and radial coordinate respectively,
dΩ2

D−2 denotes the line element for the (D − 2)-dimensional
unit sphere, and the constant parameter Λ̂ could be thought
of as an effective cosmological constant with the general
form Λ̂ ¼ Λ̂ðΛ; c1; c2; c3Þ. According to Eq. (2.17), the
Riemann curvature tensor R̄μν

ρσ, the Ricci curvature tensor
R̄μ
ρ, and scalar R̄ are respectively given by

R̄μν
ρσ ¼ Λ̂δμνρσ; R̄μ

ρ ¼ ðD− 1ÞΛ̂δμρ; R̄ ¼ DðD− 1ÞΛ̂:
ð2:18Þ

The substitution of Eq. (2.18) into Eq. (2.16) results in the
expression Ēμ

ν for the field equations of the AdS spacetimes,
being of the form

Ēμ
ν ¼ R̄μλ

ρσP̄
ρσ
νλ −

1

4
δμνR̄

ρσ
αβP̄

αβ
ρσ −

1

4
R̄δμν þ Λδμν

¼ −
1

4
½ðD − 1Þð2Dk − 8kþDÞΛ̂ − 4Λ�δμν : ð2:19Þ

To simplify the calculations, in the first equality of
Eq. (2.19), we have made use of the identity given by
Eq. (A18). The constant k in Eq. (2.19) is defined through
the value of the tensor Pμν

ρσ on the D-dimensional AdS
spacetimes, that is,
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P̄μν
ρσ ¼ Pμν

ρσðgαβ → ḡαβÞ ¼ kδμνρσ; ð2:20Þ

and it is read off as

k ¼ 1

2
þ ½ðD − 1ÞðDc1 þ c2Þ þ 2c3�Λ̂: ð2:21Þ

For instance, k ¼ 1=2 for Einstein gravity, k ¼ 0 for both
Weyl gravity in any dimension and four-dimensional critical
gravity described by the Lagrangian (2.9), and kEGB ¼
kðc2 ¼ −4c1; c3 ¼ c1Þ for Einstein-Gauss-Bonnet gravity.
For the purpose to guaranteeing that the Lagrangian (2.1)
allows for the AdS space solution (2.17), it is required that
Ēμ
ν ¼ 0. In this regard, Eq. (2.19) shows that the constant

parameter Λ̂ has to be constrained by the following
condition [11,31,70,78,80]

D−4

D−2
½ðD−1ÞðDc1þc2Þþ2c3�Λ̂2þ Λ̂− Λ̂gr¼0; ð2:22Þ

in which the constant Λ̂gr is defined by

Λ̂gr ¼
2Λ

ðD − 1ÞðD − 2Þ : ð2:23Þ

Furthermore, by the aid of Eq. (2.21), the constraint (2.22) is
reexpressed as

ðD − 4Þk ¼ ðD − 2Þ Λ̂gr

Λ̂
−
D
2
: ð2:24Þ

According to Eq. (2.22) or Eq. (2.24), Λ̂ ¼ Λ̂gr for
Einstein gravity. In the case of Weyl gravity, the constraint
ðD − 1ÞðDc1 þ c2Þ ¼ −2c3 leads to Λ̂ ¼ Λ̂gr. As a result,
the D-dimensional AdS spacetimes in general relativity
are also the solutions for Weyl gravity. In the case for
Einstein-Gauss-Bonnet gravity, the constraint (2.22)
is rewritten as c̃1Λ̂2 þ Λ̂ − Λ̂gr ¼ 0. Here and in what
follows, c̃1 ¼ ðD − 3ÞðD − 4Þc1. Its solutions are
Λ̂ ¼ ½−1� ð1þ 4c̃1Λ̂grÞ1=2�=ð2c̃1Þ. What is more, in D ¼
4 dimensions, Λ̂ ¼ Λ̂gr ¼ Λ=3 holds for all four-dimen-
sional quadratic-curvature gravities. This means that the
four-dimensional AdS space is an exact solution of all
these gravities.
In the remainder of the present section, we are going to

follow the work [65] to investigate the definition of the
conserved quantities associated to Killing isometries for
asymptotically AdS spacetimes in the framework of quad-
ratic-curvature gravity theories depicted generally by the
Lagrangian (2.1). For this purpose, a crucial procedure is to
construct a rank-4 tensor Pμν

ðrefÞρσ inheriting the index
symmetries of the Riemann curvature tensor, which is of
the form

Pμν
ðrefÞρσ ¼

1

4ðD − 3ÞΛ̂ δγλμναβρσR
αβ
γλ −

D − 4

2
δμνρσ: ð2:25Þ

It can be proven that P½μνρ�σ
ðrefÞ ¼ 0 and Pμνρσ

ðrefÞ is conserved

identically, namely, ∇μP
μνρσ
ðrefÞ ¼ 0. Especially, for the case

of the AdS spacetime (2.17), one observes that
P̄μν
ðrefÞρσ ¼ Pμν

ðrefÞρσjg¼ḡ ¼ δμνρσ. Moreover, through the linear

combination of both the tensors Pμν
ρσ and Pμν

ðrefÞρσ, another
rank-4 tensor Pμν

ρσ is defined as

Pμν
ρσ ¼ Pμν

ρσ − kPμν
ðrefÞρσ: ð2:26Þ

Apparently, the tensor Pμν
ρσ inherits all the index symmetries

of the Riemann curvature tensor and it disappears on the
AdS spacetime, namely, Pμν

ρσjg¼ḡ ¼ 0. It is further assumed
that the asymptotically AdS spacetimes admits the sym-
metry generated by a Killing vector field ξμ, which can be
associated to a conserved current Jμ in accordance with
Noether theorem. According to Poincare lemma, Jμ corre-
sponding to the Killing vector ξμ is read off as Jμ ¼ ∇νKμν,
where the 2-form potential Kμν is proposed as [65]

Kμν ¼ Pμν
ρσ∇ρξσ − 2ξσ∇ρPμν

ρσ; ð2:27Þ

in terms of the rank-4 tensor Pμν
ρσ. Here we point out thatKμν

is our suggested potential that is appropriate for the
definition of conserved charges of asymptotically AdS
spacetimes within the framwork of quadratic-curvature
gravities. By the aid of Eq. (A14), the equations of motion
Eμ
ν ¼ 0 and the identity ∇μ∇νξρ ¼ Rρνμσξ

σ for the Killing
vector ξμ, the substitution of Eq. (2.27) into the expression
for the conserved current Jμ yields

Jμ ¼ ξνðPμλ
ρσR

ρσ
νλ − 2∇ρ∇σPμ

ρσνÞ þ kPμν
ðrefÞρσR

ρσ
νκ ξκ

¼ 1

2
Lξμ þ k

4ðD − 3ÞΛ̂ δγλμναβρσR
αβ
γλR

ρσ
νκ ξκ þ ðD − 4ÞkRμ

νξν:

ð2:28Þ

Here the second equality is achieved under the on-shell
condition for the metric tensor. With the help of ∇μðLξμÞ ¼
ξμ∇μL ¼ 0, 2∇μðRμ

νξνÞ ¼ 2Rμν∇μξν þ ξμ∇μR ¼ 0 andffiffiffiffiffiffi−gp ∇μðδγλμναβρσR
αβ
γλR

ρσ
νκ ξκÞ ¼ ∂μ∂νð ffiffiffiffiffiffi−gp

δγλμναβρσR
αβ
γλ∇ρξσÞ ¼ 0,

one can verify that Jμ is conserved, namely, ∇μJμ ¼ 0. At
the same time, one observes that Jμ vanishes on the AdS
spacetimes, namely, Jμjg¼ḡ ¼ J̄μ ¼ 0, or equivalently, the
exterior derivative for the Hodge dual of the two-form
potential Kμν fulfills ðd⋆KÞjg¼ḡ ¼ 0. On the other hand, as
usual, by means of the variation for the Lagrangian (2.1)
with respect to the metric tensor, together with the Lie
derivative with regard to the diffeomorphism symmetry
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generated by the Killing vector field ξμ, one obtains the
2-form Noether potential Kμν

R , given by

Kμν
R ¼ Pμν

ρσ∇ρξσ − 2ξσ∇ρPμν
ρσ: ð2:29Þ

Obviously, Kμν resembles the Noether potential Kμν
R due to

the fact that the replacement of the tensorPμνρσ withPμνρσ in
Eq. (2.29) makesKμν

R coincide withKμν and both the tensors
Pμνρσ andPμνρσ have the same index symmetries. In terms of
Kμν

R , the potential Kμν can be further expressed as an
alternative form

Kμν ¼ Kμν
R − kPμν

ðrefÞρσ∇ρξσ: ð2:30Þ

In this respect, the potential Kμν can be decomposed into
two components. The first one is the usual Noether potential
Kμν

R , while the second one kPμν
ðrefÞρσ∇ρξσ is responsible for

curing divergences appearing in the calculations ofKμν
R . The

existence of the factor Λ̂−1 in the rank-4 tensor Pμν
ðrefÞρσ may

render the second component divergent when Λ̂ → 0.
However, since the other quantities Kμν

R , Rμν
ρσ, and ∇ρξσ

involved in the potential Kμν generally depend on the
parameter Λ̂ for asymptotically AdS spacetimes, their total
contribution can guarantee the convergence ofKμν under the
limit Λ̂ → 0. This situation happens also to the potentials
via the topological regulation method [72,73], as well as to
the potential for four-dimensional Einstein gravity proposed
in [86], since such potentials explicitly contain the inverse of
the cosmological constant. Therefore, the above suggests
that it is feasible to take the limit Λ̂ → 0 on the potentialKμν

so as to extend Kμν to compute the conserved charges of
asymptotically flat counterparts for asymptotically AdS
spacetimes.
Remarkably, the structure of Kμν is similar as the Komar-

type potentials for the theories of higher-order derivative
gravity proposed in [74,75]. In fact, according to these
works, those Komar-type potentials can be generally
expressed as the form Kμν

gK ¼ Kμν
R − Bμν with the anti-

symmetric tensor Bμν defined through ∇νBμν ¼ 1=2Lξμ.
Here the 2-formBμν is determined up to a divergence-free 2-
form, and its local existence is always guaranteed attributed
to the fact that the divergence of Lξμ vanishes identically for
the diffeomorphism invariant Lagrangian L and the Killing
vector field ξμ. The divergence ∇νK

μν
R ¼ 1=2Lξμ under

the on-shell condition, cancelling out the divergence of the
2-form Bμν in the conserved current JμgK ¼ ∇νK

μν
gK. As a

consequence, one obtains JμgK ¼ 0. In this regard, both the
currents Jμ and JμgK coincides with each other on the AdS
spacetimes, rendering it of possibility for the integrals of
Kμν and Kμν

gK on the codimension-2 surfaces at infinity to
yield the same asymptotic charges. Due to the above, the

kPμν
ðrefÞρσ∇ρξσ ingredient in Kμν can be interpreted as a

prospective substitution for the 2-form Bμν at infinity, and
the potential Kμν could be regarded as a Komar-like
potential for the theories of quadratic-curvature gravity.
Before any further process, here we give three significant

examples on the applications of the potential Kμν. As a
direct application to the AdS spacetime (2.17), Kμν turns
into the one K̄μν ¼ Kμνjg¼ḡ ¼ 0, implying that Kμν van-
ishes identically on the AdS spacetime. In addition, when
the potential (2.27) is applied to the theory of Weyl gravity
described by the Lagrangian (2.5), one substitutes the
tensor Pμν

Wρσ in Eq. (2.15) into the Noether potential Kμν
R

to acquire the potential Kμν
Weyl, given by

Kμν
Weyl ¼ c1ðD− 1ÞðD− 2ÞðCμν

ρσ∇ρξσ − 2ξσ∇ρCμν
ρσÞ; ð2:31Þ

which is just the Noether potential for Weyl gravity, arising
from that k ¼ 0. It can be tested that the perturbation of the
potential Kμν

Weyl on four-dimensional AdS spaces is equiv-
alent to the one given by Eq. (23) in [79], which was
acquired via the (off-shell) ADT formalism [53–57].
Moreover, for the D-dimensional Einstein-Gauss-Bonnet
gravity with the Lagrangian (2.6), its potential Kμν

EGB,
derived from Eq. (2.27) without the on-shell condition
for the metric, takes the following form

Kμν
EGB¼

1þ2c̃1Λ̂
2

�
ðD−2Þ∇μξν−

1

4ðD−3ÞΛ̂δγλμναβρσR
αβ
γλ∇ρξσ

�
;

ð2:32Þ

which is proportional to the potential for Einstein gravity
given in [63–65] by the factor ð1þ 2c̃1Λ̂Þ regardless of the
on-shell condition. As a matter of fact, since it will be
demonstrated below that the linear perturbation of Kμν with
respect to the decomposition to the metric gμν ¼ δgμν þ ḡμν,
where ḡμν is the metric of the AdS space (2.17), is consistent
with the potential defined by the ADT formalism, the same
perturbation for Kμν

EGB, being a special case of Kμν, is
equivalent to the superpotential (3.11) on the AdS space
proposed in [60]. The latter was obtained via the field-
theoretic approach [60–62] and was verified to coincide
with the ADT potential in [60]. Apart from this, the linear
perturbation of Kμν

EGB on AdS spaces is equivalent to the
ADT potential given by Eq. (41) in [79]. However, Kμν

EGB
here is much simpler than the superpotentials in [60,79]. In
particular, under a critical condition of Eq. (2.32), where
1þ 2c̃1Λ̂ ¼ 0 or both the constant parameters c1 and Λ are
related to each other through

c1 ¼ −
ðD − 1ÞðD − 2Þ

8ðD − 3ÞðD − 4ÞΛ ; ð2:33Þ
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the potentials for DðD ≥ 5Þ-dimensional Einstein-Gauss-
Bonnet gravities vanish identically, leading to zero con-
served charges.
For convenience to calculations, with the help of the

expression (2.4) for the expansion of the generalized
Kronecker-delta symbol δγλμναβρσ, as well as Eq. (A13) for
divergence of the rank-4 tensor Pμν

ρσ, the potential Kμν given
by Eq. (2.27) is rewritten as

Kμν ¼ ½1þðD− 4Þkþð2c1 − k̂ÞR�∇½μξν�

− 2ðc2þ 2k̂ÞR½μ
ρ ∇ν�ξρþð2c3 − k̂ÞRμν

ρσ∇ρξσ

þð4c1 þ c2Þξ½μ∇ν�R− 2ðc2 þ 4c3Þξρ∇½μRν�
ρ : ð2:34Þ

Here the constant parameter k̂ is presented by

k̂ ¼ k

ðD − 3ÞΛ̂ : ð2:35Þ

It is worth to mentioning that the potentialKμν in Eq. (2.34)
can go further under the on-shell condition that the metric
tensor is the solution of the field equations Eμν ¼ 0. In
terms of the following identities associated with the Killing
vector ξν

□∇μξν ¼ −Rμν
ρσ∇ρξσ − ξρ∇½μRν�

ρ ;

∇μ
□ξν ¼ −ξρ∇μRν

ρ − Rν
ρ∇μξρ; ð2:36Þ

the potential Kμν in Eq. (2.34) can be reformulated in the
language of differential forms into an alternative form

K ¼ 1

2
½1þ ðD − 4Þkþ ð6c1 þ c2 − k̂ÞR�dξ

− ðc2 þ 2k̂Þd□ξþ 2ðc2 þ 2c3 þ k̂Þ□dξ

þ
�
2c2 þ 5c3 þ

3

2
k̂

�
Rρσ
μν∇ρξσdxμ ∧ dxν

−
1

2
ð4c1 þ c2ÞdðRξÞ: ð2:37Þ

Equation (2.37) demonstrates that the potential Kμν could
be reproduced through the action of the differential
operators on the Killing vector field. This can be seen
more clearly due to the one-form current J ¼ −⋆d⋆K [92].
In comparison, the differential form (2.37) for the potential
Kμν can be regarded as a special case of the general
potential proposed in [93].
We move on to present the concrete expressions for the

potential Kμν given by Eq. (2.34) in some special cases of
the Lagrangian (2.1). When it becomes the Einstein-Hilbert
one LEH ¼ R − ðD − 1ÞðD − 2ÞΛ̂ with Λ̂ ¼ Λ̂gr under

c1 ¼ c2 ¼ c3 ¼ 0, by the aid of the equations of motion
Rμν ¼ ðD − 1ÞΛ̂gμν, the potential Kμν is simplified as1

Kμν
gr ¼ 1

D − 3

�
∇½μξν� −

1

2Λ̂
Rμν
ρσ∇ρξσ

�
; ð2:38Þ

which is consistent with the usual Komar potential modified
by an additional second-order derivative term proportional
to the Riemann curvature tensor, given by Eq. (2.15) in [92].
When c3 ¼ 0, the potential Kμν in D ¼ 4 dimensions
coincides with the one given by Eq. (16) in [71] or
Eq. (26) in [72], and Kμν in D ¼ 2ðnþ 2Þ dimensions is
equivalent to the potential given by Eq. (23) in [71] or
Eq. (14) in [73], acquired via the topological regularization
method. When the Lagrangian (2.1) admits the solutions
obeying Rμν ¼ ðD − 1ÞΛ̂gμν, for such solutions, the poten-
tial Kμν takes the form

Kμν
Ric ¼ 2½k − 2ðD − 3Þc3Λ̂�Kμν

gr : ð2:39Þ

In particular, when D ¼ 4, one obtains Kμν
RicjD¼4 ¼

2½1þ 6ð4c1 þ c2ÞΛ̂�Kμν
gr jD¼4, implying that the potential

is irrelevant to the coupling constant c3 or the scalar term
Rμν
ρσR

ρσ
μν . Obviously, the potentialK

μν
Ric is proportional toK

μν
gr ,

supporting the finding that the ADT potentials of quadratic
curvature gravities are proportional to the one for Einstein
gravity in [64,78]. At the linearized level, the potential Kμν

Ric
completely agrees with the one given by Eq. (6) in [67], and
the conserved charge defined in terms of Kμν

Ric is consistent
with the one given by Eq. (2.3) in [66]. What is more, in the
case of the four-dimensional critical gravity depicted by the

1The potential Kμν
gr can be interpreted as the generalization of

the usual Komar potential ∇½μξν� in asymptotically AdS space-
times. In contrast with the latter, the former incorporates an
additional second-order derivative term ð2Λ̂Þ−1Rμν

ρσ∇ρξσ . Such a
term was also introduced in the potential given by Eq. (8) in [86],
which was proposed to define the conserved charges of four-
dimensional Einstein gravity with cosmological constant. The
ð2Λ̂Þ−1Rμν

ρσ∇ρξσ term plays the main role in eliminating the
divergent terms appearing within ∇½μξν� to render a finite result.
Apart from this, it corrects the normalization factors in the explicit
calculations for the conserved quantities of spacetimes. In
particular, Kμν

gr vanishes on the AdS spaces in Eq. (2.17). Addi-
tionally, for ultrastatic spacetimes with the metric ansatz
ds2 ¼ −dt2 þ gijdxidxj, where the Riemannian metric gij on
the (D − 1)-dimensional space is independent of the time coor-
dinate t [94], due to the fact that Rt

ρμν ¼ 0 and the conserved
quantities are defined via the integral of Kμν

gr over the surface at
t ¼ Const, the ð2Λ̂Þ−1Rμν

ρσ∇ρξσ term actually makes no contribu-
tion to the conserved quantities. Thus, Kμν

gr is equivalent to the
Komar potential, rendering it feasible to use Kμν

gr to yield the
Komar charges for asymptotically flat ultrastatic spacetimes.
Since the timelike Killing vector ξμ ¼ −δμt of such spacetimes
obeys ∇μξν ¼ 0, further yielding Kμν

gr ¼ 0, the energy of ultra-
static spacetimes vanishes.
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Lagrangian (2.9), the constraints c2 ¼ −3c1 and c3 ¼ 0
enable us to express Kμν as a simpler form

Kμν
4DCG ¼ ∇½μξν� −

1

2Λ
ð2R∇½μξν� þ 6R½μ

ρ ∇ν�ξρ

þ ξ½μ∇ν�Rþ 6ξρ∇½μRν�
ρ Þ

¼ −3∇½μξν� −
3

Λ
ðR½μ

ρ ∇ν�ξρ þ ξρ∇½μRν�
ρ Þ; ð2:40Þ

or equivalently formulated in the language of exterior
algebra as follows

K4DCG ¼ −
3

2
dξ −

3

2Λ
d□ξþ 3

Λ
□dξ

þ 3

Λ
Rρσ
μν∇ρξσdxμ ∧ dxν

¼ 1

2
dξ −

3

2Λ
d□ξþ 3

Λ
□dξ − 4Kgr: ð2:41Þ

In Eq. (2.40), we have used the result R ¼ 4Λ derived from
Eq. (A21) to arrive at the second equality. It can be verified
that the perturbation of the potential Kμν

4DCG on the AdS
spacetime (2.17) vanishes.
In the above, some special cases of the potential Kμν

have been compared with the ones via other methods (the
results will be summarized in Appendix D). Apart from
this, for generality, it is of great necessity to build the
relation between Kμν and the well-known Iyer-Wald poten-
tial defined by the covariant phase space method [49–51] in
the context of the Lagrangian (2.1). By virtue of following
the covariant phase space approach, the Iyer-Wald potential
associated with the Killing vector ξμ is read off as [11]

Qμν
IW ¼ δKμν

R þ 1

2
Kμν

R gρσδgρσ − ξ½μΘν�; ð2:42Þ

which coincides with the off-shell generalized ADT poten-
tial [57]. In Eq. (2.42), the surface term Θμ and the Noether
potential Kμν

R are given by Eqs. (2.13) and (2.29) respec-
tively. As a special case of (2.42), where the background
spacetime is the fixedD-dimensional AdS space (2.17) and
the linear perturbation of the metric tensor is defined
through δgμν ¼ gμν − ḡμν, the potential Qμν

IW becomes

Q̄μν
IW ¼ δKμν

R þ 1

2
gαβδgαβP̄

μν
ρσ∇ρξ̄σ − 2ξ̄½μP̄ν�λ

ρσ ḡρα∇σδgαλ

¼ δKμν
R þ kḡαβδgαβ∇½μξ̄ν� − 2kξ̄½μδν�λρσ ḡρα∇σδgαλ;

ð2:43Þ

which is consistent with the ADT potential for the
Lagrangian (2.1) [55,56,78]. On the other hand, with the
help of Eq. (2.43), the linear perturbation of the potential
Kμν on the AdS space (2.17) gives rise to the following
result

δKμν ¼ Q̄μν
IW − k̂∇γŪγμν: ð2:44Þ

In Eq. (2.44), the 3-form Ūγμν is presented by

Ūγμν ¼ 1

2
δλγμναβρσ ḡ

βηð∇αδgηλÞ∇ρξ̄σ: ð2:45Þ

As a consequence of Eq. (2.44), the perturbation of the
potential Kμν on the AdS spacetime background is
equivalent to the Iyer-Wald potential Q̄μν

IW on the same
background, as well as to the ADT potential. This is
attributed to the fact that the integral of d⋆Ū, which stands
for the exterior derivative for the Hodge dual of the 3-form
Ū, vanishes according to Stokes’ theorem. In this regard,
the kPμν

ðrefÞρσ∇ρξσ component in Kμν plays the role of

compensating the contribution from the ξ½μΘν� part in Iyer-
Wald potential Qμν

IW. So the potential K
μν could be thought

of as the “integration form” of Qμν
IW on the fixed AdS

background. Moreover, the perturbation of the potential
Kμν on the AdS spacetime background is equivalent to the
ones presented in [64,66–68]. The potential Kμν in four
dimensions or in odd dimensions is perhaps equivalent to
the one proposed in [69] in the absence of torsion, or the
one obtained via counterterm method in [70] respectively.
At the end, we are going to make use of the potential Kμν

given by Eq. (2.27) or (2.34) to define the conserved
charges of quadratic-curvature gravities described by the
Lagrangian (2.1). To achieve this, as usual, it is assumed
that there exists a (D − 1)-dimensional hypersurface Σwith
the boundary ∂Σ. In terms of a (D − 2)-form ⋆K, which is
the Hodge dual of the 2-form potential Kμν, according to
Stokes’ theorem, a formula for the conserved charges of
such gravity theories can be put forward as the integral of
the potential ⋆K over the (D − 2)-dimensional surface ∂Σ,
that is,

Q ¼ 1

8π

Z
∂Σ
⋆K: ð2:46Þ

Here let us make some remarks on the formula (2.46) for
conserved quantities. First, according to the equivalence
relation displayed by Eq. (2.44), the potential Kμν can be
used to replace the ADT and the Iyer-Wald ones when the
latter two are applied to compute the conserved quantities of
asymptotically AdS spacetimes in general relativity and
quadratic gravities. However, in contrast with the conserved
quantities by means of the latter two, the formula (2.46) has
the merit of avoiding the computation for the perturbation of
the potential, greatly simplifying the calculations. Second,
Kμν resembles the Noether potential Kμν

R as well as the
potential Kμν

gK. Accordingly, the formula (2.46) takes a
similar structure as the Komar-type integral and the Wald
entropy formula, providing a simple and convenient for-
mulation for the conserved quantities of asymptotically AdS
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spacetimes in quadratic gravities. However, unlike the
original Komar integral, which suffers the disadvantage
to present an expression for the mass differing from that for
the angular momentum by an anomalous factor in form, the
formula (2.46) gives a unified form of the conserved
charges. Third, Eq. (2.30) shows that the potential Kμν

can be decomposed into two parts. One is the Noether
potential Kμν

R , while the other is the antisymmetric rank-2
tensor −kPμν

ðrefÞρσ∇ρξσ. However, when the formula (2.46) is

adopted to compute the mass of asymptotically AdS space-
times, it cannot be split into two parts according to the
decomposition of Kμν, attributed to the fact that each
separate part of the formula suffers from divergence at
spatial infinity although their combination is convergent.

III. MASS FOR STATIC AND SPHERICALLY
SYMMETRIC SPACETIMES

In this section, as an application for the formula of
conserved charges, we shall compute the mass for general
static and spherically symmetric spacetimes endowed with
an asymptotically AdS structure. Such spacetimes are
solutions obeying the field equation Eμν ¼ 0, and they
cover the ones in general relativity, four-dimensional Weyl
and critical gravities, and Einstein-Gauss-Bonnet gravity in
some special cases.
We begin with the general metric ansatz for

D-dimensional asymptotically AdS spacetimes with
spherical symmetry. In the coordinate system ft; r; yig
ði ¼ 1; 2; · · ·; D − 2Þ, where yis denote the coordinates
parametrizing a (D − 2)-dimensional unit sphere, the line
element of spacetime can be always expressed as the
following general form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ B2ðrÞdΩ2
D−2;

dΩ2
D−2 ¼ hijðyÞdyidyj: ð3:1Þ

In the above expression, hij represents the metric tensor for
the codimension-2 unit sphere. However, here we point out
that all the results related to the curvature tensors below
hold for an arbitrary codimension-2 spacial compact
manifold. In order to maintain the asymptotically AdS
structure (2.17), the functions fðrÞ and BðrÞ in Eq. (3.1)
are required to behave at the asymptotic infinity as
fð∞Þ → 1 − Λ̂r2 and Bð∞Þ → r, respectively. Moreover,
under the coordinate transformation ϱ ¼ ϱðrÞ determined
by ϱ ¼ BðrÞ, the line element (3.1) is recast into another
common form:

ds2 ¼ −FðϱÞdt2 þ dϱ2

HðϱÞ þ ϱ2dΩ2
D−2: ð3:2Þ

Here the functions FðϱÞ andHðϱÞ are given respectively by

FðϱÞ ¼ f½rðϱÞ�; HðϱÞ ¼ f½rðϱÞ�
�
dB
dr

�
2

: ð3:3Þ

In terms of the line element (3.1) or (3.2), there have been a
lot of works devoting to seeking exact static and spherically
symmetric solutions within the context of higher-derivative
gravity theories. For example, see the works [13–32] and
related references therein.
As an attempt to acquire the concrete expressions for the

mass of the general static spherically symmetric black holes
in terms of the formula (2.46) for the conserved charges, it is
of great necessity to compute the relevant curvature tensors
for the spacetimes described by Eq. (3.1). Implementing
computations to the ðt; r; ρ; σÞ components of the Riemann
curvature tensor Rμν

ρσ gives rise to

Rtr
ρσ ¼ −f00δt½ρδ

r
σ�: ð3:4Þ

Here and in what follows, the quantity with the prime “ 0”
denotes its derivative with respect to the radial coordinate r,
such as f0 ¼ df=dr and f00 ¼ d2f=dr2. Furthermore, after
some complicated calculations, we obtain the related
components of the Ricci tensor, which are read off as
Rti ¼ Rri ¼ 0, together with the ones

Rt
t ¼ −

1

2B
½Bf00 þ ðD − 2ÞB0f0�;

Rr
r ¼ −

1

2B
½Bf00 þ ðD − 2Þð2fB00 þ B0f0Þ�;

Rj
i ¼

1

B2
½Rj

hi − δjiðBfB00 þ BB0f0 þ ðD − 3ÞfB02Þ�: ð3:5Þ

In the above equation, Rj
hi represents the Ricci curva-

ture tensor for the (D − 2)-dimensional line element
dΩ2

D−2, whose Ricci curvature scalar is defined through
Rh ¼ hijRhij. On the basis of Eq. (3.5), the Ricci curva-
ture scalar R, defined as R ¼ Rμ

μ ¼ Rt
t þ Rr

r þ Ri
i, is

presented by

R ¼ 1

B2
½Rh − B2f00 − ðD − 2Þð2BfB00 þ 2BB0f0

þ ðD − 3ÞfB02Þ�: ð3:6Þ

Particularly, in the case where hij is the metric tensor for the
(D − 2)-dimensional unit sphere, the Ricci curvature scalar
Rh in Eq. (3.6) takes the value Rh ¼ ðD − 2ÞðD − 3Þ.
With Eqs. (3.4)–(3.6) in hand, wo process to compute the

2-form potentials in terms of Kμν given by Eq. (2.34). As
usual, the Killing vector corresponding to the mass for the
static and spherically symmetric spacetimes characterized
by the line element (3.1) is chosen as ξμ ¼ ð−1; 0; · · ·; 0Þ.
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With such a Killing vector, we calculate the tr component
of the potential Kμν, yielding

Ktr ¼ c2 þ 2k̂
2

ðRt
t þRr

rÞf0 −
2c3 − k̂

2
f0f00 −

4c1 þ c2
2

f∂rR

þ f0

2
½1þ ðD− 4Þkþ ð2c1 − k̂ÞR�

−
c2 þ 4c3

2B
½2Bf∂rRt

t þ ðD− 2Þff0B00�: ð3:7Þ

Subsequently, we take into account several special aspects
of Ktr. First, when the Lagrangian (2.1) turns into the one
for Einstein gravity, in which c1 ¼ c2 ¼ c3 ¼ 0 and
k ¼ 1=2, the component Ktr coincides with the one given
by a generalized Komar formulation [92]. It is simplified as

Ktr
gr ¼

D − 2

4

�
f0 −

f0

Λ̂B2
þ ff0B02

Λ̂B2

�
: ð3:8Þ

Second, in the framework of Einstein-Gauss-Bonnet grav-
ity, where c2 ¼ −4c1 and c3 ¼ c1, the tr component Ktr is
expressed as

Ktr
EGB ¼ f0

2
½1þ ðD − 4ÞkEGB�

−
kEGB − 2c1ðD − 3ÞΛ̂

2ðD − 2Þ−1Λ̂B2
ð1 − fB02Þf0

¼ ½1þ 2c1ðD − 3ÞðD − 4ÞΛ̂�Ktr
gr: ð3:9Þ

In the above equation, the constant kEGB is determined by
plugging c2 ¼ −4c1 and c3 ¼ c1 into Eq. (2.21), being of
the form kEGB ¼ 1=2þ ðD − 2ÞðD − 3Þc1Λ̂. Apparently,
the second equality in Eq. (3.9) verifies the observation in
Eq. (2.32) that the potential for Einstein-Gauss-Bonnet
gravity is proportional to the one for Einstein gravity. Third,
in the case for the four-dimensional Weyl gravity charac-
terized by the Lagrangian (2.5), the component Ktr

becomes

Ktr
4DWG ¼ c1

B3
Ktr

qc: ð3:10Þ

In Eq. (3.10), the quantity Ktr
qc represents the contribution

from all the quadratic curvature terms in the Lagrangian
(2.5), being of the form

Ktr
qc ¼ 2Bf0 − 4fB0 − 6Bff0B02

þ 4f2B0B0B0 þ ð2ff000 − f0f00ÞB3

þ 2ðfB0f00 − 2f2B000 − 3ff0B00 þ B0f02ÞB2: ð3:11Þ

Fourth, for the four-dimensional critical gravity with the
Lagrangian (2.9) (c1 ¼ −ð2ΛÞ−1), which is equivalent to

ffiffiffiffiffiffi−gp ½LEH − 1=2LWðD ¼ 4Þ�, with the help of Eq. (3.11),
Ktr given by Eq. (3.7) is presented by

Ktr
4DCG ¼

�
Ktr

gr −
1

2
Ktr

4DWG

�
D¼4

¼Ktr
grðD¼ 4Þ− c1

2B3
Ktr

qc:

ð3:12Þ

Particularly, when the metric tensor is the solution of the
vacuum Einstein field equations Rμν ¼ Λgμν, calculations
show that the potential Ktr

4DCG disappears. As a matter of
fact, this can be seen straightforwardly from the general
expression for the potential Kμν

4DCG given by Eq. (2.40).
In the remainder of this section, according to Ktr,

together with its concrete expressions in various specifical
quadratic-curvature gravities, we shall give the mass for-
mulations for the static, spherically symmetric and asymp-
totically AdS spacetimes within such gravity theories. With
the metric ansatz (3.1), by means of plugging Eq. (3.7) in
Eq. (2.46), the general formulation for the mass M of these
spacetimes is defined through

M ¼ 1

8π

Z
r¼∞

ffiffiffi
h

p
BD−2KtrdD−2y; ð3:13Þ

where h ¼ detðhijÞ is the determinant of the codimension-2
metric hij. As a special case of Eq. (3.13), for Einstein
gravity, Eq. (3.8) sends the mass M into the form

Mgr ¼
VD−2

8π
lim
r→∞

Ktr
gr

B2−D

¼ VD−2

32πðD − 3ÞΛ̂ lim
r→∞

ð2Λ̂þ f00Þf0
B2−D : ð3:14Þ

In Eq. (3.14), VD−2 ¼
R ffiffiffi

h
p

dD−2y ¼ 2πðD−1Þ=2=ΓððD −
1Þ=2Þ is the volume of the (D − 2)-dimensional unit sphere.
In order to get the second equality, the equation f00 þ 2Λ̂ ¼
ðD − 2ÞðD − 3ÞðΛ̂B2 þ fB0B0 − 1Þ=B2 derived from the
vacuum Einstein field equations Rν

μ ¼ ðD − 1ÞΛ̂δνμ has been
used. As an application of Eq. (3.14), it can be utilized to
evaluate the mass of theD-dimensional Schwarzschild-AdS
black holes, in the line element of which fðrÞ and BðrÞ are
given by

fSAdS ¼ 1 −
2m
rD−3 − Λ̂r2; BSAdS ¼ r; ð3:15Þ

respectively. Substituting Eq. (3.15) into Eq. (3.14) produ-
ces the following mass

MSAdS ¼
mðD − 2ÞVD−2

8π
; ð3:16Þ

coinciding with the standard result in the literature.
Besides, Eq. (3.14) can be also adopted to compute the
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mass for four-dimensional spherical MadMax AdS black
holes constructed quite recently in [95].
In the situation for D-dimensional Einstein-Gauss-

Bonnet gravity, the potential Ktr in Eq. (3.13) is substituted
by the one Ktr

EGB, leading to the mass

MEGB ¼ ½1þ 2c1ðD − 3ÞðD − 4ÞΛ̂�VD−2

8π
lim
r→∞

Ktr
gr

B2−D

¼ ½1þ 2c1ðD − 3ÞðD − 4ÞΛ̂�Mgr: ð3:17Þ

Here Mgr is defined in terms of the first equality in
Eq. (3.14) and the mass MEGB agrees with the one via
the field-theoretic approach [60–62]. Obviously, when
c1 ¼ 0 or D ¼ 4,MEGB ¼ Mgr, implying that the inclusion
of the Gauss-Bonnet term in four dimensions does not affect
the mass. For instance, let us apply Eq. (3.17) to compute
the mass of the static spherically symmetric asymptotically
AdS black holes inD-dimensional (D > 4) Einstein-Gauss-
Bonnet gravity [15–19]. For such black holes, both the
functions BðrÞ and fðrÞ in their line elements are read off as
BEGB ¼ r and

fEGB ¼ 1þ r2

2c̃1
−

r2

2c̃1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c̃1Λ̂gr þ

4c̃1m
rD−1

r
; ð3:18Þ

respectively, where c̃1 ¼ ðD − 3ÞðD − 4Þc1 as before.
Eq. (3.17) gives rise to the mass

MEGB ¼ mðD − 2ÞVD−2

16π
: ð3:19Þ

In the case of the four-dimensional Weyl gravity,
the substitution of Eq. (3.10) into Eq. (3.13) gives rise
to the mass

M4DWG ¼ c1V2

8π
lim
r→∞

Ktr
qc

B
: ð3:20Þ

As a consequence of Eq. (3.12), the mass M4DCG for the
four-dimensional critical gravity described by the
Lagrangian (2.9) can be expressed as the linear combina-
tion of Mgr and M4DWG, that is,

M4DCG ¼
�
Mgr −

1

2
M4DWG

�
D¼4;c1¼−1=ð2ΛÞ

: ð3:21Þ

Eventually, we take into consideration of some other
applications for the mass formulations (3.17), (3.20),
and (3.21). First, the formulation (3.17) is applicable for
the definition of the mass for the Bardeen-type static
spherically symmetric black holes found in [37–39], as
well as the black holes in five-dimensional Chern-Simons
gravity [42]. Second, as what is shown in Appendix A,Weyl
gravity admits the four-dimensional Schwarzschild-AdS
black hole as its exact solution. Hence, it is allowed to

adopt Eq. (3.20) to define its mass, which coincides with the
one via the (off-shell) ADT and covariant phase space
methods [79]. This holds true for the black holes given
in [13,14]. Third, the four-dimensional Schwarzschild-
AdS black hole solution can be embedded into the four-
dimensional critical gravity. For such a solution, the
potential Ktr

4DCG ¼ 0 results in its vanishing mass, verifying
the conclusion in [3], as well as the one via the Ashtekar-
Magnon-Das method [76,77]. Apart from the applications
mentioned above, it deserves a further investigation to verify
wether the formula (2.46) for conserved charges can be
applicable for the so-called Buchdahl-inspired metrics
presented in [34–36], as well as the (charged) Lifshitz-
type black holes with quadratic-curvature corrections
[40,90,96,97].

IV. MASS AND ANGULAR MOMENTUM
FOR ROTATING SPACETIMES

In this section, for the completeness of this study, we
shall calculate the mass and angular momentum of the four-
dimensional rotating Kerr-AdS black hole in the framework
of the four-dimensional Weyl, critical, and Einstein-Gauss-
Bonnet gravities, respectively. What is more, the mass and
angular momentum for the higher-dimensional generaliza-
tions of the Kerr-AdS black hole will be computed in the
context of the quadratic-curvature gravities with R2 and
RαβRαβ terms. In parallel with the analysis for Kerr-AdS
black holes, we shall take into account black strings in
asymptotically AdS spacetimes.
We adopt the line element for the four-dimensional

Kerr-AdS black holes in a non-rotating frame at infinity,
taking the following form in Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ in ð−;þ;þ;þÞ notation [46]

ds2¼−
Δr

Σ

�
dt−asin2θ

�
dϕ
Ξ

−al2
dt
Ξ

��
2

þ Σ
Δr

dr2þ Σ
Δθ

dθ2

þΔθ sin2θ
Σ

�
adt−ðr2þa2Þ

�
dϕ
Ξ

−al2
dt
Ξ

��
2

: ð4:1Þ

In Eq. (4.1), the functions Δθ, Σ, and Δr are given by

Δθ ¼ 1 − a2l2cos2θ;

Σ ¼ r2 þ a2cos2θ;

Δr ¼ ðr2 þ a2Þð1þ l2r2Þ − 2mr; ð4:2Þ

respectively. The constant l, whose inverse l−1 stands for
the radius of curvature for the maximally symmetric AdS
spaces, is read off as l2 ¼ −Λ̂grðD ¼ 4Þ ¼ −Λ=3. The
constant parameter Ξ ¼ 1 − l2a2, and ðm; aÞ are integra-
tion constants related to the mass and angular momentum,
respectively. Due to the fact that the four-dimensional Kerr-
AdS black hole is the solution of the vacuum Einstein field
equation Rν

μ ¼ −3l2δνμ, the field equations given by
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Eq. (2.16) support that such a black hole is also the exact
solution of the quadratic gravity characterized by the
Lagrangian

ffiffiffiffiffiffi
−g

p
Lð4DÞ
Ric ¼ ffiffiffiffiffiffi

−g
p ðRþ 6l2 þ c1R2 þ c2RαβRαβÞ; ð4:3Þ

where both the coupling constants c1 and c2 are allowed to
be arbitrary in form.
Substituting Λ̂ ¼ −l2 into the 2-form potential Kμν

Ric
given by Eq. (2.39), we acquire the potential Kμν

KAdS to
define the conserved charges of the four-dimensional Kerr-
AdS black hole (4.1) corrected by quadratic curvature
terms, being of the form

Kμν
KAdS ¼ ½1 − 6ð4c1 þ c2Þl2�Kμν

grðD ¼ 4; Λ̂ ¼ −l2Þ

¼ ½1 − 6ð4c1 þ c2Þl2�
�
∇½μξν� þ 1

2l2
Rμν
ρσ∇ρξσ

�
;

ð4:4Þ

where the potential Kμν
gr for general relativity is presented

by Eq. (2.38). Equation (4.4) demonstrates that the con-
served charges in the framework of quadratic gravity
described by the Lagrangian (4.3) are proportional to the
ones in Einstein gravity. As a consequence, by virtue of the
mass MKAdS ¼ m=Ξ2 and the angular momentum JKAdS ¼
ma=Ξ2 for the four-dimensional Kerr-AdS black hole in
general relativity [92,98–102], we directly present its mass

Mð4DQGÞ
KAdS and angular momentum Jð4DQGÞKAdS in the quadratic

gravity frame as

Mð4DQGÞ
KAdS ¼ ½1 − 6ð4c1 þ c2Þl2�m

Ξ2
;

Jð4DQGÞKAdS ¼ ½1 − 6ð4c1 þ c2Þl2�ma
Ξ2

: ð4:5Þ

Particularly, as is shown in Appendix A, the four-dimen-
sional Kerr-AdS black hole is also the solution of four-
dimensional Weyl gravity (c2 ¼ −6c1) described by the
Lagrangian (2.5) that does not incorporate the Einstein-
Hilbert one

ffiffiffiffiffiffi−gp ðR − 2ΛÞ. Thus, neglecting all the con-
tributions from the Einstein-Hilbert Lagrangian, that is,

throwing away m=Ξ2 in Mð4DQGÞ
KAdS and ma=Ξ2 in Jð4DQGÞKAdS ,

one obtains the mass Mð4DWGÞ
KAdS and the angular momentum

Jð4DWGÞ
KAdS of the Kerr-AdS black hole in the framework of

Weyl gravity, read off as

Mð4DWGÞ
KAdS ¼ 12c1l2m

Ξ2
; Jð4DWGÞ

KAdS ¼ 12c1l2ma
Ξ2

; ð4:6Þ

respectively. In fact, the mass and angular momentum given
by the above equation are in agreement with those for the
four-dimensional charged rotating black hole in Weyl
gravity [79,103], which turns into the Kerr-AdS black

hole in the absence of the charge parameter. This is
attributed to the fact that the U(1) gauge field falls off
fast at infinity so that it makes no contribution to the
conserved charges.
In the case for the theory of critical gravity with the

Lagrangian (2.9), where c1 ¼ 1=ð6l2Þ and c2 ¼ −3c1, the
factor 1 − 6ð4c1 þ c2Þl2 ¼ 0. Thus, both the mass and
angular momentum for the four-dimensional Kerr-AdS
spacetimes vanish. This holds true for four-dimensional
critical gravity described by the Lagrangian (2.10). To
illustrate this, we substitute c1 ¼ 3α, c2 ¼ −12α and c3 ¼
6α into Eq. (2.34) to obtain the potential

K̃μν
4DCG ¼ −6αðR∇½μξν� þ 4R½μ

ρ ∇ν�ξρ þ 4ξρ∇½μRν�
ρ Þ: ð4:7Þ

Apparently, for the solutions satisfying Rμν ¼ 3Λ̂gμν, the
potential K̃μν

4DCG ¼ 0, resulting in identically vanishing
conserved charges, which holds true for the conserved
charges defined in terms of the AMD method [76,77]. This
supports the observation on both the energy and the angular
momentum of the four-dimensional Kerr-AdS black holes
in [5]. What is more, in the case for four-dimensional
Einstein-Gauss-Bonnet gravity, the quadratic-curvature
Gauss-Bonnet term makes no contribution to the mass
and the angular momentum of the Kerr-AdS black hole,
arising from that the coupling constants c1 and c2 are
constrained by 4c1 þ c2 ¼ 0 in such a gravity theory. This
is also supported by the covariant phase space and the (off-
shell) ADTmethods. However, it was demonstrated that the
Gauss-Bonnet term is able to result in a correction to the
Bekenstein-Hawking entropy in [104–107].
Without loss of generality, we turn our attention toward

the case for the higher-dimensional Kerr-AdS black holes
embedded into the theory of quadratic-curvature gravity. As
is demonstrated in Appendix B, the solutions satisfying
Rμν ¼ ðD − 1ÞΛ̂gμν (D > 4) are also the ones correspond-
ing to the following Lagrangian

ffiffiffiffiffiffi
−g

p
L2 ¼

ffiffiffiffiffiffi
−g

p
 
R − 2Λþ c1R2 −Dc1RαβRαβ

þ ðD − 2ÞðΛ̂gr − Λ̂Þ
ðD − 1ÞðD − 4ÞΛ̂2

RαβRαβ

!
: ð4:8Þ

Here all three constant parameters Λ, c1 and Λ̂ are allowed
to be very general, which guarantee the constraint (2.22) to
all the constant parameters to hold identically. For such
solutions, the 2-form potential Kμν

Ric in Eq. (2.39), adopted
to define their conserved charges, turns into

Kμν
Ric →

2ðD − 2ÞΛ̂gr −DΛ̂
ðD − 4ÞΛ̂ Kμν

gr : ð4:9Þ
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In light of the above equation, one sees that the potential
associated with the Lagrangian (4.8) is proportional to
the one for Einstein gravity and it is irrelevant to the
coupling constant c1. This is attributed to the fact that the
potential corresponding to the c1

ffiffiffiffiffiffi−gp ðR2 −DRαβRαβÞ
part in the Lagrangian (4.8) vanishes identically according
to Eq. (B11).
As is evident, the D-dimensional Kerr-AdS black

hole [47,48], which obeys the field equation Rμν¼
−ðD−1Þl2gμν derived from the Einstein-Hilbert Lagrangian
LEH ¼ ffiffiffiffiffiffi−gp ½Rþ ðD − 1ÞðD − 2Þl2�, is an exact solution
for the Lagrangian (4.8) with Λ̂ ¼ −l2. Such a solution has
n ¼ ðD − ε − 1Þ=2 (ε ¼ 1 forD even and ε ¼ 0 forD odd)
independent rotations characterized by n parameters
ai ð1 ≤ i ≤ nÞ in n orthogonal 2-planes with 2π-
periodic azimuthal angles ϕi. In the coordinate system
ft; r; μ1;…; μnþε−1;ϕ1;…;ϕng, the line element for the
D-dimensional Kerr-AdS black hole is read off as [47,48]

ds2 ¼ −HWdt2 þ r2UV
HðV − 2mÞ dr

2 þ
Xnþε

i¼1

ðr2 þ a2i Þ
dμ2i
Ξi

−
l2

HW

 Xnþε

i¼1

r2 þ a2i
Ξi

μidμi

!
2

þ 2mH
r2UV

 
Wdt −

Xn
i¼1

aiμ2i
dϕi

Ξi

!
2

þ
Xn
i¼1

μ2i ðr2 þ a2i Þ
dϕ2

i

Ξi
; ð4:10Þ

where the four functions ðH;U; V;WÞ are presented
respectively by

H ¼ 1þ l2r2; U ¼
Xnþε

i¼1

μ2i
r2 þ a2i

;

V ¼ rε−2H
Yn
i¼1

ðr2 þ a2i Þ; W ¼
Xnþε

i¼1

μ2i
Ξi

: ð4:11Þ

In Eqs. (4.10) and (4.11), m denotes an integral constant
related to the mass, and the constant parameters Ξi ð1 ≤
i ≤ nÞ are associated with the rotation parameters ai ð1 ≤
i ≤ nÞ through Ξi ¼ 1 − a2il

2, while Ξnþ1 ¼ 1, arising
from that anþ1 ¼ 0 for even D. The μi variables are
constrained by

Pnþε
i¼1 μ

2
i ¼ 1. By making use of the

potential (4.9) to compute the mass Mqc and the angular

momenta JðiÞqc (i ¼ 1; · · ·; n) for the higher-dimensional
Kerr AdS black holes (4.10) corrected by quadratic
curvature terms, we acquire the results that are propor-
tional to the ones [92,98–102] for their counterparts in
the framework of general relativity by the factor
−½2ðD − 2ÞΛ̂gr þDl2�=½ðD − 4Þl2�, that is,

Mqc ¼ −
½2ðD − 2ÞΛ̂gr þDl2�VD−2

4πðD − 4Þl2

mQ
n
j¼1 Ξj

×

 Xn
i¼1

1

Ξi
−
1 − ε

2

!
;

JðiÞqc ¼ −
½2ðD − 2ÞΛ̂gr þDl2�VD−2

4πðD − 4Þl2

mai
Ξi
Q

n
j¼1 Ξj

: ð4:12Þ

As it is mentioned in Appendix C, the above conserved
charges satisfy both the differential and integral forms
for the first law of thermodynamics of black holes.
Particularly, when Λ ¼ −DðD − 1Þl2=4 or Λ̂ ¼ −l2,
yielding Λ̂gr ¼ −Dl2=½2ðD − 2Þ�, the D-dimensional
Kerr-AdS black hole (4.10) is also the exact solution for
D-dimensional critical gravity described by the Lagrangian
(B7). In such a case, Eq. (4.12) indicates that all the mass
and the angular momenta of this black hole vanish iden-
tically. In the absence of the cosmological constant, it is
worth mentioning that the higher-derivative corrections to
the conserved quantities of four-dimensional Kerr black
holes and static spherically symmetric black holes in
arbitrary dimensions were taken into account by virtue of
the Euclidean action in [108] and [109] respectively.
Moreover, we follow the similar procedure to take into

consideration of the case for black strings in asymptotically
AdS spacetimes. It can be verified that the four-dimensional
rotating black strings in Einstein gravity given by the
work [110] and their higher-dimensional generalization
found in [111] satisfy respectively the field equations
derived from the Lagrangian (4.3) with l ¼ 1=l and the
Lagrangian (4.8) with Λ̂ ¼ −1=l2, where the constant l
denotes the radius of AdS spaces in [110,111]. By analogy
with the above case for the Kerr-AdS black holes, we adopt
the 2-form potential Kμν

Ric in Eq. (2.39) to define the mass
and angular momentum for these black strings. The results
for the four-dimensional black strings and their higher-
dimensional generalizations in the framework of the quad-
ratic-curvature gravity are proportional to the ones for their
counterparts in the context of general relativity (see the
works [110–112] for the mass and angular momentum of
such black strings) by the factors 1 − 6ð4c1 þ c2Þ=l2 and
−½2ðD − 2Þl2Λ̂gr þD�=ðD − 4Þ, respectively.

V. SUMMARY

In this paper, we explored the conserved charges of
asymptotically AdS spacetimes in the context of quadratic-
curvature gravities described by the generic Lagrangian
(2.1), which consists of the Ricci scalar R, the cosmological
constant Λ, as well as the quadratic curvature terms R2,
RμνRμν, and RμνρσRμνρσ. In order to achieve this, we first
analyzed the structure of the Lagrangian (2.1) and derived
the expression for the equations of motion via the variation
of this Lagrangian. Next, through the linear combination of
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the rank-4 tensors Pμν
ρσ and Pμν

ðrefÞρσ, we defined the rank-4

tensor Pμν
ρσ given by Eq. (2.26), which inherits the index

symmetries of the Riemann curvature tensor and disappears
on the AdS spacetimes. By the aid ofPμν

ρσ, a 2-form potential
Kμν associated to the Killing vector field was proposed in
Eq. (2.27), which resembles the Noether potential Kμν

R in
Eq. (2.29). To demonstrate that Kμν is suitable for the
definition of conserved charges of asymptotically AdS
spacetimes, we compared it with the results via other
methods, such as the covariant phase space approach, the
(off-shell) ADT formalism, the generalized Komar integral
and the field-theoretic method. Furthermore, in terms of the
potential Kμν, the formula (2.46) for conserved charges was
presented. Finally, as applications, we derived the mass
formula (3.13) for static and spherically symmetric space-
times in four dimensions and above. Besides, the for-
mula (2.46) was applied to compute the mass and the
angular momentum of the four(higher)-dimensional Kerr-
AdS black holes and black strings embedded into quadratic-
curvature gravities, which are proportional to the ones in
Einstein gravity. All the results reveal that the potential Kμν

can successfully give rise to a simple formula for the
conserved charges of asymptotically AdS spacetimes in
the theories of quadratic-curvature gravity.
Particularly, we stressed on the definition of conserved

quantities for Weyl gravity, Einstein-Gauss-Bonnet gravity
and critical gravity. For these theories, the potentials
adopted to define conserved charges were given respec-
tively by Eqs. (2.31), (2.32), and (2.40). What is more, for
the asymptotically AdS spacetimes satisfying the vacuum
Einstein field equations, the potential Kμν

Ric given by
Eq. (2.39) takes a simple form, which is proportional to
the one for Einstein gravity.
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APPENDIX A: THE PROPERTIES
FOR THE TENSOR Pμνρσ AND THE

EQUATIONS OF MOTION

We devote this appendix to the properties of the rank-4
tensor Pμνρσ and the divergence for the expression of the
equations of motion, together with the field equations
associated with four-dimensional Weyl and critical
gravities and Einstein-Gauss-Bonnet gravity in arbitrary
dimensions. Some of the following results for Pμνρσ overlap
the ones in [87].
In order to acquire the rank-4 tensor Pμνρσ given by

Eq. (2.14), we evaluate the derivative of the Riemann tensor
Rαβγλ with respect to Rρσ

μν , yielding

∂Rαβγλ

∂Rρσ
μν

¼ 1

8
ðgακgβηδκηρσδμνγλ þ gγκgληδ

κη
ρσδ

μν
αβÞ; ðA1Þ

whose contraction with the metric tensor further gives
rise to

∂Rγλ

∂Rρσ
μν

¼ gαβ
∂Rαγβλ

∂Rρσ
μν

¼ −
1

4
ðgγ½ρδμνσ�λ þ gλ½ρδ

μν
σ�γÞ;

∂R
∂Rρσ

μν
¼ gγλ

∂Rγλ

∂Rρσ
μν

¼ 1

2
δμνρσ: ðA2Þ

According to the definition for the rank-4 tensor Pμνρσ, it
is required to at least inherit the following algebraic
symmetries for the Riemann tensor Rμνρσ, that is,

Pμνρσ ¼ Pρσμν ¼ −Pνμρσ ¼ −Pμνσρ: ðA3Þ

Particularly, it can be proved that the tensor Pμνρσ also
fulfills the algebraic Bianchi-type identities Pμ½νρσ� ¼ 0 ¼
P½μνρ�σ in the case of quadratic-curvature gravities. Besides,
by merely making use of the properties of the Riemann
tensor and the index symmetries of Pμνρσ presented by
Eq. (A3), we have

2∇½ρ∇σ�Pμνρσ ¼ −2R½μλρσPν�λρσ þRρ
λρσPμνλσ þRσ

λρσPμνρλ;

¼ −2R½μλρσPν�λρσ þ 2RρσPμνρσ

¼ −2R½μλρσPν�λρσ; ðA4Þ

together with the following identity

2∇½ρ∇σ�Pρμνσ ¼ R½μλρσPν�σρλ þ R½μλρσPν�ρλσ

¼ R½μλρσPν�λρσ: ðA5Þ

In order to gain the last equality in Eq. (A5), we have used
the Bianchi identity Rμ½λρσ� ¼ 0. As a consequence of
Eqs. (A4) and (A5), unlike in [87], without the requirement
that R½μλρσPν�λρσ ¼ 0 and Pρ½μνσ� ¼ 0, their combination
brings about another identity

∇ρ∇σPμ½νρσ� ¼ 0; ðA6Þ

or ∇ρ∇σPμνρσ ¼ −2∇ρ∇σPρ½μν�σ. This can be also obtained
by using P½μνρσ� ¼ Pμ½νρσ� and ∂ρ∂σð ffiffiffiffiffiffi−gp

P½μνρσ�Þ ¼ 0.
Moreover, by the aid of the equality (A5), as well as the
decompositions to the rank-2 tensors Rμ

λρσPνλρσ and
∇ρ∇σPρμνσ, that is,

Rμ
λρσPνλρσ ¼ RðμλρσPνÞλρσ þ R½μλρσPν�λρσ;

∇ρ∇σPρμνσ ¼ ∇ρ∇σPρðμνÞσ þ∇ρ∇σPρ½μν�σ; ðA7Þ

we obtain the following identity

JUN-JIN PENG, YAO WANG, and WEI-JIE GUO PHYS. REV. D 108, 104035 (2023)

104035-14



Rμ
λρσPνλρσ − 2∇ρ∇σPρμνσ ¼ RðμλρσPνÞλρσ − 2∇ρ∇σPρðμνÞσ

ðA8Þ

under the only requirement that Pμνρσ exhibits the index
symmetries in Eq. (A3). As a result of Eq. (A8), the round
brackets in the expression (2.12) for the field equations can
be omitted.
In the case where Pμνρσ is not required to satisfy

Pμ½νρσ� ¼ 0, we can introduce an auxiliary rank-4 tensor
P̃μνρσ to decompose Pμνρσ as

Pμνρσ ¼ P̃μνρσ þ Pμ½νρσ�: ðA9Þ

Obviously, P̃μνρσ possesses the index symmetries given by
Eq. (A3) and satisfies the Bianchi-type identity P̃μ½νρσ� ¼ 0.
By means of Rμ

λρσPν½λρσ� ¼ Rμ
½λρσ�Pν½λρσ� ¼ 0 and Eq. (A6),

we have

Rμ
λρσPνλρσ − 2∇ρ∇σPρμνσ ¼ Rμ

λρσP̃νλρσ − 2∇ρ∇σP̃ρμνσ:

ðA10Þ

As a matter of fact, the expression (2.12) for the field
equations is applicable to the more general Lagrangian
depending on the metric and the Riemann tensor. In terms
of Eq. (A10), we conclude that the equations of motion
associated to such types of Lagrangian are irrelevant to
Pμ½νρσ�. This holds true for the surface term Θμ arising from
that Pμ½νρσ�∇½σδgρν� ¼ 0 and δg½νρ∇σ�Pμ½νρσ� ¼ 0. Thus, the
variation of the Lagrangian that is the functional of the
metric and the Riemann tensor is alternatively given by

δð ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p

Ẽμνδgμν þ
ffiffiffiffiffiffi
−g

p ∇μΘ̃μ; ðA11Þ

where Ẽμν ¼ EμνðP → P̃Þ and Θ̃μ ¼ ΘμðP → P̃Þ.
According to Eq. (A11), one can follow the conventional
Noether procedure to obtain the Noether current and
potential unrelated to Pμ½νρσ�, as well as the Iyer-Wald
potential. Hereto we stress that all the above results hold
true for an arbitrary rank-4 tensor Pμνρσ only armed with the
index symmetries given by Eq. (A3). If we further make use
of the result Rμ

λρσPνλρσ ¼ Rν
λρσPμλρσ, which was explicitly

proved under the conditions that the Lagrangian preserves
diffeomorphism invariance and the P-tensor exhibits the
algebraic symmetries presented by Eq. (A3) in [87],
Eqs. (A4) and (A5) turn into

∇ρ∇σPμνρσ ¼ 0; ∇ρ∇σPρ½μν�σ ¼ 0: ðA12Þ

The results in Eq. (A12) will be verified below in the
framework of quadratic-curvature gravities. Specifically,
the divergence of Pμνρσ takes the form

∇ρPμν
ρσ ¼ 1

4
ð4c1 þ c2Þδμνρσ∇ρRþ ðc2 þ 4c3Þ∇½μRν�

σ : ðA13Þ

Calculations on the divergence of ∇ρPμν
ρσ give rise to

∇ρ∇σPμρ
σν ¼ −

1

4
ð4c1 þ c2Þδμν□R −

1

2
ðc2 þ 4c3Þ□Rμ

ν

þ 1

2
ðc2 þ 4c3ÞðRμ

λR
λ
ν − Rμ

ρνσRρσÞ

þ 1

2
ð2c1 þ c2 þ 2c3Þ∇μ∇νR; ðA14Þ

as well as ∇ρ∇σPμν
ρσ ¼ ∇½ρ∇σ�Pμν

ρσ ¼ 0. The contraction
between the indices μ and ν in ∇ρ∇σPμρ

σν yields the scalar

gμν∇ρ∇σPμρσν ¼−
1

4
½4ðD− 1Þc1þDc2þ 4c3�□R: ðA15Þ

In terms of Eq. (A4), the equality ∇ρ∇σPμνρσ ¼ 0 renders
us to arrive at R½μλρσPν�λρσ ¼ 0, or

Rμ
λρσPνλρσ ¼ Rν

λρσPμλρσ: ðA16Þ

Due to Eq. (A5) or (A6), Eq. (A16) further results in

∇ρ∇σPρμνσ ¼ ∇ρ∇σPρνμσ; ðA17Þ

or ∇ρ∇σPρ½μν�σ ¼ ∇½ρ∇σ�Pρμνσ ¼ 0. Therefore, we have the
conclusion that ∇ρ∇σPμνρσ ¼ 0 is the necessary and
sufficient condition for the result that each of the rank-2
tensors ∇ρ∇σPρμνσ and Rμ

λρσPνλρσ is symmetric with
respect to both the indices μ and ν.
With the help of the tensor Pμνρσ, the Lagrangian density

L can be reexpressed as

2L ¼ R − 4Λþ Rρσ
μνP

μν
ρσ: ðA18Þ

When the metric satisfies the field equations Eμν ¼ 0, by
the aid of Eq. (A15), L is required to fulfill the following
on-shell condition

ðD − 4ÞL ¼ ½4ðD − 1Þc1 þDc2 þ 4c3�□R − 2Rþ 8Λ;

ðA19Þ

or equivalently,

ðD − 4ÞRρσ
μνP

μν
ρσ ¼ ½8ðD − 1Þc1 þ 2Dc2 þ 8c3�□R

−DRþ 4DΛ: ðA20Þ

In particular, when the dimension of spacetimes D ¼ 4, the
constraint (A19) or (A20) for all the quadratic-curvature
gravities is simplified as

2½3c1 þ c2 þ c3�□R ¼ R − 4Λ: ðA21Þ
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For four-dimensional Weyl gravity coupled with the
Einstein-Hilbert Lagrangian and critical gravity described
by the Lagrangian (2.9), one obtains R ¼ 4Λ.
In terms of the above properties of the tensor Pμνρσ, the

divergence of the expression for the equations of motion
Eμν is read off as

∇νEν
μ ¼

1

2
Pλν
ρσ∇λR

ρσ
μν −

1

4
Rρσ
αβ∇μP

αβ
ρσ −

1

4
∇μR

¼ 1

4
½ð2c1Rþ 1Þð2∇νRν

μ −∇μRÞ
þ 2c2Rν

ρðδγλμν∇λR
ρ
γ −∇σR

ρσ
μνÞ

þ 2c3R
γλ
ρσð2∇γR

ρσ
μλ −∇μR

ρσ
γλ Þ�

≡ 0: ðA22Þ

In order to obtain the last identity in the above equation, the
Bianchi identity∇½μR

ρσ
γλ� ¼ 0 has been used. Equation (A22)

shows that the expression for the equations of motion is
conserved.
In the remainder of this appendix, to demonstrate some

typical cases of the general expression (2.16) for the field
equations, we take into account the equations of motion
for the four-dimensional Weyl and critical gravities, as
well as the one for the Einstein-Gauss-Bonnet gravity in
arbitrary dimensions. It can be proven that the Gauss-
Bonnet term (2.7) fulfills identically

gμνLGB ¼ 4RRμν − 8RμρνσRρσ − 8RμλRλ
ν þ 4Rμ

λρσRνλρσ

þ 1

4
gνζδ

ζγλκη
μαβρσR

αβ
γλR

ρσ
κη : ðA23Þ

Attributed to the fact that δζγλκημαβρσ ¼ 0 when D ≤ 4,
Eq. (A23) can be used to simplify the expression Eμν

for field equations in four dimensions. Doing so yields

Eð4DÞ
μν ¼ Eμνjc3¼0ðc1; c2 → ĉ1; ĉ2Þ, where ĉ1 ¼ c1 − c3 and

ĉ2 ¼ c2 þ 4c3, namely,

Eð4DÞ
μν ¼ EðgrÞ

μν þ 2ĉ1RRμν þ 2ĉ2RμρνσRρσ

−
1

2
gμνðĉ1R2 þ ĉ2RαβRαβÞ

þ 1

2
ð4ĉ1 þ ĉ2Þgμν□Rþ ĉ2□Rμν

− ð2ĉ1 þ ĉ2Þ∇μ∇νR: ðA24Þ

Here EðgrÞ
μν denotes the expression for field equations

corresponding to the Einstein-Hilbert Lagrangianffiffiffiffiffiffi−gp
LEH ¼ ffiffiffiffiffiffi−gp ðR − 2ΛÞ, and it reads

EðgrÞ
μν ¼ Rμν −

1

2
Rgμν þ Λgμν: ðA25Þ

From Eq. (A24), one observes that the solution satisfying

EðgrÞ
μν ¼ 0 or Rμν ¼ Λgμν in four dimensions must guaran-

tee that Eð4DÞ
μν ¼ 0. That is to say, the vacuum solution to

four-dimensional general relativity must be the exact one
for four-dimensional quadratic gravity [43]. As a result of
Eq. (A25), the expression for the field equations of four-

dimensional Weyl gravity, corresponding to Eð4DÞ
μν with

c2 ¼ −6c1 and c3 ¼ 3c1, or with ĉ1 ¼ −2c1 and ĉ2 ¼ 6c1,
is given by

Eð4DWÞ
μν ¼ c1ðR2 − 3RρσRρσ −□RÞgμν þ 6c1□Rμν

þ 2c1ð6RμρνσRρσ − 2RRμν −∇μ∇νRÞ
¼ −6c1ð2∇ρ∇σ þ RρσÞCμρσν; ðA26Þ

where Eq. (A23) has been adopted to expand the
four-dimensional Bach tensor ð∇ρ∇σ þ Rρσ=2ÞCμρνσ.

According to Eq. (A26), one finds that gμνEð4DWÞ
μν ¼ 0

and the condition Rμν ¼ λgμν, where λ is an arbitrary

constant, must give rise to Eð4DWÞ
μν ¼ 0. This indicates that

the four-dimensional vacuum general relativistic solution
is the one for the four-dimensional Weyl gravity as well.
When c1 ¼ β, c2 ¼ α and c3 ¼ 0, Eq. (2.16) becomes

the expression for the field equation of the four-dimensional
critical gravity given in [3]. Specifically, according to the

Lagrangian (2.9), the expression Eð4DCGÞ
μν for the field

equation of the four-dimensional critical gravity can be

related to the one Eð4DWÞ
μν for the four-dimensional Weyl

gravity through

Eð4DCGÞ
μν ¼ EðgrÞ

μν þ Eð4DWÞ
μν

�
c1 ¼

1

4Λ

�
: ðA27Þ

It should be pointed out that the higher-dimensional
generalization of Eq. (A27) can be found in the work [4]
(see also Eq. (B7) in Appendix B). What is more, with the
help of Eq. (A23), neglecting the Eν

ðgrÞμ part and letting

c1 ¼ 3α, c2 ¼ −12α and c3 ¼ 6α in Eq. (2.16), we get the
expression for the field equation of the critical gravity
described by the Lagrangian (2.10), being of the form

Ẽð4DCGÞ
μν ¼ 6αð4RμρνσRρσ − RRμν −∇μ∇νRÞ

þ 3

2
αðR2 − 4RρσRρσÞgμν þ 12α□Rμν: ðA28Þ

Due to the fact that gμνẼð4DCGÞ
μν ¼ 6α□R, one necessary

condition for Ẽð4DCGÞ
μν ¼ 0 is □R ¼ 0. With Eqs. (A26)

and (A27), solutions obeying Eν
ðgrÞμðD ¼ 4Þ ¼ 0 must be

the ones of the critical gravity relative to the Lagrangian
(2.9). This can also be seen from the Lagrangian (2.9)
attributed to the fact that the Gauss-Bonnet term in four
dimensions is a topological surface term, which makes no

JUN-JIN PENG, YAO WANG, and WEI-JIE GUO PHYS. REV. D 108, 104035 (2023)

104035-16



contribution to the equations of motion. According to
Eq (A28), the critical gravity with the Lagrangian (2.10)
allows for the solutions satisfying Rμν ¼ λgμν. As a result,
in light of all the above in this appendix, one observes that
the AdS black hole solution with cylindrical symmetry
found in [113] can be embedded in the four-dimensional
Weyl and critical gravities as well.
In addition, in the case for Einstein-Gauss-Bonnet

gravity (c2 ¼ −4c1, c3 ¼ c1), Eq. (2.16) coincides with
the field equation in [79], which can be further simplified as
the following form by virtue of Eq. (A23)

Eν
ðGBÞμ ¼ Eν

ðgrÞμ −
c1
8
δνγλκημαβρσR

αβ
γλR

ρσ
κη : ðA29Þ

In terms of Eq. (A29), it is easy to see that the Gauss-
Bonnet term is nondynamical in four dimensions due to the
fact that δνγλκημαβρσ ≡ 0 in four dimensions.

APPENDIX B: EMBEDDING HIGHER-
DIMENSIONAL SOLUTIONS TO VACUUM

EINSTEIN FIELD EQUATIONS INTO
QUADRATIC GRAVITY

In order to test the definition for conserved quantities in
quadratic gravity described by the Lagrangian

ffiffiffiffiffiffi−gp
L,

enough exact solutions of this theory in various dimensions
are desired. Unfortunately, since the field equations Eμν ¼ 0

are nonlinear fourth-order partial differential equations
(PDE), solving them to obtain solutions is extremely
difficult. However, within the context of some special cases
of quadratic gravity or it coupled with matter fields, such as
Einstein-Gauss-Bonnet gravity, Weyl gravity and critical
gravity, some exact static spherically symmetric solutions
were found in the literature. Particularly, it has been
demonstrated in Appendix A that all the vacuum solutions
to four-dimensional Einstein gravity automatically become
the ones for four-dimensional quadratic gravity. Some non-
Einstein vacuum solutions to four-dimensional quadratic
gravity were obtained in [28–30,43]. Apart from the
aforementioned solutions, to our knowledge, within the
framework of the full theory of quadratic gravity, all exact
solutions in any dimension found so far are Kundt space-
times with constant Ricci scalar constructed in [44,45],
which can be put into Kerr-Schild form. Due to the
complexity of the field equations, exact rotating solutions
in D > 4 dimensions are still absent up till now.
In the present appendix, let us focus on the solutions to

the field equations Eμν ¼ 0 in Eq. (2.16) under the sole
constraint condition that they obey the vacuum Einstein
field equations Rμν ¼ λgμν in arbitrary dimensions, where λ
represents a constant. Such a constraint to them gets rid of
all the fourth-order derivative terms □R, □Rμν and ∇μ∇νR
in the field equations. Hence, the original fourth-order field
equations reduce to the much simpler second-order ones
depending only on the metric and curvature terms. Then the

substitution of Rμν ¼ λgμν into the resulting field equations
gives rise to

Eν
μjRρσ¼λgρσ ¼−

1

2
½ðD− 4ÞðDc1þ c2Þλ2þðD− 2Þλ−2Λ�δνμ

þ c3
2
ð4Rρσ

μλR
νλ
ρσ −Rρσ

αβR
αβ
ρσδνμÞ ¼ 0: ðB1Þ

The four free parameters ðΛ; c1; c2; c3Þ in field equations
allow for their appropriate values to guarantee that
Eq. (B1) holds without any further requirement for the
solutions except for the existing constraint Rμν ¼ λgμν.
[this will be illustrated below by Eqs. (B4), (B9), (B10)
and (B12)]. That is to say, like in the four-dimensional
case, it is also possible to embed the vacuum solutions
in higher-dimensional Einstein gravity into quadratic
gravities in higher dimensions. Under the guidance of
the above, we will demonstrate in detail that the solutions
of the vacuum Einstein equations Rμν ¼ ðD − 1ÞΛ̂gμν (here
the dimension of spacetime D > 4 and the non-vanishing
constant Λ̂ is allowed to be arbitrary) belong to the
quadratic gravities with the Lagrangian (4.8) as well.
Substituting equations Rμν ¼ ðD − 1ÞΛ̂gμν and R ¼

DðD − 1ÞΛ̂ into Eq. (4.8), we have

L2 ¼ DðD − 1Þ½ðD − 1ÞðDc1 þ c̃2ÞΛ̂2 þ Λ̂� − 2Λ; ðB2Þ

where the constant c̃2 is read off as

c̃2 ¼
ðD − 2ÞðΛ̂gr − Λ̂Þ
ðD − 1ÞðD − 4ÞΛ̂2

−Dc1: ðB3Þ

Under the condition that Rμν ¼ ðD − 1ÞΛ̂gμν, the equations
of motion for the Lagrangian (4.8), being a special case of
Eq. (2.16) or (B1), take the form

Eν
ð2Þμ ¼ Rν

μ þ 2c1RRν
μ þ 2c̃2Rνσ

μρR
ρ
σ −

1

2
L2δ

ν
μ

¼ −
D − 4

D − 2
ðD − 1ÞðDc1 þ c̃2ÞΛ̂2δνμ − ðΛ̂ − Λ̂grÞδνμ:

ðB4Þ

Substituting Eqs. (B2) and (B3) into Eq. (B4), we obtain
further Eν

ð2Þμ ¼ 0. This implies that the general relativistic

solutions fulfilling Rμν ¼ ðD − 1ÞΛ̂gμν must be the ones of
the field equations derived from the Lagrangian (4.8), which
is the usual Einstein-Hilbert Lagrangian supplemented with
the quadratic curvature terms R2 and RαβRαβ. For instance,
the D-dimensional Schwarzschild-AdS black holes in gen-
eral relativity are solutions of the quadratic gravity
described by the Lagrangian (4.8) [114]. In addition, when
Λ̂ ¼ 0, the quadratic-curvature Lagrangian associated with
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the solutions satisfying Rμν ¼ 0 in any dimension can be
expressed as

ffiffiffiffiffiffi
−g

p
L3 ¼

ffiffiffiffiffiffi
−g

p ðRþ c1R2 þ c2RαβRαβÞ: ðB5Þ

Apparently, since the D-dimensional Kerr-AdS black
hole given by Eq. (4.10) fulfills the field equations
Rμν ¼ −ðD − 1Þl2gμν derived from the Einstein-Hilbert
Lagrangian LEH ¼ ffiffiffiffiffiffi−gp ½Rþ ðD − 1ÞðD − 2Þl2� [47,48],
the expression (B4) for field equations supports that
such a black hole solution is also an exact one for the
Lagrangian (4.8) with Λ̂ ¼ −l2. Apart from this, it was
shown in [115] that a solution in three-dimensional new
massive gravity with constant scalar curvature can be
embedded into five-dimensional quadratic gravity through
dimension lifting.
Subsequently, we move on to demonstrate that the

Lagrangian (4.8) includes the one describingD-dimensional
critical gravity proposed in [4]. To do this, we let both the
arbitrary constants c1 and Λ̂ in the Lagrangian (4.8) take the
following values

c1 ¼ −
D2

4ðD − 1ÞðD − 2Þ3Λ̂gr

¼ −
D2

8ðD − 2Þ2Λ ;

Λ̂ ¼ 2ðD − 2Þ
D

Λ̂gr ¼
4Λ

DðD − 1Þ ; ðB6Þ

respectively, which obey the constraint (2.22) to the con-
stant parameters. Then we arrive at the Lagrangian (4.8) for
the higher-dimensional critical gravity [4], that is,

LCG¼ ffiffiffiffiffiffi
−g

p �
R−2Λ−

D2

8ðD−2Þ2Λ
�
R2−

4D−4

D
RρσRρσ

��

¼ ffiffiffiffiffiffi
−g

p �
R−2Λ−

DðD−1Þ
8ðD−2ÞðD−3ÞΛðLGB−Cμν

ρσC
ρσ
μνÞ
�
:

ðB7Þ

The last expression in Eq. (B7) can be acquired directly
by setting c1 ¼ −D2=½8ðD − 2Þ2Λ�, c2 ¼ −4ðD − 1Þc1=D
and c3 ¼ 0 in the Lagrangian (2.8). It reveals that critical
gravity can be understood as the linear combination of
Einstein-Gauss-Bonnet gravity and Weyl gravity. According
to Eq. (2.16), the expression of the equations of motion for
the D-dimensional critical gravity is read off as

EðDDCGÞ
μν ¼ EðgrÞ

μν −
D

16ΛðD − 2Þ2
× ½4DRRμν − 16ðD − 1ÞRμρνσRρσ

þ ð4ðD − 1ÞRρσRρσ −DR2 þ 4□RÞgμν
− 8ðD − 1Þ□Rμν þ 4ðD − 2Þ∇μ∇νR�: ðB8Þ

When Λ ¼ −DðD − 1Þl2=4 or Λ̂ ¼ −l2, it can be verified
that the D-dimensional Kerr-AdS black hole solution given

by Eq. (4.10) indeed obeys the field equations EðDDCGÞ
μν ¼ 0.

At last, let us make some remarks on the Lagrangianffiffiffiffiffiffi−gp
L2. Such a Lagrangian has three free parameters

denoted by ðΛ; c1; Λ̂Þ or ðΛ; c1; c̃2Þ. It covers the
Lagrangians for Einstein gravity ðc1 ¼ 0; Λ̂ ¼ Λ̂grÞ and
higher-dimensional critical gravity [c1 and Λ̂ are given by
Eq. (B6)], which only possess one parameter. In fact, within
the framework of quadratic gravities, there exist other
single-parameter Lagranians that admit the solutions sat-
isfying Rμν ¼ ðD − 1ÞΛ̂gμν, such as

ffiffiffiffiffiffi
−g

p
L2jΛ;c̃2¼0 ¼

ffiffiffiffiffiffi
−g

p �
R −

D − 2

DðD − 1ÞðD − 4ÞΛ̂R2

�
;

ffiffiffiffiffiffi
−g

p
L2jΛ;c1¼0 ¼

ffiffiffiffiffiffi
−g

p �
R −

D − 2

ðD − 1ÞðD − 4ÞΛ̂RαβRαβ

�
;

ðB9Þ
together with the following Lagrangian

L̃ðDDÞ
CG ¼ ffiffiffiffiffiffi

−g
p ðL2 − Rþ 2ΛÞjΛ̂¼Λ̂gr

¼ c1
ffiffiffiffiffiffi
−g

p ðR2 −DRαβRαβÞ; ðB10Þ

which coincides with the Lagrangian (2.10) for four-
dimensional critical gravity proposed in [5] when D ¼ 4
and c1 ¼ −3α, arising from that the Gauss-Bonnet term in
four dimensions is nondynamical. Due to the fact that the
potential for the Lagrangian (B10), being of the form

K̃μν
DDCG ¼ 2c1ðR∇½μξν� þDR½μ

ρ ∇ν�ξρ þDξρ∇½μRν�
ρ Þ

− c1ðD − 4Þξ½μ∇ν�R; ðB11Þ
vanishes identically for the solutions obeying Rμν ¼
ðD − 1ÞΛ̂gμν, L̃ðDDÞ

CG may be interpreted as the higher-
dimensional generalization for the Lagrangian (2.10).
Besides, there also exist Lagrangians with double free
parameters, for instance,

ffiffiffiffiffiffi
−g

p
L2jc̃2¼0 ¼

ffiffiffiffiffiffi
−g

p �
R − 2Λþ 2Λ − ðD − 1ÞðD − 2ÞΛ̂

DðD − 4ÞðD − 1Þ2Λ̂2
R2

�
;

ffiffiffiffiffiffi
−g

p
L2jc1¼0 ¼

ffiffiffiffiffiffi
−g

p �
R − 2Λþ 2Λ − ðD − 1ÞðD − 2ÞΛ̂

ðD − 4ÞðD − 1Þ2Λ̂2
RαβRαβ

�
; ðB12Þ
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as well as the Lagrangian without any coupling parameter,
namely,

ffiffiffiffiffiffi−gp ðR2 −DRαβRαβÞ. What is more, maybe one
expects to acquire a more general Lagrangian than

ffiffiffiffiffiffi−gp
L2

that admits the solutions fulfilling Rμν ¼ ðD − 1ÞΛ̂gμν by
incorporating the square of the Riemann tensor Rρσ

αβR
αβ
ρσ

within the Lagrangian. In doing so, one could take
into consideration of the Lagrangian

ffiffiffiffiffiffi−gp
L. For such

a Lagrangian, apart from the necessary condition
Rμν ¼ ðD − 1ÞΛ̂gμν, the field equations given by
Eq. (B1) yields another constraint for the metric tensor
gμν, that is,

c3
D−1

ð4Rρσ
μλR

νλ
ρσ−δνμR

ρσ
αβR

αβ
ρσÞ¼ ðD−1ÞðD−4ÞðDc1þc2Þ

× Λ̂2δνμþðD−2ÞðΛ̂− Λ̂grÞδνμ:
ðB13Þ

Substituting c2 ¼ c̃2 into the above equation leads to
c3 ¼ 0 or 4Rρσ

μλR
νλ
ρσ ¼ δνμR

ρσ
αβR

αβ
ρσ for the Riemann tensor.

Since the latter cannot be always guaranteed to hold under
the condition Rμν ¼ ðD − 1ÞΛ̂gμν, a simple and feasible
setting is c3 ¼ 0 to render the solutions of Rμν ¼
ðD − 1ÞΛ̂gμν as the ones of Eμν ¼ 0. This implies that
the Lagrangian

ffiffiffiffiffiffi−gp
L2 with three parameters can be

regarded as the most general one for quadratic gravities
that embrace solutions only required to obey Rμν ¼
ðD − 1ÞΛ̂gμν. For example, although Einstein-Gauss-
Bonnet gravity ðc3 ≠ 0Þ is a natural generalization of
general relativity, the higher-dimensional Kerr-AdS black
hole solutions in the context of the latter cannot be
embedded into the former because of the failure of those
solutions to satisfy Eq. (B13).

APPENDIX C: THE FIRST LAW OF
THERMODYNAMICS FOR KERR-AdS BLACK

HOLES WITHIN THE FRAMEWORK
OF QUADRATIC-CURVATURE GRAVITIES

In the present appendix, we investigate the first law of
Kerr-AdS black holes in the theory of Einstein gravity
corrected by the curvature terms R2 and RαβRαβ.
Within the framework of the Einstein gravity theory,

the mass M and all the angular momenta JðiÞ s for
D-dimensional stationary and axially symmetric Kerr-
AdS black holes in Eq. (4.10) are given by [92,98–102]

M ¼ VD−2

4π

mQ
n
j¼1 Ξj

 Xn
i¼1

1

Ξi
−
1 − ϵ

2

!
;

JðiÞ ¼ VD−2

4π

mai
Ξi
Q

n
j¼1 Ξj

: ðC1Þ

The angular velocities Ωi corresponding to the angular
momentum JðiÞ, the entropy S and the surface gravity κ are
presented by [47,98]

Ωi ¼
aiHðrHÞ
r2H þ a2i

; S ¼ VD−2

4
rε−1H

Yn
i

r2H þ a2i
Ξi

;

κ ¼ rHHðrHÞ
Xn
i

1

r2H þ a2i
−

1

rH

�
HðrHÞ

2

�
ε

; ðC2Þ

respectively. In Eq. (C2), the outer horizon radius rH is the
largest root of V − 2m ¼ 0. The Hawking temperature is
then read off as T ¼ κ=ð2πÞ. It has been demonstrated
in [98,99] that all the quantities in Eqs. (C1) and (C2)
satisfy the differential form for the first law of thermo-
dynamics, that is,

dM ¼ TdSþ
Xn
i

ΩidJðiÞ; ðC3Þ

together with the Smarr formula

D − 3

D − 2
M ¼ TSþ

Xn
i

ΩiJðiÞ: ðC4Þ

On the other hand, in the context of the Lagrangian (4.8)
with Λ̂ ¼ −l2, the massMqc and the angular momenta JðiÞqcs
for the Kerr-AdS black holes corrected by quadratic-
curvature terms are presented by Eq. (4.12). By virtue of
the following relation

∂L2

∂Rρσ
μν

¼ −
2ðD − 2ÞΛ̂gr þDl2

ðD − 4Þl2

∂R
∂Rρσ

μν
; ðC5Þ

we obtain the entropy Sqc via the Wald’s entropy formula
for black holes [50,105,116], being of the form

Sqc ¼ −
2ðD − 2ÞΛ̂gr þDl2

ðD − 4Þl2
S: ðC6Þ

The angular velocities, the entropy and the surface
gravity are still presented by Eq. (C2). Consequently, by
letting Eqs. (C3) and (C4) multiplied by the factor
−½2ðD− 2ÞΛ̂grþDl2�=½ðD− 4Þl2�, respectively, we obtain
the first law of thermodynamics for the Kerr-AdS black
holes in the gravity theory with quadratic-curvature terms,
namely,

dMqc ¼ TdSqc þ
Xn
i

ΩidJ
ðiÞ
qc; ðC7Þ
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as well as the following Smarr formula

D − 3

D − 2
Mqc ¼ TSqc þ

Xn
i

ΩiJ
ðiÞ
qc: ðC8Þ

APPENDIX D: COMPARISON BETWEEN
VARIOUS POTENTIALS

In Sec. II, we put forward the potential Kμν in Eq. (2.27)
or (2.34) for the computation of the conserved charges of
asymptotically AdS spacetimes in the context of quadratic
gravities described by the Lagrangian

ffiffiffiffiffiffi−gp
L in Eq. (2.1).

To illustrate its significance, we also gave some special cases
ofKμν, includingKμν

Weyl, K
μν
EGB, K

μν
gr andK

μν
Ric, corresponding

to the Lagrangians
ffiffiffiffiffiffi−gp

LW in Eq. (2.5),
ffiffiffiffiffiffi−gp

LEGB in
Eq. (2.6),

ffiffiffiffiffiffi−gp
LEH ¼ ffiffiffiffiffiffi−gp ½R − ðD − 1ÞðD − 2ÞΛ̂� andffiffiffiffiffiffi−gp

L constrained by the solutions satisfying Rμν ¼
ðD − 1ÞΛ̂gμν, respectively. We compared those potentials
with some existing ones defined through various methods
developed in the literature, such as the (off-shell generalized)
ADT method, the field-theoretic approach and the

topological regularization method. Some equivalences to
the potentials proposed in this work were presented. For
convenience to see all the results, we summarize them in
Table I. For example, in the third row, the linear perturbation
of the two-form Kμν

Weyl on the AdS spaces, δKμν
Weyl, is

consistent with the ADT potential given by Eq. (23) in
[79]. In the seventh row, the potential Kμν (even D) is
equivalent to the one given by Eq. (23) in [71] and Eq. (14)
in [73], obtained by means of the topological regularization
method.
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