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Various astrophysical and cosmological observations today serve as indirect evidence of the existence of
dark matter in the Universe. In the present work, we propose a class of spacetimes that show some
important characteristics relevant to the spacetime of a dark matter halo. These spacetimes are static and
spherically symmetric solutions of the Einstein field equations. The proposed spacetimes satisfy the flat
velocity profile of a galactic object far away from the center, they give good agreement to the astrometric
data of the S2 star, and these also cast a central shadow. Using the Penrose diagram, we show that the causal
nature of the central singularity here is null. This single spacetime model for galactic dark matter may
therefore be used to explain some of the properties of galactic dynamics at different length scales.
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I. INTRODUCTION

One source of indirect evidence for the existence of dark
matter comes from observations of the rotation curves of
galaxies. The rotation curves of the spiral galaxies dem-
onstrate that the velocity of the stars and gas in the outer
regions of these galaxies becomes almost constant [1].
Therefore, their rotation curves are flat, in contrast to what
is expected from Newtonian dynamics. The most general
explanation is the presence of an additional, unseen mass
component that causes the observed motion. The galactic
rotation curves are generally divided into three parts: a
bulge, a disk, and a dark halo. In general, the matter
distribution in our Galaxy is classified into four different
parts. The radial distance from 10−4 to 2 pc consists of
young stars that follow Keplerian law (v ∝ r−1=2) [2].
Noncircular motions of young stars have frequently been
observed near the Galactic Center. An intermediate sphe-
roidal bulge structure comprises older stars that follow the
exponential spheroidal model and ranges from 2 to 103 pc.
The region 103–104 pc is called an extended flat disk in
which dust and gas are present, which is a star-formation
zone. The region 104–105 pc is dominated by dark matter
called a spherical or outer halo [2].
The nature of dark matter remains very much unknown

as of now. There are many possible candidates for dark
matter, such as heavy neutrinos, weakly interacting massive
particles, micro- and primordial black holes, etc. [3], and

others. As an alternative to dark matter, several theoretical
models, based on a modification of Newton’s law or of
general relativity, have been proposed so far to explain the
behavior of the Galactic rotation curves [4–12]. Until now,
there has been no complete theory that predicts the direct
detection of dark matter. Our Milky Way Galaxy serves as
an experimental hub to test general relativity on the largest
as well as the smallest scale. Sagittarius A* (Sgr A*) is a
massive and compact radio source located at the center of
our Galaxy. One of the primary concerns about Sgr A* is its
true identity. It is still a mystery whether it is a black hole or
an alternative, such as a naked singularity, a wormhole, or
any other exotic compact object. Many investigations into
gravitational collapse have been conducted, and it has been
discovered that the final state of collapse is not necessarily a
black hole. There is a considerable amount of research
showing that null- and timelike singularities can be formed
during the gravitational collapse of physically plausible
matter clouds [13–17], which contradicts the cosmic
censorship conjecture proposed by Penrose [18]. The
Galactic Center with a strong gravity region can be
explored by investigating numerous observable factors,
such as the shadow of the ultracompact object, the
relativistic orbit of the S2 star, and accretion disk features,
etc. In 2019, the Event Horizon Telescope (EHT) released
the first groundbreaking horizon-scale image for M87 [19],
a supermassive compact object present at the center of
galaxy Messier 87. This was followed by the recent
release of the first image of Sgr A* [20–28]. To know
the actual theoretical framework of the geometry around
the Sgr A* compact object, many groups are working
on the shadow and accretion disk properties of the compact
object [29–46]. On the other hand, decades of continuous
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astrometric and spectroscopic observations by GRAVITY,
SINFONI, and the UCLA Galactic Center group provide
useful information about the central compact object by
using the trajectories of “S” stars. These S stars are located
very close to the Galactic Center and are orbiting around
Sgr-A* with a very high velocity [47–50]. In this context,
there is a large amount of literature in which the nature of
the timelike trajectories and orbital precession of a test
particle in various spacetime geometries is extensively
studied [51–69].
In [70], Nampalliwar et al. derived the spacetime metric

around a Schwarzschild black hole (BH) in between the
range rb–Rsp by assuming the power-law density profile
given by Nishikawa et al. [71]. By using the observational
data, the metric is tested where the best-fit value of rb and
Rsp are around 9.4MBH and 0.91 kpc, respectively. In the
r < rb radius, the usual Schwarzschild metric is present
and the r > Rsp metric can be matched with either the
Burkert-Salucci profile [72,73] or the Navarro-Frenk-White
(NFW) profile [74]. In our paper, we investigate a dis-
tribution of dark matter in the range 0 < r < Rb. In the
r < Rb, the Newtonian metric (a weak gravitational field
region of the Schwarzschild metric) is present.
In the present work, we propose a new procedure to

model the spacetime of a galactic dark matter halo in the
framework of general relativity. We construct a class of
spacetimes here that can model the flat rotation curves far
from the center, and these have a photon sphere near the
center. First, we use the well-established observational
constancy of the rotation curves far away from the galactic
center. Further, we use the conditions for the presence of a
photon sphere in spacetime. These properties allow us
to obtain the metric components for the spacetime we
construct here. The available observational data of
the astrometric positions of the S2 star (one of the stars
in the S-stars family) can provide useful constraints on the
proposed model. We obtain the timelike orbit of the
massive particle in the proposed dark matter spacetime
and constrain the free parameters of the metric by fitting
the theoretical orbit with the observational data of the S2
star orbit. Furthermore, we study the rotation curve,
redshift, and shadow properties using the best-fitted
parameters.
The paper is organized as follows: In Sec. II, we

construct the class of spacetimes using the properties of
the flat velocity curve and photon sphere. We also discuss
the energy conditions and causal structure of spacetime in
that section. Subsequently, in Sec. III, we study the particle
trajectory in the proposed dark matter spacetime, and after
that, we obtain the best-fitted parameter values using the
orbital motion of the S2 star. Next, in Secs. IV and V, we
study the circular velocity profiles far away from the center
and the shadow properties of the spacetime using the best-
fitted values of parameters. Finally, in Sec. VII, we
conclude our results.

II. CONSTRUCTION OF DARK MATTER
SPACETIME

Observations show that almost 90% of the Galaxy
should be made up of dark matter. Therefore, at a consid-
erable distance from the center, we can assume that
compared to dark matter, baryonic matter does not con-
tribute significantly to the total energy density of the halo
and hence to the dynamics of particles in the Galaxy.
Therefore, after a certain distance, we can assume that the
luminous matter acts as a test fluid that travels in the
curvature created by the dark matter.
To begin with, we assume that stars behave as test

particles that follow the timelike geodesics of a static and
spherically symmetric spacetime. In this situation, the
most generic form of the line element of spacetime is as
follows:

ds2 ¼ −gttc2dt2 þ grrdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where gtt, grr are the functions of r only, and the azimuthal
part of the spacetime exhibits the spherical symmetry. In
this section, we intend to derive a spacetime metric that
possesses two properties: (i) a flat velocity curve away from
the Galactic Center and (ii) a photon sphere near the
Galactic Center.
The rotation curves of spiral galaxies are one of the most

important indirect evidence of the existence of dark matter.
In the spiral arms of theses galaxies, neutral hydrogen (HI)
clouds host millions of stars. The frequency shifts in these
clouds’ 21 cm HI emission are used to measure the
velocities of the stars that are hosted by the cloud. It is
an empirical fact that, far from the Galactic Center, the
celestial bodies follow almost circular orbits and the
circular velocity of stars is a frame-dependent quantity.
The shift in 21 cm HI emission occurs due to the Doppler
effect caused by local Lorentzian motion of the stars.
Therefore, to investigate the possible metric components
that admit a flat velocity profile far away from the center,
one needs to use the expression of the circular velocity of a
particle measured by a stationary Lorentzian observer at
one location in the orbit. The Lagrangian for the test
particle traveling in any spacetime can be written as

2L ¼ gμν
dxμ

ds
dxν

ds
; ð2Þ

where s is the affine parameter along the geodesic. For
timelike geodesics, the affine parameter is the same as the
proper time τ of the particle. For the sake of simplicity, we
constrain our analysis to the equatorial plane (θ ¼ π=2).
For the line element described in Eq. (1), it follows that

2L ¼ −gttṫ2 þ grrṙ2 þ r2θ̇2 þ r2sin2θϕ̇2

¼ ϵ: ð3Þ
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Here, the dot indicates the derivative with respect to the
proper time τ. The null- and timelike geodesics are
characterized by ϵ ¼ 0 and ϵ ¼ −c2, respectively. The
conserved quantities, energy (e) and angular momentum
(h), of the particle per unit rest mass can be obtained as
follows:

−e ¼ ∂L
∂ṫ

¼ −gttc2 ṫ; ð4Þ

h ¼ ∂L

∂ϕ̇
¼ r2ϕ̇: ð5Þ

Since for the timelike case 2L ¼ −c2, eliminating ṫ and ϕ̇
using Eqs. (4) and (5), we obtain

E ¼ e2c2 ¼ gttgrrṙ2 þ Veff ; ð6Þ

and the effective potential

VeffðrÞ ¼ gtt

�
c2 þ h2

r2

�
: ð7Þ

Here, E is the total energy of the particle. Since we are
interested in the stable circular orbit of the test particle, the
following conditions must be satisfied:

ðaÞ ṙ ¼ 0 ðcircular orbitÞ; ð8Þ

ðbÞ dVeffðrÞ
dr

¼ 0 ðextremum motionÞ; ð9Þ

ðcÞ d2VeffðrÞ
dr2

����
extrem

> 0 ðstable orbitÞ: ð10Þ

Solving the conditions (a) and (b) for e and h, we obtain

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g2tt
2gtt − rg0tt

s
; ð11Þ

h ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3g0tt

2gtt − rg0tt

s
; ð12Þ

where ð0Þ denotes derivative with respect to the radial
coordinate r. By substituting the above expressions of e
and h in Eqs. (4) and (5), the four-velocity of the particle
becomes

ut¼ ṫ¼ 1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2gtt−rg0tt

s
; uϕ¼ ϕ̇¼c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0tt

rð2gtt−rg0ttÞ

s
: ð13Þ

While moving along orbit, when the position of the particle
coincides with the position of the observer, the velocity of
the particle can be measured at that instant of time by using

the local Lorentz tetrad frame of the observer. The basis
vectors of the orthonormal tetrad frame of the stationary
observer can be written as [75]

eαt̂ ¼
�

1ffiffiffiffiffiffiffiffiffi
c2gtt

p ; 0; 0; 0

�
; ð14Þ

eαr̂ ¼
�
0;

1ffiffiffiffiffiffi
grr

p ; 0; 0

�
; ð15Þ

eα
θ̂
¼

�
0; 0;

1

r
; 0

�
; ð16Þ

eα
ϕ̂
¼

�
0; 0; 0;

1

r sin θ

�
; ð17Þ

where ( ^) corresponds to the coordinates of the orthonor-
mal tetrad frame. Using the above basis vectors, the t and ϕ
components of the four velocities in the observer’s local
frame can be obtained,

ut̂ ¼ 1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gtt

2gtt − rg0tt

s
; uϕ̂ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg0tt

2gtt − rg0tt

s
: ð18Þ

The tangential velocity (v) of the particle in the circular
orbit as measured by the Lorentzian observer can be
defined as

v ¼ vϕ̂ ¼ uϕ̂

ut̂
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rg0ttðrÞ
2gttðrÞ

s
: ð19Þ

We know that the observations in the spiral
galaxy suggest that very far from the galactic center,
v ≈ constant [76]. Using this condition, the integration
of the above equation gives the functional form of the
gttðrÞ, which we denote as gtt1ðrÞ,

gtt1ðrÞ ¼ e

�
2V2c
c2

	
ln

�
r
Rc

	
; ð20Þ

where Vc is the constant velocity of the stars far away from
the center and Rc is the constant of integration. The
functional form [Eq. (20)] of gtt is valid only in the region
of the flat rotation curve. To find the condition on gtt in the
region close to the center, we use the aforementioned
second property of the metric: the presence of a photon
sphere. We know that the photon sphere corresponds to the
unstable circular orbits of the photons, and its presence in
spacetime requires the existence of a maximum of the
effective potential (Veff ) of null geodesics. For the space-
time described in Eq. (1), in the equatorial plane (θ ¼ π=2),
the null geodesics satisfies the relation
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1

b2
¼ gttgrr

l2

�
dr
dλ

�
2

þ Veff ; ð21Þ

where the effective potential

Veff ¼
gtt
r2

; ð22Þ

and the impact parameter b ¼ l
ε, where ε and l are

conserved energy and conserved angular momentum of
the photon, respectively.
At photon sphere radius (rph), one can write

VeffðrphÞ ¼ ε2

l2 ;V
0
effðrphÞ ¼ 0, and V 00

effðrphÞ < 0. In order
to obtain the spacetime metric that possesses a photon
sphere, we start by considering an ansatz for the effective
potential, which has a maximum as follows:

Veff ¼
1

r2
ep−ð

r�
r Þn ; ð23Þ

where p and r� are constants. Using the condition
V 0
effðrphÞ ¼ 0, we can calculate the radius of a photon

sphere as

rph ¼
�
2

n

�
−1
n

r�: ð24Þ

Substituting the expression of r� from the above equation in
Eq. (23), the form of effective potential becomes

Veff ¼
1

r2
ep−

2
nð

rph
r Þn : ð25Þ

From Eq. (22), we can write the second form of gttðrÞ
(i.e., gtt2),

gtt2 ¼ ep−
2
nð

rph
r Þn : ð26Þ

For the above type of form of gtt, the maxima and upper
bound of the effective potential coincide, which allows the
spacetime to cast a shadow [29,32]. The functional form of
gtt in Eq. (20) becomes dominant as one moves away from
the center, accounting for the particle’s constant velocity in
the outer parts of the galaxy. On the other hand, Eq. (26)
dominates over small distances from the center and creates
the photon sphere near the center. Now, Eqs. (20) and (26)
can be combined to obtain a single expression of gtt that
exhibits both properties: a presence of a photon sphere near
the center as well as a flat velocity profile farther away from
the center,

gttðrÞ ¼ q � e
�
p−2

�
c2−V2c
c2n

	�
rph
r

	
n
�

þ2V2c
c2

lnð r
Rc
Þ
; ð27Þ

where q is a constant that can be determined from the
boundary conditions. Here, Eqs. (20) and (26) are

combined in such a way that the photon sphere still
remains at the same radius r ¼ rph in the merged expres-
sion of gtt. This spacetime of the galactic dark matter halo
cannot be an asymptotically flat spacetime. It should be
matched with any asymptotically flat spacetime at some
timelike hypersurface.
In general relativity, for the smooth matching of two

spacetimes at a timelike or spacelike hypersurface, two
junction conditions must be fulfilled on the matching
hypersurface [77]. The first condition requires that the
induced metric (hab) on both sides of the matching hyper-
surface must be identical, and the second condition states
that the extrinsic curvature (Kab) of the internal and
external spacetimes at the matching hypersurface should
be the same. The extrinsic curvature can be written in terms
of the covariant derivative of normal vectors on the
hypersurface,

Kab ¼ eαae
β
b∇αηβ; ð28Þ

where eαa is the tangent to the hypersurface and ηβ is
the normal to that hypersurface. We suppose that the
spacetime geometry outside the halo is described by the
Schwarzschild spacetime in the weak field limit, which
joins with the internal dark matter geometry at the matching
hypersurface r ¼ Rb. The line element of exterior
Schwarzschild spacetime in the weak field limit can be
written as

ds2ext ¼ −c2ð1 − αÞdt2 þ ð1þ αÞdr2 þ r2dΩ2; ð29Þ

where α ¼ 2V2
b

c2 and dΩ2 ¼ dθ2 þ sin2 θdϕ2. Here, Vb is the
velocity of the particle, which would be the same as the
constant velocity of the stars in the flat velocity profile
region. It should be noted that Rb ≫ rph. One can check
that the spacetime geometry comprising the internal and
external metrics is not smooth at the junction hypersurface
r ¼ Rb. Therefore, there must be a thin shell of matter at
the junction. Using the induced metrics matching at the
junction, we get q ¼ c2 and p ¼ −α. By considering the
tangential velocity Vc ¼ Vb at r ¼ Rb, we can determine
the integration constant Rc in Eq. (20). Thus, Eq. (20)
becomes

gtt1ðrÞ ¼ e

�
2V2

b
c2

	
ln

�
r
Rb

	
: ð30Þ

The final temporal component of the internal metric gttðrÞ
can be written as

gttðrÞ ¼ c2Exp



−α −

βð2 − αÞ
n

þ α log

�
r
Rb

��
; ð31Þ

where β ¼
�
rph
r

	
n
.
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We now address the question of how to obtain grrðrÞ. We
proceed by solving Einstein’s field equations to determine
grr inside the halo. We consider that the dark matter that
comprises the spherical halo is a fluid with the energy
density c2ρðrÞ, radial pressure PrðrÞ, and tangential pres-
sures PθðrÞ and PϕðrÞ. For the matching of the internal
metric with the external Schwarzschild metric on the
matching hypersurface, radial pressure at the matching
boundary of the internal spacetime should be zero. For
simplicity, we consider that the radial pressure inside the

internal spacetime is throughout zero. Now, one can solve
Einstein’s field equations with the condition T1

1 ¼ Pr ¼ 0

using previously determined gttðrÞ [Eq. (31)] and deduce
the expression for grrðrÞ as

grrðrÞ ¼ ð1þ 2β þ αð1 − βÞÞ: ð32Þ

By substituting gttðrÞ and grrðrÞ in Eq. (1), the line element
of the proposed dark matter spacetime becomes

ds2int ¼ −c2Exp


−α −

ð2 − αÞ
n

�
rph
r

�
n
þ α log

�
r
Rb

��
dt2 þ

�
1þ 2

�
rph
r

�
n
þ α

�
1 −

�
rph
r

�
n
��

dr2 þ r2dΩ2: ð33Þ

Note that Eq. (33) represents a class of spacetimes that
depend on the parameter n. One can also select a different
ansatz for the effective potential and obtain another class of
spacetimes.

A. Causal structure of the proposed dark matter
spacetime and energy conditions

From the expressions of the Kretschmann scalar
(RαβγδRαβγδ) and Ricci scalar, it can be seen that both
the scalars diverge at r ¼ 0, which implies the existence
spacetime singularity at the center.
To have an event horizon in a static spacetime, the

following condition must be followed at the event horizon
radius (re):

lim
r→re

dt
dr

¼ �
ffiffiffiffiffiffi
grr
gtt

r
¼ �∞: ð34Þ

One can check that, in the proposed dark matter spacetime
[Eq. (33)], the above condition is satisfied only for re ¼ 0.
This implies that the spacetime does not have any event
horizon covering the singularity. On the contrary, the
singularity itself is a null singular point. Therefore, the
singularity is visible to the outside observer at future
timelike infinity (Iþ).
Nevertheless, in order to be a physically valid solution of

Einstein’s field equations, the dark matter spacetime should
satisfy the weak energy conditions. Using Einstein’s field
equations, we can compute the energy density and pres-
sures of dark matter spacetime as

ρ¼αð1þαÞþβð1−nþ2αÞð2−αÞþβ2ð2−αÞ2
κr2ð1þαþβð2−αÞÞ2 ; ð35Þ

Pr ¼ 0; ð36Þ

Pθ ¼ Pϕ ¼ 1

4
ðαþ βð2 − αÞÞρ: ð37Þ

In Fig. 1, the permitted region (i.e., the shaded region)
for which weak energy conditions are fulfilled is depicted
in the space of n and r. One can observe that the weak
energy conditions are satisfied for n ≤ 1 and violated for
n > 1. Therefore, throughout the paper, we consider the
value of parameter n ¼ 1.
The causal nature of the singularity can be ascertained by

studying the Penrose diagram of spacetime. In a Penrose
diagram, the temporal and radial coordinates of the metric
are transformed in such a way that the entire spacetime
manifold can be adequately represented in a finite-sized
causal diagram. In Fig. 2, we show the Penrose diagram of
the dark matter spacetime for n ¼ 1. From the figure, it can
be concluded that the singularity at r ¼ 0 in spacetime (33)
is null-like in nature.

0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

0.025

n

r

FIG. 1. Figure shows range of weak energy condition violation
(i.e., white region). Therefore, the condition ρþ Pr > 0 is
satisfied for any value of r when n ≤ 1.
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From the next section onward, we shift our attention to
the observational aspects of our proposed dark matter
spacetime with a null-like singularity at the Galactic Center.

III. OBSERVATIONAL CONSTRAINTS ON DARK
MATTER SPACETIME FROM THE ORBITAL

DYNAMICS OF THE S2 STAR

Before going into the orbital dynamics of the S2 star and
the corresponding observational constraints on dark matter
spacetime, in the next subsection, we derive the orbit
equation of a test particle freely falling in a spherically
symmetric and static spacetime [Eq. (1)].

A. Timelike geodesics in dark matter spacetime

In this subsection, we study the timelike bound orbit of
the test particle in the static and spherically symmetric
spacetime given by Eq. (33).
For bound orbits, the total energy of the particle is greater

than or equal to the minimum of the effective potential, i.e.,
E ≥ Vmin. For the minimum of the effective potential, the
following condition should be obeyed:

dVeff

dr
¼ 0;

d2Veff

dr2

����
rs

> 0; ð38Þ

where r ¼ rs is the radius at which VeffðrÞ has a minimum
value and the stable circular orbit of a massive particle
exists. Here, the VeffðrÞ is given by Eq. (7). The bound
elliptical orbits of the particle exist for Veff < E < 0. For
the bound orbit, the periapsis ðrminÞ and apoapsis ðrmaxÞ of
the orbit can be calculated using the condition
Veff − E ¼ 0. Therefore, one can define the bound orbits
of the freely falling particles in the following way:

VeffðrminÞ ¼ VeffðrmaxÞ ¼ E;

E − VeffðrÞ > 0; ∀ r∈ ðrmin; rmaxÞ: ð39Þ

For some given conserved values of h and E, the shape of
the timelike orbit can be determined by describing how the
radial coordinate r changes with the azimuthal coordinate
ϕ. Using Eq. (6) and the metric in Eq. (1), we can write

dϕ
dr

¼ h
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrðrÞgttðrÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − VeffÞ

p : ð40Þ

Using the above equation, the orbit equation for a static and
spherically symmetric spacetime can be written as

d2u
dϕ2

þ u
grrðuÞ

−



u2

2g2rrðuÞ
þ c2

2g2rrðuÞh2
−

e2

2gttðuÞg2rrðuÞh2
�

×
dgrrðuÞ
du

þ e2

2g2ttðuÞgrrðuÞh2
dgttðuÞ
du

¼ 0; ð41Þ

where uðϕÞ ¼ 1=r. We solve the orbit equation numerically
to describe the shape of the bound orbit of the test particle
in the dark matter spacetime.

B. Orbital dynamics

To trace the orbital path of the star, first we have to solve
the time-varying geodesic equation, which gives the equa-
tions of motion of the test particle,

ṫ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
c2g2ttrðτÞ

s
; ð42Þ

̈r ¼ 1

2grrðrðτÞÞ


−c2

dgttðrðτÞÞ
dr

ṫ2 −
dgrrðrðτÞÞ

dr
ṙ2 þ 2rϕ̇2

�
;

ð43Þ

ϕ̇ ¼ h
rðτÞ2 : ð44Þ

The numerical solutions of Eq. (43) provide the orbital
positions over the time.
In terms of the Cartesian coordinates, we express the

position and velocity of a particle moving along a real orbit
as ðx; y; zÞ and ðvx; vy; vzÞ, respectively. For the θ ¼ π=2

FIG. 2. Carter-Penrose diagram of the dark matter spacetime
written in Eq. (33) for n ¼ 1. The null-like singularity at r ¼ 0 is
shown by black zigzag lines. The corresponding future null
infinity (J þ), past null infinity (J −), past timelike infinity (i−),
future timelike infinity (iþ), and spacelike infinity (i0) are shown.
Here Rb is matching radius with constant radial distance. Gray
color shows the interior dark matter spacetime.
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case, these can be obtained by transforming the coordinates
from spherical Schwarzschild to Cartesian:

x ¼ r cosϕ; y ¼ r sinϕ; z ¼ 0: ð45Þ

The solution of the orbit equation [Eq. (43)] allows us to
trace the stellar position, but in order to compare it to
observational data, we must first establish the relation
between the real orbit and the apparent orbit in the
observer’s sky. We use classic Thiele-Innes constants,
which are A, B, C, F, G, and H, to obtain the theoretical
apparent orbit on the plane of sky given by coordinates (X,
Y, Z) from the real orbit coordinates (x, y, z) [see Fig. 3],

X ¼ xBþ yG; ð46Þ

Y ¼ xAþ yF; ð47Þ

Z ¼ xCþ yH; ð48Þ

where

A ¼ cosΩ cosω − sinΩ sinω cos i; ð49Þ

B ¼ sinΩ cosωþ cosΩ sinω cos i; ð50Þ

C ¼ sinω sin i; ð51Þ

F ¼ − cosΩ sinω − sinΩ cosω cos i; ð52Þ

G ¼ − sinΩ sinωþ cosΩ cosω cos i; ð53Þ

H ¼ cosω sin i; ð54Þ

where ω, i, and Ω are the argument of the pericenter, the
inclination between the real orbit and the observation plane,
and the ascending node angle, respectively.
General relativity predicts that a star orbiting close to a

supermassive compact object is supposed to experience a
relativistic redshift. A total redshift [zðrÞ] is a combination
of the special relativistic Doppler shift and the gravitational
redshift. The redshift function can be written as [78]

z ¼ γ − 1þ uZ; ð55Þ

where

uZ ¼ ðṙ sinðϕþ ωÞ þ rϕ̇ cosðϕþ ωÞÞ sin i ð56Þ

is the apparent four-velocity of the emitter, and γ ¼ dt
dτ ¼

ffiffiffi
E

p
cgtt

is the Lorentz factor. In the weak field limit, γ → 1.
Therefore, the redshift is given by the Keplerian
(Newtonian) contribution (zK), where

zK ≡ uZ: ð57Þ

Here we consider the gravitational constant (G) and the
velocity of light (c) as 4.30091 × 10−3 pcM⊙ðkm=sÞ2 and
3 × 108 km=s, respectively. Using these universal con-
stants, we get the radial distance in the parsec unit.

C. Orbit of the S2 star around Sgr A*

The motions of the S stars that comprise the nuclear
cluster at the center of the Milky Way have been closely
monitored for over three decades. Their trajectories
revealed the presence of a supermassive compact object
with a mass of 4 × 106M⊙ at the cluster center. The most
important S-cluster member is S2, which has an orbital
period of about 16 years around Sgr A*. It made its closest
approach in May 2018, at a distance of 120 A.U. from Sgr
A* with a velocity of 2.7% of the speed of light. This close
proximity of S2 to the Sgr A* compact object causes the
relativistic redshift, which is the combination of the trans-
verse Doppler shift from special relativity and the gravi-
tational redshift from general relativity. Here, we use the
astrometric data of the S2 star, which were obtained using
speckle imaging with a near-infrared camera on Keck I
(1995–2005) and adaptive optics imaging with near-
infrared camera 2 on Keck II (2005–2018) [50]. In this
paper, we use the data of the astrometric positions of S2
given in the supplementary material of [50]. Here, we want
to determine the values of the free parameters of the theory
from the astrometric data of the S2 star. Comparative
differences between observational and theoretical data for
dark matter spacetime are given in Fig. 4.

FIG. 3. This figure shows a projection of the actual orbital plane
onto the projected orbital plane seen by the asymptotic observer.
The focus of the ellipse gives the location of the Sgr A* compact
object. Here, the Z axis of the coordinate system is defined by the
vector pointing from the Galactic Center to the Solar System.

OBSERVATIONAL ASPECTS OF A CLASS OF DARK MATTER … PHYS. REV. D 108, 104034 (2023)

104034-7



D. Parameter estimation from orbital dynamics

In the present paper, we have used the Metropolis-
Hastings Monte Carlo Markov Chain algorithm (MH-
MCMC) to find the best-fit values of parameters to the
astrometric data of the S2 star [79,80]. Let us consider a
parameter ψ which is random with normal distribution
πðψÞ, where πðψÞ is prior distribution that gives us prior
uncertainty regarding ψ . To estimate best-fit parameters
using the posterior analysis with some data (D), that is,
using the Bayesian inference,

πðψ jDÞ ¼ πðψÞpðDjψÞ
pðDÞ ∝ πðψÞpðDjψÞ; ð58Þ

where πðψÞ is the prior, pðDjψÞ is the likelihood, and pðDÞ
is marginal probability density function (PDF) of D,

pðDÞ ¼
Z
ψ
πðψÞpðDjψÞdψ ; ð59Þ

which can be regarded as a normalizing constant as it is
independent of ψ . The posterior PDF is thus proportional to
the product of prior and likelihood.

1. Priors

In the model, we considered ten free parameters. The
prior distribution [πðψÞ] is normally distributed over
parameter ψ with an initial value μ and dispersion σ,
N ðμ; σÞ. Here, we adopt six informative initial values of
parameters from the previous paper [78] and four nonin-
formative initial values. The distances from Earth to the
Galactic Center (R0), argument of the pericenter (ω),
inclination (i), and ascending node (Ω) are 8190 pc,
66.4°, 134.3°, and 227.9°, respectively, which are directly
taken from the paper [78]. While using the semimajor
axis (a) (0.1252 arcsec) and eccentricity(ϵ) (0.88), we
have calculated the distance to the pericenter and
apocenter, using rmin ¼ að1 − ϵÞ and rmax ¼ að1þ ϵÞ,
respectively.
For the two known turning points of the orbit, which are

rmin and rmax, we can obtain angular momentum (hc) and
energy (Ec) at the turning points using Eq. (39),

hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r2minr

2
maxðgttðrminÞ − gttðrmaxÞÞ

ðr2mingttðrmaxÞ − r2maxgttðrminÞÞ

s
; ð60Þ

(a) (b)

FIG. 4. Theoretical and observed orbits of the S2 star around Sgr A*. In (a), blue crosses correspond to the original data of the S2 star,
and the black curve represents the best-fit dark matter spacetime timelike orbit with the orbital data. (b) Represents the comparison
between the experimental data points and the theoretically fitted data points. Here, the theoretical orbit is calculated by solving the
equations of motion of a test particle in dark matter spacetime. We use the observational data given in [50].
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Ec ¼ gttðrminÞ
�
c2 þ h2c

r2min

�
: ð61Þ

For noninformative initial values, that is, matching
radius (Rb), flat velocity at matching radius (Vb), radius
of photon sphere (rph), and initial time, we consider
intuitive values with the previous observation, which are
8190 pc, 150 km=s, 3GM=c2, and 1 yr, respectively.
Using the above values, we can numerically integrate the

equations of motion (42)–(44) giving appropriate initial
conditions at the initial proper time. Once the initial
conditions are established, the coordinates of the orbit of
S2 at any time t can be predicted.

2. Likelihood

In order to calculate the goodness of fit, we compute the
reduced χ2 value for each of the observables. The like-
lihood function [pðDjψÞ] is used in the MH-MCMC
analysis with some symmetric error,

− logL ∝
X
i


�
Xe;i − Xi

σXi

�
2

þ
�
Ye;i − Yi

σYi

�
2
�
; ð62Þ

where (Xe, Ye) are the observed astrometric data and (ρX,
ρY) are the error values in the observed data. X and Y are
theoretical calculated values of trajectories of the S2 star.

3. χ 2 analysis

We do not sample the posterior distribution of the model,
but rather a minimum χ2 value. For numerical χ2 compu-
tation, we have taken 300000 data points from the normal
distribution to calculate the minimum χ2 value. We ran six
chains for 50000 steps and discovered that the stationarity
of data converged to the lowest χ2 value around 5.92 for the
astrometric data of the S2 star. In our computational chain,
the initial χ2i is greater than the final χ2f. Therefore, if

eðχ
2
i−χ

2
fÞ > 1, we accept the jump; if not, it is rejected.

From the observer plane, we fit (X, Y) [see in Figs. 5(a)
and 5(b) with residuals]. We also fit the redshift factor ZðrÞ,
as shown in Fig. 6. Here, the total χ2 value can be taken as
the average of the two,

hχ2i≡ 1

2
ðχ̄2X þ χ̄2YÞ: ð63Þ

All the ten fitted parameter values are tabulated in
Table I. By using those parameters, we calculate the mass,
eccentricity, and distance to the pericenter and apocenter.
We have also investigated the precession angle, which is
21.6 arc min per orbital period. The best-fit value of rph
provides information about the shadow size. As we have
now determined the best-fit values of the parameters for the

(a) (b)

FIG. 5. Plot of X and Y as a function of time, along with the respective residuals of the best fit for the dark matter spacetime. In (a) and
(b), red crosses correspond to the original data of the S2 star, and the blue curves represent the best fit of the theoretical prediction of dark
matter spacetime.
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Milky Way Galaxy, we move forward to analyze the
redshift, rotation profile, and shadow property of the dark
matter spacetime using those best-fit values.
Figure 6 shows the redshift function z for the dark matter

model for the S2 star orbit. The theoretical redshift function

z is computed using Eq. (55) by taking into account the
best-fit values of parameters shown in Table I.

IV. GALACTIC ROTATION CURVE

The rotational velocity of the particle in the dark matter
spacetime can be obtained by substituting gttðrÞ from
Eq. (31) in Eq. (19),

Vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
bðr − rphÞ þ c2rph

r

s
; ð64Þ

where Vb ¼
ffiffiffiffiffiffi
GM
Rb

q
. Here,G, Rb, andM are the gravitational

constant, halo radius, and total mass of the galaxy enclosed
in the halo radius, respectively. Here, the circular velocity
profile changes with the radial distance. From Eq. (64), one
can see that the circular velocity Vc ¼ Vb near r ¼ Rb
where Rb ≫ rph. For the velocity profile of the Milky Way
Galaxy, here we use the data provided in Ref. [81].
Figure 7(a) shows the fitting of the theoretical rotation
curve with the observations of the Milky Way Galaxy. In
Fig. 7(a), the red crosses correspond to the rotational
velocity data of our Milky Way Galaxy [81], and the blue
line shows the theoretical circular velocity of the test
particle calculated from Eq. (64) using the best-fit para-
meters. The black dotted vertical line at r ¼ 976 kpc
represents the boundary of dark matter (DM) spacetime.
We find that the fitting is fairly good, with observations in
the region of 20–976 kpc. Therefore, this model of dark
matter satisfies the flat rotation curve of the Milky Way far
away from the Galactic Center. The full range of data from
1 to 1000 kpc on the logarithmic scale is represented in
Fig. 7(b). Our model is unable to explain the rotation curve
in the region of 0–0.3 kpc. This is due to our consideration
that dark matter dominates over large distances around the
halo radius.

V. SHADOW OF THE PROPOSED DARK MATTER
SPACETIME

The shadow of any spacetime geometry depends upon
the nature of the effective potential of the null geodesics in
that spacetime. As mentioned in Sec. II, the effective
potential for the null geodesics in the equatorial plane is
given by Eq. (22). At the turning point of the photon, where
ṙ ¼ 0 and VeffðrtpÞ ¼ 1

b2tp
, we can write the impact param-

eter (btp) corresponding to the turning point as

btp ¼ rtpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðrtpÞ

p : ð65Þ

When there exists a maximum value of the effective
potential of lightlike geodesics in spacetime, and that
maximum value is also the upper bound of the potential,

FIG. 6. Figure shows the fitting of redshift data with dark matter
spacetime. The blue line represents theoretical fitting, while the
red dot represents experimental data. The observational data are
taken from [50].

TABLE I. Summary of best-fit values of the model and the
orbital parameters for S2 within the dark matter model.

Parameter Dark matter spacetime

Total mass of sark matter, M ⊙ 3.947 � 1012
Distance to pericenter (arcsec) 0.000552
Distance to apocenter (arcsec) 0.009665
Eccentricity 0.89194

h, pcðkm=sÞ 4.4499392
E, ðkm=sÞ2 8.99956211840861 � 1010
Rb, parsec(pc) 976693
Vb, km=s 131.826
rph, pc 2.10256 � 10−7
Argument of pericenter, ω (°) 68.6008
Inclination, i (°) 133.902
Ascending node, Ω (°) 229.935
R0, pc 8196.4033
Initial time, yr 1.2619854

Orbital period, P (yr) 16.2553
Shadow size (pc) 5.71538 � 10−7
Precession angle (arc min) 21:60

χ̄2X 3.92665
χ̄2Y 7.91589
hχ̄2i 5.92127
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the minimum impact parameter of a photon is the impact
parameter associated with the photon sphere (bph). This
minimum impact parameter is the critical impact parameter
(bcrit ¼ bph), which differentiates photons colliding with
the central object from those reaching a minimum distance
and returning to infinity. Photons from a remote source with
an impact parameter b greater than the critical impact
parameter bph are scattered and reach the observer. On the
other hand, photons with impact parameters less than the
critical impact parameter are trapped inside the photon
sphere and never reach the observer, resulting in a dark area
or shadow in the observer’s sky. Therefore, the shadow in
the observer’s sky appears to be a circular two-dimensional
dark disk with a radius of bcrit.
As we know, the shadow of a massive object forms due

to the accreting matter surrounding it. Therefore, we need
to compute the intensity of light emitted by the accreting
matter to obtain the shadow of the massive object in the
observer’s sky. In order to get the intensity map of the
emitting area, we need to consider various radiating
processes and emission mechanisms. The measured inten-
sity at the observer’s sky point (X, Y) can be given as [82]

IνobsðX; YÞ ¼
Z
γ
g3jðνeÞdlprop; ð66Þ

where g ¼ νobs=νe is the redshift factor, νobs is the observed
photon frequency, νe is the photon frequency as measured
in the rest frame of the accreting gas that is emitting
radiation, jðνeÞ is the emissivity per unit volume in the rest
frame of the emitter, and dlprop ¼ kαuαedλ is the infinitesi-
mal proper length in the rest frame of the emitter. The
integration is done along the photon path (γ). The redshift
factor can be given by [82]

g ¼ kαuαobs
kβu

β
e
; ð67Þ

where uαobs ¼ ð1; 0; 0; 0Þ is the four-velocity of the distant
static observer, uβe is the timelike four-velocity of the emitter,
λ is the affine parameter, and kα is the four-velocity of the
photon. For simplicity, here we consider a simple model of
spherically symmetric accreting gas that is freely falling
radially and it is optically thin (i.e., the accretingmatter does
not absorb photons). In a generic, spherically symmetric,
static spacetime (1), the components of the four-velocity of a
radially freely falling particle can be evaluated as

ute ¼
1

gtt
; ure ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− gttÞ
gttgrr

s
; uθe ¼ uϕe ¼ 0: ð68Þ

Using Eq. (68), the redshift factor can be written as

g ¼ 1

1
gtt
− kr

kt

ffiffiffiffiffiffiffiffiffiffi
ð1−gttÞ
gttgrr

q ; ð69Þ

where

kr

kt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt
grr

�
1 −

gttb2

r2

�s
: ð70Þ

In the present work, we assume a simple model for the
specific emissivity in which the radiation from emitter is
monochromatic with the emitter’s rest frame frequency ν�
and radially falls by 1=r2,

jðνeÞ ∝
δðνe − ν�Þ

r2
; ð71Þ

where δ is the Dirac δ function. Now, Eq. (72) can bewritten
as [82]

IobsðX; YÞ ∝ −
Z
γ

g3ktdr
r2kr

; ð72Þ

(a) (b)

FIG. 7. Rotation curve of the Milky Way Galaxy. The red crosses in (a) correspond to the original data of a flat velocity curve, and the
blue line represents the best-fit velocity curve in the range of 20–976.6 kpc. The black dotted line represents the estimated boundary of
the halo radius. (b) Represents the logarithmic plot between the experimental data of the velocity of stars with radial distance.
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where IobsðX; YÞ denotes the intensity distribution in the
(X, Y) plane of the observer’s sky and X2 þ Y2 ¼ b2. Now,
using the above Eq. (72), we can simulate the shadow.
We employed a technique called “backward ray tracing”

to simulate the shadow, which involves tracing light rays
backward in time from the observer to the source.
Using the best-fitting parameters, we construct the

shadow of Sgr A* using the dark matter model, which
is presented in Fig. 8. The radius of the shadow is found to
be 5.7154 × 10−7 pc.

A. Limitation and constraints in the paper

(i) Here we assume that the S2 star moves in the
gravitational potential of a single central compact
object with an Arnowitt-Deser-Misner mass M.
Therefore, the gravitational effect of the other object
inside the S2 is neglected, like the G2 object.

(ii) In this paper, we do not consider radio source data.
Hence, we are not able to best fit the observed
location of the central radio source for Sgr A*,
which may confirm the center of our Milky Way
Galaxy. However, the best-fit theoretical prediction
of the centroid of mass yields reasonable results that
match the existing data.

(iii) Here, data are fitted with only the astrometric
position of the S2 star. We have not used spectro-
scopic data in the fitting procedure.

(iv) The orbital region of an S2 star is considered in the
weak gravitational field in order to use the Thiele-
Innes constants. We have neglected the Shapiro time
delay, which differs no more than 5–6 min in the
orbital period of the S2 star.

VI. DARK MATTER DISTRIBUTION AND
OBSERVATIONAL IMPLICATION

A considerable amount of research has been dedicated to
studying dark matter profiles in the Milky Way Galaxy,

with a specific focus on understanding various regions of
our Galaxy. In our Universe, dark matter typically con-
stitutes the dominant component of galaxies. The predic-
tion of the spacetime geometry for the dark matter
distribution is a challenging task. However, in this paper,
we endeavor to model the global picture of the dark matter
distribution in galaxies within the framework of the general
theory of relativity.
There are works that explain the effect of dark matter on

shadows and trajectories. In [70], the investigation is on
whether current and future astronomical observations of
Sgr A* could detect the presence of such a DM spike. In
their study, they made an assumption regarding the
distribution of dark matter between Rsp and rb, where
rb represents the inner edge of the DM spike. The DM
mass shell they considered is essentially a fixed mass
influenced by its position and density. However, they
overlooked the impact of the external matching metric,
which can be matched with either the Burkert-Salucci
profile or the NFW dark matter profile. Consequently,
their presentation displays the distribution of dark matter
in fragmented parts, lacking a comprehensive single
profile that incorporates the galaxy’s metric within the
context of general relativity.
Our primary motivation is to demonstrate a broad

formalism for which we can demonstrate the complete
galactic metric with a central singularity [not the dark
matter distribution at the Sgr A* compact object (near the
spike)]. Due to the spread of dark matter, central compact
objects may alternatively be a null singularity rather than a
black hole. The role of central singularity in galaxy
formation is an intriguing topic. In the context of the
general theory of relativity, this type of information
provides the primordial structure of the galaxy.
Our fitting parameters for the globally structured DM

spacetime offer valuable insights into the total distributed
dark matter within the galactic radius Rb. The Milky
Way Galaxy’s total mass and boundary radius are

FIG. 8. In this figure, the intensity map in the observer’s sky (a) and the shadow of the central object (b) are shown for dark matter
spacetime. The radius of the shadow of dark matter spacetime (b) is 5.7154 � 10−7 pc.
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3.947 × 1012M⊙ and 976,693 pc, respectively. In this
paper, our primary motivation is to develop a metric that
not only exhibits a flat velocity curve but also incorporates
a shadow within the distribution of dark matter in the range
0 < r < Rb. Specifically, for r ∼ Rb, we consider the
Newtonian metric, representing a weak gravitational field
region of the Schwarzschild metric. The best-fit parameters
we obtained suggest that the central singularity might be a
null singularity rather than a black hole. Throughout our
study, we extensively explored several key topics, including
the possible geometric structures of a galaxy, the existing
astrometric data of the S2 star, the shadow size of the
central compact body Sgr A*, and the data of the galactic
rotation curve. By incorporating all these key properties of
a galaxy, we derived a class of spacetime metrics that
encapsulates these important features.
The EHT Collaboration recently unveiled an image

of the central compact object in our Milky Way Galaxy
(Sgr A*). This image revealed an estimated angular shadow
with a diameter of 48.7� 7 μ arcsec [20,83]. In our article,
we employ a different approach, estimating the shadow’s
size to be approximately 28.8� 9 μarcsec based on the
best-fit data obtained from the galactic rotation curve and
astrometric data derived from the S2 star. It is noteworthy
that our projected shadow size appears to be smaller than
the EHT Collaboration’s prediction. It is important to
clarify that our results do not claim that the proposed
spacetime satisfies all the properties of a galaxy. Instead,
we present it as one of the candidates within the class of
dark matter spacetime proposed in this article.

VII. CONCLUSION AND RESULTS

The conclusions from this study can be summarized as
follows:

(i) In this paper, we present a new approach for
constructing a viable class of spacetimes for galactic
dark matter in the framework of general relativity.
We show that one can use the concept of the galactic
flat velocity curve and the conditions for the
existence of a photon sphere to construct the

gttðrÞ metric coefficient. We match the interior dark
matter spacetime with the external Schwarzschild
spacetime at the matching boundary Rb. We consider
the internal fluid has zero radial pressure (Pr ¼ 0)
and nonzero tangential pressures (PT). We show that
the proposed spacetime satisfies the weak energy
conditions and it has a central null singularity.

(ii) Next, we constrain the free parameters of the metric
using the data of the astrometric positions of the S2
star around Sgr A*. We obtained the orbit equation
and solved it numerically, in order to get particle
trajectories in the dark matter spacetime, and we
compare it with the astrometric data of the S2 star.
Using the MCMC algorithm, we obtain the value of
photon sphere radius rph and constant circular
velocity Vb. The best-fit values derived from the
minimum χ2 fitting show good agreement with
the previously known estimated values, such as
the galaxy’s mass being around 3.947 × 1012 solar
mass, the distance from Earth to the center of the
compact object being R0 ¼ 8196 pc, and the range
of the dark matter halo being between 10 and
976.7 kpc, etc.

(iii) Using the astrophysical best-fit values of the param-
eters of the proposed dark matter spacetime, we
simulate the shadow cast by the same. Additionally,
we also plot the redshift function using the best-fit
parameter values and fit it with the data.

(iv) In conclusion, the observed flat rotation curves and
the shadow radius can be used to determine the
spacetime geometry of the dark-matter-dominated
galaxy. Apart from explaining the dynamics of the
galaxy away from the galactic center, it can also
provide insight into the nature of the compact object
present at the galactic center. It should also be noted
that we do not claim that the proposed spacetime
satisfies all the properties of a galaxy. The proposed
spacetime is a simple model of galactic spacetime
that is constructed by using some of the important
characteristics of a galaxy.
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