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Recently, it was shown that for a dynamical black hole in any higher-derivative theory of gravity, one
could construct a spatial entropy current, characterizing the in/outflow of entropy at every point on the
horizon, as long as the dynamics of the amplitude is small enough. However, the construction is very much
dependent on how we choose the spatial slicing of the horizon along its null generators. In this paper, we
show that although both the entropy density and the spatial entropy current change nontrivially under a
reparametrization of the null generator, the net entropy production, (which is given by the “time” derivative
of entropy density plus the divergence of the spatial current) is invariant. We have explicitly verified this
claim for the particular case of dynamical black holes Einstein-Gauss-Bonnet theory.
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I. INTRODUCTION

It is expected that a low-energy effective description of
any UV complete theory of gravity will typically have
higher derivative corrections to Einstein’s theory of gravity.
We could further expect that such a corrected theory of
gravity would admit a classical limit and also black hole-
type of classical solutions with its curvature singularity
shielded by an event horizon.
It is well-known that black hole solutions in two derivative

theories of gravity are analogous to large thermodynamic
objects with many underlying degrees of freedom [1–3]. One
could associate temperature, energy (and other conserved
charges), and entropy to every black hole geometry which
satisfies all the laws of thermodynamics.
For black holes in higher derivative theories, we still do

not have a complete understanding of all their thermody-
namic properties. Specifically, in a dynamical situation, we
do not know which geometric property of the black hole
should be used to identify with the system’s entropy so that
it satisfies the second law of thermodynamics.
However, we know how to construct entropy geometri-

cally, even in any higher-derivative theory, if the black hole
is stationary [4,5]. By construction, this entropy satisfies the

first law of thermodynamics but if the black hole is
dynamic, several corrections that necessarily vanish in a
stationary situation and do not affect the first law could be
added to this entropy expression [6–8].
Recently, in [9], the author fixed some of these ambi-

guities in the expression of entropy by studying gravitational
dynamics of very small amplitude so that any nonlinear term
in this amplitude could be neglected. Then in [10,11], the
authors constructed a spatial current whose divergence could
be identified with the entropy in/out flow in any infinitesimal
subregion of the horizon. Using the entropy density and the
spatial entropy current, one could restate the second law in
an ultralocal fashion where entropy is produced in every
infinitesimal subregion of the horizon for generic dynamics
slow enough so that all the higher-derivative corrections
could be treated perturbatively.
However, this construction of entropy density and entropy

current relies on a very specific choice of the coordinate
system where the affine parameter along the null generator
of the horizon is one of the coordinates. Now it is possible to
reparametrize the null generators of the horizon in a non-
trivial way without affecting the affineness of the param-
eters. The expressions for both the entropy density and the
spatial current change under this reparametrization but we
expect the net entropy production, given by the “time”
derivative of the entropy density plus the divergence of the
spatial current, should be something physical and therefore,
independent of our choice of affine parameters.
In this note, our goal is to verify the above expectation

for the special case of Gauss-Bonnet theory where both the
entropy density and the current have been explicitly
computed in [10].
We have found that under this transformation, the “time”

derivative of the entropy density as well as the divergence
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of the spatial entropy current change individually in a very
nontrivial way; however, they precisely cancel each other.
Apart from being a consistency check for the results
described in [10], it also demonstrates why a spatial entropy
current is necessary to make the laws of entropy production
independent of our choices of coordinates.
Although the current calculations are linear in the

amplitude of the dynamics, we eventually would like to
have some construction of entropy density and the entropy
current that satisfy the first and the second law at all
nonlinear orders and if possible, without using any pertur-
bation. In any such construction, a full knowledge of the
underlying symmetries might turn out to be very useful. The
requirement that the entropy current and the density must
transform in such a way so that the net entropy production
has some particular symmetry could be constraining for
all the nonlinear terms.1 In other words, it would be very
interesting if, instead of verifying the symmetry in a
particular theory, we could use it to predict some relation
between the structure of entropy density and the spatial
entropy current in a theory independent manner. We expect
that our explicit computation in the simple case of Gauss-
Bonnet theory would help us to gain experience for further
progress in this direction.
This paper is organized as follows. In Sec. II, we describe

the setup of our problem, including the choice of our
coordinates adapted to the horizon. In Sec. III we describe
the reparametrization symmetry. In Sec. IV we explicitly
verify that the entropy density and the entropy current
maintain this symmetry in the particular case of Gauss-
Bonnet theory. Finally in Sec. V, we conclude. The details of
the calculation are explained in several appendixes.

II. SETUP

In this section, we shall briefly review the coordinate
system used in the analysis of [10] and the expression for
entropy current and entropy density for the Gauss-Bonnet
theory.

A. Coordinate system

As mentioned before, we are considering a black hole-
type geometry containing a codimension-one null surface
as the horizon. The coordinate system is constructed with
the horizon being the base i.e., we first choose (D − 1)
coordinates on the horizon. Let ∂v is the generator of
the horizon which is a null geodesic with v being the
affine parameter, and xa; where fa ¼ 1;…; D − 2g are
the spatial coordinates along the constant v slices of the
horizon. So fv; xag together constitute a coordinate
system on the horizon.

Once the coordinates on the horizon are fixed, we shoot
off affinely parametrized null rays ∂r, making specific
angles with horizon coordinates. The affine parameter r
along these rays is a measure of the distance away from the
horizon. The angles are chosen so that the inner product
between ∂r and ∂v on the horizon is 1 and the inner
products between ∂r and ∂a’s are zero. After imposing all
these conditions, the metric takes the following form (see
Ref. [10] for more details):

ds2 ¼ 2dvdr − r2Xðr; v; xaÞdv2 þ 2rωaðr; v; xbÞdvdxa
þ habðr; v; xaÞdxadxb: ð1Þ

B. Gauss-Bonnet theory

We consider a theory of pure gravity with a maximum
four derivatives. We are even more specific in choosing the
theory; we work with the Gauss-Bonnet theory of gravity
with the following action:

S¼
Z

dDx
ffiffiffiffiffiffiffi
−G

p
½Rþα2ðR2−4RμνRμνþRμνρσRμνρσÞ�: ð2Þ

Here R, Rμν, and Rμνρσ are the Ricci scalar, Ricci tensor, and
Riemann tensor2 of the full spacetime respectively. All
raising and lowering of indices have been done using the
bulk metric gμν.
The entropy density (Jv) and the entropy current (Ja) on

the horizon have the following structure:

Jv ¼ ð1þ 2α2RÞ;
Ja ¼ α2½−4∇bKab þ 4∇aK�: ð3Þ

HereR is the intrinsic Ricci scalar of the constant v slices of
the horizon (i.e., the Ricci scalar computed using the metric
hab). Kab is the extrinsic curvature of the null horizon, and∇a is the covariant derivative with respect to hab

Kab ≡ 1

2
∂vhab; K ≡ habKab: ð4Þ

The sole reason for choosing this theory is its simplicity.
Despite being a four derivative theory, the equation of
motion remains two derivative and both the entropy
density and the current can be constructed entirely from
hab and its v and xa derivatives evaluated on the horizon,
which simplifies our task to a large extent. However, we

1In [12] which came up shortly after our work, the authors
have included an elaborate discussion on this issue.

2According to our convention,

R≡ gμνRμν; Rμν ≡ Rρ
μρν

Rμ
νρσ ≡ ∂ρΓ

μ
νσ − ∂σΓ

μ
νρ þ Γμ

ραΓα
νσ − Γμ

σαΓα
ρν.
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must emphasize that the symmetry that we are going to
describe in the next section is expected to hold in any
higher-derivative theory of gravity.

III. SYMMETRY

In Sec. II, we chose a coordinate system adapted to the
horizon so that the metric takes the form as described in
Eq. (1). However, this form does not fix the coordinates
completely, some residual gauge freedom is still left and
both the entropy density and entropy current change
nontrivially under this unfixed coordinate freedom.
On the other hand, as we explained in the introduction,

the expression

�
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇iJi

�
;

(where Jv and Ji are the entropy density and the spatial
entropy current, respectively) is related to the local entropy
production along every point of the dynamical horizon and
therefore, we expect it to be invariant under the reparamet-
rization of the null generators.
In this section, we first describe this residual freedom

of coordinate transformation that is not fixed by our
choice of gauge. Next, we use the details of this trans-
formation to make our intuition about invariance more
precise.

A. Reparametrization of the null generator

The starting points in setting up our bulk coordinate
system are the affinely parametrized null generators of the
horizon and the coordinates along its spatial slices. Once
we fix the horizon coordinates, our gauge conditions
uniquely fix the coordinates along the bulk. It follows that
the residual symmetry that we are going to discuss here
must involve a transformation of the horizon coordinates
maintaining the affineness of the null generators. For
convenience, let us use a bar on all the coordinates of
the horizon to distinguish them from the bulk coordinates.
For example, fv̄; x̄ag denotes the affine parameter along the
null generator and spatial coordinates along the constant v̄
slices of the horizon only.
Now an affine parameter will remain an affine param-

eter if we scale it in a v̄ independent manner. So we
consider the following transformation on the horizon
(r ¼ 0 hypersurface):

v̄ → τ̄ ¼ v̄e−ζðx̄aÞ; x̄a → ȳa ¼ x̄a: ð5Þ

As mentioned before, both v̄ and τ̄ are affine parameters
along the null generators of the horizon. However constant v̄
slices are not the same as the constant τ̄ slices. In other
words, the tangent vectors along the constant v̄ slices given

as ∂ðxÞa are different from the tangent vectors ∂ðyÞa along the
constant τ̄ slices. They are related as follows:

∂
ðxÞ
a ¼ ∂

ðyÞ
a −

�
∂ζ

∂ȳa

�
τ̄∂τ̄: ð6Þ

Since the tangent vectors on the horizon change under
this transformation, we need to transform the r coordinate
also so that the tangents along the constant fτ; yag lines
(or the coordinate vectors pointing away from the horizon)
maintain the same angle with the coordinate vectors along
the horizon. This will lead to a redefinition of the r
coordinate and it will also correct the coordinate trans-
formation (6) as one moves away from the horizon,

v ¼ eζðyÞτ
�
1þ

X
n¼1

ðρτÞnVðnÞðτ; y⃗Þ
�
;

r ¼ e−ζðyÞρ
�
1þ

X
n¼1

ðρτÞnRðnÞðτ; y⃗Þ
�
;

xa ¼ ya þ
X
n¼1

ðρτÞnZa
ðnÞðτ; y⃗Þ: ð7Þ

Let us briefly motivate the choice of the above ansatz. As
mentioned before, the coordinate transformation is gen-
erated due to the scaling function ζðȳÞ being defined only
on the horizon and once this horizon function is given, the
rest of the coordinates throughout the bulk are uniquely
determined by our gauge condition. Clearly it is impossible
to solve these gauge conditions exactly for a generic space
time. But the problem is very well-suited for a near horizon
expansion since geometrically our choice of gauge is a two-
step process where we first choose coordinates on the
horizon and then shoot out null geodesics with precise
angles to extend them away from the horizon.
As it is often true with perturbative expansions, our ansatz

also involves few conventions and assumptions. First, note
that, strictly speaking, each of the expansion coefficients
[VðnÞ; RðnÞ, and Za

ðnÞ], including the function e�ζ should
depend only on the horizon coordinates fτ̄; ȳag. Whenever
we are writing them as functions of bulk coordinates fτ; yag
it involves an extension of these functions to the bulk, which
is rather arbitrary. It is always possible to redefine the
expansion coefficients at any given order by adding func-
tions that vanish on the horizon without affecting the lower-
order coefficients. Similarly ζ itself might admit a power
series expansion at a distance from the horizon [in fact if we
choose to write ζðyaÞ in terms of fxag coordinates this will
happen]. However, such redefinition, geometrically does not
mean that we are choosing new curves for coordinate axes,
since we know all coordinates are uniquely determined by
our gauge choice once we fix the coordinates on the
horizon. This is simply a rearrangement redundancy that
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is built into our perturbative technique of solving the gauge
choices. However, here we have chosen the most naive bulk
extension of all these horizon quantities by simply replacing
all the fτ̄; ȳag dependence with bulk coordinates fτ; yag
(which may not be the simplest choice in terms of the final
form of the expansion coefficients).
Next we come to the second unusual choice we made in

our ansatz. A near horizon expansion in our coordinates
simply means an expansion in powers of ρ [and not in the
powers of the product ðρτÞ as we have done here]. We note
that there is no loss of generality in expanding in the powers
of the product ðρτÞ if we keep the τ dependence in the
expansion coefficients completely free. The reason behind
this choice of expansion parameter is related to equilibrium
(stationary) horizons. We know that in stationary black holes
the radial dependence of the metric components is always
through the boost-invariant product ðρτÞ or ðrvÞ [10].
This is true provided the coordinate transformation has
the structure as described with coefficient functions
independent of τ coordinates. In other words in our
ðρτÞ expansion, the expansion coefficients will depend
on τ only when the horizon is evolving with time, thus
enabling us to clearly distill out the effect of dynamics
from that of the stationary case.
Fortunately all these subtle issues about the form of the

coordinate transformation turn out to be completely irrel-
evant for the present analysis of Einstein-Gauss-Bonnet
gravity. For this theory both the entropy density and entropy
current are entirely constructed out of the induced spatial
metric of the horizon (denoted as hab) and its derivative
along the tangents of the horizon (i.e., ∂a and ∂v only and no
∂r). Here we do not need to know the metric components
away from the horizon and therefore there is no need to
determine the coordinate transformation for nonzero ρ.3 The
induced metric on the horizon remains invariant under the
reparametrization as

h̃ij ¼ hij þOðrÞ: ð8Þ

B. Why we expect this transformation to be a symmetry

Here, we shall present a heuristic argument of why we
expect such a symmetry to be there in the first place. The
argument is very similar to what one uses to prove the
physical process version of the first law.
Following the setup in [8], consider a stationary black

hole. The horizon is a Killing horizon in the absence of any
perturbation; at some Killing time t0, matter fields are
perturbed. If we treat the amplitude of the field perturba-
tion as of OðδÞ, then typically, the fluctuation in the matter
stress tensor would be of order Oðδ2Þ and the order of the
metric fluctuation (which, at later sections, has been

denoted as ϵ ∼ δ2) would be the same. It follows that
the local entropy production Sp ≡ ½ 1ffiffi

h
p ∂vð

ffiffiffi
h

p
JvÞ þ∇iJi�,

which is constructed solely out of metric fluctuation, is
also of order Oðδ2Þ. Note that the Killing equation will
remain true up to order OðδÞ and therefore to compute the
leading-order [Oðδ2Þ] expression for the entropy produc-
tion, it makes sense to integrate Sp between two constant
Killing time slices of the horizon; namely, initial equilib-
rium (at Killing time t ¼ −∞) to final equilibrium
(at Killing time t ¼ ∞). Now we can relate the Killing
time to the affine parameter of the null generators where
t ¼ −∞ corresponds to v ¼ 0, and t ¼ ∞ will correspond
to v ¼ ∞ (see Ref. [8] for the details). So, the net entropy
production can be expressed as [8,10,11,13–17]4

ΔS ¼
Z

∞

0

dv
Z
Σv

dnx⃗
ffiffiffi
h

p �
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇iJi

�
¼ SEquilibrium2

− SEquilibrium1
; ð9Þ

where Σv are the constant v slices of the horizon
and n ¼ D − 2.
However, the total entropy in an equilibrium or for a

stationary black hole is unambiguously defined through
Wald entropy, which is independent of how we para-
metrize the null generators of the horizon; the same must
be true of their difference. Now under the reparametriza-
tion that we are discussing, the measure of the above
integration changes as

ffiffiffi
h

p
dvdnx⃗ ¼ eζðyÞ

ffiffiffi
h

p
dτdny⃗:

If we want ΔS to be invariant under the reparame-
trization of the null generators, then the expression�

1ffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞþ∇iJi

�
, once written in terms of quantities

defined in fτ; y⃗g coordinates, must have an overall factor
of e−ζ,

�
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

�
¼ e−ζ

�
1ffiffiffĩ
h

p ∂τð
ffiffiffĩ
h

p
J̃τÞ þ e∇aJ̃a

�
:

ð10Þ

Here the lhs is expressed in fv; x⃗g coordinates and rhs is in
fτ; y⃗g coordinates.
Now we come to an algebraic reason why the expression

for net entropy production should transform exactly as
predicted in Eq. (10). We restrict this discussion to the
theories of pure gravity.

3Higher order corrections to the metric coefficients are going to
be computed in an upcoming work. 4We thank the referee for clarifying this point to us.
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The key equation that leads to the entropy current on the
horizon is the following:

Evvjr¼0 ¼ ∂v

�
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

�
; ð11Þ

where Evv is the ðvvÞ component of the equation of motion.
This is a component of a covariant tensor and therefore, we
know how it transforms under the above coordinate trans-
formation for every possible gravity action. On the horizon
(i.e., at ρ ¼ 0 hypersurface) the transformation becomes
particularly simple,

Evvjr¼0 ¼ e−2ζEττjr¼0: ð12Þ

Now in fρ; τ; yag coordinates the metric has the same
form as in Eq. (1). Therefore, Eττ can also be expressed as
in Eq. (11) for some J̃τ and J̃a,

Eττjr¼0 ¼ ∂τ

�
1ffiffiffĩ
h

p ∂τð
ffiffiffĩ
h

p
J̃τÞ þ e∇aJ̃a

�
:

Note that J̃τ and J̃a are not components of covariant tensors
on bulk space and therefore they do not transform in any
well-defined way. Combining the above equation with
Eqs. (12) and (11) we get the following prediction:

Evvjr¼0 ¼ ∂v

�
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

�

¼ e−ζ∂τ

�
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

�
¼ e−2ζEττ

¼ e−2ζ∂τ

�
1ffiffiffĩ
h

p ∂τð
ffiffiffĩ
h

p
J̃τÞ þ e∇aJ̃a

�

⇒
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

¼ e−ζ
�
1ffiffiffĩ
h

p ∂τð
ffiffiffĩ
h

p
J̃τÞ þ e∇aJ̃a

�
: ð13Þ

In the last line, both the lhs and rhs (up to the factor of e−ζ)
are related to the net entropy production in the two
coordinate systems discussed here. It follows that though
the entropy density and the entropy current might change in
a very nontrivial way with several terms dependent on
derivatives of ζ; in the final expression of entropy pro-
duction, they must cancel, leaving just an overall e−ζ factor.
Further, Eq. (13) also says that this nontrivial cancellation
must be true in all higher derivative theories of gravity. In

the next section, we verify this claim in the simplest case of
Gauss-Bonnet theory.5

IV. VERIFICATION
FOR GAUSS-BONNET THEORY

In this section, for the special case of Gauss-Bonnet
theory, we would like to explicitly verify whether the local
entropy production on the horizon transforms the way we
have predicted in the previous sections. We know

Evvjr¼0 ¼ ∂v

�
1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

�
; ð14Þ

where

Jv ¼ 1þ 2α2R; ð15Þ

Ja ¼ α2½−4∇bKab þ 4∇aK�: ð16Þ

On the horizon, the reparametrization we are considering is
the following:

v ¼ τeζðyÞ; ð17Þ
xa ¼ ya: ð18Þ

Clearly the Oðα0Þ piece (contribution from Einstein
gravity) in Jv does not transform so now we have to
determine how the order Oðα2Þ pieces of Jv and Ja

transform. Both of them will receive nontrivial shifts
generated by derivatives of the function ζðy⃗Þ, but
these shifts will be such that, in the expression of�

1ffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa

�
, they will precisely cancel up to

a factor of overall e−ζ. Now we describe how all the
relevant quantities individually transform under this
reparametrization.

5It might seem that the heuristic justification provided at the
very beginning of this subsection is not very different from the
algebraic one involving Evv. Indeed, if we follow the argument
presented in [8], we see that at linearized order, the net entropy
production has been first related to the integration of the fvvg
component of the matter stress tensor and then by the equation of
motion is related to the integration of Evv. So, the covariance of
the integrand in [Eq. (9)] is effectively the same as the covariance
of Evv at least in this order. However, the covariance of the
integrand has a scope for further generalization if we want to
extend this construction to higher orders in amplitude expansion.
Following [12], we could see that as we go in higher order, this
local entropy current can no longer be derived just from Evv, but
the other components of Eμν also contribute, and it becomes quite
complicated to figure out the net transformation property of this
combination of equations. However, if we expect the ultra-local
form of entropy production to be valid at higher orders, then there
must be an integration formula for ΔS, and the integrand must
transform in a covariant manner once the corrections to Killing
equations have been appropriately taken care of.
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The derivatives transform as

∂v ¼ e−ζðyÞ∂τ; ð19Þ

∂a ¼ e∂a − ðe∂aζÞτ∂τ: ð20Þ

The Christoffel connection transforms as

Γa;bc ¼
1

2
ð∂bhac þ ∂chab − ∂ahbcÞ;

¼ Γ̃a;bc − τðξbK̃ac þ ξcK̃ab − ξaK̃bcÞ; ð21Þ

where

ξa ¼ ∂aζ ¼ e∂aζ; ð22Þ

K̃ab ¼
1

2
∂τhab: ð23Þ

The Ricci scalar is given as

R̃ ¼ ðhadhbc − hachbdÞðe∂dΓ̃a;bc − hpqΓ̃p;adΓ̃q;bcÞ: ð24Þ

Under the change of coordinates, the Ricci Scalar
transforms as

R ¼ R̃þ 2ðhadhbc − hachbdÞ
× ½ð−τÞfξbd þ ðξbe∂d þ ξde∂bÞ − ξbξdgK̃ac

þ τΓ̃p
adðξbK̃pc þ ξcK̃pb − ξpK̃bcÞ

þ τ2ξbξd∂τK̃ac�: ð25Þ

This implies that the order Oðα2Þ piece of the entropy
density transforms as

Jv¼ 2R¼ 2R̃þ4ðhadhbc−hachbdÞ
× ½ð−τÞfξbdþðξbe∂dþξde∂bÞ−ξbξdgK̃ac

þτΓ̃p
adðξbK̃pcþξcK̃pb−ξpK̃bcÞþτ2ξbξd∂τK̃ac�: ð26Þ

We know that JτjOðα2Þ ≡ 2R̃, then

1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞjOðα2Þ ¼ e−ζ

1ffiffiffi
h

p ∂τ

	 ffiffiffi
h

p
Jτ

jOðα2Þ þ 4e−ζðhadhbc − hachbdÞ½−ðξbdK̃acÞ − ðξbe∂d þ ξde∂bÞK̃ac

þ Γ̃p
adðξbK̃pc þ ξcK̃pb − ξpK̃bcÞ − τfξbd þ ðξbe∂d þ ξde∂bÞgð∂τK̃acÞ þ τΓ̃p

adðξb∂τK̃pc

þ ξc∂τK̃pb − ξp∂τK̃bcÞ þ ξbξdK̃ac þ 3τξbξd∂τK̃ac þ ξbξdτ
2
∂
2
τ K̃ac� þOðϵ2Þ: ð27Þ

The entropy current is given as

Ja ¼ −4ðhadhbc − hcdhabÞ∇bKcd; ð28Þ

hence

∇aJa ¼ −4ðhadhbc − hachbdÞ∇b∇dKac: ð29Þ

The extrinsic curvature in the two coordinate systems are
related as

Kac ¼ e−ζK̃ac: ð30Þ

This implies

∇dKac ¼ e−ζ½e∇dK̃ac − ξdðK̃ac þ τ∂τK̃acÞ� ð31Þ

∇b∇dKac ¼ e−ζ½e∇b
e∇dK̃ac − ðξbdK̃acÞ − ðξbe∂d þ ξde∂bÞK̃ac þ Γ̃p

adðξbK̃pc þ ξcK̃pb − ξpK̃bcÞ
− τfξbd þ ðξbe∂d þ ξde∂bÞgð∂τK̃acÞ þ τΓ̃p

adðξb∂τK̃pc þ ξc∂τK̃pb − ξp∂τK̃bcÞ
þ ξbξdK̃ac þ 3τξbξd∂τK̃ac þ ξbξdτ

2
∂
2
τ K̃ac� þOðϵ2Þ: ð32Þ

Hence, the divergence of entropy current transforms as

∇aJa ¼ e−ζ e∇aJ̃a − 4e−ζðhadhbc − hachbdÞ½−ðξbdK̃acÞ − ðξbe∂d þ ξde∂bÞK̃ac þ Γ̃p
adðξbK̃pc þ ξcK̃pb − ξpK̃bcÞ

− τfξbd þ ðξbe∂d þ ξde∂bÞgð∂τK̃acÞ þ τΓ̃p
adðξb∂τK̃pc þ ξc∂τK̃pb − ξp∂τK̃bcÞ þ ξbξdK̃ac þ 3τξbξd∂τK̃ac

þ ξbξdτ
2
∂
2
τ K̃ac� þOðϵ2Þ: ð33Þ
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From Eqs. (27) and (33), we find that terms linear in K̃ab,
[i.e.,OðϵÞ terms] cancel exactly leaving an overall factor of
e−ζ in the zeroth-order term. Hence, we have

1ffiffiffi
h

p ∂vð
ffiffiffi
h

p
JvÞ þ∇aJa ¼ e−ζ

�
1ffiffiffi
h

p ∂τð
ffiffiffi
h

p
JτÞ þ e∇aJ̃a

�
þOðϵ2Þ: ð34Þ

V. CONCLUSION

In this paper, we have verified that the general expect-
ation that net entropy production in a dynamical gravity
should not depend on how we choose coordinates along
the horizon. First, in Sec. III, we have outlined a general
proof of why the entropy production should transform in
the way we physically expect [see Eq. (13) and the
discussion around]. Then in the next section, we verified
the claim for the particular case of Gauss-Bonnet theory
by explicit computation. This provides a consistency
check on the construction of the entropy current in
Einstein-Gauss-Bonnet theory.
It might seem that apart from the consistency check

mentioned above, our computation is not of much use since
we already have a general proof that this symmetry must
work. However, as we mentioned in the Introduction, our
final goal is to have some construction of entropy current
and entropy density that works without any perturbation. In
this context, it would be interesting to analyze this sym-
metry in a more systematic manner so that we could use it to
constrain the structure of the entropy density and the
entropy current in a theory-independent manner. Note that
the existence of entropy density and the spatial entropy
current has been predicted using the special case of the
transformation considered here; namely, boost symmetry
generated by a constant ζ [9,11]. It is natural to expect more
constraints in the whole structure if we use a larger
symmetry where ζ is a function of all spatial coordinates.
Our paper is a small step towards this goal which gives us
more experience in dealing with the symmetries of null
surfaces and corresponding transformation of the relevant
physical quantities.
One very natural extension of this work might be to

perform similar calculations for other four-derivative the-
ories where the cancellations can be slightly nontrivial due
to the presence of off-the-horizon terms in the entropy
current and entropy density.
Another interesting future direction to take would be to

explore the existence of any possible relations between this
reparametrization symmetry and the BMS or Carrollian
symmetries. Recently in [18–21], the authors showed the
presence of extended BMS-like symmetries on the black
hole horizon called Carrollian symmetries. Any possible
connections of this symmetry with supertranslations or
superrotations of the others can be useful in our under-
standing of the rich symmetric structure of the horizon.
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APPENDIX A: NOTATIONS, CONVENTIONS,
AND DEFINITIONS

In this appendix, we summarize our notation conventions
and list the definitions of the various structures that we used
throughout our work.

(i) Indices: Uppercase Latin alphabets A;B; C… will
refer to full D space-time coordinates and lowercase
Latin alphabets a; b; c… will refer to the (D − 2)-
dimensional spatial coordinates.

(ii) Choice of coordinates:

XA ¼ fr; v; xag; YA ¼ fρ; τ; yag∶
The full space-time

coordinates inD dimensions;

r; ρ ¼ The radial coordinates;

v; τ ¼ The Eddington-Finkelstein type

time coordinates;

xa; ya ¼ The ðD − 2Þ spatial coordinates:

(iii) Choice of space-time metrics:

ds2 ¼ 2dvdr − r2Xðr; v; xaÞdv2
þ 2rωaðr; v; xbÞdvdxa þ habðr; v; xaÞdxadxb

¼ GABðr; v; xaÞdXAdXB

¼ 2dτdρ − ρ2X̃ðρ; τ; yaÞdτ2 þ 2ρω̃aðρ; τ; ybÞ
× dτdya þ h̃abðρ; τ; yaÞdyadyb

¼ gABðρ; τ; yaÞdYAdYB:

(iv) Structures like spatial derivatives, curvature
tensors, and metric components in the YA

coordinate system will be represented with a ˜ on
their corresponding counterparts in the XA coor-
dinates. For example, X;ωi; hij; ð∂a ¼ ∂

∂xaÞ →
X̃; ω̃i; h̃ij; ðe∂a ¼ ∂

∂yaÞ.
(v) Transformation of coordinates and derivatives on the

horizon:
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r ¼ e−ζρþOðρ2Þ;
ρ ¼ eζrþOðr2Þ;
v ¼ eζτ þOðρÞ;
τ ¼ e−ζvþOðrÞ;
xa ¼ ya þOðρÞ;
ya ¼ xa þOðrÞ;

∂r ¼ eζ
�
∂ρ þ

1

2
τ2ξ2∂τ þ τξae∂a

�
þOðρÞ;

∂v ¼ e−ζ∂τ þOðρÞ;
∂a ¼ e∂a − τξa∂τ þOðρÞ;

where we denoted ∂aζ ¼ e∂aζ by ξa.
(vi) Definition of curvature tensors:

Kab ¼
1

2
∂vhab; K ¼ habKab ¼

1ffiffiffi
h

p ∂v

ffiffiffi
h

p
;

K̃ab ¼
1

2
∂τh̃ab; K̃ ¼ h̃abK̃ab ¼

1ffiffiffĩ
h

p ∂τ

ffiffiffĩ
h

p
;

RABCD; RAB; R ¼

Riemann tensor, Ricci tensor, Ricci scalar corre-
sponding to full metric G or g,

Rabcd;Rab;R ¼

Riemann tensor, Ricci tensor, Ricci scalar corre-
sponding to intrinsic metric h or eh:

APPENDIX B: DETAILED EXPRESSIONS

In this appendix, we show the explicit calculations for
the relation between quantities such as Christoffel con-
nection, Ricci scalar, and the divergence of entropy current
between XA and YA coordinate systems:

(i) Expression for Christoffel connection in trans-
formed coordinates,

Γa;bc ¼
1

2
ð∂bhac þ ∂chab − ∂ahbcÞ

¼ Γ̃a;bc −
1

2
τ∂τðξbhac þ ξchab − ξahbcÞ

¼ Γ̃a;bc − τðξbK̃ac þ ξcK̃ab − ξaK̃bcÞ; ðB1Þ

(ii) Expressions for Riemann tensor and Ricci scalar,

Rabcd ¼ −½∂dΓa;bc − ∂cΓa;bd þ hpqΓp;acΓq;bd

− Γp;adΓq;bchpq�; ðB2Þ
(iii) Ricci Scalar in transformed coordinates,

R ¼ hachbdRabcd

¼ −hachbd∂dΓa;bc þ hadhbc∂dΓa;bdc

þ hachbdΓp;adΓq;bchpq − hadhbcΓp;adΓq;bchpq

¼ ðhadhbc − hachbdÞð∂dΓa;bc − hpqΓp;adΓq;bcÞ
ðB3Þ

∂dΓa;bc ¼ ∂̃dΓa;bc − τξd∂τΓa;bc

¼ ∂̃d½Γ̃a;bc − τðξbK̃ac þ ξcK̃ab − ξaK̃bcÞ�− τξd∂τ½Γ̃a;bc − τðξbK̃ac þ ξcK̃ab − ξaK̃bcÞ�
¼ ½∂̃dΓ̃a;bc − τðξbdK̃ac þ ξcdK̃ab − ξadK̃bcÞ − τðξb∂̃dK̃ac þ ξc∂̃dK̃ab − ξa∂̃dK̃bcÞ�
þ ½−τðξd∂̃bK̃ac þ ξd∂̃cK̃ab − ξd∂̃aK̃bcÞ þ τðξdξbK̃ac þ ξdξcK̃ab − ξaξdK̃bcÞ
þ τ2ðξdξb∂τK̃ac þ ξdξc∂τK̃ab − ξdξa∂τK̃bcÞ�: ðB4Þ

The terms canceled in (B4) due to the fact that terms symmetric in ðc; dÞwill not contribute to the Ricci scalar as it
has a prefactor of ðhadhbc − hachbdÞ which is antisymmetric in ðc; dÞ. Hence,

∂dΓa;bc ¼ e∂dΓ̃a;bc − τ½ðξbd þ ξbe∂d þ ξde∂b − ξdξbÞK̃ac − ðξad þ ξae∂d þ ξde∂a − ξaξdÞK̃bc�
þ τ2½ξdξb∂τK̃ac − ξdξa∂τK̃bc�: ðB5Þ

From Eq. (B3) and (B1),

hpqΓp;adΓq;bc ¼ hpqΓ̃p;adΓ̃q;bc − τhpqΓ̃p;adðξbK̃qc þ ξcK̃qb − ξqK̃bcÞ
− τhpqΓ̃q;bcðξaK̃pd þ ξdK̃pa − ξpK̃adÞ þOðϵ2Þ: ðB6Þ
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Thus, from (B3), (B5), and (B6)

R ¼ R̃þ ðhadhbc − hachbdÞ½−2τfξbd
þ ðξb∂̃d þ ξd∂̃bÞ − ξdξbgK̃ac

þ 2τ2ðξdξb∂τK̃acÞ þ 2τhpqΓ̃p;adðξbK̃qc

þ ξcK̃qb − ξqK̃bcÞ� þOðϵ2Þ: ðB7Þ

(iv) The divergence of entropy current in transformed
coordinates.

The expression for entropy current for Gauss-
Bonnet theory is given as

Ja ¼ −4ð∇bKba −∇aKcdhcdÞ: ðB8Þ
This implies, that the divergence of entropy current is

∇aJa ¼ −4ðhadhbc − hcdhabÞ∇a∇bKcd

¼ −4ðhadhbc − hachbdÞ∇b∇dKac: ðB9Þ

Let us define a three index object Md;ac such that

Md;ac ≡∇dKac ¼ ∇dðe−ζK̃acÞ ¼ ∂dðe−ζK̃acÞ − Γp
daðe−ζK̃pcÞ − Γp

dcðe−ζK̃apÞ
¼ f∂̃d − ξdτ∂τgðe−ζK̃acÞ − Γ̃p

daðe−ζK̃pcÞ − Γ̃p
dcðe−ζK̃apÞ þOðϵ2Þ

¼ e−ζ½∂̃dK̃ac − ξdK̃ac − ξdτ∂τK̃ac − Γ̃p
daK̃pc − Γ̃p

dcK̃ap� þOðϵ2Þ
¼ e−ζð∇̃dK̃ac − ξdK̃ac − ξdτ∂τK̃acÞ þOðϵ2Þ
¼ e−ζðM̃d;ac − ðδM̃Þd;acÞ þOðϵ2Þ; ðB10Þ

where

ðδM̃Þd;ac ¼ ξdðK̃ac þ τ∂τK̃acÞ: ðB11Þ

Also, we define

Wabcd ≡∇bMd;ac

¼ ∂bMd;ac − Γp
bdMp;ac − Γp

baMd;pc − Γp
bcMd;ap

¼ ∂̃b

�
e−ζ

	
M̃d;ac −

	
δM̃



d;ac


�
− ξbe−ζτ∂τ

	
M̃d;ac −

	
δM̃



d;ac



− e−ζ

h
Γ̃p
bd

	
M̃p;ac −

	
δM̃



p;ac


þ Γ̃p
ba

	
M̃d;pc −

	
δM̃



d;pc


þ Γ̃p
bc

	
M̃d;ap −

	
δM̃



d;ap


iþO
	
ϵ2



¼ e−ζ
h
∇̃bM̃d;ac − ξb

	
1þ τ∂τ


	
M̃d;ac − δM̃d;ac



− ∇̃bδM̃d;ac

i
¼ e−ζ

h
∇̃b∇̃dK̃ac − ξbM̃d;ac − ∇̃bδM̃d;ac − ξbτ∂τM̃d;ac þ ξb

	
1þ τ∂τ



δM̃d;ac

i
¼ e−ζ

�
∇̃b∇̃dK̃ac−ξb∇̃dK̃ac − ∇̃b

	
ξdK̃ac



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term1

− ∇̃b

	
ξdτ∂τK̃ac



− ξbτ∂τ∇̃dK̃ac|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term2

þ ξb
	
1þ τ∂τ


	
ξdK̃ac þ ξdτ∂τK̃acÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term3

�

þOðϵ2Þ: ðB12Þ

Now,

term 1 ¼ −ξbe∇dK̃ac − e∇bðξdK̃acÞ
¼ −ξbe∂dK̃ac þ ξbΓ̃

p
daK̃pc þ ξbΓ̃

p
dcK̃ap

− ξde∂bK̃ac þ ξdΓ̃
p
baK̃pc þ ξdΓ̃

p
bcK̃ap

− ξbdK̃ac þ Γ̃p
bdξpK̃ac: ðB13Þ

From (B9), we see that for calculation of the divergence
of entropy current, the terms in (B12) have to be
contracted with ðhadhbc − hachbdÞ, which is antisymmetric
in ðc; dÞ or ða; bÞ. Now, in (B13), the terms ξbΓ̃

p
dcK̃ap

and ξdΓ̃
p
baK̃pc are symmetric in ðc; dÞ and ða; bÞ, respec-

tively. Hence these can be dropped. In addition, we
can perform some relabeling of indices and rewrite
term 1 as
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term 1 ¼ −ξb∂̃dK̃ac þ ξbΓ̃
p
daK̃pc

− ξd∂̃bK̃ac þ ξcΓ̃
p
adK̃bp

− ξbdK̃ac − Γ̃p
adξpK̃bc

¼ −ðξb∂̃d þ ξd∂̃bÞK̃ac − ξbdK̃ac

þ Γ̃p
adðξcK̃pb þ ξbK̃pc − ξpK̃bcÞ: ðB14Þ

In a similar fashion, we can express term 2 as

term 2 ¼ −ξbτ∂τ∇̃dK̃ac − ∇̃bðξdτ∂τK̃acÞ
¼ −τ½ξb∇̃dð∂τK̃acÞ þ ∇̃bðξd∂τK̃acÞ� þOðϵ2Þ
¼ −τ½ðξb∂̃d þ ξd∂̃bÞ∂τK̃ac þ ξbd∂τK̃ac

− Γ̃p
adðξc∂τK̃pb þ ξb∂τK̃pc − ξp∂τK̃bcÞ� þOðϵ2Þ:

ðB15Þ

Now, evaluating term 3

term 3 ¼ ξbð1þ τ∂τÞðξdK̃ac þ ξdτ∂τK̃acÞ
¼ ξbξdðK̃ac þ 3τ∂τK̃ac þ τ2∂2τ K̃acÞ: ðB16Þ

Combining results from (B12), (B14), (B15), and (B16)

Wabcd ¼ e−ζ½∇̃b∇̃dK̃ac − ðξbdK̃acÞ − ðξb∂̃d þ ξd∂̃bÞK̃ac þ Γ̃p
adðξbK̃pc þ ξcK̃pb − ξpK̃bcÞ

− τfξbd þ ðξb∂̃d þ ξd∂̃bÞgð∂τK̃acÞ þ τΓ̃p
adðξb∂τK̃pc þ ξc∂τK̃pb − ξp∂τK̃bcÞ

þ ξbξdK̃ac þ 3τξbξd∂τK̃ac þ ξbξdτ
2
∂
2
τ K̃ac� þOðϵ2Þ: ðB17Þ

Hence, the divergence of entropy current becomes

∇aJa ¼ e−ζ∇̃aJ̃a − 4e−ζðhadhbc − hachbdÞ½−ðξbdK̃acÞ − ðξb∂̃d þ ξd∂̃bÞK̃ac þ Γ̃p
adðξbK̃pc þ ξcK̃pb − ξpK̃bcÞ

− τfξbd þ ðξb∂̃d þ ξd∂̃bÞgð∂τK̃acÞ þ τΓ̃p
adðξb∂τK̃pc þ ξc∂τK̃pb − ξp∂τK̃bcÞ

þ ξbξdK̃ac þ 3τξbξd∂τK̃ac þ ξbξdτ
2
∂
2
τ K̃ac� þOðϵ2Þ: ðB18Þ

APPENDIX C: ACTION OF DERIVATIVES ON
SOME SPECIFIC STRUCTURES

In this appendix we will see how the derivatives of
certain boost weight 1 structures transform under the
coordinate transformations. We will see how these terms
can be condensed into some particular forms that can help
us manipulate them in simpler ways.
Any boost weight 1 term can be written in the form of ∂v

(some boost weight 0 structure, say Qa1a2…an).
Transforming the ∂v operator under the coordinate trans-
formations as in (19), we can write it as e−ζð∂τQa1a2…anÞ.

Also, since τ is analogous to the v coordinate itself,
ð∂τQa1a2…anÞ itself is a boost weight 1 structure in the
fρ; τ; yag coordinate system. Now if we act with a ∇xi on
this structure, we get

∇ið∂vQa1a2…anÞ ¼ ∇iðe−ζð∂τQa1a2…anÞÞ
¼ ∂iðe−ζð∂τQa1a2…anÞÞ − e−ζΓb

ia1
∂τQba2…an

− e−ζΓb
ia2
∂τQa1b…an…

− e−ζΓb
ian
∂τQa1a2…b ðC1Þ

∂iðe−ζð∂τQa1a2…anÞÞ ¼ ð∂̃i − ξiτ∂τÞðe−ζð∂τQa1a2…anÞÞ
¼ −ξiðe−ζð∂τQa1a2…anÞÞ − ξiτðe−ζ∂τð∂τQa1a2…anÞÞ
− e−ζ∂̃ið∂τQa1a2…anÞ

¼ e−ζ½∂̃ið∂τQa1a2…anÞ − ξið1þ τ∂τÞð∂τQa1a2…anÞ�
Γb
iam

ð∂τQa1a2::b::anÞ ¼ ½Γ̃b
iam − τðξK̃…Þ�ð∂τQa1a2::b::anÞ

¼ Γ̃b
iamð∂τQa1a2::b::anÞ þOðϵ2Þ

⇒ ∇ið∂vQa1a2…anÞ ¼ e−ζ½∇̃i − ξið1þ τ∂τÞ�∂τQa1a2…an þOðϵ2Þ: ðC2Þ

This form becomes especially useful while calculating Ji and ∇iJi.
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One more structure that can appear in the calculations of the ∂vJv is of the form ∂vðτQÞ from the extra terms that are
generated due to the coordinate transformation. This derivative can be arranged in the following form which makes it easier
to manipulate:

∂v½τQ� ¼ e−ζ∂τ½τQ� ¼ e−ζð1þ τ∂τÞQ: ðC3Þ
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